Title
An Energy-Dispersive X-Ray Fluorescence Analysis of Obsidian Artifacts from Archaeological Sites Near Deming, New Mexico

Permalink
https://escholarship.org/uc/item/0984r41h

Author
Shackley, M. Steven

Publication Date
2002-01-09

Supplemental Material
https://escholarship.org/uc/item/0984r41h#supplemental
LETTER REPORT

AN ENERGY-DISPERSIVE X-RAY FLUORESCENCE ANALYSIS OF OBSIDIAN ARTIFACTS FROM ARCHAEOLOGICAL SITES NEAR DEMING, NEW MEXICO

9 January 2002

Dr. David Kirkpatrick
Human Systems Research, Inc.
PO Box 728
Las Cruces, NM 88204

Dear David,

The artifact assemblage exhibited a remarkably diverse source provenance. The cruciform from LA 134706 was produced from one of the Mule Creek sources, but Sample 303 from LA 135139 is probably a chert flake. The one unknown does not match any known samples from north or south of the border (Shackley 2003). Samples 149 or 321 assigned to Cerro Toledo Rhyolite, could have been procured from the Rio Grande alluvium where this and other sources from northern New Mexico have been deposited (Shackley 1997, 2003).

The samples were analyzed with a Spectrace (ThermoNoran) QuanX EDXRF spectrometer in the Archaeological XRF Laboratory, University of California, Berkeley. Instrumental methods can be found at http://obsidian.pahma.berkeley.edu/analysis.htm. Analysis of the USGS RGM-1 standard indicates high machine precision for the elements of interest (Govnidaraju 1994; Table 1 here). Source determination was made using source standards at Berkeley, and reference to Shackley (1995, 2003).

Sincerely,

M. Steven Shackley, Ph.D.
Director

VOICE: (510) 643-1193 ext. 3
INTERNET: shackley@uclink.berkeley.edu
http://obsidian.pahma.berkeley.edu/
REFERENCES CITED

Davis, M.K., T.L. Jackson, M.S. Shackley, T. Teague, and J.H. Hampel
1998 Factors Affecting the Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of
Archaeological Obsidian. In Archaeological Obsidian Studies: Method and Theory, edited by
Academic/Plenum Press, New York.

Govindaraju, K.
1994 1994 Compilation of Working Values and Sample Description for 383

Shackley, M.S.
1995 Sources of Archaeological Obsidian in the Greater American Southwest: An Update and

1997 An Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of Kaake and Phelps
Collection Obsidian Cruciforms From Texas and Chihuahua. Report prepared for Jeff Kaake
and Arizona State Museum. Ms. in possession of author.

2003 Little Black Rocks in the Desert: The Geology and Archaeology of Obsidian in the North

Table 1. Elemental concentrations for the archaeological sample. All measurements in parts per million (ppm).

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Ti</th>
<th>Mn</th>
<th>Fe</th>
<th>Rb</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Nb</th>
<th>Th</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA 135139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>382</td>
<td>1159</td>
<td>421</td>
<td>10817</td>
<td>344</td>
<td>23</td>
<td>38</td>
<td>105</td>
<td>31</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>321</td>
<td>1204</td>
<td>518</td>
<td>10577</td>
<td>172</td>
<td>0</td>
<td>47</td>
<td>144</td>
<td>89</td>
<td>0</td>
<td>Cerro Toledo Rhy*</td>
</tr>
<tr>
<td>303</td>
<td>936</td>
<td>138</td>
<td>4364</td>
<td>0</td>
<td>17</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>not obsidian</td>
</tr>
<tr>
<td>LA 134706</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>1240</td>
<td>376</td>
<td>10165</td>
<td>231</td>
<td>26</td>
<td>40</td>
<td>110</td>
<td>23</td>
<td>23</td>
<td>Mule Cr/AC-MM</td>
</tr>
<tr>
<td>149</td>
<td>1157</td>
<td>546</td>
<td>10513</td>
<td>200</td>
<td>11</td>
<td>62</td>
<td>181</td>
<td>100</td>
<td>18</td>
<td>Cerro Toledo Rhy</td>
</tr>
<tr>
<td>RGM-H1</td>
<td>1828</td>
<td>311</td>
<td>14031</td>
<td>149</td>
<td>113</td>
<td>22</td>
<td>220</td>
<td>5</td>
<td>11</td>
<td>standard</td>
</tr>
</tbody>
</table>

* This sample was small enough that the elemental concentrations are slightly outside the range for Cerro Toledo
Rhyolite obsidian, but highly likely to have been produced from that source (see Davis et al. 1998).