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Abstract

To date, no account of lie-truth judgement formation has been
capable of explaining how core cognitive mechanisms such as
memory encoding and retrieval are employed to reach a judge-
ment of either truth or lie. One account, the Adaptive Lie De-
tector theory (ALIED: Street, Bischof, Vadillo, & Kingstone,
2016) is sufficiently well defined that its assumptions may be
implemented in a computational model. In this paper we de-
scribe our attempt to ground ALIED in the representations and
mechanisms of the ACT-R cognitive architecture and then test
the model by comparing it to human data from an experiment
conducted by Street et al. (2016). The model provides a close
fit to the human data and a plausible mechanistic account of
how specific and general information are integrated in the for-
mation of truth-lie judgements.

Keywords: ALIED; ACT-R; Lie Detection

The Adaptive Lie Detector theory
The Adaptive Lie Detector theory (ALIED Street, 2015) ar-
gues that people make reasonable use of the information
available to them to adaptively reach a lie or truth judgement.
According to ALIED, people’s judgements are informed by
two types of knowledge: information relating to the particu-
lar statement under consideration (called individuating infor-
mation) and information that generalises across statements,
which can be informed by the base rate of honesty (called
context-general information).

ALIED argues that when individuating information has
high diagnosticity in determining if a statement is a lie or true
(e.g., Pinocchio’s nose growing), this has the heavier weight
in the judgement. But when individuating information has
low diagnosticity, ALIED claims that people do not simply
guess at random, but rather that their context-general knowl-
edge (e.g., “most people tell the truth in this setting”) has
the heavier weight in the judgement, thereby allowing for a
satisficing judgement in the absence of more diagnostic in-
dividuating information. This account is considered adaptive
insofar as it reflects an informed decision-making process.

Individuating information varies in its degree of diagnos-
ticity however. If a particular cue has been learnt to be highly
diagnostic, people use this information to attain high accuracy
(Blair, Levine, & Shaw, 2010; G. D. Bond, Malloy, Arias,
Nunn, & Thompson, 2005; Levine & McCornack, 2014). But
individuating cues to deception are typically either unavail-
able (Luke, 2019) or if they are available, have low diagnos-
ticity (DePaulo et al., 2003; Hartwig & Bond, 2011; Sporer

& Schwandt, 2006). In such cases, people will try to bring
relevant general knowledge to bear on the issue, for example
their beliefs about the prevalence of lying in certain situa-
tions. As the diagnosticity of individuating cues is perceived
to reduce, ALIED argues that context-general knowledge will
have a heavier weighting in the judgement process to make an
informed—but overgeneralised—judgement.

Because individuating cues typically have low diagnostic-
ity, and because context-general information is informed by
the fact that people predominantly tell the truth (DePaulo,
Kashy, Kirkendol, Wyer, & Epstein, 1996; Halevy, Shalvi, &
Verschuere, 2014), in most situations it is rational to make a
truth judgement, leading to the frequently observed tendency
to judge others’ statements as truths (known as the “truth
bias”: C. F. Bond & DePaulo, 2006).

By contrast, in situations where lying is more prevalent or
the belief that people lie is widespread (i.e., context-general
information suggests that people typically lie), ALIED claims
that the bias is to judge statements as being untruthful, for
which there is evidence (e.g., G. D. Bond et al., 2005; Masip,
Alonso, Garrido, & Herrero, 2009). ALIED argues therefore
that the observed truth bias often found in studies is not a
cognitive disposition, but rather an adaptive judgement in the
absence of specific (individuating) information.

Testing the ALIED theory
Street et al. (2016) conducted an experiment to investigate the
interactive effect of individuating and context-general cues on
lie detection. Participants were required to judge whether in-
dividuals who had recently played a trivia game had cheated
(and lied about it) or not (and told the truth about not cheat-
ing). This was a cover story: in reality, no trivia game took
place. The study took the form of a two-choice reinforce-
ment learning paradigm widely used to investigate probability
and category learning (Estes, 1972; Medin & Schaffer, 1978;
Nosofsky, 1986), consisting of a training phase followed by a
test phase. Crucially however, this experiment differed from
typical designs by introducing additional context-general in-
formation prior to the test phase to measure its effect on the
learned associations with individuating cues.

During the learning phase, participants were presented
with a cue that appeared somewhere between 20% and 80%
(in steps of 10%) of the time when the trivia players were
being honest, which defines their level of diagnosticity (i.e.,
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between 20% and 80% diagnostic of honesty). Participants
had to judge whether the trivia game player lied or told the
truth based on these cues and received feedback on their re-
sponses. They learnt about four cues in this way: voice pitch,
facial expression, number of silent periods in sentences, and
number of self-references such as ‘I’ and ‘me’.

At the end of the learning phase, participants were given
context-general information: either that most trivia game
players would lie (because the trivia game is hard and so most
people had to cheat and then lie about it) or that most would
tell the truth (because the trivia game was easy and so did not
need to cheat and thus could tell the truth about not cheating).

In a final test phase, participants made the same lie-truth
responses to the presentation of individual cues as per the
learning phase, but were given no feedback on the accuracy
of their responses. The key dependent measure was the pro-
portion of truth judgements in the test phase (PTJ, calculated
as the number of truth judgements divided by the total num-
ber of judgements made) for each cue diagnosticity. These
are shown for both the easy and hard conditions in Figure 1.
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Figure 1: Proportion of truth judgements on trials for each
diagnosticity level of truth cue in the training phase, split by
easy and hard game conditions, from the experiment reported
in Street et al. (2016). The dotted line indicates where the
proportion of judgements matches the frequency of the cue
being associated with honesty. Error bars denote 95% confi-
dence intervals.

Analysis of the data revealed a significant main effect of
cue diagnosticity, showing that as cues became more indica-
tive of honesty the proportions of truth judgements increased.
There was also a significant main effect of context, with more
truth judgements being made in the easy condition than in the

hard condition. The analysis also revealed a significant in-
teraction between cue diagnosticity and context in that the
effect of context-general information is greater as the indi-
viduating cue diagnosticity decreases, in line with ALIED’s
prediction. These results provide a quantitative demonstra-
tion of how people’s judgements arise from an interaction be-
tween knowledge formed from the history of experience un-
derlying the diagnosticity of individuating cues and context-
general knowledge about the prevalence of lying.

Human performance in the experiment can be accounted
for by a Bayesian model (Street et al., 2016) but questions re-
main concerning how the two types of knowledge are learned
and cognitively represented and what the cognitive mecha-
nisms of interaction that produce the observed adaptive be-
haviour may be. Like all other proposed explanations of lie-
truth judgement formation, ALIED is silent on these matters,
and yet invariably these core cognitive mechanisms are fun-
damental to the judgement process. To address this short-
coming, we describe below a cognitive process model to ac-
count for the human performance revealed in this experiment.
Developed within the ACT-R theory (Anderson, 2007), the
model explains performance in terms of the basic learning
and retrieval mechanisms of declarative memory, and pro-
vides an algorithmic level account of lie-truth judgement for-
mation consistent with the assumptions of ALIED.

The ACT-R cognitive architecture
ACT-R is a well-established theory of the core components of
the human cognitive system, including declarative and proce-
dural memory, cognitive control, and learning, and how they
are integrated to produce intelligent behaviour. Space limi-
tations preclude a detailed description of ACT-R here but a
comprehensive account of the cognitive architecture can be
found in Anderson (2007).

In summary, ACT-R consists of a set of modules that ac-
quire information from the environment, process informa-
tion, and execute motor actions to achieve goals. ACT-R’s
declarative memory consists of a network of symbolic knowl-
edge chunks while its procedural memory comprises a set of
“if. . . then” production rules. Cognition proceeds via a sym-
bolic pattern matching process that selects production rules
whose conditions match the state of the system and tasks are
performed through the successive actions of productions.

ACT-R augments the symbolic knowledge level with a
subsymbolic level of numerical computations that instantiate
learning mechanisms governing production rule selection and
declarative retrieval. As the current model’s performance is
determined primarily by the declarative memory learning and
retrieval mechanisms these are now described in more detail.

Chunks in declarative memory each have a level of activa-
tion, a value related to the recency and frequency of their use.
The learning and forgetting of chunks is achieved through the
gradual adjustment of their activations over time which af-
fects the probability and timing of their subsequent retrieval.
When chunks are created in declarative memory, they have
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an initial level of activation which decays over time, reduc-
ing the probability of their subsequent retrieval. Memory re-
trieval in ACT-R occurs when a production rule contains a
retrieval request to the declarative memory module contain-
ing one or more cues, in the case of the current experiment,
the cues being the individuating features and context-general
information. The activation of a chunk i, Ai, is defined as

Ai = Bi + ∑
j∈C

WjS ji + ε (1)

where Bi is the base-level activation of chunk i which reflects
the history of the chunk’s use, C is the context (i.e., the set of
elements, j currently in the ACT-R buffers which constitute
the current state of the system), Wj is the attentional weight-
ing given to element j, S ji is the strength of association be-
tween element j and chunk i, and ε is a noise component.

A chunk’s base-level activation decays as a power function
of time but is increased with each ‘presentation’ (i.e., when
a chunk initially enters into declarative memory or when an
existing chunk’s activation is increased by each additional ex-
perience of that chunk). The learning of base-level activation
for a chunk i is defined as

Bi = ln

(
n

∑
j=1

t−d
j

)
(2)

where n is the number of presentations of chunk i, t j is the
time since the jth presentation, and d is the parameter deter-
mining the activation decay rate. The retrieval probability of
each chunk i, Pi is a function of its activation, Ai and is de-
fined as

Pi =
1

1+ e
−(Ai−τ)

s

(3)

where s is a noise parameter that tempers the relationship be-
tween activation and recall probability and τ is the threshold
activation below which chunks will not be retrieved. For a
set of chunks matching a retrieval request, the probability of
chunk i being selected is a function of its activation relative
to the activations of the others. If no chunk has an activation
greater than the retrieval threshold then none will be retrieved
and a retrieval failure will be signalled.

To capture aspects of human memory behaviour such as re-
trieval errors, ACT-R has a partial matching mechanism that
takes the similarity between the probe and memory chunks
into account. With partial matching, the activations of chunks
of the same type as the probe are modified in proportion to
their similarity to the probe according to

Pi = ∑
k

PM ji (4)

where Pi, the partial matching value of chunk i, is computed
as the sum of the similarity between each of its slots with the
corresponding slot j in the probe, M ji multiplied by a mis-
match penalty value, P (which is constant over all slots). M ji
is typically set to 0 when slot values are equal and −1 when

they are not. The result is that when a chunk does not com-
pletely match a retrieval request, its activation is reduced in
proportion to the number of mismatching slots, reducing its
retrieval probability. This mechanism is critical to capturing
the effect of context-general information in the experiment.

A model of the experiment
Having laid out the theoretical assumptions and computa-
tional mechanisms underlying our approach, we now describe
the proposed model in detail. ACT-R is implemented as a
software system and incorporates models of vision and mo-
tor control which can be connected to—-and interact with—
external task and simulation environments. The model we
developed runs in a simulation of the entire experiment and
includes perceptual processes of reading and encoding cues
and feedback from the computer screen and manual processes
required to enter responses via a keyboard1.

Start

Read text

Cue or
feedback?

Response?

Encode cue
and retrieve
diagnosticity

Retrieval? Guess? Respond "truth"

Respond "lie"
Respond with
retrieved value

Encode negative
feedback

Encode positive
feedback

Stop

Incorrect

Correct

Cue

Feedback

Success

TruthFailure

Lie

Figure 2: Control flow of the ACT-R model carrying out a
trial of the experiment. Rectangles correspond to actions car-
ried out by production rules, diamonds represent junctions in
the experiment or model’s behaviour.

The control flow of the model executing a single trial (in
either the training or test phase) of the experiment is illus-
trated in Figure 2. Reflecting the simplicity of the task, the
model is relatively small and straightforward, consisting of
15 production rules and two initial declarative chunks to rep-
resent the general knowledge (that we assume the experiment
participants had as it was explicitly reinforced during the ex-
periment) that easy games are associated with truth telling
and hard games with lying.

On each training trial, the model reads one of four cues
(‘voice’, ‘face’, ‘silence’ and ‘self’) on the computer screen
and uses it to probe declarative memory for a chunk repre-
senting the cue. If the retrieval is successful, the model is
able to access associated information about whether the cue
is indicative of telling the truth or not and responds “truth” or
“lie” accordingly (by pressing either the “t” or “l” key on the
keyboard). If no fact is retrieved then the model just ‘guesses’
by selecting one of the two responses at random. On receipt

1The ACT-R model of the experiment is available on GitHub:
https://github.com/djpeebles/act-r-lie-detection-model
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Figure 3: Proportion of test phase truth judgements for each proportion of truth cue conditions in the training phase, human and
model: (a) easy condition, (b) hard condition.

of the model’s response, the experiment software provides
feedback (“Correct” or “Incorrect”) on the screen which the
model reads and uses to update its knowledge about the cue
by encoding (or strengthening) the correct response in declar-
ative memory. After a two-second delay, the next trial starts.

When the 80 training trials are complete, the model is pro-
vided with the additional context-general information regard-
ing the difficulty of the game (“easy” or “hard”) and then
completes the 80 test trials. The test phase is almost iden-
tical to the training phase in that the model is provided with
the same cues (but this time only 20 of each in random order)
and must respond as before. As in the original experiment,
no feedback was provided in the test phase.

The model was evaluated by running it 150 times (to simu-
late 150 experiment participants) for each experiment condi-
tion and the data for each condition averaged. To fit the model
to the human data, three parameters that affect the chunk ac-
tivation calculation and subsequent retrieval probability were
adjusted: the retrieval threshold parameter (τ in Equation 3)
was set to 0.4, the activation noise parameter (s in Equation
3 and the variance of the logistic function of ε in Equation
1) was set to 0.21, and the mismatch penalty parameter (P in
Equation 4) was set to 0.65. These values are within the typi-
cal ranges for ACT-R models and the same parameter values
were used for both experiment conditions.

The mean proportion of truth judgements as a function of
cue diagnosticity in the training phase from the ACT-R model
and human participants are compared for the easy and hard

conditions in Figures 3a and 3b respectively. In both figures,
the blue line plots the proportions produced by the model af-
ter the training phase and the dotted line indicates where ex-
periment condition proportions and response proportions are
equal. The fit of the model to the human data for both condi-
tions was very close, R2 (easy) = 0.92, RMSD (easy) = 0.08,
R2 (hard) = 0.98, RMSD (hard) = 0.04.

Explaining the model’s performance
Training phase
To recap, the model’s performance in this task depends pri-
marily on the declarative memory chunks created during the
training phase which represent the learned associations be-
tween each cue and truth and lie responses. As the model
proceeds through the training phase, eight chunks in total are
created (two for each cue) that represent, in the form of ac-
tivation, the model’s evolving beliefs regarding the strength
of association between each cue and the truth and lie re-
sponses. Chunk activations are updated through base-level
learning during training and determine the likelihood of truth
and lie responses to each new cue presentation.

The graphs in Figure 3 reveal that, apart from when the cue
was perfectly non-diagnostic (i.e., when the cue was equally
associated with telling the truth and lying during the learning
phase) the model did not match the experimental truth pro-
portions exactly but systematically over-estimated (when the
truth-diagnostic cue > 0.5) or under-estimated (when the lie-
diagnostic cue, < 0.5) the proportion of truthful statements as
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the cue diagnosticity increased (i.e., as the proportion of truth
cues moved further away from 0.5 in either direction).

The sigmoid shape of the curve is due to a number of non-
linearities in ACT-R’s equations, for example in the choice
probability function (Equation 3), differences in activation
between the competing chunks, and the retrieval threshold
and activation noise parameters. This pattern is consistent
with data from human probability learning tasks with feed-
back which shows that people maximise their responses dur-
ing learning rather than simply matching the environmental
probabilities (e.g., Barron & Erev, 2003; Shanks, Tunney, &
McCarthy, 2002).

Test phase
When the training phase is completed, the model is provided
with the experiment condition information, “easy” or “hard”,
and before starting the test trials the model retrieves from
memory the context-general response bias associated with
each (“truth” or “lie” respectively2). Once retrieved, this re-
sponse bias then becomes an element of the goal which is
used as an additional cue in subsequent memory retrieval re-
quests for individuating cues.

The effect of this additional cue is to change the dynam-
ics of the retrieval process and this is where ACT-R’s partial
matching mechanism plays a crucial role. To simplify the
model, partial matching was nullified in the training phase
by setting the mismatch penalty (P in Equation 4) to 0, ef-
fectively eliminating the possibility of retrieval errors during
training. Enabling partial matching in the test phase however
ensures that all eight cue chunks in declarative memory en-
ter into the retrieval process and adds the value of the partial
matching computation (Equation 4) to the chunk activation
calculation (Equation 1).

When a retrieval request containing both individuating and
context-general cues is made, each chunk’s mismatch penalty
is computed according to its dissimilarity to the probe on the
two elements (cue name and context-general response bias)
and used to revise its activation. The context-general cue de-
creases the activations of chunks that don’t match it, thereby
biasing the retrieval of individuating cues in favour of match-
ing chunks. This increases and decreases the probability of a
“truth” response in the easy and hard conditions respectively.

The outcome of this process is that, although the chunk
with the highest activation is still the one retrieved, the win-
ning chunk may not be an exact match to the elements spec-
ified in the retrieval request. This mechanism successfully
captures how additional context-general knowledge affects
memory retrieval in the test phase and provides a plausible
explanation for the response shifts in the two conditions.

The graphs in Figure 3 reveal that the effect of additional
context-general information differs across the individuating
cue diagnosticity levels, with context-general information
having an increasingly greater effect as the proportion of truth

2Note that it is the context-general information that is being re-
trieved from memory at this stage. This should not be confused with
retrieving an individuating cue response.

cues (i.e., the proportion of times the cue was associated with
honesty) decreases in the easy condition and increases in the
hard condition. To explain why this happens, consider again
the easy condition in Figure 3a where the context-general in-
formation suggests that most people will tell the truth. When
the cue is present on only 20% of occasions where speakers
tell the truth, only eight of the 40 cues in a block indicate
truth telling whereas 32 experiences of the cue indicate lying.
During the training phase this results in the lying chunk being
highly active compared to the truth chunk and consequently
being retrieved approximately 93% of the time.

During the test phase, the extra “truth” context-general cue
is included in the retrieval request and, due to partial match-
ing, the activation of the “lie” individuating cue chunks is
reduced, which increases the chance of “truth” chunks being
retrieved. As the proportion of trials where the individuating
cue indicates honesty gradually increases to 0.8 however, the
effect of the additional context-general “truth” knowledge de-
creases because the activation of the “truth” individuating cue
chunk in declarative memory is already increasing relative to
the “lie” chunk. As such, the effect of reducing the activation
of the “lie” individuating cue chunk through partial matching
diminishes as the proportion of “truth” trials increases.

Discussion
Lie detection research consistently shows that people are
truth-biased (for a meta-analysis see C. F. Bond & DePaulo,
2006). In contrast, there are relatively few empirical demon-
strations that people can be lie biased, leading some to con-
sider truth bias as arising from a default form of processing
and lie bias as something that may result from an additional
trigger or further processing (cf. Gilbert, Krull, & Malone,
1990; Levine, 2014).

This assumption is not part of the ALIED theory however,
which instead argues that the observed patterns of behaviour
are a result of the relative weighting of individuating and con-
text general information during the decision-making process,
and that therefore truth and lie biases both arise from the same
processing operations.

Theories of lie detection are typically relatively loosely
specified, high-level, verbal descriptions, and while ALIED
has a credible Bayesian account of how lie-truth judgements
are made, it has no cognitively plausible account of the pro-
cesses that achieve this. The computational model presented
here addresses this shortcoming by providing a mechanistic
account of how the integration of individuating and context-
general information can occur in terms of the storage and
subsequent retrieval of declarative chunks. In doing so, the
model brings to bear the many well established cognitive
principles, mechanisms and constraints of the ACT-R cog-
nitive architecture to provide a close fit to the human data re-
ported by Street et al. (2016) and a precise formal explanation
of the phenomena described by ALIED.

The model supports the ALIED theory by showing how the
effect of context-general information on people’s responses
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is related to their existing beliefs about the prevalence of the
behaviour; context-general information has a greater effect
on the decision as the diagnosticity of the individuating cue
reduces. According to the model, if you have learned that
an individuating cue is weakly diagnostic of a particular be-
haviour, then receiving context-general information that con-
tradicts the association will have a great effect on your subse-
quent judgements. In contrast, if you have learned that an
individuating cue is strongly diagnostic of a particular be-
haviour and you subsequently receive context-general infor-
mation that further supports that knowledge, then it will have
only a very small effect on your judgements because the as-
sociation is already very strong.

This model also supports ALIED’s position on one of
the key debates in judgement and decision-making research:
whether people employ the compensatory strategy of inte-
grating multiple cues when making judgements or instead
adopt the non-compensatory approach of ignoring most cues
and using only one (Gigerenzer & Todd, 1999; Newell &
Shanks, 2003). By demonstrating how individuating and
context-general information can be integrated, the model
substantiates ALIED’s compensatory approach that uses all
available information when forming a judgement.

In attempting to ground an existing higher-level computa-
tional (i.e., purely Bayesian) account of lie-truth judgement
formation in a formal, algorithmic and representational in-
formation processing theory, we believe that this endeavour
exemplifies a core aim of cognitive science to develop expla-
nations of cognitive phenomena at multiple, mutually con-
straining, levels of description (Marr, 1982; Cooper & Pee-
bles, 2015) and that the rigour and precision brought about by
formal modelling can only benefit theories of lie detection.
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