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Abstract

The TOUGH+Millstone simulator has been developed for the analysis of 
coupled flow, thermal and geomechanical processes associated with the 
formation and/or dissociation of CH4 hydrates in geological media. It is 
composed of two constituent codes: (a) a significantly enhanced version of 
the TOUGH+HYDRATE simulator, v2.0, that accounts for all known flow, 
physical, thermodynamic and chemical processes associated with the 
behavior of hydrate-bearing systems undergoing changes and includes the 
most recent advances in the description of the system properties, coupled 
seamlessly with (b) Millstone v1.0, a new code that addresses the 
conceptual, computational and mathematical shortcomings of earlier codes 
used to describe the geomechanical response of these systems. The 
capabilities of the TOUGH+Millstone code are demonstrated in the simulation
and analysis of the system flow, thermal and geomechanical behavior during
gas production from a realistic complex offshore hydrate deposit. In the 
second part of this series, we describe the Millstone geomechanical 
simulator. The hydrate-dependent, rate-based poromechanical formulation is
presented and solved using a finite element discretization. A novel 
multimesh coupling scheme is introduced, wherein interpolators are 
automatically built to transfer data between the finite difference 
discretization of TOUGH+ and the finite element discretization of Millstone. 
We provide verification examples against analytic solutions for poroelasticity 
and a simplified demonstration problem for mechanically induced phase 
change in a hydrate sediment.
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1 Introduction

In this second part of the series, we describe Millstone, a new geomechanical
framework designed to enable the design of novel numerical algorithms for 
coupled hydrogeological and geomechanical processes. A new multimesh 
framework was developed to enable the fully coupled geomechanics and 
flow simulation hydrate-bearing reservoirs with highly refined discretizations.



The Millstone framework automatically performs interpolation between 
discretizations for flow and geomechanics during the solution of the coupled 
systems of equations. Millstone can be used as either a standalone simulator
or embedded through its application programming interface (API) to support 
an existing flow simulator. In the hydrate reservoir application in Part 3 of 
this series, the Millstone simulator uses a finite element method (FEM) 
discretization, operating embedded inside of TOUGH+HYDRATE V2.0 (see 
Part 1 of this series; hereafter referred to as the T+H code). As discussed in 
Part 1 of this series, T+H a simulator developed at Lawrence Berkeley 
National Laboratory (LBNL) to model non-isothermal CH4 release, phase 
behavior, and flow and transport under conditions typical of CH4-hydrate 
deposits. Millstone is the second part of the coupled TOUGH+Millstone 
simulator environment.

A complete geomechanical model is needed when large changes in pressure,
P, temperature, T, and hydrate saturation, SH, occur during hydrate formation
and dissociation. In problems with changes that are small in magnitude, the 
T+H simulator can compute changes to porosity, ϕ, and permeability, k, 
using a simplified pore compressibility relationship (Moridis et al. 2008) 
without resorting to a full geomechanical model. However, significant 
changes in P and T in hydrate systems will lead to changes in SH which, if 
sufficiently large, can trigger in turn changes in ϕ and k, as well as 
substantial displacements and (possibly) geomechanical failure. Further, 
hydrates may provide the bulk of the mechanical strength to unconsolidated 
sediments that host many natural hydrate accumulations. This being the 
case, there is a significant potential for substantial geomechanical responses
of such geologic media in response to dissociation caused by (a) the 
production of hydrate-originating gas, (b) hot fluids from conventional 
reservoirs ascending through uninsulated wellbore assemblies crossing 
natural hydrate deposits or (c) even beneath the foundations of production 
structures that impose large loads on the hydrate-bearing sediments (HBS). 
Geomechanical concerns over well and reservoir stability when significant 
changes in P, T and/or SH are expected to be a significant issue in oceanic 
hydrate deposits, as opposed to permafrost hydrate deposits where stiffer 
overburdens provide mechanical support to the reservoir system (Rutqvist et
al. 2009).

The Millstone code was developed to directly address these issues, thus 
enabling the solution of complex (and large) problems of interest. Two core 
issues related to the code formulation required a complete rewrite from its 
initial conception: (1) a separate mesh can be used for the mechanical 
solution and (2) formulations for plane strain and axisymmetry using 2D 
elements are included in addition to standard 3D Cartesian formulations. By 
removing the one-to-one element to grid cell requirement, two separate 
meshes can be generated that are high quality for each of their respective 
numerical methods (as an optimum mesh for the T+H simulations may not 
be appropriate for the associated Millstone geomechanical study), avoiding 



the long-and-skinny elements that pose conditioning problems in the 
associated matrix equations. This new approach to the geomechanics has 
enabled the modeling of complex and computationally expensive hydrate 
reservoir problems, such as the one studied in Part 3 of this series, that were
beyond the capabilities of the previous generation of coupled simulators.

The history of the software development motivating new algorithmic is 
discussed in Sect. 2. In Sect. 3, the theoretical formulation for the 
geomechanics used in Millstone is described. The associated numerical 
methods and algorithms are described in Sect. 5. The software 
implementation is detailed in Sect. 6. The fully coupled code is validated 
against the analytical solution for consolidation and is applied to the 
deformation of a hydrate-bearing sample in Sect. 7. Future developments in-
progress and under consideration are summarized in Sect. 8.

2 Background and Motivation

All previously developed coupled flow, thermal and geomechanics simulators
in the TOUGH family of codes utilize a one-to-one coupling scheme, in which 
one flow gridblock is encapsulated by one mechanical element. Many 
hydrogeological flow solvers that incorporate multiphase and 
multicomponent materials, T+H included, are based on an integral finite 
difference method using a two-point flux approximation, which has distinct 
numerical properties that are materially different from the numerical 
discretizations used for mechanics. Because of this, structured size-gradated 
meshes are the best option to yield the most accurate and computationally 
efficient results with T+H. This leads to a numerical and computational 
bottleneck when extremely fine meshes are needed to resolve the 
multiphase flow features, which is crucial in the solution of hydrate reservoir 
problems. Such meshes result in cells with a long-and-skinny aspect ratio, 
such as those observed in the left of Fig. 1.

Millstone addresses a fundamental bottleneck when coupling geomechanical 
and flow codes by introducing a multimesh approach. T+H was previously 



coupled to the commercial finite difference simulator FLAC3D (Itasca 
Consulting Group 2002) (to form T+H+FLAC3D), and LBNL staff developed 
the finite element simulator ROCMECH (Kim and Moridis 2012a, b, c) (to form
T+H+ROCMECH), both using the one-to-one coupling scheme. This 
methodology has the advantage of being simple to implement and interpret, 
but it also means that the mechanical discretization must be the same as 
that for the flow discretization.

Multiple strategies for coupling mechanics and geomechanics have been 
explored in the literature, but with similar one-to-one grafting approaches of 
two codes. The methodology of one flow gridblock per iteration of 
mechanical element has been used outside the TOUGH software family, e.g., 
Dean et al. (2006). In Klar et al. (2013), the coupled flow and geomechanics 
hydrate reservoir simulation is implemented entirely in FLAC2D. A fully 
coupled simulator using a mixed finite element for both the fluid fields and 
mechanical fields has been developed by Yang et al. (2014). A dual-mesh 
framework using a different methodology than that of Millstone was 
developed by Dana et al. (2018), in which finite elements are used for both 
the mechanics and flow, but the formulation was limited to single-phase 
poroelastic flow.

The T+H+FLAC3D and T+H+ROCMECH had a number of shortcomings that 
required new developments. While enjoying a strong reputation and wide 
industry acceptance, T+H+FLAC3D has significant shortcomings: (a) because
of proprietary issues, access to the FLAC3D source code and sharing of 
memory between the two applications is not possible, necessitating the use 
of external files to share important physical variables and parameters 
needed by the constituent codes—a very slow process—and (b) as a desktop 
PC application, it was not designed to be run on high-performance computing
(HPC) systems, thus limiting its applicability to simpler, smaller 
geomechanical problems. The analysis of pertinent, large, computationally 
intense problems requires in-house development to employ more advanced 
algorithms and target HPC resources. A significant advantage of ROCMECH 
over FLAC3D (and the impetus behind its development) was that it was 
parallelizable and thus applicable to the solution of larger, more complex 
problems of coupled flow and geomechanics in HBS.

However, parallelization of the previously used numerical methods was 
restricted by a numerical bottleneck in more challenging reservoir problems 
and could not address the computational requirements by itself. The meshes 
generated to optimize the solution of the flow, chemical and thermal 
processes in the hydrate simulator were of extremely poor quality with 
respect to the corresponding FEM formulation for the solution of the 
associated geomechanical problem. As a result, solving the mechanical 
aspects of the hydrate reservoir resulted in a linear system that was 
invariably too ill-conditioned and would often not converge. Past effort to 
overcome this difficulty with T+ROCMECH through MPI-based parallelization 
(The MPI Forum 1994) and the PETSc library (Balay et al. 2014) did not 



alleviate the issues, but further complicated the matter with additional 
bottlenecks imposed by the demands for parallel load balancing of ill-
conditioned matrices.

This motivated the development of the multimesh interpolation scheme to 
allow for a better quality mesh for the geomechanical problem. An example 
of the difference between the two high-quality meshes that are 
appropriate/optimal for each of the two methods is shown in Fig. 1. The 
unstructured quadrilateral mesh was generated for the finite element mesh 
using Gmsh (Geuzaine and Remacle 2009). The graduated structured mesh 
for the flow simulation was generated using MeshMaker 2.0 (Moridis 2016). 
Further, previous simulations relied on a wedge-like representation of 
axisymmetric problems. An axisymmetric formulation is included in Millstone 
that removes the geometric error while also yielding significant speed 
improvements by reducing the number of unknowns by two-thirds, and 
improving the stability, conditioning and accuracy of the stiffness matrix 
system. The additional flexibility provided by the multimesh scheme comes 
at the cost of interpolation of data between meshes, which increases code 
complexity and adds more computational steps. However, despite the new 
steps and even though Millstone is not yet parallelized, the serial 
implementation of the new algorithm is able to perform pertinent HBS 
simulations that were previously unsolvable.

3 Theoretical Formulation

The Millstone framework solves the mechanical balance of linear momentum 
using incremental small deformations with a rate-based stress formulation. 
The system is solved for the updated displacement Δuu that satisfies the 
balance of linear momentum,

where σ0 is the current (constant in time) stress state, the gravitational 
acceleration is denoted by g and the density of the rock is

. This update is used to solve for an updated 
stress increment Δuσ(Δuu,ΔuP,S). For long-term, fully coupled simulations, a 
quasistatic approximation is used under the assumption that the mechanical 
deformations equilibrate much faster than the rates of change in the flow 

variables, such that .

In the following section, let G denote the shear modulus, Kd denote the 
drained bulk modulus, Ku denote the undrained bulk modulus, Kf denote the 
fluid bulk modulus (the inverse of its compressibility) and Ks denote the 
skeletal grain modulus. Let P denote the fluid pore pressure and ϕ denote 
the porosity of the media. The mechanical updates are calculated using a 
model for a linear poroelastic material, where nonlinearity is introduced 
through the saturation dependence on the moduli (Kd(SH) and G(SH)) and 



through the nonlinear models for the fluid properties in T+H that control the 
pressure P. Let “d” denote a differential, which will map to a discrete update 
Δu in the solution steps. The constitutive response for the total stress is

where dϵ is the change in linear strain from current stress state and α is 
Biot’s coefficient estimates as

(Biot 1941). Including the poroelastic constitutive response for the fluid 
pressure provides an alternative formulation of

where qdt is the fluid flux over the increment path, Ku is the undrained bulk 
modulus computed as

and M is one of Biot and Willis’s coefficients given by

(Biot and Willis 1957). Equation 4 is not directly applicable because q and P 
are computed by T+H using a different discretization. Additionally, the fluid 
flow description in T+H is more complicated than this poroelastic 
formulation, where the bulk modulus of the fluid is derived from the Gibbs 
free energy functions for multiphase mixtures instead of simply one value for
the fluid bulk modulus. However, this formulation will be useful for stabilizing
and accelerating the convergence of our numerical scheme, as discussed in 
the next section.

With scant available field and experimental data, a comprehensive 
constitutive response including the mechanical properties has yet to be 
developed. Laboratory studies on the mechanical properties of HBS are an 
active area of research. Thus, using basic physics and a reasonable 
approach, within the hydrate sediment, the drained bulk modulus and shear 
modulus Kd and G are estimated using the simplest possible linear 
relationships with the hydrate saturation SH, i.e.,



where Kd0 and G0 are the respective moduli for SH=0 and Kd1 and G1 are the 
moduli at SH=1 (fully saturated medium) Rutqvist and Moridis (2009). The 
formulation of Uchida et al. (2012) and Klar et al. (2013) also linearly 
interpolates the stiffness based on saturation, with a different mathematical 
expression. For a given reservoir, the values for Kd1 and G1 are extrapolated 
from the in situ measurements of Kd and G given the initial SH during initial 
reservoir characterization through wellbore analysis and on-site axial testing 
of well cores (e.g., see Waite et al. 2018; Hirose et al. 2018). Plastic 
evolution of the stress states has not yet been considered, but is a high-
priority issue and this option will be included in the next code release. Some 
new theoretical models have been proposed recently for yielding in HBS, 
such as Uchida et al. (2012, 2016), but these models have yet to be 
implemented into Millstone at the time of this writing.

Communicating geomechanical effects to the flow description is achieved by 
altering the geometry of the IFDM control volumes. Each volume cell indexed
by b in the flow discretization uses the following calculation to determine the
mass M of each component (or total thermal energy) κ in the volume:

where the terms are, as elaborated in Part 1 of this series, phase density ρβ, 

phase saturation Sβ and component mass fraction . The solved 
deformation is used to modify the IFDM cell volume and porosity in order to 
provide geomechanical effects for inclusion into the T+H computations. The 
geometric rate law for the volume of cell b is

where tr(dϵ) is the differential volumetric strain at the cell location. The 
porosity follows the following rate evolution

Note that the total stress tensor and fluid pressure have opposing sign 
conventions. The permeability, and other quantities, is related to the porosity
by the various relations described in Part 1 of this series.



4 Variational Formulations and Coordinate Systems

In this section, we present the weak forms for the geomechanical formulation
(based on the stress incrementation approach) that are necessary to 
produce the FEM formulation. The coordinate systems are introduced during 
the constraining of the possible solutions u(x) and performing the integration
over the domain, such that there are separate weak forms for the 3D 
Cartesian, 2D plane strain and 2D axisymmetric coordinate systems.

The 3D Cartesian formulation follows the typical approach for FEM. The weak
form is

which is used to solve for the updated displacement Δuu for W(δu,Δuu) for all 
tests δuu. The current value of the stress is σ, and the constitutive laws for 
the stress update mentioned in the previous sections are inserted into the 
equation for Δuσ(Δuu). The arguments Δup and SH are additional inputs 
corresponding to the fields that are the responsibility of the flow simulator 
and do not have corresponding entries in the ultimate system of equations.

In the 2D formulations, the finite element displacement field has only two 
components in the plane of the simulation, but the strains and stresses are 
still handled in 3D. Due to the path-dependent constitutive models, there are
four components of the stress field that are tracked including the out-of-
plane stress components. The stresses are stored in Kelvin–Voigt notation 

including this fourth component, i.e., as  in plane strain or

 in axisymmetry.

In plane strain, the displacements only occur along x and z (choosing to 
match a vertically oriented nomenclature) with constraints

 in the out-of-plane direction y. The 3×3 strain only has 
nonzero entries in the 2×2x−z block,

in which the comma notation has been used to denote the partial 
derivatives. Note that there is still an out-of-plane σyy component to the 
stress that needs to be integrated, a computation dictated by the path-
dependent constitutive models used in this formulation.

Axisymmetry adds the following constrains to the displacement solution on 
an r−z labeled coordinate system: . A θθ component
appears in the strain, which now has the following form



Similarly to the plane strain case, the σθθ needs to be integrated as well.

The weak form for plane strain is obtained as

where ∇xz is the in-plane gradient. The traction boundary conditions t are 
applied to the region Γ on the boundary of the domain Ω. The integral is 
solved for Δuu to satisfy W(δuu,Δuu)=0 for all tests δuu.

The corresponding weak form for the axisymmetric formulation is obtained 
by separating the integration along the direction from the 2D integrals along 
the element areas in r and z before applying the divergence theorem. In 
cylindrical coordinates, the variational integral W(δuu,Δuu) after weakening 
and integrating is

where ∇rz is the in-plane gradient. The integration domain Ω represents the 
2D slice at θ=0 that is to be covered by the finite element mesh, and er is 
the unit vector along r.

5 Numerical Algorithm

5.1 Finite Element Discretization

Millstone can solve both 3D systems using linear nodal tetrahedral elements 
and 2D systems using linear nodal quadrilateral (i.e., Q1) elements. The 
computational algorithms seamlessly handle both 2D and 3D systems. For 
simplicity, the 2D formulation will be used in the rest of this discussion (with 
some notes regarding 3D distinctions).

The displacement field is discretized by the standard nodal finite element 
shape functions NA by, for an r, z-naming of the coordinates,



where  is the vector of discrete degrees of freedom that are coefficients to 
the finite element basis, and (Ai) refers to the degree of freedom index for 
node A and component i (e.g., a standard vector ordering would be 
(Ai)=2A+i). The stress field is assigned to the quadrature points of the 
element with no implied shape functions, of whom four components need to 
be tracked: σrr,σzz,σrz, , and σθθ. With 2D linear quads, there are four 
quadrature points and four nodes so that each element is associated with 8 
displacement degrees of freedom and 16 stress degrees of freedom, 
resulting in the total mechanics problem having 2Nnode+16Nelem degrees of 
freedom given a particular mesh with said size. However, only (2Nnode−Nbc) 
-size matrices need to be solved at once; the stress degrees of freedom are 
incremented separately and the Dirichlet boundary conditions (Nbc degrees of
freedom) are manipulated out of the matrix system.

The right-hand side vector R for a linear system is determined from the 
variational integral W by performing the chain rule against the shape 
functions,

The system is solved by assembling the Jacobian matrix, K, obtained by 
differentiating the components of R against the degrees of freedom,

where NB is the shape function of the cross-derivative node B and j is the 
component of the cross-derivate. Unlike the assembly of the flow system of 
equations in T+H which employs numerical differentiation, the expressions 
above are implemented using a compilation package, Popcorn (Queiruga 
2018b), that uses symbolic differentiation. The system of equations to solve 
is thus

For the linear incremental constitutive equations above, the resulting 
equations are linear, and the nonlinearity with respect to the hydrate 
saturation is treated in the staggered iteration. The above formulation is 
capable of handling—and was designed for—nonlinear constitutive responses
and general partial differential equations.

5.2 Interpolation



The use of separate meshes in the new TOUGH+Millstone coupling requires 
additional computations to transfer data back and forth between the 
flow/thermal and mechanical components of the problem. The library 
interface for Millstone was designed to be easy to incorporate into any 
existing hydrogeological simulator. The Millstone framework automatically 
determines a suitable projection and interpolation mapping at simulation 
initialization without requiring an additional preprocessing phase or requiring
extra information to be provided from the T+H simulator. A simple and 
robust interpolation-based approach was developed for the purpose 
(described below), such that Millstone requires no knowledge of the flow 
discretization other than a cloud of points with associated flow values. (The 
routine can work backwards as well to interpolate values from, for example, 
a Peridynamics point cloud onto the flow field point cloud.) The robustness of
the interpolation approach also allows the discretizations to vary significantly
in resolution (e.g., very fine flow resolution near a well) and provides 
accurate estimates even when the domains do not perfectly overlap (e.g., 
localized flow in a much larger formulation exhibiting significant 
deformation.)

The two discretizations are overlaid onto each other, as illustrated in Fig. 2, 
and appropriate basis functions are used to computer the corresponding 
fields at nodal and cell-center locations. The T+H numerical discretization is 
not formulated using a function basis, so one is constructed from a Delaunay
triangulation (or tetrahedralization) of the flow gridblock centers. The 
coefficients to basis functions for each triangle (or tetrahedron) are a by-
product of the triangulation algorithm, so no additional computation is 
needed. To use the pore fluid pressure P, temperature T, and hydrate 

saturation SH values from T+H (explicitly Pflow, Tflow and ), the fields are 

given FEM counterparts Pmech, Tmech and  which use the Q1 interpolation. 
The nodal values of Pmech etc. are always set to the interpolated values from 
the triangulation of Pflow. The FEM basis functions are used to directly 
calculate fields at any point. As noted in Fig. 2, the stresses located at 
quadrature points do not have an assumed basis, but this is not necessary.

The geometric correspondence between flow cells and the FEM mesh is 
stored as a list of overlapping flow cells associated with each element. A 
spatial binning algorithm is used to perform the determination in O(N) time.1 
The correspondence list is then used when quantities are projected or 
interpolated between the two meshes.



The finite element shape functions are used to interpolate from the 
mechanics mesh to the flow mesh. For some field Y, let YA denote the nodal 
value used to evaluate Y(x)=∑ANA(x)YA. The reference coordinate on the 
element at the flow cell location is obtained by inverting the isoparametric 
coordinates, which must be done using Newton’s method to solve:

In this manner, expressions that are more complex than just a field 
interpolation can be evaluated, such as the porosity rate (Eq. 11) evaluated 
at the point xb:

Millstone performs a Delaunay triangulation of the flow cell locations to build 
a suitable interpolation scheme. (The algorithm works the same way using 
the Delaunay tetrahedralization in 3D.) For each node in the FEM mesh, a 
geometric search obtains the triangle within which it lies, and the shape 



functions for that triangle are evaluated at the point. The standard linear 
nodal shape functions on the triangle (equal to the area coordinates) are 
used. The shape function values are saved as an interpolation matrix M that 
performs the operation

where the matrix entries are equal to the triangular shape functions for flow 
cell b evaluated at the mechanical node A,

A spatial hash is used to quickly determine in which triangle tri the 
mechanical point resides, which has the corresponding IFDM grid points

 as its vertices. Only three values are nonzero per row, corresponding 
to the vertices of the triangle within which the FEM node resides. (There are 
four values in 3D for the vertices of the tetrahedron.) A fringe case occurs 
when an FEM node lies outside of the span of the triangulation, which almost 
always occurs in a given simulation because the flow cell centers are not 
located on the domain boundary. For the FEM nodes lying on the boundary, 
the values are extrapolated using the closest cell in the flow mesh, modifying
the expression to be

This also allows geomechanical meshes that are much larger than the flow 
domain, which are necessary in certain problems where significant 
geomechanical response occurs outside the permeable region.

5.3 Iterative Solution

The initial stress field is obtained by solving the quasistatic mechanical 
system of equations once, using the initial state given from T+H with no 
preprocessing phase required to generate initial conditions. The 
displacement field is reset back to 0, as it was only solved to obtain an 
admissible stress field.

The solvers are fully coupled inside of the Newton’s method loop, such that 
the mechanical system of equations is solved every time the flow Jacobian 
matrix is solved. After each nonlinear solution to the multiphase flow fields, 
T+H passes the current flow states to Millstone, which, after the solution of 
the mechanical linear system, passes the resulting stresses and strains back 
to T+H. The current values for the fields P, T and SH at k are interpolated 
onto the finite element mesh after every update. The procedure is repeated 



until the Newton’s method loop for the flow convergences before advancing 
to the next time step.

The algorithm for the fully coupled geomechanical multiphase flow iteration 
is illustrated in the flowchart in Fig. 3. Let k denote the current iteration 
index of the Newton’s method loop. The increment for the pressure is 
obtained by ΔuP=Pk+1−Pk. In the incremental fashion, after solving for a new 
admissible Δuu, the stress state and total displacement are updated by

The update for the cell volume and porosity is obtained by analytically 
integrating the path from k to k + 1 for Eqs. 10 and 11,

Note that it is the update of the effective pressure Pe that is used in the 
equation of porosity. The values of ϵ, Pe and Kd in the right-hand sides of 
Eqs. 29 and 30 are evaluated using the finite element basis representation 

for u(x), P(x) and SH(x) at the corresponding flow point . The values 

stored at the flow points are used for  and  and directly modified for

.

The steps are described as:

1. Use the interpolation matrix to obtain P, T, Sκ on the FEM nodes (Eq. 24) 
and compute ΔP=Pk+1−pk.

 2. Assemble and solve FEM stiffness matrix for Δuu, Eq. 21, using either Eqs. 
2 or 4 for Δuσ(Δuu).

 3. Increment stress and displacement fields (Eqs. 27 and 28). Equation 2 is 
used for the stress update.

 4. Increment  at IFDM cells (Eqs. 29 and 30).

5.4 Iteration Stability

The different stress measures and rate formulations that can be used to 
describe poroelasticity give additional options when designing a numerical 



algorithm. The two ways of describing the stress allow two calculation 
options, the ones given by Eqs. 2 and 4. The scheme “Kd and α” uses Eq. 2 
to solve for the new displacement using the pressure update given by T+H. 
The “Ku” scheme uses Eq. 4 and solves for the incremented displacement by
including the compressibility of the fluid into the mechanical stiffness matrix.
For this scheme, the fluid bulk modulus Kf is used to compute the undrained 
bulk modulus Ku and is an additional input to Millstone. However, in T+H, the 
effect of the fluid compressibility is obtained from the empirical Gibb’s free 
energy correlations for fluid mixtures. Because the fluid pressure is solved by
T+H, the effective modulus is only an estimate, and the stress must be 
updated using ΔP from the value passed from T+H using Eq. 2 in both cases.



The two algorithms are tested on the first loading step of the consolidation 
problem in Sect. 7. The values of the displacement during the convergence 
process at the top of the domain are shown in Fig. 4. In these cases, the 
pores are filled with pure liquid water such that the fluid bulk modulus is 
approximately 2.205 GPa which is used as the estimate for the 
preconditioner. The “Kd” iteration fails to converge at the softer drained 
moduli. It is clear that the “Ku” scheme offers faster convergence and is 
necessary for softer geomaterials where the fluid is the main load-bearing 
component. Preconditioning the iteration becomes more challenging when 
compositional and phase changes occur can that drastically change the bulk 
modulus of the pore fluid; improving the robustness of the solution technique
for such a scenario is an active area of development in Millstone.

6 Implementation

Millstone is implemented using the Cornflakes/Popcorn open-source domain-
specific language and scientific package (Queiruga 2018a, b). (The name 
“Millstone” was chosen by the Cornflakes/Popcorn pun scheme: Millstone 
generates and assembles rock-related kernels.) The program is written in 
both Python and C to easily express the high-level simulation structure while 
maintaining performance, allowing for flexible experimentation with different
numerical methods and solution techniques. The software package SWIG is 
used to generate the wrapping code between C and Python. The Python-
based code generation system of Popcorn is used to produce the finite 
element compute kernels by expressing the variational form and calculation 



procedure with a high-level abstraction. The same system was applied in 
Queiruga and Moridis (2017) to generate Peridynamics expressions, which 
was an experimental capability prototyped for the Millstone code. The code 
generation system transforms the expressions using SymPy (SymPy 
Development Team 2016) and outputs C code that is compiled and linked to 
Millstone. Current work seeks to extend this system to plastic constitutive 
models by generating return mapping routines after specifying a yield 
surface and a hardening rule in tensor notation.

The Millstone framework can be used to solve a mechanics-only problem in a
standalone Python script. An API is provided that is designed for simple 
incorporation into a code through Python, C, or Fortran interfaces. It is 
coupled to T+H at compile time through a Fortran interface, where an 
embedded Python interpreter executes the Millstone library and invokes data
from the input files. Communication between Millstone and the parent flow 
simulator is achieved by wrapping the data arrays with NumPy array objects 
(Van der Walt et al. 2011) through the API to be read and modified by 
Millstone. The API exposes the following routines to a flow simulator to set up
and run a quasistatic geomechanical simulation:

1. Provide the flow mesh

2. Register a flow field with a name and an array pointer

3. Initialize the stress field

4. Solve the incremented displacement and stress 

5. Accept or Reject the time step

6. Output a visualization file.

At a minimum, the flow simulator must register the pressure P, porosity ϕ 
and gridblock volume V fields, and the hydrate saturation SH is further 
required for the hydrate-dependent constitutive responses. The Python-
based input files allow the user to specify complicated behavior by inserting 
code that will be executed inside the TOUGH+Millstone simulator to, for 
example, implement time-varying boundary conditions, generate a new 
mesh in a convergence study or add post-processing calculations.

For problems where the fully coupled simulation is intractable and time 
constraints only permit a few flow-only simulations, one-way coupling can be
performed to estimate the geomechanical response using a Python script 
that parses output files using the utility tough_convert (Queiruga and Reagan
2018).

Assembly of the mechanical stiffness matrix and load vectors can be 
performed in parallel using OpenMP. Matrix solution in both the mechanics 
and flow codes is performed using either LIS (Nishida 2010) (which has 
OpenMP support), PETSc (Balay et al. 2014) or SciPy (Jones et al. 2001–
2018).



7 Verification Examples

7.1 Terzaghi’s Problem

A standard problem used to verify poroelastic simulators is Terzaghi’s 
problem of consolidation in response to draining of the pore fluid. It is 
difficult to design a problem where the numerical results will exactly the 
analytical solutions because T+H derives all properties, such as the bulk 
modulus and viscosity, from empirical relations. That is, T+H uses a more 
accurate nonlinear representation for the properties of water than the fixed 
property values used in the analytical solution. To match the approximate 
solution, the fluid bulk modulus and viscosity empirical relations are 
evaluated at P and T and fed into the analytical solution to a very high 
precision. The theory of poroelasticity uses a small-strain approximation for 
both the fluid and skeleton, so a very slight load is applied.

In this setup, the domain is a 1 m by 1 m square with plane strain conditions.
The porosity is initially ϕ=0.3, the drained bulk modulus is Kd=220 GPa, the 
shear modulus is G=220 GPa and the grain modulus is Ks=100Kd. The 
medium permeability is k=10×10−13 m−2. The solid and the fluid are initially 
in equilibrium with the reservoir pressure along the top edge, P=1 atm=335 

MPa. A load  =10 MPa is applied instantaneously and the system 
equilibrates in a very short timescale. The equilibration of the initial 
“instantaneous” loading is performed using a few very large timesteps in the
coupled simulator. This corresponds to a relaxation process with the correct 
answer to within the iteration toleration because backward Euler is used to 
integrate the time-varying flow equations and the mechanical equations are 
solved quasistatically. Gravity is neglected to match to the analytical 
solution. The problem is one dimensional along the height.

The derivation to the following analytical solution can be found in Verruijt 
(2013). The instantaneous displacement is

and the instantaneous pressure increase is

with respect to the initial pressure, where H is the domain height. The 
analytical solution to the pressure field is



where c is a time constant equal to

where , k is the permeability and η is the viscosity. 
The analytical solution to the displacement field is

This series converges fairly quickly; 30 terms are used to calculate the 
solutions to compare to the numerical results.

To rigorously validate the behavior of the numerical approximation and its 
implementation, the order of convergence is estimated by performing 
successive simulations with grid refinement. The timestep size, flow mesh 
size and mechanical mesh size are refined at the same rate by a factor h 

from a baseline choice: , and

. The error is calculated by the mean square error of the 
differences at various nodal coordinates at snapshots in time against the 
analytical solution,

which is then used to estimate the order of convergence by performing the 
standard log–log regression,



where a will be the order of convergence. For linear finite elements, two-
point fluxes, backward Euler and the linear interpolation mesh transfer 
scheme, we expect a linear order of convergence.

The displacement results for various discretization refinements for the 
pressure unloading are plotted along side the analytical solution in Fig. 5. 
The displacements are probed at the center of the domain, uz(1/2,t). 
(“Oracle” refers to the nature of analytical solution to provide the exactly 
correct output of the computer program.) The error obtained for both P and 
uz during the discretization refinement process is plotted in Fig. 6. The log–
log regression—which calculates the slopes of the curves on the log–log plot
—yields an order of convergence of 0.950 for P and 0.979 for uz, which 
confirms the expected numerical accuracy of TOUGH+Millstone.



7.2 De Leeuw’s Problem

A cylindrical soil sample is held between two rigid plates at its top and 
bottom, and its side is open to the air. A load is instantly applied along the 
outer ring, and fluid is allowed to drain out of its sides. This is similar to 
Mandel’s problem with a cylindrical sample, making it appropriate to verify 
the axisymmetric implementation. The parameters used in the verification 
problem are exactly the same as the previous example, except that the 
domain is now a cross section of a cylinder with height 1 m and radius 1 m. 
The problem is one dimensional along the radius.

The analytical solution to this problem is taken from Verruijt (2013) as well. 
The solutions for the instantaneous displacement and pressure are



The roots of the equation 2mξJξJJ0(ξJ)−J1(ξJ) are denoted by ξJj, where J0 and J1 are
the zeroth- and first-order Bessel functions of the first kind. These must be 
determined numerically. The pressure at a point r away from the center 
column at time t is then given by the infinite sum

This series converges very slowly; 600 terms are used to calculate the 
solutions when computing the error.

The results for various discretizations are plotted in Fig. 7, and the errors 
obtained by sweeping through all discretizations are plotted on a log–log plot
in Fig. 8. Following the same procedure as before, the approximation error is 
observed to converge at a rate of 1.033, which again confirms the expected 
behavior of the code.



7.3 Compression of a Methane Hydrate-Bearing Sample

Due to the nonlinear nature of the empirical responses for the hydrate 
phases, it is difficult to develop an analytical solution to a coupled 



mechanics–hydrate system (and no such solution is available in the 
literature). We consider an analogue to Terzaghi’s consolidation problem 
above with a hydrate-filled domain. The properties of the sample are the 
same as in the above verification example, but it is at a higher pressure and 
different temperature to support a stable and uniformly distributed hydrate 
system at an initial saturation of SH=0.5 in the hydrate–liquid water region. 
The sample is initially at T=7.2 C and P=20 MPa, with an equivalent applied 
traction at the top. Instead of an instantaneous loading and slow draining, 
the load is increased to 320 MPa over a course of 300 s. This problem was 
designed from prior knowledge of the methane gas–hydrate equations of 
state to pass through an expected maximum in the hydrate equilibrium 
saturation as the pressure is increased.

The evolution of the fields is shown in Fig. 9. We demonstrate that through 
mechanical loads as the only driving force to a simulation, TOUGH+Millstone 
is able to capture phase responses in the hydrate system. At the beginning 
of the process, hydrate formation occurs, until a maximum saturation is 
achieved, after which point the hydrate dissociates as the applied load 
continues to increase. This reversal is caused by the temperature increase 
associated with the pressure increase: Once the equilibrium temperature for 
a given pressure is reached, thermal dissociation begins leading to a 
reduction in SH in accordance with the thermodynamics of the methane=H2O 
phase diagram.



8 Conclusion

In this series, we document the development and use of the 
TOUGH+Millstone simulator, which involves a coupling of the fully implicit 
TOUGH+HYDRATE v2.0 (T+H) simulator, describing flow, thermal and 
chemical processes in hydrate-bearing media, with the Millstone v1.0 
geomechanical model to describe the corresponding geomechanical 
response. Here, we described the geomechanical simulator component, 
Millstone, that was written with the new Cornflakes/Popcorn scientific 
package to utilize state of the art software architecture paradigms. We 
described the novel coupling numerical formulation and software 
architecture approach used to integrate a geomechanical solver with a 
hydrogeological flow solver, namely the TOUGH+HYDRATE solver detailed in 
the first part of this series. A new multimesh coupling methodology was 



presented to resolve accuracy and conditioning problems that plagued one-
to-one problems as TOUGH+HYDRATE was applied to more complex 
reservoir problems. The coupling methodology was verified against analytical
solutions to Terzhaghi’s and de Leeuw’s consolidation problems. Analysis of 
discretization refinement confirms that the combination of FEM, IFDM, time 
stepping and mesh coupling has a linear approximation error. The 
geomechanical coupling with the hydrate phase was also explored, 
demonstrating the ability to change its state through only mechanical 
loading.

In the third and final part in this series, we present the application of the fully
coupled TOUGH+Millstone software package to the simulation of production 
from a realistic hydrate-bearing reservoir. The problem studied in this part 
requires extremely refined meshes for the flow that “hit the limits” of the 
previous generation of geomechanical solvers that were based on a one-to-
one coupling scheme, and was the impetus to development of Millstone and 
the new algorithms presented. This example will illustrate the importance of 
including a complete geomechanical solver to fully capture the behavior of 
the reservoir, and distinct effects not observed in simplified geomechanical 
treatments.

Footnotes

1. The algorithm is described in detail in “Appendix A” of Queiruga (2015).
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