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OPEN

REVIEW

DNA methylation: an epigenetic mark
of cellular memory

Mirang Kim1,2 and Joseph Costello3

DNA methylation is a stable epigenetic mark that can be inherited through multiple cell divisions. During development and

cell differentiation, DNA methylation is dynamic, but some DNA methylation patterns may be retained as a form of epigenetic

memory. DNA methylation profiles can be useful for the lineage classification and quality control of stem cells such as

embryonic stem cells, induced pluripotent cells and mesenchymal stem cells. During cancer initiation and progression, genome-

wide and gene-specific DNA methylation changes occur as a consequence of mutated or deregulated chromatin regulators. Early

aberrant DNA methylation states occurring during transformation appear to be retained during tumor evolution. Similarly, DNA

methylation differences among different regions of a tumor reflect the history of cancer cells and their response to the tumor

microenvironment. Therefore, DNA methylation can be a useful molecular marker for cancer diagnosis and drug treatment.

Experimental & Molecular Medicine (2017) 49, e322; doi:10.1038/emm.2017.10; published online 28 April 2017

INTRODUCTION

The identities of cells and tissues in multicellular organisms can
be maintained by their particular epigenome.1 DNA methyla-
tion is a relatively stable component of the epigenome, which
establishes and stabilizes cellular phenotypes by maintaining
gene expression states.2–4 DNA methylation patterns for a
particular cell type are inherited through successive cell cycles
and extended through a specific lineage.5,6 DNA methylation
can reflect the tissue of origin even after long-term culture.7,8

Furthermore, induced pluripotent stem cells (iPSCs), repro-
grammed from mature cells by defined transcription factors,
are found to harbor residual DNA methylation from the
original donor cells.9,10

The term ‘epigenetics’ was coined by Waddington11 in 1942
to refer to ‘the causal mechanisms by which the genes of a
genotype bring about a phenotype’. Currently, the widely
accepted definition of ‘epigenetics’ is ‘heritable changes in
genome function that occur without changes in the DNA
sequence’.12 This definition implies that particular states that
define cell identity are heritable and maintained.13 Here we
discuss epigenetic memory, a natural mechanism by which the
identity of a cell is maintained through successive cell cycles
during development and differentiation.5,14

This review covers DNA methylation as a form of epigenetic
memory in stem cells and cancer cells. We have organized this

review into three main sections. The first section is an
introduction to DNA methylation in mammals. We briefly
describe the mechanisms of maintenance and erasure of DNA
methylation and de novo DNA methylation. We also introduce
DNA methylation analysis technologies. The second section
summarizes DNA methylation as a mechanism of epigenetic
memory in various types of stem cells, including embryonic
stem cells (ESCs), iPSCs, hematopoietic stem cells (HSCs),
mesenchymal stem cells (MSCs) and neural stem cells (NSCs).
The last section is devoted to the role of DNA methylation in
cancer initiation and evolution. We also describe DNA
methylation as a marker of cancer origin and discuss its use
in classifying cancer of unknown primary.

DNA METHYLATION

DNA methylation on the fifth position of cytosine (5mC) is a
stable epigenetic mark that has important roles in mammalian
development, differentiation and maintenance of cellular
identity through the control of gene expression.15 Over the
past 40 years, changes in DNA methylation have been observed
in many human diseases, especially cancer.16

DNA methylation in vertebrates is mainly restricted to CpG
sites, but significant non-CpG methylation has been found in
pluripotent stem cells.17,18 There are ~ 29 million CpGs in the
human genome, and 60–80% of them are methylated.19
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Approximately 7% of CpGs are located in CpG islands (CGIs),
which are regions of high CG density.20 Approximately 70% of
annotated gene promoters are associated with a CGI, and CGIs
are largely resistant to DNA methylation.21 The enzymes
responsible for DNA methylation are DNA methyltrans-
ferases (DNMTs) including DNMT1, DNMT3A, DNMT3B
and DNMT3C.22,23

In this section, we briefly describe the molecular mechan-
isms of maintenance and erasure of DNA methylation, as
well as de novo methylation. We also introduce recent DNA
methylation analysis technologies that can be used in clinical
applications.

MAINTENANCE AND ERASURE OF DNA METHYLATION

DNA methylation patterns are transmitted with high fidelity
during DNA replication.13 DNMT1 maintains global DNA
methylation and shows a strong preference for hemimethy-
lated DNA.24 DNMT1 is recruited to the DNA replication
fork through direct interactions with PCNA (proliferating cell
nuclear antigen) and UHRF1 (ubiquitin-like, containing
PHD and RING finger domains 1, also known as Np95 and
ICBP90).25,26 UHRF1 recognizes hemimethylation sites via an
SRA domain and recruits DNMT1 to these sites.27 Chromatin-
associated enzymes also regulate DNMT1 through post-
translational modifications.15 LSD1 (lysine-specific demethy-
lase 1, also known as KDM1) is essential for maintaining
global DNA methylation; it regulates the methylation status of
DNMT1 and modulates its stability.28 Histone H3 lysine
9 methylation (H3K9me) is necessary for DNA methylation
maintenance; it binds to UHRF1 and regulates DNMT1
stability during S phase.29 These interactions of DNMT1 with
other heterochromatin-associated proteins ensure that DNMT1
activity is stabilized only during DNA replication, which
provides fidelity to global DNA methylation.15

DNA methylation can be removed through passive and
active mechanisms. Passive DNA demethylation occurs in the
absence of functional DNA methylation maintenance machin-
ery during successive rounds of replication. By contrast, active
DNA demethylation occurs through an enzymatic process
that removes or modifies the methyl group from 5mC.30

Ten–eleven translocation (TET) family enzymes, such as
TET1, TET2 and TET3, are involved in active demethyla-
tion.31 TET proteins oxidize 5mC to 5-hydroxymethylcytosine
(5hmC) and further oxidize 5hmC to generate 5-formyl-
cytosine and 5-carboxylcytosine.32 DNA demethylation can
be completed by either replication-dependent dilution of 5mC
oxidation derivatives or thymine–DNA glycosylase-mediated
base excision repair.33,34

DE NOVO DNA METHYLATION

Many CGI promoters are protected from DNA methylation by
transcription factor binding, nucleosome exclusion and H3K4
methyltransferases, such as SETD1A (SET domain containing
1A) or MLL proteins.15 Although these promoters remain
unmethylated, some repressed promoters acquire DNA methy-
lation during development.15 De novo DNA methylation is

carried out by DNMT3A and DNMT3B complexed with
DNMT3L, a closely related homolog that lacks a catalytic
domain.35,36 DNMT3L interacts with unmethylated H3K4 and
recruits the DNMTs.35

DNMT3A and DNMT3B are recruited to target promoters
in complex with other epigenetic repressors, including histone
deacetylases and H3K9 methyltransferases.15,37 Frequently,
proper targeting to stable silencing regions occurs by the
binding of repressive transcription factors.15 Repressive tran-
scription factors induce chromatin remodeling by recruitment
of LSH (lymphoid-specific helicase; also known as HELLS),
linker histone H1 and heterochromatin protein 1. H3K9
methyltransferase, G9A is also recruited in this complex with
DNMT3A or DNMT3B.37–40 The crosstalk between DNA
methylation and histone modification suggests that histone
modifications, such as H3K9me, initiate heterochromatin
formation and subsequent DNA methylation ensures stable
silencing of the promoter.15

DNA METHYLATION ANALYSIS TECHNOLOGIES

The three main principles of DNA methylation analysis are as
follows: (1) digestion of genomic DNA with methylation-
sensitive restriction enzymes; (2) affinity-based enrichment
of methylated DNA fragments; and (3) sodium bisulfite
conversion.41 Although there are many DNA methylation
analysis methods, bisulfite sequencing (BS) is widely accepted
as a gold standard for detection of DNA methylation.42,43 BS is
a sodium bisulfite conversion method that provides quantita-
tive DNA methylation level with single-base resolution. Sodium
bisulfite treatment of genomic DNA converts unmethylated
cytosine to uracil and then uracil become thymidine in
subsequent PCR amplification and sequencing.44 5mC is
resistant to this conversion and remains as cytosine, so it can
be distinguished from unmethylated cytosine.44 Initially, BS
was used to assay individual loci with locus-specific PCR
followed by Sanger sequencing.44 Recently, reduced representa-
tion BS has extended the genomic coverage of BS by using
high-throughput sequencing technology. Reduced representa-
tion BS combines restriction digestion with BS for analysis of
high CpG density regions such as CGIs.45 Finally, whole-
genome BS provides single-base resolution and quantitative
rates of methylation for all cytosines in the genome.46,47

Whole-genome BS has been applied to various tissues and cell
lines to provide a complete map of the ~ 29 million CpG sites
in the human genome.19

The Infinium methylation 450k microarray is a cost-
effective, high-throughput method for detecting DNA methyla-
tion in many human samples.16 This assay involves bisulfite
treatment of genomic DNA and subsequent hybridization to
over 450 000 CpG sites throughout the genome. The coverage
of this platform targets gene regions including promoters,
5′-untranslated regionss, the first exons, gene bodies and
3′-untranslated regionss.48 Notably, The Cancer Genome Atlas
consortium used this platform to profile 47500 samples from
over 200 different cancer types.49–52 The MethylationEPIC
(EPIC) BeadChip, an advancement upon the 450k array,
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contains more than 850 000 probes. The new platform covers
490% of the sites on the 450k array, plus 4350 000 CpGs at
regions identified as potential enhancers by FANTOM5 and the
ENCODE project.53,54 The EPIC array is expected to be a
valuable tool for understanding human development and
disease, in particular enhancer DNA methylation.52

DNA METHYLATION IN STEM CELLS

Stem cells can be applied to cell therapy, drug development,
disease modeling and the study of cellular differentiation. DNA
methylation has critical roles in the maintenance of stem cell
identity and lineage commitment during differentiation.55

In this section, we describe DNA methylation as an epigenetic
memory of stem cells such as ESCs, iPSCs, HSCs, MSCs
and NSCs.

EMBRYONIC STEM CELLS

ESCs are pluripotent, self-renewing cells. It is known that ESCs
can maintain their self-renewal ability even in the absence of all
three DNMTs.56 However, the differentiation of ESCs is almost
completely inhibited if DNMTs are not present.57 Global DNA
hypomethylation blocks ESCs to silence pluripotency factors
and to express differentiation-associated markers.57

ESCs exhibit significant levels of non-CpG methylation and
express high levels of DNMT3A and DNMT3B.17,19 Non-CpG
methylation, primarily at CpA sites, accounts for ~ 25% of all
methylated cytosines in human ESCs.19 Non-CG methylation is
mediated by DNMT3A and DNMT3B, and depends on the
presence of DNMT3L. DNMT3L may direct de novo DNMT
activity during pluripotency, but it is silenced upon
differentiation.58,59 The prevalence of non-CpG methylation
in ESCs, as well as in iPSCs, suggests that it could be important
for pluripotency, but it is currently unclear whether it is a cause
or consequence of the pluripotent state.60

In contrast to somatic cells, which transmit considerable
epigenetic information to daughter cells, ESCs preserve their
epigenetic memory by balancing the addition and removal of

DNA methylation.4 Although ESCs show high DNA methyla-
tion turnover rates, their epigenomes are well organized and
highly stable.4

INDUCED PLURIPOTENT STEM CELLS

iPSCs are originally generated through ectopic expression of
four transcription factors: OCT4, SOX2, KLF4 and MYC.
iPSCs can be used to uncover the epigenetic mechanisms of
reprogramming.61 During reprogramming, a global reset of the
mature somatic epigenome occurs, and the epigenomes of
iPSCs are remarkably similar to those of ESCs.62,63 However, it
has been discovered that iPSCs harbor residual DNA methyla-
tion signatures from their donor cells, and they exhibit a
preference for differentiation into their original cell lineage
(Figure 1).9,64,65 Moreover, a subset of human iPSCs retain
their epigenetic memory even after extended passaging.10,66

Epigenetic memory has also been reported in direct repro-
gramming. Direct reprogramming is the conversion of fully
differentiated cells to other cell types, bypassing an intermediate
pluripotent stage. Direct reprogramming of fibroblasts into
neural stem cells by defined factors shows that there is some
epigenetic memory in fibroblasts, although the reprogrammed
neural stem cells were able to suppress the donor cell-specific
transcription network.67 All these studies of reprogramming
technologies provide insight into epigenetic memory and show
how it can potentially be used for disease modeling and
therapeutic applications.68

HEMATOPOIETIC STEM CELLS

HSCs are a rare cell population that is responsible for
generating erythroid, myeloid and lymphoid lineages.69 DNA
methylation is critical for the regulation of HSC self-renewal
during hematopoiesis; it facilitates commitment to a lymphoid
or myeloid fate, and it establishes the differentiated cell
identity.69,70 DNMT1 is essential for protecting HSCs from
the premature activation of predominant differentiation
programs.69,71 Dnmt1-knockout mice suffer from self-renewal

Figure 1 A model of epigenetic memory in iPSCs (modified from Ohi et al.66). Induced pluripotent stem cells (iPSCs) harbor residual DNA
methylation signatures from their donor cells. During reprogramming, pluripotency genes are demethylated and reactivated. Incomplete
demethylation occurs in developmental regulators that are silenced in the somatic cell. Somatic cell genes were differentially methylated
and repressed in iPSCs. Black, white and gray circles represent methylated, unmethylated and partially methylated CpGs, respectively.
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defects and marked misregulation of the myeloid and lymphoid
compartments.70,71 On the other hand, DNMT3A and
DNMT3B are required to repress the HSC self-renewal gene
network during HSC differentiation.72 Combined loss of
Dnmt3a and Dnmt3b shows enhanced HSC self-renewal and
severe inhibition of differentiation.72

DNA methylation levels increase upon lymphoid commit-
ment, but decrease with myeloid commitment.73 Although
DNA hypomethylation is a general feature of myeloid cells,
DNA methylation is dynamically regulated throughout the
stages of differentiation.69 During neutrophil development,
DNA methylation appears to change during specific differen-
tiation stages, and its states overlap with changes in the
activation of key hematopoietic transcription factors.74 During
the differentiation of monocytes into macrophages and
dendritic cells, the time course of demethylation occurs
at individual CpG sites.75,76 However, de novo DNA methyla-
tion has rarely been detected during these differentiation
processes.75

MESENCHYMAL STEM CELLS

MSCs are multipotent adult stem cells that have self-renewal
capacity, support hematopoiesis and can differentiate into
osteocytes, chondrocytes and adipocytes.77 Human MSCs from
various tissues, including bone marrow, umbilical cord, adipose
tissue, dental pulp, skin and many others, have been used
clinically as potential regenerative cell therapies.78 However, the
high proliferation rate of MSCs in an artificial cell culture
environment could favor genetic and epigenetic alterations.79,80

DNA methylation patterns of human MSCs are maintained
throughout long-term culture and aging, but senescence-
associated DNA methylation differences are observed in regions
with H3K9me3, H3K27me3 and targets of EZH2.8 Therefore,
DNA methylation can be a good molecular marker for the
quality control of MSCs.80 The DNA methylation profiles of
MSCs can reflect their cell type of origin and can be useful for
the classification of MSCs.7,81

NEURAL STEM CELLS

NSCs are a subtype of progenitor cells in the nervous system
that have the capacity to self-renew and to differentiate
into distinct cell types such as neurons, astrocytes and
oligodendrocytes.82 NSCs at early gestation can only self-renew,
and they then differentiate exclusively into neurons during
midgestation. At late gestation, NSCs begin to differentiate into
astrocytes and oligodendrocytes.83 DNA methylation plays an
important role in defining the timing of the NSC fate
specification switch from neurogenesis to astrocyto-
genesis.84–86 Many astrocytic genes, such as GFAP
(glial fibrillary acidic protein), are methylated in early and
mid-gestational NSCs, then demethylated in late-stage
NSCs.87,88 Thus, epigenetic mechanisms have a critical role
in fine-tuning and coordinating gene expression during
neurogenesis.86

5hmC is present at much lower levels than 5mC, but
it is particularly abundant in brain tissue.89 DNA

hydroxymethylation may play important roles in mediating
dynamic gene expression changes during brain develop-
ment.85,90 Intriguingly, Tet1 mutant mice also show adult
neurogenesis deficits and impairment in learning and
memory.91 It remains to be determined how 5hmC and
DNA demethylation regulate neurogenesis.86

DNA METHYLATION IN CANCER CELLS

Aberrant DNA methylation is common across many types
of cancer. Global hypomethylation of the cancer genome,
promoter hypermethylation of tumor suppressor genes and
potentially direct mutagenesis of 5mC-containing sequences
through deamination of methylated cytosine can contribute to
cancer.16 These alterations generally co-exist in tumors,
suggesting that epigenetic mechanisms are central to the
evolution of human cancer.16 In this section, we describe
epigenetic reprogramming during tumor initiation and
describe the roles of DNA methylation in tumor evolution.
We also describe DNA methylation as an epigenetic memory of
cell or tissue origin of cancers and its utility as a molecular
marker for classifying cancers of unknown primary (CUP).

EPIGENETIC REPROGRAMMING DURING TUMOR

INITIATION

The malignant transformation of a normal cell into a cancerous
cell has similarities to the reprogramming of a somatic cell to a
pluripotent cell.92 Transformation resets the transcriptional
network and chromatin structure and produces cells with
unlimited self-renewal potential.92 Several reprogramming
transcription factors, such as Sox2 and c-Myc, are well-
known oncogenes, whereas many genes that act as barriers to
reprogramming, including p53 and Ink4A/Arf, function as
tumor suppressors.93 DNA methylation is a potent barrier to
cellular reprogramming, and the methylation changes markedly
during malignant transformation, as it does in cellular
reprogramming.94

Stem cell-like chromatin patterns frequently lead to DNA
hypermethylation during cancer progression.95 Hypermethy-
lated genes in cancer are heavily biased to PRC2 (polycomb
repressive complex 2)-regulated, H3K27me3-marked genes, in
ESCs and adult stem cells.95–97 Regions of focal DNA hyper-
methylation in cancer are located primarily at CGIs and are
concentrated within long-range hypomethylated regions.98 In
the nucleus, these hypomethylated regions correspond broadly
to nuclear lamina-associated domains, which are generally
associated with repressive chromatin and polycomb group
protein-marked genes in ES cells.16,98,99

The widespread DNA methylation changes in cancer may be
caused by mutations in components of the citric acid cycle and
the epigenetic machinery.16 For example, mutations in IDH1
(isocitrate dehydrogenase 1) and IDH2 alter the DNA and
histone demethylation pathways by causing the accumulation
of D-2-hydroxyglutarate, which competes with the α-ketoglu-
tarate needed by the TET and histone lysine demethylase
(KDM) enzymes.100,101 IDH1 and TET2 mutations are
mutually exclusive in acute myeloid leukemia.102,103 Thus,
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interactions between epigenetic and genetic events drive
progressive cellular abnormalities throughout the entire course
of cancer development.16

EPIGENETIC HETEROGENEITY AND TUMOR EVOLUTION

According to the clonal evolution theory of tumor cell
populations, cancers evolve by an iterative process of clonal
expansion, genetic diversification and clonal selection within
adaptive microenvironments.104,105 Genetic diversity is essential
for tumor evolution. In addition, it is now thought that not
only the genome but also the epigenome can contribute to
tumor evolution and that the genome and epigenome are
intertwined.106 For example, promoter DNA hypermethylation
of DNA repair genes is known to cause genetic changes, and
mutations of epigenetic modifiers can cause epigenetic
disruptions.106 Although epigenetic modifications are enzyma-
tically reversible, some epigenetic marks are retained through
cancer progression and represent the history of the cancer cells
(Figure 2).106–108 Epigenetic marks can also reflect the respon-
sive potential of cancer cells to therapeutic treatment.106–108

Profiling intratumoral heterogeneity is a powerful way to
reconstruct tumor evolution, from tumor initiation through
the subsequent stepwise development of cancer.107,109 Recently,
genome-wide profiling of intratumoral heterogeneity has been
extended from genome to epigenome. Interestingly, intratu-
moral heterogeneity analyses in prostate cancers and gliomas
have shown that the inferred histories from DNA methylation
are remarkably similar to those obtained by looking at copy-
number changes or somatic mutation.108,110,111 These studies
suggest that genetic mechanisms and epigenetic mechanisms
have widespread co-dependency during tumor evolution.107

Epigenetic heterogeneity in cancer has clinical importance
for cancer diagnosis and treatment.109 A rare population of

cancer cells with unique epigenetic states can drive drug
resistance.112 In addition, the degree of epigenetic heterogeneity
has been associated with patient response to drug treatment.107

Epigenetic heterogeneity at the single-cell level may play a role
in determining the responses of patients to therapies, and
concurrent treatment with epigenetic drugs against chromatin
regulators can improve anti-cancer drug responses.113–115

DNA METHYLATION PROFILING OF CUP

CUP are a molecularly heterogeneous group of cancers for
which the primary site remains obscure after metastasis.116,117

CUP accounts for ~ 3–9% of all cancer diagnoses, and it is the
fourth most common cause of cancer-related deaths
worldwide.117,118 Overall median survival of CUP patients is
9 months, and only 25% survive for 1 year or more.119,120

Identification of the primary tumor site and treatment with
origin-selective therapy can improve the survival of CUP
patients.117 Sophisticated imaging, immunohistochemical test-
ing and molecular-profiling tools have been tested for the
identification of primary sites in CUP cases.117

DNA methylation patterns are tumor-type specific, and
methylation analysis has already been clinically successful for
the pharmacogenetic management of gliomas.121–125 A recent
attempt to diagnose primary sites for CUP by using DNA
methylation signatures (EPICUP) is a promising advance for
CUP patients.126 EPICUP shows 99.6% specificity and 97.7%
sensitivity in the validation set of 7691 tumors. Furthermore, it
predicted the tissue of origin in 188 (87%) of 216 CUP
patients.126 This achievement suggests that DNA methylation
as an epigenetic memory of cancer cell origin can be a useful
biomarker to unmask the original primary tumor site of a
CUP, and it is clinically applicable for diagnosis and treatment
of CUP patients.

FUTURE PERSPECTIVES

Intratumoral heterogeneity plays a critical role in cancer drug
resistance. Single-cell analysis technologies for the genome,
epigenome, transcriptome and proteome will make it possible
to resolve such heterogeneity as these technologies become
more available.127–129 Single-cell analysis of DNA methylation
is technically difficult because bisulfite conversion is a relatively
harsh process that causes DNA to be randomly fragmented.130

Although single-cell genome-wide BS technologies have been
developed, more clinically available DNA methylation analysis
tools are needed for rare cell populations such as stem cells,
immune cells, circulating tumor cells and cell-free DNA.130–132

Though DNA methylation is critical in mammalian develop-
ment and disease progression, the direct function of DNA
methylation at specific sites remains unclear. Recently devel-
oped technologies for targeted DNA methylation editing, such
as dCas9-Dnmt3a/Tet1, will be useful to validate the function
of site-specific DNA methylation in gene expression and cell-
fate determination.133–137 The identification of cell of origin is
essential to stem cell biology and cancer research. As an
epigenetic memory of cell origin, DNA methylation profiles

Figure 2 A model of epigenetic memory in cancer cells. Cancers
evolve by an iterative process of clonal expansion, genetic and
epigenetic diversification and clonal selection within adaptive
microenvironments. DNA methylation can be retained as an
epigenetic memory of tumor evolution. Vertical line represents
cancer treatments such as chemotherapy and radiation therapy.
Small circles filled with black, white and gray represent DNA
methylation pattern.
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will be useful in the development of regenerative medicine and
tumor-type-specific and patient type-specific treatments.
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