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ARTICLE

Synthetic microbial communities of heterotrophs
and phototrophs facilitate sustainable growth
Cristal Zuñiga1, Tingting Li2,3, Michael T. Guarnieri4, Jackson P. Jenkins2, Chien-Ting Li2, Kerem Bingol5,

Young-Mo Kim 5, Michael J. Betenbaugh2 & Karsten Zengler 1,6,7✉

Microbial communities comprised of phototrophs and heterotrophs hold great promise for

sustainable biotechnology. Successful application of these communities relies on the selec-

tion of appropriate partners. Here we construct four community metabolic models to guide

strain selection, pairing phototrophic, sucrose-secreting Synechococcus elongatus with het-

erotrophic Escherichia coli K-12, Escherichia coli W, Yarrowia lipolytica, or Bacillus subtilis. Model

simulations reveae metabolic exchanges that sustain the heterotrophs in minimal media

devoid of any organic carbon source, pointing to S. elongatus-E. coli K-12 as the most active

community. Experimental validation of flux predictions for this pair confirms metabolic

interactions and potential production capabilities. Synthetic communities bypass member-

specific metabolic bottlenecks (e.g. histidine- and transport-related reactions) and com-

pensate for lethal genetic traits, achieving up to 27% recovery from lethal knockouts. The

study provides a robust modelling framework for the rational design of synthetic communities

with optimized growth sustainability using phototrophic partners.
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Phototrophic microbial communities exhibit symbiosis
between photoautotrophic and heterotrophic organisms
supported primarily by solar energy and the fixation of

carbon dioxide (CO2). This type of association dominates many
biofilms, microbial mats, and lichens1–3, thriving in desiccation,
nutrient starvation, and salinity or temperature extremes4. This
ability to survive extreme conditions is due, in part, to division of
labor and subsequent interactions between members of the
community. Photoautotrophic members, classically either cya-
nobacteria or eukaryotic algae, convert CO2 into organic carbon
for growth and maintenance of the heterotrophic partner(s).
Exchange of these metabolites can sustain the heterotrophs under
conditions devoid of any organic carbon source. In turn, the
heterotrophs provide additional CO2, protection from environ-
mental factors and predation, and often, a diverse array of
metabolites produced by secondary metabolism5.

To date, understanding, engineering, and determining viable
cultivation conditions for natural phototrophic communities
remains challenging6. Thus, synthetic communities have been the
primary platform for autotrophic-heterotrophic symbioses for
bioenergy7–11, resulting in novel phototrophic systems to produce
biomass and value-added compounds7,12,13. Synthetic photo-
trophic communities (SPCs) have been utilized for the produc-
tion of biofuels7, α-amylase, and polyhydroxyalkanoates among
other compounds8,10,12. Complex communities consisting of
algae and bacteria also have potential applications in waste-water
treatment14,15, bioremediation16, and as a bloom control method
for phytoplankton17. Traditionally, microbial communities have
been selected in long term adaptation and optimization experi-
ments to define optimal culture conditions18. The critical chal-
lenge in synthetic community design is to maintain syntrophic
interactions between members to avoid culture collapse14,19.
Development of SPCs for bioproduction involves four critical
steps: (a) strain selection, (b) screening of cultivation conditions,
(c) efficient extraction of added-value products, and (d) process
control and biomass recycling. The first three steps (a–c) are
important drivers for implementation of successful bioproduction
processes that can be optimized and guided using metabolic
modeling.

Constraint-based metabolic modeling is a systems biology tool
that provides a comprehensive metabolic understanding about
individual microorganisms (metabolic models henceforth refer-
red to as M-models)20,21 and microbial communities (commu-
nity-metabolic models henceforth referd to as CM-models)22–25.
These models account for biochemical and genomic information
for an individual or community at the genome-scale. Resulting
models are solved using flux balance analysis and can accurately
predict thousands of functional states24,26. Simulations performed
with CM-models describe key metabolic functions of microbial
communities, defining all possible interactions among partners
based on genetic and/or metabolic fitness. CM-models also enable
prediction of effective culture conditions for production in robust
biotechnological processes22.

Here, we reconstruct CM-models encompassing bacteria and
fungi that are important contributors to biofuel production. The
cyanobacterium Synechococcus elongatus PCC7942, with its high
growth rate and robust metabolism, is able to synthesize hydro-
gen, ethanol, 2,3-butanediol, sucrose, squalene, and fatty acids
among other organic chemicals from light and CO2

27. For het-
erotrophic partners, we focus on established microbial cell fac-
tories, i.e., Escherichia coli, Bacillus subtilis, and the fungus
Yarrowia lipolytica. CM-models for four synthetic communities
based on the sucrose-secreting S. elongatus in pairwise combi-
nation with E. coli (strains K-12 and W), B. subtilis str. 168, and
Y. lipolytica Po1g are deployed. Predictions about biomass and
metabolites (methanol, formaldehyde, ethanol, butanal, and

succinate) production yields as well as flux distributions through
the metabolic networks are experimentally validated using phy-
siological and gene expression data. We explore metabolic fitness
and genetic stability by evaluating compensatory mechanisms in
resistance to knockouts of genes with lethal phenotypic traits
mimicking enzymatic damage. We test predictions experimen-
tally for ten knockout strains and explore potential production
capabilities of organic chemicals, such as methanol, for-
maldehyde, ethanol, butanal, and succinate for all microbial
communities.

Results
Community-metabolic models predict members’ growth rates.
CM-models are a mathematical representation of genomic and
metabolic knowledge of microorganisms within a
community22,23. These models can be used to elucidate, under-
stand, and generate hypotheses about biological mechanisms
shaping interactions between community members22. CM-
models and M-models predict biological functions based on key
substrate uptake capabilities referred to as constraints. Using the
M-models of E. coli K-12 iML1515, E. coli W iJO1366W28,29, B.
subtilis str. 168, iYO84430, and Y. lipolytica Po1g, iYali431

(Fig. 1a), we reconstructed four community-metabolic models by
pairing each heterotroph with the model for S. elongatus iJB79232.
General properties of the community networks and M-models are
shown in Table 1. The modeling compartment Shared Metabolite
Pool (SMP) was manually curated in all CM-models, including
experimental and genetic evidence of metabolic exchange cap-
abilities by each community member. For example, we confirmed
experimentally the consumption of 52 metabolites by S. elongates
in monoculture. Experimental evidence, derived from high-
throughput growth assays from consumption of amino acids,
carbohydrates, and organic acids (BIOLOG Inc, Hayward, CA)
was added into the SMP of all models. Metabolites in the SMP of
all CM-models are listed in Supplementary Data 1 and simulation
constraints for each CM-model are shown in Supplementary
Data 2.

We simulated CM-models based on experimental constraints,
such as the sucrose secretion rate of 0.182mmol gDW−1 h−1 by
an engineered S. elongatus strain (S. elongatus cscB+)33. When this
constraint was added into the M-model of S. elongatus (iJB792)
the growth rate dropped about 16% from 0.0539 h−1 to 0.044 h−1,
similar to experimental observations (0.045 ± 0.07 h−1). Growth
rate simulations and experimental results are shown in Fig. 1b. In
monoculture, M-Models successfully predicted growth phenotypes
of all five microbes in minimal media. Predictions of mono-
cultures in minimal media with sucrose were similarly successful
with the exception of Y. lipolytica. Since, Y. lipolytica cannot use
sucrose as its sole carbon source we used an engineered strain (Y.
lipolytica suc+) with sucrose uptake capabilities in all the
experiments shown here34.

Experimental validation of the CM-models yielded interesting
and varied results. Predictions using the CM-models showed that
S. elongatus (cscB+ or WT) should be able to grow at similar
growth rates with E. coli or B. subtilis as in monoculture (0.039 ±
0.01 h−1 averaged across cocultures), but should grow faster when
it is cultivated with Y. lipolytica (0.062 h−1). These expectations
were validated by experiments with the exception of S. elongates-
Y. lipolytica communities in which S. elongatus did not see a
boost in growth but instead exhibited diminished growth, despite
our simulations showing active exchange of isoleucine and other
amino acids.

Synthetic phototrophic communities (SPC) of S. elongatus cscB+

with each heterotrophic partner supported growth of both
community members over 72–96 h (Fig. 1b). Surprisingly, this
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was even the case for E. coli K-12, which is not able to consume
sucrose. CM-model predictions of heterotrophic growth in
communities with S. elongatus were most accurate for E. coli W
and Y. lipolytica while E. coli K-12 and B. subtilis experimental
growth rates were slower than predicted. Experimental growth
rates of phototrophs and heterotrophs ranged between 0.04 ± 0.01
h−1 and 0.06 ± 0.015 h−1, similar to predicted growth rates of 0.05
h−1 and 0.07 h−1 (Fig. 1b). For the SPC containing B. subtilis we
experimentally observed rapid growth of the heterotroph during
the first 24 h; however, this fast growth was not sustained over the
course of growth (72 h). Growth curves for all SPCs are shown in
Supplementary Fig. 1.

Predicted production capabilities underlie partner selection.
CM-models offer a remarkably higher topological potential,
achieving feasible solutions while optimizing for the synthesis of
target metabolites by shifting the resources across members. CM-
models contain the most comprehensive collection of metabolites
that are intermediates in the synthesis of biomass or are part of
the biomass compositions (e.g., carbohydrates, lipids, and pro-
teins) of the community members. Here, we simulated produc-
tion capabilities of every metabolite in the models (9369 total,
Fig. 2a). Metabolite production constraints were setup as
boundaries synthesize each metabolite, thus community growth
simulations were calculated by maximizing the biomass growth of

both community members at the same time. We considered
metabolite production feasible when metabolite boundaries
enabled the growth of both community members (Fig. 2a). We
found community-specific production potential in all SPCs; the
SPC containing E. coli K-12 was capable of producing the most
metabolites (111 metabolites), followed by E. coli W (106 meta-
bolites), Y. lipolytica (60 metabolites), and B. subtilis (39
metabolites).

We evaluated the capability of community members to secrete
organic chemicals (methanol, formaldehyde, ethanol, butanal,
and succinate), that are declared as primary feedstock for
chemical synthesis by the Environmental Protection Agency of
the United States of America. Currently these metabolites are
manufactured primarily through either chemical synthesis or
single-strain biorefineries35,36. Utilization of these metabolites
accounts for 4–30% of the total production costs of feedstocks35.
When we evaluated the maximum production capability, growth
phenotypes, metabolic exchange, and yields attained with the
CM-Models during the production of organic chemicals (Fig. 2b
and Supplementary Fig. 2), we predicted differences in the
metabolic capabilities of each SPC. For example, we found that all
SPCs were theoretically able to synthesize ethanol (0.011 ± 0.01 g
gDW−1), or succinate (0.066 ± 0.004 g gDW−1), but only SPCs
containing E. coli strains were able to synthesize formaldehyde
(average yield 0.017 g gDW−1) and butanal (average yield 0.012

Table 1 M-model and CM-model properties.

Model features iJB792 iECW1372 iML1515 iYO844 iYali4 iCZ-Se-EcW
(2157)

iCZ-Se-EcK-
12(2152)

iCZ-Se-Bs
(1629)

iCZ-Se-Yl
(1686)

Genes 792 1273 1366 844 901 2157 2152 1629 1686a

Reactions 897 2477 2583 1250 1985 3301 3161 1921 2739
Metabolites 792 1111 1805 844 1684 2688 2547 1732 2399
Microorganism Synechococcus

elongatus
PCC7942

E. coli W E. coli K-
12
MG 1655

Bacillus
subtilis

Yarrowia
lipolytica

S.
elongatus–E.
coli W

S.
elongatus–E.
coli K-12

S.
elongatus–B.
subtilis

S.
elongatus–Y.
lipolytica

Conditions PA A, AN A, AN A A P, A P, A P, A P, A
Reference Broddrick

et al.32
Monk et al.28 Monk

et al.29
Oh
et al.30

Kerkhoven
et al.31

This study This study This study This study

The first row contains the names of the model. Each model can be simulated under different conditions: Phototroph models can be simulated under photoautotrophy (P), heterotrophy (H), and/or
mixotrophy (M). Heterotroph models can be simulated under aerobic (A) and/or anaerobic (AN) conditions.
Organelles: c cytoplasm, cx carboxysome, r endoplasmic reticulum, g Golgi apparatus, l liposome, p periplasm, m mitochondria, n nucleus, x peroxisome, t thylakoid, and v vacuole.
*The consumption of ethanol was included into the Yarrowia model, adding genes and reactions.
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Fig. 1 Community members and growth performance. a Neighbor-joining tree based of almost full-length 16S rRNA gene sequences, showing phylogenetic
relationships between S. elongatus PCC7942 and the heterotrophic species used here. GenBank accession numbers are given in parentheses. b The bar plot
depicts growth rates predicted using CM-models. Boxplots show experimental validation using at least six experimental replicates, the central mark
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers. The first panel shows growth in monoculture using minimal media without an organic carbon source. The
second panel shows growth rates during monoculture, while using minimal media with additional sucrose. The third panel shows results obtained when
combining S. elongatus cscB+ with all heterotrophs in minimal media. Source data underlying Fig. 1b are provided as a Source Data file.
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± 0.002 g gDW−1) (Fig. 2c, d). Metabolite productivities were
compared with engineered strains under monoculture and wild-
type coculture conditions, showing that cocultures are more
competitive to produce succinate but not ethanol (Supplementary
Data 3). Thus, using engineered strains in cocultivation could
potentially achieve even higher productivities.

We found that community growth rate is driven by member-
specific flux distributions and metabolic exchange, which
responds differently to the requirement to produce an additional
organic compound. For example, differences in the predicted flux
through the SMP at each production rate of butanal were
observed (Fig. 2c, d). In the community containing E. coli K-12,
the model predicted that S. elongatus cscB+ would increase the
flux exchange of serine and threonine over two-fold, resulting in
higher secretion of these metabolites. In turn, E. coli K-12 would
provide adenine, phenylalanine, and isoleucine at higher fluxes
(Fig. 2d). Metabolic adjustments also hinted at new metabolites
being exchanged (e.g., ammonium, arginine, succinate, and
glyoxylate) during butanal secretion. The exchange of metabolites
was activated by butanal secretion since these metabolites were

not exchanged when maximizing only for biomass production.
Simulations regarding the SPC with E. coli W showed an overall
reduction of the exchange flux of all transport reactions except for
glutamine. This effect was associated with depletion of the
heterotrophic partner (Fig. 2d). Although E. coli K-12 and E. coli
W are genetically very similar, their individual metabolic
networks harbor unique metabolic capabilities. E. coli K-12 has
163 unique reactions and E. coli W has 180. While the main
differences were found in alternative carbon metabolism, the
metabolic networks also differed in the number of reactions in
cysteine, glutamate, tyrosine, and valine metabolism, lipopoly-
saccharide biosynthesis, and in active transporters (Supplemen-
tary Data 4).

Community members interact through adjusting their fluxes
associated with metabolic exchange and/or with specific meta-
bolic pathways. In addition to CO2 and O2, the models predicted
a wide array of other metabolites, including alcohols, organic
acids, and amino acids, would be exchanged in order to maximize
growth. Overall, the CM-models identified 16 exchanged
metabolites in all SPCs (Fig. 3a, Venn diagram). These included
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Fig. 2 Organic chemical production by synthetic phototrophic communities. a Production capabilities were evaluated for all SPCs by iteratively simulating
the synthesis of metabolites while maximizing for growth. Metabolite production rates were sorted and plotted for each synthetic phototrophic community
(SPC). Metabolites feasible to produce were identified by having production rates over 1 × 10−2 mmol gDW−1 h−1. b Overall production capabilities for
butanal, ethanol, formaldehyde, methanol, and succinate. The bar plot shows the predicted maximum production rate achieved by each SPC. The predicted
abundance (growth rate) of community members is shown for S. elongatus cscB+(green) and for heterotrophs (blue B. subtilis, yellow E. coli K-12, purple E.
coli W, or pink Y. lipolytica). Microbial communities containing E. coli strains showed high formaldehyde production potential. c, d Predicted growth rates
and associated metabolic exchanges for the SPC composed of S. elongatus cscB+ and either E. coli K-12 (c) or E. coli W (d) while producing butanal. CM-
models enable prediction of substrate resource allocation into growth or into target metabolites. Production of metabolites reduces the growth of
community members as observed in the growth rate plots. Here, the overall growth rate of the community (black line) and each member (green S.
elongatus cscB+ paired with yellow or purple for E. coli K-12 or E. coli W, respectively) were simulated. Simulations show that at higher butanal production
rates the heterotroph will be outcompeted by the phototroph before the SPC crashes. The complete-linkage clustering based on the metabolic exchange
predictions shows associations among metabolites listed on the y-axis and butanal production rates from left to right. Growth rate predictions were
remarkably associated with a specific metabolic exchange. For example, the synthesis of butanal by the E. coli K-12 SPC was possible by increasing the flux
exchange of metabolites such as isoleucine (ILEL), phenylalanine (PHEL), serine (SERL), and threonine (THRL), while for the E. coli W SPC butanal
production relied heavily on L-glutamine exchange (GLUL). Metabolic exchanges of all SPCs are given in Supplementary Fig. 3.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17612-8

4 NATURE COMMUNICATIONS |         (2020) 11:3803 | https://doi.org/10.1038/s41467-020-17612-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


metabolites supplemented in the culture medium as well as
biologically produced metabolites, such as threonine, isoleucine,
and pyruvate (highlighted in bold in Fig. 3). Additionally, most of
the SPCs exchanged metabolites specific for a particular SPC,
such as homoserine for the community composed of S. elongatus
and Y. lipolytica, and arginine for S. elongatus and E. coli W.
Predicted fluxes associated with metabolic exchanges were
clustered into three groups, i.e., ions, amino acids, and
miscellaneous (organic acids, overflow metabolism and carbohy-
drates). We predicted that the SPC containing E. coli K-12 was
the most efficient in exchanging amino acids based on its total

metabolite exchange flux, e.g., isoleucine, valine, glutamate,
serine, and phenylalanine (Fig. 3a, clustergram). Similar predic-
tions about higher fluxes were obtained for ions and miscella-
neous metabolites. The SPC with the second highest exchange
fluxes was S. elongatus cscB+ and E. coli W, which was
characterized by high exchanges of threonine, arginine, and
isoleucine. This SPC was the most efficient in activating exchange
reactions containing magnesium and cobalt. The total fluxes in
the SPCs containing B. subtilis or Y. lipolytica were lower in
comparison to fluxes of SPCs containing E. coli. The B. subtilis
and Y. lipolytica containing SPCs clustered together and exhibit
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remarkably different flux profiles compared to E. coli K-12 (see
also Supplementary Figs. 3, 4).

Interestingly, the SPC composed of S. elongatus cscB+ and E.
coli K-12, which is unable to grow with sucrose, was predicted to
thrive in minimal media devoid of any organic carbon source.
These predictions were validated experimentally and we identified
E. coli K-12 as the most suitable heterotrophic partner for S.
elongatus, exhibiting the highest growth phenotypes. We there-
fore characterized the metabolic and genetic interactions of S.
elongatus cscB+ and E. coli K-12 in greater detail.

Metabolic profiles give insight into microbial interactions.
Metabolic interactions were experimentally characterized using
Nuclear Magnetic Resonance (NMR) and Gas Chromatography-
Mass Spectrometry (GC-MS). Metabolic profiles for 34 metabo-
lites were measured from biomass samples and culture medium
supernatants under mono- and coculture conditions. Experi-
mentally determined metabolic profiles validated the exchange of
predicted metabolites. NMR and GC-MS analysis of intracellular
(Table 2) and extracellular (Supplementary Data 5) metabolites
for the SPC of S. elongatus cscB+ and E. coli K-12 along with
monoculture profiles was performed. Sucrose remained constant
in the extracellular medium of S. elongatus cscB+ monoculture
and the S. elongatus cscB+-E. coli K-12 coculture due to the lack
of a sucrose transporter in this E. coli strain. Other metabolites
detected in the extracellular broth of this SPC (S. elongatus cscB+-
E. coli K-12) were pyruvate, methanol, formate, acetate, and high
concentrations (13.7 mM) of ethanol, suggesting that these are
also available for metabolite exchange. These metabolites were
often lower in coculture than in monocultures, providing further
support of this exchange.

Our computational studies suggested optimized growth should
include the exchange of a number of additional metabolites,
especially amino acids (Fig. 3a). In order to determine if these
amino acids and other metabolites were present in cells, we
evaluated intracellular metabolites in S. elongatus cscB+ and E.
coli K-12 using GC-MS. Some intracellular metabolites, including
the amino acids glutamate and aspartate and the dipeptide
glycylproline (precursor of serine and threonine synthesis)
accumulated to higher relative levels in S. elongatus compared
to E. coli. Other metabolites, such as malonate, were detected
intracellularly as well. GC-MS analysis (Table 3) confirmed the
high intracellular levels of glutamate and aspartate as well as other
amino acids in S. elongatus, and also revealed high intracellular
levels of glycerol and glycine in S. elongatus relative to its E. coli
K-12 partner. Interestingly all these metabolites were confirmed
experimentally to be effectively transported into the cytoplasmic
space of S. elongatus and E. coli K-12 (Supplementary Data 1).
Overall, our NMR and GC-MS analysis revealed a different
intracellular metabolic fingerprint for the cyanobacterium as
compared to its heterotrophic partner. This provides further

evidence that phototrophic communities can be advantaged
through division of labor using interwoven metabolic networks,
especially in alleviation of partner-specific bottlenecks.

Simulated pathway fluxes suggest network bottlenecks. CM-
Models not only unravel metabolic exchange but can also deci-
pher alterations in the activity of complete pathways. Shifting
from mono- to coculture conditions triggered changes across
fluxes in multiple pathways of the entire network. Our predictions
suggested that these metabolic changes occur in all SPCs studied
here. The predicted fold-change (coculture/monoculture) of
subsystem fluxes in all SPCs were remarkably correlated (Pearson
correlation, average R2= 0.63) (Fig. 3b, c). Similarly, the pre-
dicted flux through pathways were well correlated across all SPCs
and significantly correlated with S.elongatus and E.coli W
expression data (Pearson= 0.82, p-value= 1.02e−7).

Predicted flux differences between mono- and coculture
conditions were identified in transport reactions and metabolism
of pyruvate, purine, pyrimidine, alanine, aspartate, and glutamate
in both members of the SPC (Fig. 3d). Furthermore, flux through
member-specific pathways, such as photosynthesis, carbon
fixation, and biosynthesis of plastoquinol, phylloquinone, and
carotenoids, significantly changed between mono- and coculture
conditions. Measured expression data of the SPC containing S.
elongatus and E. coli W showed significantly differential
expression (two sided t-test, n= 3, p-value < 0.05) of genes
associated with alanine, aspartate, and glutamate metabolism,
arginine and proline metabolism, the pentose phosphate pathway,
phototroph-specific metabolism, purine and pyrimidine metabo-
lism, and transport reactions as predicted (Supplementary Fig. 5
and Supplementary Data 7).

We quantified and compared expression and fluxes by
pathway, identifying potential bottlenecks that if relieved could
improve biomass yields. For example, predicted flux and observed
expression data associated with transporters located in the
thylakoid as well as histidine metabolism in the cytoplasm were
highly activated, making up around 50% of the total expression
(RNA-seq reads) and flux (mmol gDW−1 h−1) across the entire
metabolic network. Histidine metabolism is linked with the
pentose phosphate pathway and alanine, aspartate, and glutamate
metabolism, encompassing the synthesis of several glutamate
precursors. Even though we could not quantify/detect intracel-
lular accumulation of histidine experimentally, glutamine,
a histidine precursor, was accumulated in both S. elongatus
(9.9 mM) and E. coli K-12 (2.1 mM). This metabolite was not
found in the supernatant of any mono- or cocultures. Overall,
CM-models are a reliable tool to identify functional states in
association with growth phenotypes, offering details of cellular
communication and potential network bottlenecks limiting
microbial interactions.

Fig. 3 Metabolic exchange is linked to differential expression in RNA-seq data and predicted flux distributions. a The Venn diagram shows the
predicted metabolic exchange for all synthetic phototrophic communities. Metabolites highlighted in bold represent the 16 (e.g., ASNL, GLUL, and ILEL)
metabolites shared by all synthetic communities. Besides expected metabolites to be exchanged (CO2, O2, and sucrose), simulations show mutual transfer
of amino acids, ions, and other metabolites. Marked metabolites (*) were identified in supernatant samples using target metabolomics (Tables 2, 3).
b S. elongatus cscB+ fold-change analysis. Correlation between predicted subsystems fold-change of S. elongatus under cocultivation with E. coli W (x-axis)
versus predicted fold-change when cultivated with B. subtilis (Pearson= 0.49, p-value= 0.011, n= 3, blue dots), E. coli K-12 (Pearson= 0.93, p-value=
9.1e−12, n= 3, yellow dots), and Y. lipolytica (Pearson= 0.33, p-value= 0.009, n= 3, red dots). c Predicted flux for each pathway in S. elongatus cocultured
with E. coli W (x-axis) and other heterotrophic partners (y-axis) including B. subtilis, E. coli W, and Y. lipolytica. Flux evaluated by RNA-seq of S. elongatus
cocultured with E. coli W (purple) demonstrates validation of flux prediction (Pearson= 0.82, p-value= 1.02e−7, n= 3). d Fold-change of RNA-seq data
and predicted flux distributions under mono- and coculture was calculated and normalized at the pathway level. Expression data were obtained for the SPC
containing E. coli W. Bubble size represents the median of expression burden and flux burden by pathway. Predicted fold-change for the microbial
communities containing B. subtilis, E. coli W, and Y. lipolytica is shown in light gray dots.
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SPCs are more resistant to lethal traits than monocultures.
Tolerance to inhibitors is one of the main challenges for strain
engineering of monocultures. Often growth rates and pro-
ductivities are limited by the accumulation of toxic intermediates
(e.g., end-products and/or metabolic intermediates) that can
harm productivity or lead to culture collapse37. These inhibitions
can affect metabolism at the reaction or pathway levels38. To
probe the ability of SPCs to cope with enzymatic inhibition, we
simulated single gene deletions of all genes in the CM-models
(7624 total).

Model simulations showed that members of microbial com-
munities can efficiently compensate for some metabolic activities,
overcoming up to 27% of phenotypic traits lethal to one member,
allowing the damaged participant to thrive in the community
though they could not in monoculture. For example, during
monoculture growth of S. elongatus cscB+, 350 genes are essential,
meaning if they are knocked out S. elongatus cscB+ cannot grow
in minimal media. This is in contrast to S. elongatus cscB+ grown
in communities where the number of lethal deletions falls to 327
or 326, depending on the cocultivation partner (Fig. 4a). This
equates to a 7% increase in community resilience in the face of
gene knockouts as a proxy for inhibited genes. So despite S.
elongatus cscB+ being the growth-sustaining microorganism in
the community, our predictions showed that the presence of E.
coli strains could compensate for up to 7% of lethal knockouts in
S. elongatus cscB+.

We used these genome-scale model simulations to guide the
selection of ten E. coli K-12 knockout (KO) mutants with variable
growth phenotypes in monoculture versus coculture conditions to
test experimentally. Six of those mutants were predicted to not
grow in monoculture and were associated with amino acid
metabolism (ilvC, ilvE, and pheA), cofactor and prosthetic group
biosynthesis (cysG and thrC), and inner membrane transport
(phoE). Of these, most strains died in monoculture in minimal
media as expected and only the strain lacking ilvE grew in
monoculture under our cultivation conditions (Fig. 4b). Four
strains with non-essential genes knocked out were associated with
amino acid metabolism (aspC), oxidative phosphorylation (atpC),
the pentose phosphate pathway (talB), and inner membrane
transport (cycA) (Fig. 4b, Supplementary Data 8, 9). All of these
strains grew successfully in monoculture albeit with grow rates
that varied significantly with respect to the predicted rates, since
we used uptake rates determined under wild-type conditions to
constrain the CM-model.

Growth of E. coli strains missing ilvC, cysG, pheA, and thrC
was rescued by S. elongatus cscB+ as predicted for the strains ilvC
and pheA (Supplementary Data 9). The genetic damage in the
heterotrophic partner did not significantly affect the growth rate
of the phototroph experimentally (Fig. 4b, two sided t-test, n= 4,
p-value > 0.05). The model demonstrated good accuracy for
growth/no-growth prediction of the ten assayed KOs. Matthews
correlation coefficient (MCC) values were estimated for each

Table 2 NMR data for extracellular metabolite concentrations.

Metabolite Metabolite ID E. coli K-12 (μM) Coculture (μM) S. elongatus (μM)

2-oxoglutarate akg 404.200 0.000 0.000
3-phosphoglyceric acid g3pg NF NF NF
4-hydroxybenzoate 4hbz 12.800 0.000 0.000
Acetate ac 424.000 2.300 3.400
Acetone aact 7.300 4.400 7.200
Adenine ade 0.000 0.000 0.000
Citric acid cit NF NF NF
D-arabinose arab NF NF NF
D-fructose fru NF NF NF
D-fructose-6-phosphate f6p NF NF NF
D-glucose glc 0.000 0.000 0.000
D-glucose-6-phosphate g6p NF NF NF
D-mannitol mnl NF NF NF
D-ribose rib NF NF NF
D-ribose-5-phosphate r5p NF NF NF
Ethanol etoh 13.200 13.700 18.600
Formate for 1343.200 6.500 43.300
Glycerol glyc NF NF NF
Glycine gly NF NF NF
Isobutyrate but 2.300 0.000 0.000
L-aspartic acid asp 0.000 0.000 0.000
L-glutamic acid glu 0.000 0.000 0.000
L-serine ser NF NF NF
L-threonine thr 0.000 0.000 0.000
L-valine val 0.000 0.000 0.000
Methanol meoh 1.600 6.700 5.400
Pantothenate pnto 5.800 0.000 0.000
Proline pro NF NF NF
Propylene glycol glyclt 4.700 0.000 0.000
Pyruvate pyr 0.000 0.000 2.600
Succinate succ 5.400 0.000 0.000
Sucrose sucr 903.500 86.000 101.500
Tyrosine tyr 0.000 0.000 0.000
Lactate lac 0.000 0.000 0.000

Standard error of all measurements is below 10% of the average observed concentration. Measurements obtained from independent samples.
NF not found. Predicted metabolites not detected in NMR and GC-MS: L-arginine, L-isoleucine, L-phenylalanine, and homoserine.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17612-8 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3803 | https://doi.org/10.1038/s41467-020-17612-8 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


condition, by comparing experimental and predicted outcomes
(Supplementary Data 9). Across KOs, the highest prediction
accuracy was observed for E. coli K-12 monoculture (0.90),
followed by S. elongatus cscB+ coculture (0.7) and E. coli K-12
coculture (0.7); the positive predicted values ranged from 0.83 to
1 for all conditions. Selected strains were also cultured in rich
medium (80% Luria-Bertani (LB)+ 20% BG-11). We observed
that all KOs were rescued in monoculture. Interestingly, the
phototrophic communities maintained syntrophic interactions
despite the capability of E. coli to thrive in rich medium. Overall,
the growth rates of community and monoculture increased up to
41% while cultured in rich medium (see Supplementary Fig. 6).

Predicted metabolic exchange was highly reciprocal among
community members, meaning that the secretion flux was
identical to the uptake flux by the partner for most metabolites
under optimal conditions. However, simulations also showed
additional secretion of metabolites by E. coli K-12, such as lactate
and citrate for all KO strains. Resistance to lethal phenotypic
traits is associated with metabolite-tuning and metabolite-flux-
activation under specific conditions. For example, simulations of
the E. coli K-12 pheA gene KO promoted increased uptake of O2

from S. elongatus, while E. coli K-12 increased uptake of
threonine, succinate, valine, glycerol, adenosine, phenylalanine,
and asparagine while secreting CO2, glycolate, pyruvate, glucose,
serine, formate, isoleucine, and deactivating the exchange of
leucine and ethanol (Fig. 4c).

This advanced community modeling tool gives insight into
stability of these cultivation platforms, namely through enhanced
tolerance to inhibition through offsetting lethal traits among
community members. Future network discoveries of individual
microorganisms will continue improving the definition of
constraints as well as the predictive power of M-models and
eventually of CM-models. Such discoveries will highlight areas of
interest that may be responsible for current mismatches between
predictions and experimental results.

Discussion
Emergent metabolic modeling tools have enabled significant
progress toward understanding interactions in microbial com-
munities. This achievement, together with advances in various
omics methodologies, has opened the possibility of switching
from biorefineries consisting of monocultures to multi-
organismal cell factories22,25. Currently, a number of challenges
to multi-organismal cell factories remain, such as high sensitivity
to cultivation collapse under unexpected conditions and/or for
unknown reasons7,14,26. Utilization of sustainable microbial
communities (e.g., SPCs) has resulted in a promising approach to
overcome current limitations7,10,11. Furthermore, the use of both
synthetic and natural phototrophic communities allows for the
utilization of renewable resources for sustainable production39,
maintaining diverse and robust microbial interactions, reducing
overall cost of feedstocks and minimizing transport logistics35.
We explored the potential of photosynthesis-based processes as
sustainable growth. Simulations predicted different growth phe-
notypes depending on the heterotrophic partner (B. subtilis, E.
coli K-12, E. coli W, or Y. lipolytica). The SPCs containing E. coli
improved community growth effectively by exchanging metabo-
lites (e.g., asparagine, glutamine, phenylalanine, pyruvate, serine,
succinate, and valine, among others, Figs. 2, 3) to take maximum
advantage of supplied nutrients and light for the production of
organics, as predicted (Fig. 2b, d). Meanwhile, SPCs containing B.
subtilis or Y. lipolytica did not grow experimentally as predicted,
possibly due to the high sensitivity of amino acids to folding
events of metal transporters40, deactivation of hexose transporters
in Y. lipolytica41, as well as to the presence of reactive oxygen
species7,8 potentially affecting growth of B. subtilis. Furthermore,
sugar assimilation in Y. lipolytica, including the uptake
mechanism, metabolic pathways, and regulatory mechanisms, is
currently poorly understood26,41.

Predicted member fitness depends on specific key functions
that maintain and enhance the community performance of the
SPC, especially in pathways regarding arginine and proline
metabolism, citric acid cycle, one-carbon and folate metabolism,
and pyruvate metabolism (Fig. 3b). Accurate prediction of
metabolic adjustment and fitness improvement in coculture
conditions offers a portrait of integral usage of light, CO2, and O2

in addition to other metabolites, such as alcohols, organic acids,
and amino acids that are naturally produced during cultivation
and can enhance community performance. Synthesis of meta-
bolites associated with overflow and secondary metabolism (e.g.,
formate, ethanol, and acetate, Supplementary Figs. 3, 4) is pre-
vented as much as possible in monocultures42 or controlled by
the energetic state of cells43. However, for microbial communities,
the active exchange of these overflow metabolites maintains and
promotes the growth of community members. Certain metabo-
lites predicted to be part of the metabolic exchange in this study

Table 3 Intracellular metabolite Z-score comparisons from
GC-MS.

Metabolite Metabolite ID E. coli K-
12 (Z-
score)

S. elongatus
(Z-score)

2-oxoglutarate akg 2.077 0.085
3-phosphoglyceric acid g3pg −0.391 2.258
4-hydroxybenzoate 4hbz −0.535 −0.418
Acetate ac NF NF
Acetonea aact 1.943 −0.917
Adenine ade 1.575 1.072
Citric acid cit −0.428 −0.963
D-arabinose arab 1.759 −0.591
D-fructose fru 0.953 −0.546
D-fructose-6-phosphate f6p 2.069 0.571
D-glucose glc 2.212 −0.343
D-glucose-6-phosphate g6p 1.618 1.297
D-mannitol mnl 2.268 −0.378
D-ribose rib 2.262 −0.363
D-ribose-5-phosphate r5p −0.220 2.262
Ethanol etoh NF NF
Formate for NF NF
Glycerol glyc −0.372 1.599
Glycine gly 0.178 2.199
Isobutyrate but 2.268 −0.378
L-aspartic acid asp 0.277 2.173
L-glutamic acid glu 0.210 2.192
L-serine ser 1.390 −0.585
L-threonine thr −0.370 2.264
L-valine val NF NF
Methanol meoh NF NF
Pantothenate pnto 0.951 −0.410
Proline pro −0.378 2.268
Glycolateb glyclt 0.135 0.784
Pyruvate pyr 2.249 −0.142
Succinate succ 2.263 −0.429
Sucrose sucr −0.179 −0.546
Tyrosine tyr 0.247 1.936
Lactate lac 2.248 −0.196

Z-score was determined using three independent biological replicates. Standard error of all
measurements is below 10% of the average observed concentration.
NF not found.
Metabolite precursor found:
aAcetoacetate.
bPropylene glycol.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17612-8

8 NATURE COMMUNICATIONS |         (2020) 11:3803 | https://doi.org/10.1038/s41467-020-17612-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


have previously been reported in experimental studies. For
example, pyruvate and glycerol, which were secreted by our SPCs
(Supplementary Figs. 3, 4), were also detected to be secreted by
the phototroph Auxenochlorella protothecoides, and incorporated
by heterotrophic partners15. In turn, the heterotrophs provided
vitamin precursors, increasing the growth rate and lipid pro-
ductivity of the phototroph15.

Constraint-based modeling of microbial communities is a
promising approach for developing, and controlling robust and

stable multi-organismal biotechnological processes. In particular,
manually curated CM-models, which compile knowledge about
network connectivity, cell communication, and overall function
in great detail22,24,44. Our CM-model for S. elongatus and E. coli
K-12 predicted that activation/deactivation of transport activity
associated with the thylakoid and histidine metabolism can
potentially relax metabolic bottlenecks. Simulations were vali-
dated by transcriptional and metabolomic analyses of the pho-
tobiont while cocultivated with E. coli. Both flux predictions and
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Fig. 4 Community fitness compensates for lethal phenotypic traits by tuning metabolic exchange. a Simulations about resistance to lethal phenotypes
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expression data showed significant changes in core genes of
energy metabolism, carbon fixation, and cofactor and vitamin
synthesis. These results are in sync with a previous expression
analysis for the SPC of Thermosynechococcus elongatus BP-1 and
Meiothermus ruber strain A, in which significant differential
expression was observed in phototroph-specific pathways45.

Mathematical models of heterotrophic-autotrophic commu-
nities have been previously published, encompassing a limited
number of parameters, such as inorganic carbon, nitrogen,
phosphorous, and light uptake rates46,47. However, CM-models
provide insight into diverse environmental and genetic stages
(here we used 9369 metabolites associated with 11,129 reactions
and 7627 genes total), as well as into the interactions among
stages for each microbial community. The broader potential of
CM-model simulations enables quantitative insights into meta-
bolic exchange and pathway fitness. Other approaches, e.g., one
developed for the diatom Phaeodactylum tricornutum and the
bacterium Pseudoalteromonas haloplanktis48, using a combina-
tion of kinetic and constraint-based models, require determina-
tion of specific exchange rates (e.g., glutamine, threonine,
asparagine, serine and aspartate) for simulation. Experimental
quantification of these parameters can be challenging even for
monocultures23, limiting the simulation capabilities of these
multiscale models. The shared metabolite pool provides strong
versatility to CM-models to determine production capabilities of
each microbial community as well as to track quantitative bio-
chemical fluxes and therefore specific resources used to produce
metabolites of interest.

Usually, inhibitory effects can diminish the growth of micro-
organisms in their natural environment and in many industrial
applications49,50, but our modeling predictions for all SPCs
indicated that cocultivation can help circumvent potential inhi-
bitory effects by redirecting flux and metabolic exchanges
between members (Fig. 4). An experimental study of the SPC
composed of the diatom P. tricornutum and the bacterium
Alteromonas macleodii demonstrated that the KO of nitrate
reductase in the heterotrophic partner was compensated by the
diatom. This phenotype was attributed to possible metabolic
exchange of other nitrogenized compounds51. Other studies have
also linked nitrate or ammonium availability with a defined type
of microbial interaction (e.g., competition, mutualism, or
amensalism)21,22,52. Additionally, experimental results using
transposon sequencing (TN-seq) applied to microbial commu-
nities have shown differences in gene essentiality between mono-
and coculture conditions53–55. This effect, described as commu-
nity dependent essentiality, resulted in similar phenotypic out-
comes as generated by our metabolic modeling approach. For
example, TN-seq data of E. coli collected during cocultivation
with Hafnia alvei, Geotrichum candidum, and Penicillium
camembertii54 showed similar gene essentiality (aspC, ilvE, ilvC,
thrC, corA, pheA, and thrC) as our SPC of S. elongates and E. coli.
Interestingly, gene essentially of the ATP synthase/thiamin tri-
phosphate synthase complex (atpC in our SPC) was also observed
in a different coculture composed of Staphylococcus aureus and
Pseudomonas aeruginosa (atpD)53 hinting at commonalities in
the evolution of diverse microbial communities that could be
independent of the members. This intriguing hypothesis requires
additional experimental confirmation.

To date, a lack of detailed knowledge about microbial com-
munities has limited our ability to predict their responses and
redirect their activity for improved bioproduction23,56. However,
the development of innovative modeling tools that enable quan-
titative identification of potential metabolic drivers among a
myriad of physiological stages (i.e., environmental and genomic)
results in solid advances toward a more comprehensive under-
standing of microbial community structure and function.

Additionally, combinations of these model-driven hypotheses
with omic studies will help guide the design and execution of
synthetic phototrophic microbial communities.

Methods
Community-metabolic network reconstruction. CM-models were reconstructed
using M-models of S. elongatus PCC7942, iJB79232, B. subtilis, iYO84430, Y.
lipolytica, iYali431, E. coli W and K-12, iECW137228 and iML151429. Additional
information about the models is shown in Table 1. All models were subjected to
quality control and assessment tests (QC/QA) and integrated as CM-models using
the COnstraint-Based Reconstruction and Analysis (COBRA) Toolbox20. The
COBRA Toolbox is a MATLAB (MathWorks Inc., Natick, MA) software suite for
quantitative prediction of cellular and multicellular biochemical networks, imple-
menting the most comprehensive collection modelling methods and algorithms to
perform high-throughput model-driven analysis20.

M-models were combined through the Shared Metabolite Pool (SMP) as
described by Zuniga et al.22. This compartment streamlines the connectivity of
individual models and the extracellular space based on each microorganism’s
capabilities. Metabolites suitable for sharing were manually curated based on
experimental data of community members in isolation. We performed a high-
throughput growth assay (BIOLOG Inc, Hayward, CA) using S. elongatus, testing
over 180 different carbon sources (see Supplementary Data 1). Metabolites added
to the SMP for E. coli, B. subtillis, and Y. lipolytica were set in accordance with
existing data in each M-model and existing information in the literature29,31,57,58.
We adjusted the iYali4 metabolic network to represent the genotype of Y. lipolytica
Po1g, in particular the leucine auxotrophy was fulfilled by the exchange of
isoleucine. Metabolic models were shared following the standard protocols for
computational analysis59.

Simulation tools and constraints. CM-models benchmarking was performed
using the Gurobi Optimizer Version 5.6.3 solver (Gurobi Optimization Inc.,
Houston, Texas) in the COBRA Toolbox20 for MATLAB. We simulated the max-
imal growth rate of the community members using the Flux Balance Analysis
(FBA)-associated algorithm OptCom20. This algorithm maximizes for the biomass
objective functions or biomass reactions, which contain all metabolites that comprise
organism biomass (e.g., carbohydrates, lipids, and proteins). The growth rate of the
population results from the sum of fluxes through both biomass reactions of indi-
vidual models. Constraints about CO2 and light consumption rates were imported
from the iJB792 model. The sucrose secretion rate of S. elongatus was constrained to
0.182mmol gDW−1 h−1. Benchmarking of experimental and predicted results was
performed by calculating modeling statistics for the community members under
mono- and coculture: true positive (TP), true negative (TN), false positive (FP), false
negative (FN), and the confusion matrix and various measures of quality, such as
accuracy, specificity, sensitivity, positive predicted, negative predicted, and Matthews
correlation coefficient (TP+ TN/(TP+ TN+ FP+ FN))60. Metabolites productivity
calculations were generated by constraining each metabolite production rate (0–2
mmol gDW−1 h−1) and maximizing for the biomass growth of both community
members at the same time. We considered metabolite production feasible if both
community members grew; these metabolites were selected and are shown in Fig. 2a.
Phenotype phase planes were used to estimate the average growth and production
rate while synthesizing butanal, ethanol, formaldehyde, and succinate. Growth and
production rates under monoculture conditions for engineered strains were pro-
cessed using the B10NUMB3R5 database61. Examples of the calculations are given in
Supplementary Data 3.

Robustness analysis and syntrophic pathways. FBA was used to identify
metabolic exchange and to perform robustness analysis20. Exchange rates of these
metabolites were iteratively varied to zero flux or double flux. Simulations deployed
growth rate sensitivity of each member in the community. Core sets of vital
metabolic exchanges were defined and compared for all CM-models (Supple-
mentary Data 1). The solution space of M-models and CM-networks was scanned
by uniformly sampling the solution space using optGpSampler62. All models were
reduced for sampling. This unbiased assessment provides the possible flux dis-
tributions of the network at given constraints63. Sampling flux distributions were
analyzed using the Symbolic Math Toolbox for MATLAB. The sampling results
indicated the metabolic pathways/subsystems activity under monoculture and
coculture conditions, and changes in pathway usage due to cocultivation
were found.

We developed a method to compare expression data of individual
microorganisms and communities with predicted flux distributions.
Transcriptomic data for the pair S. elongatus and E. coli W was collected under
monoculture and coculture conditions. Predicted flux distributions were
normalized using the growth rate (µ) of individual microorganisms when using M-
models and predicted growth rate of the community member when using CM-
models, Eq. (1), where i denotes the index of the reaction and j the microorganism.
The number of active reactions by subsystem is denoted by n and the total
subsystems in the network by k, Eq. (2). For example Snk,j will contain the total
normalized flux by subsystem (k) for the community member (j), Eq. (3).
Supplementary Fig. 5 shows Snk,j obtained values for the SPC S. elongatus and E.
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coli K-12.

Fluxi;x ¼
Fluxi;j
μj

ð1Þ

Pathway fluxk;j ¼
Xi¼n

i¼1

Fluxk;j ð2Þ

Snk;j ¼
Pathway fluxk;j

Pathway fluxk;j

���
���

ð3Þ

We explicitly determined the term normalized subsystem (Snk,j) for all subsystems,
conditions, and community members. The culture condition (monoculture, coculture)
exits at m. Predicted fluxes and gene expression data were normalized to values from
−1 to 1 and compared using two sided t-test of The Statistics and Machine Learning
Toolbox for MATLAB. The flux variability was determined using FVA64.

The difference in Snk,j from mono- to coculture conditions defines pathway
usage as syntrophically active (i.e., higher flux), neutrally active (i.e., no change in
flux), and deactivated (i.e., decrease in flux). Syntrophically active pathways were
assumed to uptake or secrete mass from and to the partner as a result of metabolic
exchange. Thus, Snk,j,m1 represents each pathway and can take values from −1 to 1
depending on the total carried flux under mono- (m1) and coculture (m2)
conditions, Eq. (4) and Eq. (5). The uptake of mass from the SMP to the network
was given by:

Snk;j;m1 2 0; 1f g> Snk;j;m2 _ Snk;j;m1 2 �1; 0f g> Snk;j;m2 ð4Þ
And the secretion of metabolites to the SMP by:

Snk;j;m1 2 �1; 0f g> Snk;j;m2 _ Snk;j;m1 2 0; 1f g> Snk;j;m2 ð5Þ
The normalized values by subsystem defined the flux change or flux

preservation in each pathway.

Genetic stability depends on the phototrophic community participant. Genetic
stability affects members’ prevalence and depends on the metabolic interactions
between members. CM-models enabled quantification of the resistance to genetic
damage in community members by studying metabolic network performance
under genetic constraints. Single gene knockout (KO) simulations of over 12,800
genes in the metabolic networks (monoculture and community) were performed in
turn, determining growth phenotypes under monoculture and community condi-
tions. Genes predicted to be essential and non-essential were compared across
conditions and growth patterns stabilizing, improving or decreasing the growth of
the community members were determined.

Strains and culturing conditions. S. elongatus PCC7942 (ATCC #33912) was
engineered to secrete sucrose through the expression of the sucrose/proton sym-
porter cscB+ 33. Inoculum culture of sucrose-secreting cyanobacterium was pre-
pared using BG-11 (Sigma–Aldrich) medium supplemented with 1 g L−1 HEPES
(pH 8.9) and 100 mM NaCl at 35 °C. BG-11 medium is composed of (in 1 L): 1.5 g
NaNO3, 0.04 g K2HPO4, 0.075 g MgSO4·7H2O, 0.036 g CaCl2·2H2O, 0.006 g Citric
Acid·H2O, 0.006 g Ferric Ammonium Citrate, 0.001 g Na2EDTA·2H2O, 0.02 g
Na2CO3, 1 mL BG-11 trace metals solution. The BG-11 trace metals solution (in
1 L) consists of: 2.86 g H3BO3, 1.81 g MnCl2·4H2O, 0.22 g ZnSO4·7H2O, 0.39 g
Na2MoO4·2H2O, 0.079 g CuSO4·5H2O, 49.4 mg Co(NO3)2·6H2O. Cultures were
illuminated 24 h a day while shaking at 150 rounds per minute7,8. All experiments
were performed with six to eight replicates. Flask cocultures were completed in
25 mL volumes in baffled flasks. Cultures were plated on rich media to check for
contamination. Once cyanobacteria were exposed to coculture media (CoBBG-11
or CoYBG-11) no subsequent subcultures were made to avoid evolution away from
sucrose secretion. To prepare precultures for S. elongatus, S. elongatus cultures at
exponentially growing phase were centrifuged and washed twice with BG-11 and
suspended in a proper volume of coculture medium. To prepare precultures for
heterotrophic strains (B. subtilis, E. coli, and Y. lipolytica), single colonies were
picked into LB-Miller media and grown until turbid at 37 °C. Cells were diluted
into the appropriate coculture media containing 2% sucrose to acclimate the cells
to coculture media, and maintained within log-phase growth (OD600 < 0.70) before
use in cocultures. The log-phase cultures were centrifuged and washed twice with
BG-11 and suspended in a proper volume of coculture medium. Coculture
inoculum was prepared from cultures growing in exponential phase (OD750 0.5)
using ~2.5 × 107 of S. elongatus (0.1 OD750) and ~7.5 × 106 of heterotrophs (0.01
OD600). Experiments were carried out in batch cultures. Samples were obtained in
exponential phase assuming pseudo steady state. The Synechococcus elongatus
biomass concentration was analyzed by FACSCalibur flow cytometer (BD Bios-
ciences, San Jose, CA) after adding BD Liquid Counting Beads (BD Biosciences,
San Jose, CA). The absolute cell numbers in samples were determined by com-
paring cellular events to the counting beads events measured by the flow cytometer
using the equation provided in the kit’s total dissolved solids document. For the
heterotrophic strains, serial dilutions were plated on LB plates to determine cell
numbers. Colony-forming units (CFU) were counted after overnight incubation at
37 °C. All heterotrophs were propagated in BG-11 (Sigma–Aldrich) using the same

methods of Hays et al.8, while E. coli and B. subtilis 168 strains were maintained in
LB-Miller at 37 °C and Y. lipolytica Po1g was maintained in YNB media at 25 °C as
recommended by Yeastern Biotech Co. (Taipei, Taiwan). Strains were streaked
from frozen stocks on LB plates before growth in liquid media. Seven E. coli
knockout strains (aspC, atpC, cycA, cysG, ilvC, ilvE, pheA, phoE, talB, and thrC)
were obtained from the Keio collection65 in Pamela Silver’s Lab at Harvard Uni-
versity. Knockout experiments in rich media were performed in 24-well plates
using 0.8 mL of LB+ 0.2 mL of BG-11+ 0.4% glucose. Inoculums were prepared as
in growth experiments and we kept same culture conditions. Cell numbers were
determined using LB agar plates. Samples were collected at 0, 8, 24, 32, and 48 h.
The experiment was performed in triplicates.

Analytical methods. Exchange capabilities of S. elongatus were determined
experimentally by performing growth assays on 180 carbon sources. Biolog plates
PM1 and PM2 were obtained from BIOLOG Inc. and the manufacturer’s protocol
was followed66. Starting culture density was OD750= 0.3, culture media was
standard BG11, incubated 25–27 °C. Biolog plates were run in duplicate. The plates
were incubated in a light room and examined at 490 nm for dye absorbance
alterations and at 750 nm to assess optical density. Intracellular metabolites of E.
coli and S. elongatus were extracted by the methanol-chloroform-water extraction
method. This yielded 8.39 mg and 7.46 mg of dry metabolite extract, respectively.
One milligram of each extract was used for NMR (Varian Direct Drive (VNMRS)
600MHz spectrometer, Agilent Technologies, Santa Clara, CA, USA) and GC-MS
(Agilent 6890 N, MSD 5975B, Santa Clara, CA, USA)67. Medium samples were
dried and derivatized as well. 1D 1H NMR analysis was done with normal setting
values for global metabolomics68. The remaining 7.39 mg and 6.46 mg were dis-
solved in 180 µL D2O with 0.5 mM NMR standard for NMR data acquisition.

RNA extraction, library generation and sequencing were performed by
harvesting and snap-freezing cells in liquid nitrogen in biological triplicates for
each condition. Cell lysates were prepared by grinding the frozen cell pellets in
liquid nitrogen with 400 µl of RLT buffer (Qiagen RNeasy kit). RNA was stabilized
by the addition of 2 ml Trizol reagent (Thermo Fisher Scientific) to each 1 ml of
lysate. Total RNA was extracted using the RNeasy kit (Qiagen). mRNA was
enriched using the Dynabeads mRNA purification kit (Invitrogen). Sequencing
libraries were generated using the KAPA RNA HyperPrep kit (Roche) and
following the recommended protocol. The libraries were paired-end sequenced on
an Illumina HiSeq TM 4000, using 100 bp cycle kits. The sequencing adaptors were
trimmed using the trim_galore program69. The reads were aligned to the S.
elongatus genome in the NCBI database (Assembly No. GCF_000012525.1).
Subread package-featureCounts (version 1.5.0-p1)70 was used to determine reads
per each coding region. The aligned sequencing reads were used to determine RNA
expression as reads per kilobase per million. The aligned reads were also used to
determine differential gene expression using DESeq271.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. All sequencing reads
were deposited in the Sequence Read Archive under BioProject PRJNA642094, with
specific numbers listed in Supplementary Data 6. Additionally, all materials are available
at https://github.com/cristalzucsd/SyntheticMicrobialCommunities. Source data are
provided with this paper.

Code availability
Code is available at GitHub [https://github.com/cristalzucsd/
SyntheticMicrobialCommunities].
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