
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Spatial and Motion Context for Adversarial Attacks on Vision Systems

Permalink
https://escholarship.org/uc/item/0996596j

Author
Li, Shasha

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0996596j
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Spatial and Motion Context for Adversarial Attacks on Vision Systems

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Shasha Li

June 2021

Dissertation Committee:

Dr. Srikanth V. Krishnamurthy, Co-Chairperson
Dr. Amit Roy Chowdhury, Co-Chairperson
Dr. Chengyu Song
Dr. Vagelis Papalexakis



Copyright by
Shasha Li

2021



The Dissertation of Shasha Li is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside



Acknowledgments

First and foremost, I thank my advisors Dr. Srikanth V. Krishnamurthy and Dr. Amit Roy Chowd-

hury who were instrumental in defining the path of my research. Dr. Krishnamurthy, who respected

my opinions a lot, never saved his compliments when I achieved something and always was my

solid backup when I was stuck. Dr. Krishnamurthy has instilled in me a strong interdisciplinary

academic profile and helped me cultivate my research skills. I am grateful for Dr. Chowdhury’s

guidance and support. I am especially thankful for his discussions which inspired me to always

relate my research to its broader literature background.

I am grateful to each member of my dissertation committee; they have provided me ex-

tensive personal and professional guidance. I would like to thank Dr. Chengyu Song for working

closely together and sharing his knowledge on security. Without his expertise in security, I would

not have had the confidence to finish this dissertation.

This dissertation would not have been possible without the generous financial support

from our funding agencies and the university. This work was partially supported by the U.S.

Army Research Laboratory under cooperative agreement number W911NF-13-2-0045, partially

sponsored by an ONR grant N00014-19-1-2264 through the Science of AI program, and partially

sponsored by the DARPA TMVD program through Award # HR00112090096. In addition, I am

grateful to the university for supporting my graduate studies through the Dean’s Distinguished Fel-

lowship Award and my last quarter through the Dissertation Year Program Award.

On a personal note, it was my pleasure to meet my labmates from diverse backgrounds.

I will miss those afternoons when we stood in a circle with coffee or tea in hand talking about the

progress of research experiments or hot news in our own countries. I would also like to thank other

iv



friends I met during my doctoral studies; our friendship has made my doctoral life colorful. I wish

to wholeheartedly thank my two special friends. One is Shuyang, who is an outstanding machine

learning researcher, the one who comforts me the most in the world, and the one who became my

husband in December of 2020. The other one is Jingle, an orange tabby cat who was born when I

first arrived in California, the one who accompanies me on days and nights when I am with smiles

and tears.

Finally, I am honored to be part of a loving and caring family. My parents, when they were

young, dreamed of getting higher education but they never had a chance due to financial reasons.

They were more than supportive when I decided to fly thirteen hours away from them and seek

a doctoral program in the United States. I am deeply grateful to them for rooting the eagerness

for knowledge in my mind and encouraging me to become who I am today. This dissertation is

dedicated to them.

v



To my parents for all the support.

vi



ABSTRACT OF THE DISSERTATION

Spatial and Motion Context for Adversarial Attacks on Vision Systems

by

Shasha Li

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2021

Dr. Srikanth V. Krishnamurthy, Co-Chairperson
Dr. Amit Roy Chowdhury, Co-Chairperson

Deep Neural Networks (DNNs) have achieved state-of-the-art performance on a wide

range of tasks, thus are increasingly deployed in real-world applications. However, recent studies

have found that DNNs are vulnerable to carefully crafted perturbations that are imperceptible to

human eyes but fool DNNs into making incorrect predictions. Since then, an arms race between

the generation of adversarial perturbation attacks and defenses to thwart them has taken off. This

dissertation pursues important directions in this regard and discovers a series of adversarial attack

methods and proposes an adversarial defense strategy.

The dissertation starts with white-box attacks where an adversary has full access to the

victim DNN model, including model parameters and training settings, and proposes white-box at-

tack methods against face recognition models and real-time video classification models. However,

in most real-world attacks, the adversary only has partial information about the victim models,

such as the predicted labels. In such black-box attacks, the attacker can send queries to the victim

model to collect the corresponding labels, and thereby estimate the gradients needed for curating

the adversarial perturbations. A query-efficient black-box video attack method is proposed by pa-
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rameterizing the temporal structure of the gradient search space with geometric transformations.

The new method exposes vulnerabilities of diverse video classification models and achieves new

state-of-the-art attack results.

In addition to attack methods, a defense strategy utilizing context consistency check is

proposed, which is inspired by the observation that humans can recognize objects that appear out of

place in a scene. By augmenting DNN models with a system that learns context consistency rules

during training and checks for the violations of the same during testing, the proposed approach

effectively detects various adversarial attacks, with a detection rate over 20% better than the state-

of-the-art context-agnostic methods.

In summary, the dissertation reveals several DNN models’ vulnerabilities to adversarial

attacks in both white-box and black-box attack settings. The proposed adversarial attack methods

can be used as benchmarks to evaluate the robustness of image/video models, and are expected to

stimulate studies on adversarial image/video defense. An adversarial defense strategy is proposed

to enhance the robustness of DNN models

viii
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Chapter 1

Introduction

Deep Neural Networks (DNNs) have achieved state-of-the-art performance on a wide

range of computer vision tasks, e.g., face recognition [157,201,221,240,244], object detection [153,

158,214,216] and video classification [129,129,253,253,256,256], thus are increasingly deployed in

real-world scenarios, even in security-severe applications such as face recognition based payment

systems [78], self driving cars [130, 230] and video surveillance systems [239]. However, recent

studies [18, 19, 87, 110, 243] found that DNNs are vulnerable to carefully crafted perturbations that

are imperceptible to human eyes but fool DNNs to make incorrect predictions. Since then, an arms

race between the generation of adversarial perturbation attacks and the defenses to thwart them has

taken off. This dissertation focuses on revealing the vulnerability of DNN models under various

attack settings by proposing a series of adversarial attack strategies. In addition, the dissertation

aims to improve the robustness and security of current DNN models and propose an adversarial

defense strategy.

In the following paragraphs, we explain different attack settings and how the adversarial
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attack strategies proposed in the dissertation apply to them.

In the white-box attack setting, the adversary has complete knowledge and access to the

victim DNN model, including the architecture and parameters of the models and the data distri-

bution used to train the models. In this setting, the attacker is able to compute the gradient of

the pre-defined adversarial loss function to generate the adversarial perturbations. We investigate

the vulnerability of face recognition models and video classification models in such white-box at-

tack setting in Chapter. 2 and Chapter. 3 separately. Specifically, Chapter. 2 presents a systematic,

wide-ranging measurement study of the vulnerability of DNN-based face recognition systems. Ex-

periments show that arbitrary impersonation attacks, wherein an arbitrary attacker impersonates an

arbitrary target identity, are hard if imperceptibility of perturbations is an auxiliary goal. Factors

such as skin color, gender, and age, impact the ability to carry out an attack on a specific target vic-

tim, to different extents. After the study on static perturbations on image inputs, Chapter. 3 moves

to adversarial perturbations on real-time video streams. With a specially designed structure that

counts for temporal poisoning, the proposed attack method fools the video classification system to

mis-classify the target(malicious) actions with rates over 80% whenever the actions are present in

real-time video streams.

In the black-box attack setting, the adversary can only query the victim model to col-

lect the corresponding prediction results and thereby estimate the gradients needed for curating the

adversarial examples. This is the common attack setting in real-word attacks, but also a more chal-

lenging setting. Chapter. 4 reveals the vulnerability of widely employed video classification models

in such black-box setting. It is demonstrated that the accounting for the temporal dimension is im-

portant for the gradient estimation in query-efficient black-box video attacks. By parameterizing
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the temporal structure of the the gradient search space with simple geometric transformations, the

proposed method achieves extremely high attack success rates with fewer number of queries than

previous state-of-the art methods.

In addition to the above adversarial attack methods, Chapter. 5 proposes a defense strategy

by utilizing context information. Inspired by the observation that humans are able to recognize

objects that appear out of place in a scene or along with other unlikely objects, we augment the DNN

with a system that learns context consistency rules during training and checks for the violations of

the same during testing. The proposed approach effectively detects various adversarial attacks, with

a detection rate over 20% better than the state-of-the-art context-agnostic methods.

In summary, this dissertation studies the vulnerability of deep image models and deep

video models, and reveals the DNN models’ vulnerability to adversarial attacks in both white-box

and black-box attack settings. A series of adversarial attack strategies are proposed, which can be

used as benchmarks to evaluate the robustness of image/video models, and are expected to stimulate

the study on adversarial image/video defense. An adversarial defense strategy is proposed in the

dissertation, which can be used to enhance the robustness of DNN models.

3



Chapter 2

Measurement-driven Security Analysis

of Imperceptible Impersonation Attacks

2.1 Abstract

The emergence of Internet of Things (IoT) brings about new security challenges at the

intersection of cyber and physical spaces. One prime example is the vulnerability of Face Recog-

nition (FR) based access control in IoT systems. While previous research has shown that Deep

Neural Network (DNN)-based FR systems (FRS) are potentially susceptible to imperceptible im-

personation attacks, the potency of such attacks in a wide set of scenarios has not been throughly

investigated. In this chapter, we present the first systematic, wide-ranging measurement study of

the exploitability of DNN-based FR systems using a large scale dataset. We find that arbitrary

impersonation attacks, wherein an arbitrary attacker impersonates an arbitrary target, are hard if im-

perceptibility is an auxiliary goal. Specifically, we show that factors such as skin color, gender, and
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age, impact the ability to carry out an attack on a specific target victim, to different extents. We also

study the feasibility of constructing universal attacks that are robust to different poses or views of

the attacker’s face. Our results show that finding a universal perturbation is a much harder problem

from the attacker’s perspective. Finally, we find that the perturbed images do not generalize well

across different DNN models. This suggests security countermeasures that can dramatically reduce

the exploitability of DNN-based FR systems.

Key Words: face recognition, imperceptible adversarial perturbation, Internet of Things

2.2 Introduction

Face-recognition-based biometric authentication has become very popular in Internet of

Things (IoT) [174, 204, 284]. In fact, according to the International Biometric Group (IBG), face is

the second most widely deployed biometric in terms of market share, right after fingerprints [175].

The most noteworthy applications using face recognition include opening doors [114], activating

personalized services by automated identification of users, e.g., smart TV program selector or per-

vasive software such as Microsoft’s Kinect [174, 302].

Face Recognition Systems (FRSs) are typically trained on known faces, and use the

trained model to classify test cases (i.e., when a human presents herself to a camera). The deep

learning paradigm has seen significant proliferation in FRSs due to its ability to provide high recog-

nition accuracy [201, 221, 244].

Due to the ubiquity of FRSs in security-critical applications, their security and relia-

bility have drawn attention and various attacks have been showcased. Early presentation attacks

[7,67,281] impersonate a victim’s identity by presenting a fake face to FRSs, which could be in the
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Figure 2.1: Various attacks on Face Recognition Systems. We focus on intensity-based AE attacks in our
analysis since they are the kind of attacks explored the most in the literature. Intensity-based AE attacks are
fast to carry out and are proven to have high attack success rates.

form of photographs, replayed videos, 3D masks etc., as shown in Fig. 2.1(a). It has been recently

shown that Deep Neural Networks (DNNs) are vulnerable to adversarial examples [88, 137, 243].

Adversarial examples are generated in such a manner that humans cannot notice adversarially in-

duced perturbations and correctly classify the images, but the perturbations cause FRSs to misclas-

sify them. Many attack methods [52, 56, 89, 236] have been proposed to generate adversarial ex-

amples for impersonation attacks, among which, intensity-based adversarial examples (Fig. 2.1(c))

can be quickly generated and are effective against a variety of FRSs [88, 137]. Intensity-based im-

personation attacks add imperceptible perturbation to the original face images such that the FRSs

misclassify the perturbed face images (adversarial examples) to be that of the victim.

While we defer a detailed discussion of related work to § 2.3, we find that none of previous

efforts perform an in depth study on the scope and effectiveness of such intensity-based imperson-

ation attacks (referred to as impersonation attacks from hereon). In other words, there seems to be

no answer yet to the question “Can an arbitrary attacker impersonate an arbitrary victim easily?”
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The key term here is easily. Specifically, if an attacker were able to add arbitrary amount of pertur-

bations to her own image, she certainly could impersonate any victim. However, this would cause

the attacker to be stand out, i.e., her actions could be perceived by observers as strange or even sus-

picious. Thus, the perturbation has to be imperceptible—the perturbation used must be small and

inconspicuous. The question that is of interest therefore becomes ”Can the perturbations be kept

small in general settings?”.

Towards answering this question, we undertake an in depth, systematic measurement

study of the exploitability of DNN-based FRSs, using a very large scale dataset of about 2.6 million

images. Our measurement study demonstrates that several factors influence the imperceptibility of

impersonation attacks. We also find that it is more difficult to fool systems if the attacker has to ac-

count for the variability in her pose/orientation and other environmental conditions such as lighting,

or use the perturbations generated from one DNN model to attack a different model. Based on the

measurements, we suggest security countermeasures that could significantly enhance the security

of FR based IoT access control. In brief, our contributions in this chapter are :

• We perform an extensive measurement study which shows that the efficacy/imperceptibility of

impersonation attacks depend on several factors such as gender, skin color and age. We quantify

the extent to which each of these factors affect the attack.

• We perform an in-depth measurement study to understand the feasibility of constructing uni-

versal perturbations that make the attack robust to different poses or facial orientations of the

attacker. We find that this is much harder in practice from the attacker’s perspective.

• We show that the use of multiple DNNs for performing FR (check faces across DNN models)

can render imperceptible impersonation attacks almost infeasible.
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2.3 Related Work

2.3.1 DNNs based FRSs

A lot of efforts have targeted the design of highly accurate FRSs. Traditional methods

applied hand-crafted features like edges and texture descriptors [60,142,143,200], which have been

used for a long time. Due to the convenience of obtaining large training data and the availability

of inexpensive computing power and memory, the trend towards replacing the traditional meth-

ods by deep learning methods is increasing. Deep Convolutional Neural Networks (DCNNs) can

automatically extract high level representative features from large datasets and have been shown

to be invariant to illumination variations, brightness variations, age variations and/or facial ori-

entation [8]. Today the state-of-the-art FR algorithms are almost all based on end-to-end DC-

NNs [157, 201, 221, 240, 244]. We use VGG-Face [201] in our analysis. VGG-Face is a 39-layer

DCNN, and is one of the most well-known and highly accurate face recognition systems.

2.3.2 Presentation Attacks

It is generally believed that DNN-based FRSs have extremely high recognition accuracy,

even better than humans. However, this is based on the implicit assumption that attackers do not

actively attempt to fool the system. Recently however, there have been extensive efforts reported in

the literature on attacks targeting FRSs [65, 67, 79, 83, 281].

Many early approaches used by attackers to spoof a FRS, are based on using fake target

faces, which is termed presentation attack. In general, attackers hold a non-real face of a target

person in front of the camera to evade the FRS. The attackers could use photographs [7, 149],

replayed videos [40, 292], dummy faces (such as 3D masks) [67, 134], or 3D virtual reality facial
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(a) original (b) impersonation (c) impersonation (d) impersonation (e) impersonation

Figure 2.2: Impersonation attacks using the Fast Landmark Manipulation (FLM) method proposed in [52].
(a) shows the original image; (b)-(e) show four impersonation attacks, within each the left image is the
adversarial example and the target identity is shown in the right image.

models displayed on a screen [281] as shown in Fig. 2.1(a). While these methods are shown to

successfully lead to attacker misclassification as the target identities, such attacks, they however

require the attacker to overtly indulge in action that may seem strange or even suspicious to nearby

observers.

2.3.3 Adversarial Examples for FRSs

More recently, general DNN-based classifiers [146, 243, 299] have been shown to be vul-

nerable to adversarial example attacks. Adversarial Examples (AEs) refer to perturbed inputs, which

are correctly classified by humans, but misclassified by machine learning systems. In [224, 226],

the authors demonstrate the potential of using adversarial examples to conduct real face attacks on

FRSs, i.e., the attackers use their own faces to mount attacks. By wearing special glasses (physical

perturbations), the attacker’s face can be misclassified by the DDN as shown in Fig. 2.1(b).

In addition to physical AE attacks , various digital AE attack approaches have been pro-

posed, which can be categorized into three kinds as follows.

• Intensity-based AE attacks. Imperceptible Perturbations are added to the images to change the

intensity of each pixel as shown in Fig. 2.1(c). [88] hypothesizes that DNNs are vulnerable

to AE attacks because of their linear nature and thus proposed the fast gradient sign method

(FGSM) for efficiently generating perturbations. [137] extends the FGSM method by apply-
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ing it multiple times with a small step size. [182] uses a norm minimization based formulation,

termed DeepFool, to search for adversarial perturbations by casting it as an optimization prob-

lem. [31] introduces new gradient based attack algorithms that are more effective in terms of

the adversarial success rates. We use [137] in our analysis since it can generate adversar-

ial perturbations very fast, which is the key requirement for large-scale analysis (needed to

generate these perturbations), and at the same time, it achieves very high attack success rates

compared to other fast methods.

• Spatial transformation based AE attacks. As opposed to manipulating the pixel values, pertur-

bations generated through spatial transformation could result in large Lp distance measures,

but are perceptually realistic as shown in Fig. 2.1(d). [273] estimates the displacement field

for all pixel locations in the input images. [52] first detects key landmarks of the faces and the

displacement field is only defined for the key landmarks.

• Generation-based AE attacks. [236] utilize generative models to generate fake face images as

shown in Fig. 2.1(e), which are visually similar to the original face images, thus hard to cause

noticability; at the same time, these have similar feature representations as the target faces,

and are thus recognized as the target individuals.

There are two different kinds of attack goals viz.:

• Dodging, where the attacker seeks to have one face misidentified as any other different face.

• Impersonation, where the attacker seeks to have one face classified as a specific target victim’s

face, which is harder than the dodging attacks.

While dodging attacks are of interest in evading surveillance, impersonation attacks, which are
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(a) σ = 0 (b) σ = 0.828 (c) σ = 1.042 (d) σ = 1.541 (e) σ = 2.074 (f) σ = 2.716 (g) σ = 5.00

Figure 2.3: Perturbed images for different levels of perturbation σ. In (g) with large value of σ = 2.7160,
patterns are visible on the forehead, left cheek and nose. (The patterns are more visible in color version.)

much more targeted, are of more relevance to IoT security. Attackers can leverage this method to

gain unauthorized entry, for instance, by bypassing a smart locking mechanism. Our work thus

focuses on impersonation attacks. The spatial transformation based attacks, that is, Fast Landmark

Manipulation Method (FLM) and Grouped Fast Landmark Manipulation Methods (GFLM), are pro-

posed for realizing dodging attacks. We extend these two methods to the impersonation attack. We

observe that FLM gives largely deformed facial images as shown in Fig. 2.2, which is not imper-

ceptible at all. GFLM, which aims to generate more natural adversarial examples, fails in all the

four impersonation attacks. Therefore, it is evident that these types of attacks are not appropriate for

impersonation and thus, we do not perform additional measurements on such spatial transformation

based attack methods.

We focus on intensity-based AE attacks in our analysis since they are the kind of attacks

explored the most in the literature. Intensity-based AE attacks are fast to carry out and have been

proven to have extremely high attack success rates. Unlike prior works which simply showcase the

possibility of such attacks, we do extensive measurements to provide a detailed view of the potency

of such attacks in various scenarios and unearth various factors that affect this potency.
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(a) (b) (c)

Figure 2.4: Perturbed images with restrictions on the location of pixels to be perturbed. In (a), all pixels are
to be perturbed, σ = 2.7160. In (b), only left half of the image is allowed to be perturbed to achieve the same
goal as (a). In (c), only top left quarter is allowed to be perturbed to achieve the same goal as (a).

2.4 Imperceptible Impersonation Attack

To ensure that an impersonation attack is imperceptible (i.e., does not raise suspicion for

human observers), the attackers should modify the faces such that visibility of the modifications is

minimal. In this section, we describe the attack model and how the magnitude of the perturbation are

meatured. The lower the magnitude of the perturbation, the higher the imperceptibility [224, 243].

2.4.1 Attack Model

We assume that the attacker mounts the impersonation attack after the system has been

trained. This implies that the adversary cannot ”poison” the FRS by altering training data or by

injecting mislabeled data. Rather, the adversary can only alter the composition of input images based

on the knowledge of the underlying DNN model. Our attack model is consistent with IoT access

control attack scenarios where the attacker cannot tamper with the manufacturing of the commercial

smart devices. In this chapter, we mainly focus on a white-box model in which the attacker knows

the DNN architecture and the parameters of the FRSs being attacked. This is supported by the fact

that it is possible to train local models that can infer the functionality of the target FRSs [229] and

carry transfer attacks to the target FRSs. However, in Section 2.5.5, we also examine a black-box
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model by evaluating how well the perturbed images generated for one model can be successful in

the impersonation attack on another model.

2.4.2 Perturbation Vector

Suppose the finite set of people’s identities (i.e., labels) to be detected by the FRS is C,

with |C| = N . Further, suppose that each input image is given as an RGB vector x and the ground

truth label of x is given by cx ∈ {1, 2, · · · , N}.

A DNN-based FRS implements a high-dimensional non-linear function which maps an

input x to an output probability vector f(x) of length N , where each element in the output vector

represents the probability that x matches the corresponding label. In addition, the label that cor-

responds to the largest entry in f(x) is output as the recognition result. Consequently, a correct

recognition result is realized when cxth entry of f(x) is the maximum entry. Thus, the ideal output

f(·) is a one-hot vector, i.e., only the cxth entry has value 1 and all the other entries are zero.

To impersonate a target ct, the attacker with an input image vector xa thus finds a pertur-

bation vector r such that ctth entry of f(xa + r) is the maximum one. To measure the error in the

output of the FRS with the adversarial input xa + r, we adopt the softmaxloss score [201]. For an

input vector xa and a given label ct, the softmaxloss function is defined as:

softmaxloss(f(xa), ct) = − log(
e<hct ,f(xa)>∑N
c=1 e

<hc,f(xa)>
), (2.1)

where < ·, · > denotes inner product between two vectors and hc is the one-hot vector correspond-

ing to label c. Note that the value of softmaxloss score is low when the DNN outputs the label as

ct and high otherwise. The attacker’s goal is to achieve a softmaxloss(f(xa + r), ct) that is low

enough such that cxth entry of f(x) is the maximum entry, while minimizing ||r||. In other words,
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Algorithm 1 Computing perturbation vector.
Input : image xa, target identity ct

Output: Output: impersonation perturbation r

1 Initialize r← 0

do

2 ∆r = argmin softmaxloss(f(xa + r + ∆r), ct)

Quantize the additional perturbation: ∆r′ ← ∆r

Update the perturbation: r← r + ∆r′

3 while xa + r is not recognized as ct;

the attacker solves the following optimization problem.

r∗ = arg min
r

softmaxloss(f(xa + r), ct) + α||r||. (2.2)

In (2.2), α is weight factor used to balance impersonation error and imperceptibility. As

discussed in § 2.3, BIM algorithm [137] as shown in Algorithm 1 is used to solve this optimization

problem.

2.4.3 Measuring Imperceptibility

Using (2.2), the attacker can always find perturbation vectors that allow desired misclas-

sification of input vectors. However, the produced attack image, i.e., xa + r∗ is not guaranteed

to be “imperceptible” to humans. In other words, the perturbation vector could be too large. This

would cause the produced perturbed image to be quite distinguishable from the original attacker

image. To quantify the effectiveness of the attack in various settings, we measure per pixel per color

channel magnitude of perturbation using the root mean square error (RMSE) between the original
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and perturbed images. In particular, suppose that the images are of width W , height H and number

of color channels D. Let the total number of dimensions in an image vector be M = W ×H ×D.

Given an input and perturbed image vectors x,x′ ∈ {0, 1, · · · , 255}M , the RMSE (we also use the

term “noise level”) is given by the following.

σ(x,x′) =

√√√√ 1

M

M∑
i=1

(x(i)− x′(i))2, (2.3)

where x(i) is the ith component of x, and σ is in pixel-value units, where σ ∈ [0, 255].

To get a sense of what values of σ renders a perturbed attack image easy to identify, we

show images of an attacker with varying levels of perturbation in Fig. 2.3. We note that for σ > 2,

it is easy to identify the noisy pixels in the perturbed images.

2.4.4 Physical Imperceptibility

If the attackers want to realize this perturbation physically (via using various parapherna-

lia such as dummy faces, or 3D-printed glasses), the amount of perturbation will need to be limited

in terms of either (a) the maximum number of pixels to which the noise is added, or (b) the locations

of those pixels [224], or (c) both. In Fig. 2.4, we study the effects of such limitations. We fix the

attacker image and a target label, and then find the adversarial images when the entire image can be

perturbed, as well as when only the left half and top left quarters of the image pixels are to be per-

turbed. As shown in the figure, the noise level increases significantly and the pattern is perceptible.

Thus, one can expect the attack to be much harder in these cases. In the rest of the chapter, we only

consider scenarios in which the full attacker image is subject to perturbation. This reflects a worst

case scenario analysis from the defender’s perspective. Even in this scenario, we show that it can be

hard for an attacker to launch the attack in all possible scenarios.
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(a) Impersonating A.J. Buckley,
σ = 0.88

(b) Impersonating Adam Buxton,
σ = 1.65

(c) Impersonating Boris Kodjoe,
σ = 2.26

Figure 2.5: Different noise levels needed for Micheal Crichton to impersonate three different identities. It is
rather easy for Micheal Crichton to impersonate A.J. Buckley; and hard to impersonate Boris Kodjoe

Figure 2.6: Noise level σ required for an attacker (a-d) to impersonate a target (1-10). It is easier for the
considered attackers (who are all male with pale skin color) to impersonate targets who are also male with
pale skin color, as compared to impersonating other targets. The noise levels needed to impersonate target 1
are all large. Impersonating targets 6-10 seems to require larger noise levels.

2.5 Experiments

In this section, we detail the results of our measurement study towards getting an in depth

understanding of the practicality of imperceptible impersonation attacks on DNN-based FRS and

the factors that influence such attacks.

2.5.1 Experimental Setup

The FRS used in our experiments is VGG-Face [201], one of the most well-known and

highly accurate face recognition systems as discussed in § 2.3. The analysis is based on the VGG-
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Face dataset [201], which contains N = 2622 identities of celebrities, and approximately 1000

facial images per identity; this translates to a total of about 2.6 million images.

2.5.2 Case Studies

To begin with, we use the face image of Micheal Crichton as the attacking image,(i.e.,

the input) and study whether some targeted individuals are harder than others to impersonate with

the attacking image. Fig. 2.5 shows the minimum perturbations needed for the attacking image to

impersonate three different individuals. We observe that it is rather easy for Micheal Crichton to

impersonate A.J. Buckley. However, when it comes to impersonating Boris Kodjoe, the perturbation

gets larger and is noticeable by human.

For a more general case study, Fig. 2.6 shows the noise level σ needed to achieve a

successful attack by each attacker depicted on the column, to impersonate each target depicted on

the row. It is clear that, different attackers need different values of σ to successfully impersonate

different targets. Interestingly, the patterns of large perturbations (marked in red) seen in Fig. 2.6

suggest that it is easier for the considered attackers (e.g., who are all male with pale skin color)

to impersonate targets who are also male with pale skin color, as compared to impersonating other

targets. In addition, the noise levels needed to impersonate target 1 are all large, which is possibly

due to a difference in gender. Furthermore, we see that impersonating targets 6-10 seems to require

larger noise levels. This can be attributed to differences in skin color, age, or a combination of both.

This motivates our study to further examine the impact of these factors in Section § 2.5.3.

Having performed the above preliminary studies, we next look at the statistical distribu-

tion of the ability of an attacker to impersonate different targets, subject to a constraint on the noise
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Figure 2.7: Impersonation attack performance.
Abbie Cornish (female, white, young) can more
successfully impersonate others, on average,
compared to A.R. Rahman (male, Indian, young)
and Aaron Yoo (male, Asian, young).

Figure 2.8: Cross group impersonation attack
performance. It is easier for an attacker to imper-
sonate a target identity having the same attributes
(gender, skin color, age). Impersonation across
different skin color is the most hardest.

level σ ≤ σ̄. We define the attack success rate η(σ̄) as the percentage of target labels which an

attacker can impersonate for a given σ̄. In Fig. 2.7, we show the success rates η for three different

attackers impersonating all other remaining labels in the VGG-Face dataset. One can see that Abbie

Cornish (female, white, young) can more successfully impersonate others, on average, compared

to A.R. Rahman (male, Indian, young) and Aaron Yoo (male, Asian, young). For example, with

the threshold σ̄ = 2, Abbie Cornish can successfully impersonate 58% of all the labels while A.R.

Rahman achieves a success rate of only 6.5% and Aaron Yoo achieves a success rate of 17.7%. This

could be attributed to the fact that the VGG-Face dataset contains more white people than people of

other races. We observe that the gender distribution is almost balanced in the dataset.

To get aggregate results, we randomly sample the VGG-Face dataset to get a 100-identity

subset S. We fix each identity in S as a specific attacker, and then find the perturbation vector with

each of the remaining labels in S as targets, and we compute η(σ̄) for each attacker for a range of

values of σ̄. We then repeat this experiment 10 times and compute the average attack success rate
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across attackers in all the samples. The results show that, on average, it is not easy for an attacker

to impersonate any target identity. In particular, with σ̄ = 1.5, the success rate is only 10.4%. We

take a deeper look into how the success rate breaks down within different groups of people in the

following section.

2.5.3 Factors That Influence the Attack

Next, we take a closer look at the extent to which various factors, discussed in § 2.5.2,

influence an attacker’s ability to carry out an imperceptible impersonation attack. Specifically, we

consider different groups of identities based on gender, skin color, and age attributes. We manually

label the dataset to produce four groups: (a) white young male (100 identities), (b) white young

female (100 identities), (c) black young male (69 identities), and (d) white old male (100 identities).

We do not consider other attribute combinations, such as black young female, or white old female,

because the majority of the images in the VGG-Face dataset are for white skin color, and young

people. For group (c), we only have 69 identities due to limitedness of data points matching such

attributes. To reduce errors in labeling, each of the authors of the chapter manually labeled the

dataset independently and we considered only the images with unanimously common labels in our

group dataset. In addition, when labeling, we discard an identity whenever its attributes are hard to

label manually.

To investigate the impact of the aforementioned attributes on the imperceptible imperson-

ation attack, we conduct four experiments based on the four groups:

• Take people in group (a) as attackers trying to impersonate the other people in group (a); this

case reflects same group impersonation measurements;
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• take people in group (a) as attackers trying to impersonate people in group (b); this case repre-

sents cross gender impersonation measurements;

• take people in group (a) as attackers trying to impersonate people in group (c); this case reflects

cross skin color impersonation measurements;

• take people in group (a) as attackers trying to impersonate people in group (d); this case counts

for cross age impersonation measurements.

In Fig. 2.8, we plot the average attack success rate versus different perturbation constraint

σ̄, for each of the four aforementioned experiments. We note that it is easier for an attacker to

impersonate a target identity having the same attributes (gender, skin color, age). For the same

group experiment, with the threshold σ̃ = 1.5, the success rate is 25.65%. Recall that the aggregate

success rate in § 2.5.2 is only 10.4%. Moreover, as shown in the figure, it is relatively easier for

an attacker to impersonate a target with a different gender or age than to impersonate a target with

different skin color. For example, with the threshold σ̃ = 2, the success rate for cross skin color is

only 31.85% while the success rate for cross age and gender are around 40%. These results seem

consistent with (and can be explained by) observations that have been previously reported in com-

puter vision literature [42, 128, 227, 251]. Specifically, these papers show that in several scenarios,

shape and texture cues suffer from degradation (affecting age or gender) and the color feature be-

comes dominant [287]. Thus, we conclude that the VGG-Face model relies less on features such as

shape and texture as compared to color.
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2.5.4 Universal Perturbation Results

In a realistic setting, an attacker may want one universal perturbation to impersonate the

target identity for all the face images captured in different settings such as pose, camera angle, and

lighting conditions. In order to launch the impersonation attack in the presence of these variations,

an attacker will need to find a single perturbation vector r̃ that allows misclassification of a set of

his/her own images Xa of size K, to the target victim label, thus accounting for as many conditions

as possible. In other words, the attacker needs to construct a vector r̃ such that f(xa + r̃) =

ct, ∀xa ∈ Xa for some given target label ct.

The approach for calculating r̃ is similar to the one described in § 2.4.2. The only differ-

ence is that now the objective function changes to the following.

r̃ = arg min
r

∑
xa∈Xa

softmaxloss(f(xa + r), ct) + α||r||. (2.4)

The condition to stop the iterations now requires that all K images to be misclassified as

the target label, upon adding on the same perturbation vector.

In Fig. 2.9, we show an example of an attacker with three images, Xa = {x1,x2,x3}. In

Fig. 2.10, we show the output perturbed image x1 + r̃ when r̃ is computed using only image {x1},

images {x1,x2}, and all the images {x1,x2,x3}, respectively. It is evident that the attacker image

is more perceptible as more attack images are considered in computing the universal perturbation

vector r̃.

In Fig.2.11, we plot the average success rate for an attacker employing universal pertur-

bation. Here, we randomly sample 100 identities from the VGG-Face dataset and let them imper-
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Figure 2.9: A set of face images of Micheal Crichton. X = {x1,x2,x3}

Figure 2.10: Universal perturbations visualization. Three perturbations are universal to different number of
attacking images. Left: universal for {x1}, σ = 1.7509; Middle: universal for {x1,x2}, σ = 3.6027; Right:
universal for {x1,x2,x3}, σ = 7.8877. The perturbations are more perceptible as more attacking images are
considered in computing the universal perturbation vector.

sonate each other. We conduct this experiment 10 times and average the results. The results show

that the success rate is strictly decreasing when a universal perturbation vector is required to perturb

multiple attacker images. More importantly, the attackers’ ability to impersonate a given target is

significantly reduced with even slight increases in K. For example, the success rate with threshold

σ̃ = 2 is 39.9% for K = 1 (the case considered in § 2.5.2 and § 2.5.3). However, when we increase

K to 2, the success rate drops dramatically to 2.28% and the success rate when K = 3 is only

0.6%, which suggests that the impersonations can almost fail all the time, if the attacker seeks to be

imperceptible.

2.5.5 Cross Model Measurements

Recently, it has been shown that adversary examples that are successfully misclassified

by one trained DNN model can also cause misclassifications in other (different) DNN models that

have different hyperparameters [180, 243]. However, it is unclear whether different models could

misclassify the perturbed images to the same target classes, which is the key characteristic for
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Figure 2.11: Universal perturbation impersonation attack performance. K is the number of attacking images
to generate the universal perturbations. The attackers’ ability to impersonate given targets is significantly
reduced when the perturbations are required to be universal to multiple attacking images.

determining if white-box impersonation attacks can easily extend to black-box attacks. To check

whether our perturbed images targeting impersonation generalize across different DNN models,

we fine-tune the AlexNet DNN [136] on the VGG-Face dataset, and test the impersonation attack

success ratio on the AlexNet model using the perturbed images generated using VGG-Face model.

We test 10, 000 perturbed images generated by VGG-Face, and find that none are classi-

fied as the victims by the AlexNet, but most of them are misclassified by the AlexNet. This signifi-

cant result indicates that impersonation attacks do not easily transfer across different DNN models.

It will be extremely hard for the attacker to use the perturbation vectors to fool a DNN model dif-

ferent from the one used to generate them. Thus cross model validation could significantly enhance

the robustness of face recognition based access control in IoT systems.

2.5.6 Detecting and removing perturbations

Finally, we test whether de-noising [203] (which could be used by an IoT access control

system) affects the potency of the attack. Three standard de-noising filters are considered in our
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experiments: average filter, median filter, and Wiener filter. We test 100 different perturbed images,

and find that all of them are still misclassified as the targets. This suggests that de-noising does not

hurt the attack. This is because de-noising filters assume a certain pattern of noise, which is unlikely

to be what is used by the attacker for generating the perturbations.

We conclude that traditional noise detection and de-noising algorithms are not helpful in

countering the imperceptible impersonation attack since the perturbation generated is structured.

2.5.7 Summary of Results

Below is a summary of our take-aways based on the results in § 2.5.2 to § 2.5.6. (a) DNNs

are vulnerable to adversary examples. However, in contrast to recent work in the literature, we find

that the average success rates of the imperceptible impersonation attack are low. (b) Attackers can

achieve better success rates by choosing targets with similar attributes; in particular choosing targets

with same skin color helps. (c) When variations, such as pose, camera angle and lighting conditions

are considered, the attack is significantly less successful. (d) Perturbed images do not generalize

well across different DNN models. (e) Current noise estimation and de-noising methods do not

adversely impact the imperceptible impersonation attack.

2.6 Conclusion

The security of face recognition is an important toptic as face recognition is more and

more used in IoT access control. In this chapter, we perform an in-depth measurement study of the

generality and efficacy of imperceptible impersonation attacks that have recently gained popularity.

Our study is done using a very large dataset. We find that it is hard for a given adversary to imper-
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sonate an arbitrary target victim without making perceptible changes to her face. Further, we show

that several factors such as age, race and gender of the attacker and victim influence the efficacy

of the attack and we quantify the impact of each. We also show that, in a realistic scenario where

the attacker seeks to be robust to different poses or variations in environmental conditions, the at-

tack becomes more difficult or even impossible. Based on this, we suggest the use of cross-model

verifications as well as multi-views, which can potentially counter such attacks very effectively.
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Chapter 3

Stealthy Adversarial Perturbations

Against Real-Time Video Classification

Systems

3.1 Abstract

Recent research has demonstrated the brittleness of machine learning systems to adver-

sarial perturbations. However, the studies have been mostly limited to perturbations on images and

more generally, classification tasks that do not deal with real-time stream inputs. In this chapter

we ask ”Are adversarial perturbations that cause misclassification in real-time video classification

systems possible, and if so what properties must they satisfy?” Real-time video classification sys-

tems find application in surveillance applications, smart vehicles, and smart elderly care and thus,

misclassification could be particularly harmful (e.g., a mishap at an elderly care facility may be
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missed). Video classification systems take video clips as inputs and these clip boundaries are not

deterministic. We show that perturbations that do not take “the indeterminism in the clip boundaries

input to the video classifier” into account, do not achieve high attack success rates. We propose

novel approaches for generating 3D adversarial perturbations (perturbation clips) that exploit recent

advances in generative models to not only overcome this key challenge but also provide stealth. In

particular, our most potent 3D adversarial perturbations cause targeted activities in video streams

to be misclassified with rates over 80%. At the same time, they also ensure that the perturbations

leave other (untargeted) activities largely unaffected making them extremely stealthy. Finally, we

also derive a single-frame (2D) perturbation that can be applied to every frame in a video stream,

and which in many cases, achieves extremely high misclassification rates.

3.2 Introduction

Deep Neural Networks (DNN) based real-time video classification systems are being

increasingly deployed in real world scenarios. Examples of applications include video surveil-

lance [239], self driving cars [130], health-care [260], etc. To elaborate, video surveillance systems

capable of automated detection of “targeted” human activities or behaviors (e.g., accident, violence),

can trigger alarms (upon detection) and drastically reduce information workloads on human opera-

tors. Without the assistance of DNN-based classifiers, human operators will need to simultaneously

monitor footage from a large number of video sensors. This can be a difficult and exhausting task,

and comes with the risk of missing behaviors of interest and slowing down decision cycles. In

self-driving cars, video classification has been used to understand pedestrian actions and make nav-

igation decisions [130]. Similar applications can be envisaged in the Army Next Generation Combat
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Vehicle (NGCV). Real-time video classification systems have also been deployed for automatic “fall

detection” in elderly care facilities [260], and detection of abnormal actions around automated teller

machines [254]. All of these applications directly relate to the physical security or safety of peo-

ple and property. Thus, stealthy attacks on such real-time video classification systems are likely

to cause unnoticed pecuniary loss and compromise personal safety. Note that while objects can be

detected or distinguished by examining the individual frames in a video (akin to object detection

on images), many activities can only be recognized or distinguished by considering a sequence of

frames holistically (i.e., a clip consisting of multiple frames).

Recent studies have shown that virtually all DNN-based systems are vulnerable to well-

designed adversarial inputs [86, 181, 182, 224, 243], which are also referred to as adversarial ex-

amples. Szegedy et al. [243], showed that adversarial perturbations that are hardly perceptible to

humans can cause misclassification in DNN-based image classifiers. Goodfellow et al. [87], ana-

lyzed the potency of realizing adversarial samples in the physical world. Moosavi et al. [181], and

Mopuri et al. [184], introduced the concept of “image-agnostic” perturbations. Recent efforts by

Hosseini et al. [104], and Wei et al. [265], explore adversarial perturbations on videos. However,

they are limited in that their attack models do not work on real-time video classification systems

(more details in § 3.10).

The high level question that we try to address in this chapter is: “Is it possible to launch

stealthy attacks against DNN-based real-time video classification systems by adding adversarial

perturbations on a video stream, and if so how?” In contrast with the aforementined prior work,

attacking a real-time video classifier poses new challenges that were not all previously identified or

addressed. First, because video streams are collected in real-time, the corresponding perturbations
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also need to be generated on-the-fly with the same frame rate which can be extremely computation-

ally intensive. Second, to make the attack stealthy, attackers would want to add perturbations on the

video in such a way that they will only cause misclassification for the targeted (possibly malicious)

activities, while keeping the classification of other activities unaffected. In a real-time video stream,

since the activities change across time, it is hard to identify online and in one-shot [70], the target

frames on which to add perturbations (and thereby ensure that the other untargeted activities are not

affected). Third, real-time video classifiers use video clips (a set of frames) as inputs [70,254] (i.e.,

as video is captured, it is broken up into clips and each clip is fed to the classifier). This introduces

two additional hyper-parameters viz., the length of a clip and the boundaries (i.e., beginning and

ending) of a clip. Even if attackers are aware of the length of each clip, it is hard to predict the

boundaries of the clips as they are non-deterministic. This is problematic because when the attacker

generated perturbations are applied to the wrong frame within a clip (i.e., perturbation for frame 1

of a clip being applied to frame 2 of that clip), the perturbations may not work as expected. (Please

see Figure 3.4 and the associated discussion for more details).

In this chapter, our first objective is to investigate how to generate adversarial perturba-

tions against real-time video classification systems by overcoming the above challenges. We resolve

the real-time challenge by using universal perturbations (UP) [181]. UPs are universal in the sense

that a UP is not specific to one input example, but works on any input example from the same distri-

bution as that of the training data. Universal perturbations affect the classification results by using

just a (single) set of perturbations generated off-line. Because they work on unseen inputs, they

preclude the need for intensive on-line computations to generate perturbations for every incoming

video clip. To generate such universal perturbations, we leverage generative DNN models.
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However, adding universal perturbations to all clips of the video can cause misclassifi-

cation of all the activities in the video stream. This may expose the attack since the results may

be abnormal (e.g., many people performing rare actions). It may even cause activities from other

classes to be mis-classified as the target class. To make the attack stealthy, we introduce the novel

concept of dual purpose universal perturbations, which we define as universal perturbations which

only cause misclassification of activities belonging to the target class, while minimizing, or ideally,

having no effect on the classification results for activities belonging to the other classes.

Dual purpose universal perturbations by themselves do not provide high success rates be-

cause of the nondeterminism of the clip boundaries. To be more specific, let l be the length of a

clip input to the classifier, and p = {p1, p2, . . . , pl} be the perturbations for a clip of frames x =

{f1, f2, . . . , fl}; then input x′ = {f1 ⊕ p1, f2 ⊕ p2, . . . , fl ⊕ pl}, where ⊕ denotes pixel-wise addi-

tion, would yield misclassification but other combinations like x′′ = {f1⊕pl, f2⊕p1, . . . , fl⊕pl−1}

(where pl in the latter expression refers to the last frame in the previous clip) may not cause mis-

classification. To solve this problem, we introduce a new type of perturbation that we call the

Circular Dual Purpose Universal Perturbation (C-DUP). The C-DUP is a 3D perturbation which is

effective on a video stream even in the presence of a temporal misalignment between the perturba-

tion clips and the input video clips. Specifically, any cyclic permutations of a C-DUP perturbation

clip are also still valid perturbations. For example, both {f1 ⊕ pl, f2 ⊕ p1, . . . , fl ⊕ pl−1} and

{f1 ⊕ pl−1, f2 ⊕ pl, . . . , fl ⊕ pl−2} can cause expected misclassification. Because of this property,

C-DUP works even if the sequential concatenation of two broken up parts of two consecutive pertur-

bation clips, is added to an input video clip as a perturbation clip. To generate C-DUPs, we make

significant changes to the baseline generative model used to generate universal perturbations. In
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particular, we add a new unit to generate circular perturbations, that is placed between the generator

and the fixed discriminator (as discussed later). We demonstrate that the C-DUP is very stable and

effective in achieving real-time stealthy attacks on video classification systems.

Finally, to better understand the effect of the temporal dimension, we also investigate the

feasibility of attacking the classification systems using a simple and light 2D perturbation (frame

level instead of clip level) which is applied across all the frames of a video. By tweaking our

generative model, we are able to generate such perturbations which we name as 2D Dual Purpose

Universal Perturbations (2D-DUP). These perturbations work well on a sub-set of videos, but not

all. We will discuss the reasons for this when we describe these 2D attacks in § 3.7.4.

Our Contributions: In brief, our contributions are:

• We provide a comprehensive analysis of the challenges in crafting adversarial perturbations

for real-time video classifiers. We empirically identify what we call the boundary effect phe-

nomenon in generating adversarial perturbations against video streams (see § 3.7.2). In a nut-

shell, the boundary effect arises because of the nondeterminism of the boundaries of the clips

input to the video classification system.

• We design and develop a generative framework to craft two types of stealthy adversarial pertur-

bations against real-time video classifiers, viz., the circular dual purpose universal perturbation

(C-DUP) and the 2D dual purpose universal perturbation (2D-DUP). These perturbations are ag-

nostic to (a) the content the video streams capture (i.e., are universal) and (b) the clip boundaries

within the streams.

• We demonstrate the potency of our adversarial perturbations using two different video datasets.

In particular, the UCF101 dataset captures coarse-grained activities (human actions such as ap-
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plying eye makeup, bowling, drumming) [238]. The Jester dataset captures fine-grained activi-

ties (hand gestures such as sliding hand left, sliding hand right, turning hand clockwise, turning

hand counterclockwise) [55]. We are able to launch stealthy attacks on both datasets with over

a 80 % misclassification rate, while ensuring that the other classes are correctly classified with

relatively high accuracy.

3.3 Background

In this section, we provide the background relevant to our work. Specifically, we dis-

cuss how a real-time video classification system works and what standard algorithms are currently

employed for action recognition.

3.3.1 Real-time Video-based Classification Systems

DNN based video classification systems are being increasingly deployed in real-world

scenarios. Examples include fall detection in elderly care [80], abnormal event detection on cam-

puses [257,258], security surveillance for smart cities [259], and self-driving cars [130,131]. Given

an input real-time video stream, which may contain one or more known actions, the goal of a video

classification system is to correctly recognize the sequence of the performed actions. Real-time

video classification systems commonly use a sliding window to extract video clips and use the clips

as inputs to a classifier to analyze the video stream [70, 254]. The classifier computes an output

score for each class in each sliding window. The sliding window moves with a stride. Moving in

concert with the sliding window, one can generate “score curves” for each action class. Note that

the scores for all the action classes evolve with time. The score curves are then smoothed (to remove
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Figure 3.1: This figure [70] illustrates the score curves computed by a video classifier with a sliding window
for every class. Real-time video classification systems use these score curves to do online action recognition.

noise) as shown in Figure 3.1. With the smoothed score curves, the on-going actions are predicted

online. From the figure one can see that, the real-time video classification system is fooled if one

can make the classifier output a low score for the true class in each sliding window; with this, the

true actions will not be recognized.

Figure 3.2: The C3D architecture [253]. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected
layers, followed by a softmax output layer. All 3D convolution kernels are 3× 3× 3 with a stride [253] of 1
in both spatial and temporal dimensions. The number of filters is shown in each box. The 3D pooling layers
are represented as pool1 to pool5. All pooling kernels are 2 × 2 × 2, except for pool1, which is 1 × 2 × 2.
Each fully connected layer has 4096 output units.

3.3.2 The C3D Classifier

Convolutional neural networks (CNNs) are being increasingly applied in video classifica-

tion. Among these, spatio-temporal networks like C3D [253] and two-stream networks like I3D [32]

outperform other network structures [91, 100]. However, two-stream networks require optical flow

extraction as preprocessing. Without the requirement of non-trivial pre-processing on the video
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stream, spatio-temporal networks are more efficient and suitable for real-time applications; among

these, C3D is the start-of-art model [91].

Given its desirable attributes and popularity, without loss of generality, we use the C3D

model as our attack target in this chapter. The C3D model is based on 3D ConvNet (a 3D con-

volutional neural network or CNN) [129, 253, 256], which is very effective in modeling temporal

information (because it employs 3D convolution and 3D pooling operations). The architecture and

hyperparamters of C3D are shown in Figure 3.2. The input to the C3D classifier is a clip consisting

of 16 consecutive frames. This means that upon using C3D, the sliding window size is 16. Both the

height and the width of each frame are 112 pixels and each frame has 3 (RGB) channels. The last

layer of C3D is a softmax layer that provides a classification score with respect to each class.

3.4 Threat Model and Datasets

In this section, we describe our threat model. We also provide a brief overview of the

datasets we chose for validating our attack models.

3.4.1 Threat Model

We consider a white-box model for our attack, i.e., the adversary has access to the training

datasets used to train the video classification system, and has knowledge of the deep neural network

model used in the real-time classification system. We assume that the datasets are trusted. We also

assume that the adversary is capable of injecting perturbations in the real-time video stream. In par-

ticular, we assume the adversary to be a man-in-the-middle that can intercept and add perturbations

to streaming video [139], or that it could have previously installed a malware that is able to add
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perturbation prior to classification [191].

We assume that the adversaries seek to be stealthy i.e., they want the system to only

misclassify malicious actions without affecting the recognition of the other actions. So, we consider

two attack goals. First, given a target class, we want all the clips from this class to be misclassified

by the real-time video classifier. Second, for all the clips from other (non-target) classes, we want

the classifier to correctly classify them.

We point out here that a man-in-the-middle attacker will be unable to simply replace the

streaming video with static frames or pre-recorded video and yet achieve the required stealthiness.

This is because of two reasons. First, the attacker has no a priori knowledge about “when” a targeted

action occurs. For example, an attacker with malicious intent may want to misclassify the action of

an elderly person falling down at a smart elderly care center that is monitored by multiple cameras

(e.g., [205]). Since the attacker does not know when and where exactly an elderly person will fall

down, it has to replace the video streams from all the cameras with the pre-recorded video of elder-

lies doing something else (e.g., walking) for extended periods or ideally all the time. However, it

is hard to guarantee that the replaced videos are visually similar to the real-time environment (e.g.,

people and their actions, weather) and replaying videos out of context may be noticeable. In addi-

tion, it is possible that the attacker may be capable of delaying the video by a short period to inject

targeted perturbations against specific activities; however, while such an approach can eliminate

universal and stealth requirements, it cannot overcome the boundary effect and cannot obviate the

corresponding computation needed for online perturbation generation. Second, the attacker also has

to replace the actions of multiple people involved at the facility captured with the multiple cameras.

In other words, a large number of replacement videos capturing a large set of people at the facility
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will be necessary. If the replaced videos show the same person at different locations, or people who

are not at the facility, this will be noticeable. Applying perturbations on the video will enable the

attacker to stealthily misclassify only the specific activity relating to the falling an elderly, keeping

all other actions unaffected. Furthermore, the imperceptibility of these perturbations will not cause

any human operator to notice anything overtly wrong.

3.4.2 Our Datasets

We use the human action recognition dataset UCF-101 [238] and the hand gesture recog-

nition dataset 20BN-JESTER dataset (Jester) [55] to validate our attacks on video classification

systems. We use these two datasets because they represent two kinds of classification, i.e., coarse-

gained and fine-grained action classification.

The UCF 101 dataset: The UCF 101 dataset used in our experiments is the standard dataset col-

lected from Youtube. It includes 13320 videos from 101 human action categories (e.g., applying

lipstick, biking, blow drying hair, cutting in the kitchen etc.). The videos collected in this dataset

have variations in camera motion, appearance, background, illumination conditions etc. Given the

diversity it provides, we consider the dataset to validate the feasibility of our attack model on coarse-

grained actions. There are three different (pre-existing) splits [238] in the dataset; we use split 1 for

both training and testing, in our experiments. The training set includes 9,537 video clips and the

testing set includes 3,783 video clips.

The Jester dataset: The 20BN-JESTER dataset (Jester) is a recently collected dataset with hand

gesture videos. These videos are recorded by crowd-sourced workers performing 27 kinds of ges-

tures (e.g., sliding hand left, sliding two fingers left, zooming in with full hand, zooming out with
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(a) GAN Architecture

(b) Our Architecture

Figure 3.3: We use a GAN-like architecture for the generative model. However, our architecture is different
from GAN in the following aspects: 1) The discriminator is a pre-trained classifier we attack, whose goal
is to classify videos, and not to distinguish between the natural and synthesized inputs; 2) The generator
generates perturbations, and not direct inputs to the discriminator, and the perturbed training inputs are fed to
discriminator; 3) The learning objective is to let the discriminator misclassify the perturbed inputs.

full hand etc.). We use this dataset to validate our attack with regard to fine-grained actions. Since

this dataset does not currently provide labels for the testing set, we withhold a subset of the training

set as our validation set and use the validation set for testing. The training set has 148,092 short

video clips and our testing set has 14,787 short video clips.

3.5 Generating Perturbations for Real-time Video Streams

From the adversary’s perspective, we first consider the challenge of attacking a real-time

video stream. In brief, when attacking an image classification system, the attackers usually take

the following approach. First, they obtain the target image that is to be attacked with its true label.
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Next, they formulate a optimization problem wherein they try to compute the ”minimum” noise

that is to be added (towards imperceptibility) in order to cause a mis-classification of the target.

The formulation takes into account the function of the classifier, the input image, and its true label.

Backpropagation is commonly used to solve this optimization problem [87, 137, 173].

In the context of real-time video classification, the video is not available to the attackers

a priori. Thus, they will need to create perturbations that can effectively perturb an incoming video

stream, whenever a target class is present. Generation of online perturbations based on an incoming

video stream would have an associated cost of O(f × b × n) where, f is frame rate, b is cost of

one backpropagation on the DNN, and n is the number of backpropagations needed to solve the

optimization problem.

Our approach is to compute the perturbations offline and apply them online, and thus,

the online computation cost is O(1). Since we cannot predict what is captured in the video, we

need perturbations which work with unseen inputs. A type of perturbation that satisfies this require-

ment is called the Universal Perturbation (UP), which has been studied in the context of generating

adversarial samples against image classification systems [181, 184]. In particular, Mopuri et al.,

have developed a generative model that learns the space of universal perturbations for images us-

ing a GAN-like architecture. Inspired by this work, we develop a similar architecture, but make

modifications to suit our objective. Our goal is to generate adversarial perturbations that fool the

discriminator instead of exploring the space for diverse UPs. In addition, we retrofit the architec-

ture to handle video inputs. Our architecture is depicted in Figure 3.3b. It consists of three main

components: 1) a 3D generator which generates universal perturbations (clips); 2) a post-processor,

which for now does not do anything but is needed to solve other challenges described in subsequent
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sections; and 3) a pre-trained discriminator for video classification, viz., the C3D model described

in § 3.3.2.

The 3D generator in our model is configured to use 3D deconvolution layers and provide

3D outputs as shown in Figure 3.8. Specifically, it generates a clip of perturbations, whose size

is equal to the size of the video clips taken as input by the C3D classifier. To generate universal

perturbations, the generator first takes a noise vector z from a latent space. Next, It maps z to a

perturbation clip p, such that, G(z) = p. It then adds the perturbations on a training clip x (denote

the set of inputs from the training class as X) to obtain the perturbed clip x + p. Let c(x) be the

true label of x. This perturbed clip is then input to the C3D model which outputs the score vector

Q(x+p) (for the perturbed clip). The classification should ensure that the highest score corresponds

to the true class (c(x) for input x) in the benign setting. Thus, the attacker seeks to generate a p

such that the C3D classifier outputs a low score to the c(x)th element in the Q vector (denoted as

Qc(x)) for x + p. In other words, this means that after applying the perturbation, the probability of

mapping x to class c(x) is lower than the probability that it is mapped to a different class (i.e., the

input activity is not correctly recognized).

We seek to make this perturbation clip p “a universal perturbation”, i.e., adding p to any

input clip belonging to the target class would cause misclassification. This means that we seek to

minimize the sum of the cross-entropy loss over all the training data as per Equation 3.1. Note that

the lower the cross-entropy loss, the higher the divergence of the predicted probability from the true

label [112].

minimize
G

∑
x∈X
− log[1−Qc(x)(x+G(z)] (3.1)
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When the generator is being trained, for each training sample, it obtains feedback from

the discriminator and adjusts its parameters to cause the discriminator to misclassify that sample.

It tries to find a perturbation that works for every sample from the distribution space known to the

discriminator. At the end of this phase, the attacker will have a generator that outputs universal

perturbations which can cause the misclassification on any incoming input sample from the same

distribution (as that of the training set). However, as discussed next, just applying the universal

perturbations alone will not be sufficient to carry out a successful attack. In particular, the attack can

cause unintended clips to be misclassified as well, which could compromise our stealth requirement

as discussed next in §3.6.

3.6 Making Perturbations Stealthy

Blindly adding universal perturbations will affect the classification of clips belonging to

other non-targeted classes. This may raise alarms, especially if many of these misclassifications are

mapped on to rare actions. Thus, while causing the target class to be misclassified, the impact on the

other classes must be imperceptible. This problem can be easily solved when dealing with image

recognition systems since images are self-contained entities, i.e., perturbations can be selectively

added to target images only. However, video inputs change temporally and an action captured

in a set of composite frames may differ from that in the subsequent frames. It is thus hard to a

priori identify (choose) the frames relating to the target class, and add perturbations specifically

to them. For example, consider a case with surveillance in a grocery store. If attackers seek to

misclassify an action related to shoplifting and cause this action to go undetected, they are unlikely

to have precise knowledge of the exact time when the action will occur and be captured by the video
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activity recognition system. Adding universal perturbations blindly in this case, could cause mis-

classifications of other actions (e.g., other benign customer actions may be mapped onto shoplifting

actions thus triggering alarms). A similar example may be construed with respect to the elderly care

system described in § 3.4.1; here, the attacker has no way of knowing a priori when an elderly falls.

Since it is hard (or even impossible) to a priori identify the frame(s) that capture the in-

tended actions and choose them for perturbation, the attackers need to add perturbations to each

frame. However, to make these perturbations furtive, they need to ensure that the perturbations

added only mis-classify the target class while causing other (non-targeted) classes to be classified

correctly. We name this unique kind of universal perturbations as “Dual-Purpose Universal Pertur-

bations” or DUP for short.

In order to realize DUPs, we have to guarantee that for the input clip xt, if it belongs to

the target class (denote the set of inputs from the target class as T ), the C3D classifier returns a low

score with respect to the correct class c(xt), i.e., Qc(xt). For all input clips xs that belong to other

(non-target) classes (denote the set of inputs from non-target classes as S, thus, S = X − T ), the

model returns high scores with regard to their correct mappings (Qc(xs)). To cause the generator to

output DUPs, we refine the optimization problem in Equation 3.1 as shown in Equation 3.2:

minimize
G

λ×
∑
xt∈T
− log[1−Qc(xt)(xt +G(z))]

+
∑
xs∈S

− log[Qc(xs)(xs +G(z))]

(3.2)

The first term in the equation again relates to minimizing the cross-entropy of the target

class, while the second term maximizes the cross-entropy relating to each of the other classes. The

parameter λ is the weight applied with regard to the misclassification of the target class. For attacks
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(a) Misalignment when the starting position of a clip input to the classifier, is not aligned with what the
attacker assumes. Because of this, the perturbation added to input clip X1 is a concatenation of two partial
perturbations from P1 and P2.

(b) Misalignment can occur even if the starting position is aligned when a small stride is used. Here, the stride
of the sliding window is half the clip size. This causes a misalignment because of which, the perturbation
added to input clip X2 is a concatenation of two partial perturbations from P1 and P2.

Figure 3.4: Two cases that can potentially cause misalignment between perturbation clips and the input clips
to the classifier. The first parts of both figures represent the temporal sequence of generated perturbation clips.
The lower parts of both figures capture the temporal sequence of input clips tested by the video classifier and
the perturbation clips added to them.

where stealth is more important, we may use a smaller λ to guarantee that the emphasis on the

misclassification probability of the target class is reduced while the classification of the non-target

classes are affected to the least extent possible.

3.7 Impact of Nondeterministic Clip Boundaries

In this section, we first discuss why directly applying existing methods to generate per-

turbations against video streams do not work. Subsequently, we propose a new set of perturbations

that do work (and are very effective) on video streams.
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3.7.1 Misalignment due to Nondeterministic Clip Boundaries

The input to the video classifier is a clip composed of a sequence of frames. Given any

input clip, the previously described attack methods (UP and DUP) can generate a perturbation clip

that can be added to that input clip. As discussed in § 3.3.1, an input clip is controlled by a sliding

window which in turn is defined by three hyper-parameters: the window size l, the sliding stride o,

and the starting position fstart. Because fstart is non-deterministic, the clip boundaries of an input

to the classifier in a real-time video classification system are also nondeterministic. As a result, even

for white-box attackers, they cannot know a priori the clip boundaries (the consecutive frames in a

video stream belonging to an input clip) used by the video classifier.

The nondeterminism in the clip boundaries is likely to cause a misalignment between the

perturbation clips generated by the attacker and the input clips used by the classifier. Figure 3.4

depicts two cases where misalignment happens even with the attacker-friendly white-box scenario.

The first row shows three perturbation clips P1, P2 and P3 generated by the attacker 1. The second

row shows three input clipsX1,X2 andX3 used by the classifier. The clips in the two sequences are

not aligned because the starting point of the sliding window is different from that of the perturbation

clip. Consequently, the perturbation applied to input clip X1 is actually a concatenation of the latter

part of P1 and the first part of P2 (a perturbation P ′1).

In a second case, as shown in Figure 3.4b, the perturbation clip P2 and the input clip

X2 are not aligned because the stride of the sliding window is smaller than the window size. This

smaller stride is commonplace in video classification systems as discussed in [32, 70, 253, 254].

3.7.2 The Boundary Effect

1For UP and DUP, P1 = P2 = P3.
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Because C3D utilizes a 3D CNN, we find via empirical experiments that when there is a

misalignment between the perturbation clip and the input clip, it can cause significant degradations

in the attack success rates, even for universal perturbations. For example, considering Figure 3.4a,

the DUP P1 should work on any input clip; however, the actual applied perturbation clip P ′1 (which

is the concatenation of two partial broken up perturbations) is less likely to work. We refer to this

phenomenon as the boundary effect.

To formalize the boundary effect problem, let us consider a video stream represented by

{. . . , fi−2, fi−1, fi, fi+1, fi+2, . . . } where, fi represents the ith frame. The perturbation gener-

erated by G to cause a misclassification of the clip {fi, fi+1, . . . , fi+l−1} (say {p1, p2, . . . , pl})

will be different from the one generated for a temporally staggered clip {fi−1, fi, . . . , fi+l−2} (true

for previously designed perturbations including UP and DUP). In other words, the perturbed clip

{fi−1 ⊕ p1, f1 ⊕ p2, . . . , fi+l−2 ⊕ pl} is unlikely to be effective in achieving misclassification.

To exemplify this problem, we perform extensive evaluations of existing established meth-

ods with regard to attacking the C3D model. In particular, we use the APIs from the CleverHans

repository [195] to generate video perturbations. We experiment with several methods from Clever-

Hans, including the most recent ones (e.g., CarliniWagnerL2 and DeepFool). The results presented

in this chapter are based on the basic iteration method [137] with default parameters and all the

videos in the UCF-101 testing set. We point out here that results based on all the other methods in

the repository are very similar. We consider different boundaries for the clips in the videos (tem-

porally staggered versions of the clips) and generate perturbations for each staggered version. Note

that the sliding window size for C3D is 16 and thus, there are 16 staggered versions. We choose a

candidate frame, and compute the correlations between the perturbations added in the different stag-
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gered versions. Specifically, the perturbations are tensors and the normalized correlation between

two perturbations is the inner product of the unit-normalized tensors representing the perturbations.

We represent the average normalized correlations in the perturbations (computed across

all frames in the testing set) for two locations in the matrix shown in Figure 3.5. The row index and

the column index represent the location of the frames in the two staggered clips. For example, the

entry corresponding to {7, 7} represents the case where the frame considered was the 7th frame in

the two clips, (actually, here it is the same clip). In this case, clearly the correlation is 1.00. However,

we see that the correlations are much lower if the positions of the same frame in the two clips (two

staggered versions) are different. As an example, consider the entry {5, 9} which corresponds to the

case where a frame is the fifth position in clip 1, and the same frame is at the ninth position in clip

2: the average normalized correlation between the two added perturbations is 0.39, which indicates

that the perturbations that CleverHans adds in the two cases are quite different.

Figure 3.5: The average normalized correlation matrix computed with perturbations generated using the
basic iteration API from CleverHans. The rows and columns represent the location of a frame in the two
clips. The value represents the correlation between perturbations on the same frame but generated when that
frame located in different positions (indicated by the row and column indices) in the two temporally staggered
clips.

In Figure 3.6, we show the average magnitude of perturbations added (over all frames
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Figure 3.6: Magnitude of perturbation on each frame: The abscissa is the frame position, and the ordinate is
the magnitude of average perturbation on the frame. (The attack seeks to misclassify a given video clip from
UCF 101 dataset.)

Figure 3.7: Attack success rate when there is mismatch. The abscissa is the offset between the clip generating
perturbation and the clip tested. The ordinate is the attack success rate. (Attack aims to misclassify a given
video clip from UCF 101 dataset.)

and all videos), when the target frame is at different locations within a clip. The abscissa depicts

the frame position, and the ordinate represents the magnitude of the average perturbation. While

the difference in the magnitude of perturbations added to two frames that are close to each other in

terms of position (e.g., adjacent frames) within the clip, is small (this is because such frames are

similar), the magnitude of perturbations added to frames that are distant in terms of location could

potentially be quite different (because such frames could be quite dissimilar).

We further showcase the impact of the boundary effect by measuring the degradation

in attack efficacy due to mismatches between the anticipated start point when the perturbation is
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Figure 3.8: This figure illustrates the Generator and Roll for generating C-DUP. 1) The generator takes a
noise vector as input, and outputs a perturbation clip with 16 frames. Note that the number of temporal
dimensions with the C3D model is 16. The output size for each layer is shown as temporal dimension ×
horizontal spatial dimension × vertical spatial dimension × number of channels. 2) The roll part shifts the
perturbation clip by some offset. The figure shows one example where we roll the front black frame to the
back.

Figure 3.9: This figure illustrates the Generator and Tile for generating 2D-DUP. 1) The generator takes a
noise vector as input, and outputs a single-frame perturbation. 2) The tile part constructs a perturbation clip
by repeating the single-frame perturbation generated 16 times.

generated and the actual start point when classifying the clip (as shown in Figure 3.4a). Figure 3.7

depicts the results. The abscissa is the offset between the generated (intended) perturbation clip and

the input clip used in classification. We can see that as the distance between the two start points

increases, the attack success rate initially degrades but increases again as the the tested perturbation

clip (a concatenation clip) is closer or more similar (has a better overlap) to the intended perturbation

clip. For example, if the offset is 15, the perturbation clip added (concatenation clip) is offset by a

single frame compared to the original (intended) perturbation clip.
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3.7.3 Circular Dual-Purpose Universal Perturbation

To cope with the boundary effect, we develop a novel extension to the generative DNN

model to significantly modify the DUPs proposed in § 3.6 to compose what we call “Circular

Dual-Purpose Universal Perturbations (C-DUP).”

Let us suppose that the size of the sliding window is 16. Then, the DUP clip P includes 16

frames (of perturbation), denoted by {p1, p2, . . . , p16}. Since P is a clip of universal perturbations,

we launch the attack by repeatedly adding perturbations on each consecutive clip consisting of 16

frames, in the video stream. One can visualize that we are generating a perturbation stream which

can be represented as {p1, p2, . . . , p15, p16, p1, p2, . . . }. Now, our goal is to guarantee that the

perturbation stream works regardless of the clip boundaries chosen by the classifier. Towards this,

we need to ensure that any sequential concatenation of partial perturbation clips (the last part of the

first clip and the first part of the second clip) results in a valid perturbation. It is easy to see that for

this to hold true, we need any cyclic or circular shift of the DUP clip to be a valid DUP perturbation

too. In other words, we require the perturbation clips {p16, p1, . . . , p15}, {p15, p16, . . . , p14}, . . . ,

all to be valid perturbations. We emphasize here that UP and DUP do not have the cyclic property

and thus, a sequential concatenation of parts of two consecutive UP or DUP clips will “not” be a

valid perturbation.

To formalize, we define a permutation function Roll(p, o) which yields a cyclic shift of

the original DUP perturbation by an offset o. In other words, when using {p1, p2, . . . , p16} as

input to Roll(p, o), the output is {p16−o, p16−o+1, . . . , p16, p1, . . . , p16−o−1}. Now, for all values

of o ∈ {0, 15}, we need po = Roll(p, o) to be a valid perturbation clip as well. Towards achieving

this requirement, we use a post-processor unit which applies the roll function between the generator
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and the discriminator. This post processor is captured in the complete architecture as shown in

Figure 3.3b.

The details of how the generator and the roll unit operate in conjunction are depicted in

Figure 3.8. As before, the 3D generator (G) takes a noise vector as input and outputs a sequence of

perturbations (as a perturbation clip). Note that the final layer is followed by a tanh non-linearity

which constrains the perturbation generated to the range [-1,1]. The output is then scaled by ξ.

Doing so restricts the perturbation’s range to [−ξ, ξ]. Following the work in [181,184], the value of

ξ is chosen to be 10 towards making the perturbation quasi-imperceptible. The roll unit then “rolls”

(cyclically shifts) the perturbation p by an offset in {0, 1, 2, . . . 15}. Figure 3.8 depicts the process

with an offset equal to 1; the black frame is rolled to the end of the clip. By adding the rolled

perturbation clip to the training input, we get the perturbed input. As discussed earlier, the C3D

classifier takes the perturbed input and outputs a classification score vector. As before, we want the

true class scores to be (a) low for the targeted inputs and (b) high for other (non-targeted) inputs.

We now modify our optimization function to incorporate the roll function as follows.

minimize
G∑

o=1,2···w
{λ×

∑
xt∈T
− log[1−Qc(xt)(xt +Roll(G(z), o))]

+
∑
xs∈S

− log[Qc(xs)(xs +Roll(G(z), o))]}

(3.3)

The equation is essentially the same as Equation 3.2, but we consider all possible cyclic

shifts of the perturbation output by the generator.
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3.7.4 2D Dual-Purpose Universal Perturbation

We also consider a special case of C-DUP, wherein we impose an additional constraint

which is that “the perturbations added to all frames are the same.” In other words, we seek to add

a single-frame 2D perturbation on each frame which can be seen as a special case of C-DUP with

p1 = p2 = · · · = p16. We call this kind of C-DUP as 2D-DUP. 2D-DUP allows us to examine the

effect of the temporal dimension in generating adversarial perturbations on video inputs. 2D-DUP

is light-weight compared to C-DUP in terms of both transmission and storage costs. In addition,

2D-DUP allows other attack possibilities besides the man-in-the-middle case, an example being

physically adding transparent foil (to add perturbation) onto the camera lens.

The generator in this case will output a single-frame perturbation instead of a sequence of

perturbation frames as shown in Figure 3.9. This is a stronger constraint than the circular constraint,

which may cause the attack success rate to decrease (note that the cyclic property still holds).

We denote the above 2D perturbation as p2d. The perturbation clip is then generated by

simply creating copies of the perturbation and tiling them to compose a clip. The 2D-DUP clip is

now ptile = {p2d, p2d, . . . , p2d} (Figure 3.9). Thus, given that the attack objective is the same as

before, we simply replace theRoll(p, o) function with a Tile function and our problem formulation

now becomes:

minimize
G2D

λ×
∑
xt∈T
−log[1−Qc(xt)(xt + Tile(G2D(z)))]

+
∑
xs∈S
−log[Qc(xs)(xs + Tile(G2D(z)))]

(3.4)
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Figure 3.10: DUP on UCF-101

Figure 3.11: C-DUP on UCF-101

3.8 Evaluations

In this section, we showcase the efficacy of the perturbations generated by our proposed

approaches on both the UCF-101 and Jester datasets.

3.8.1 Experimental Setup

Discriminator set-up for our experiments: We used the C3D classifier as our discriminator. The

discriminator is then used to train our generator. For our experiments on the UCF101 dataset, we

use the C3D model available in the Github repository [248]. This pre-trained C3D model achieves

an average clip classification accuracy of 91.8% on the UCF101 dataset in benign settings (i.e., no
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Figure 3.12: C-DUP on Jester for T1 = {slding hand right}

Figure 3.13: C-DUP on Jester for T2 = {shaking hand}

adversarial inputs). For the experiments on the Jester dataset, we fine-tune the C3D model from the

Github repository [248]. First, we change the output size of the last fully connected layer to 27,

since there are 27 gesture classes in Jester. We use a learning rate with exponential decay [289] to

train the model. The starting learning rate for the last fully connected layer is set to be 10−3 and

10−4 for all the other layers. The decay step is set to 600 and the decay rate is 0.9. The fine-tuning

phase is completed in 3 epochs and we achieve a clip classification accuracy of 90.03% in benign

settings.

Generator set-up for our experiments: For building our generators, we refer to the generative

model used by Vondrik et al. [261], which has 3D deconvolution layers.

For generators for both C-DUP and 2D-DUP, we use five 3D de-convolution layers [20].

The first four layers are followed by a batch normalization [118] and a ReLU [188] activation

function. The last layer is followed by a tanh [127] layer. The kernel size for all 3D de-convolutions

is set to be 3 × 3 × 3. To generate 3D perturbations (i.e., sequence of perturbation frames), we set

the kernel stride in the C-DUP generator to 1 in both the spatial and temporal dimensions for the

first layer, and 2 in both the spatial and temporal dimensions for the following 4 layers. To generate
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a single-frame 2D perturbation, the kernel stride in the temporal dimension is set to 1 (i.e., 2D

deconvolution) for all layers in the 2D-DUP generator, and the spatial dimension stride is 1 for the

first layer and 2 for the following layers. The numbers of filters are shown in brackets in Figure 3.8

and Figure 3.9. The input noise vector for both generators are sampled from a uniform distribution

U [−1, 1] and the dimension of the noise vector is set to be 100. For training both generators, we use

a learning rate with exponential decay. The starting learning rate is 0.002. The decay step is 2000

and the decay rate is 0.95. Unless otherwise specified, the weight balancing the two objectives, i.e.,

λ, is set to 1 to reflect equal importance between misclassifying the target class and retaining the

correct classification for all the other (non-target) classes.

Technical Implementation: All the models are implemented in TensorFlow [5] with the Adam

optimizer [132]. Training was performed on 16 Tesla K80 GPU cards with the batch size set to 32.

The code is available at https://github.com/sli057/Video-Perturbation.git.

Dataset setup for our experiments: On the UCF-101 dataset (denoted UCF-101 for short), dif-

ferent sets of target class T are tested. We use T = {apply lipstick} for presenting the results

in the chapter. Experiments using other target sets also yield similar results. UCF-101 has 101

classes of human actions in total. The target set T contains only one class while the “non-target”

set S = X − T contains 100 classes. The number of training inputs from the non-target classes is

approximately 100 times the number of training inputs from the target class. Directly training with

UCF-101 may cause a problem due to the imbalance in the datasets containing the target and non-

target classes [166]. Therefore, we under-sample the non-target classes by a factor of 10. Further,

when loading a batch of inputs for training, we fetch half the batch of inputs from the target set and

the other half from the non-target set in order to balance the inputs.
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For the Jester dataset, we also choose different sets of target classes. We use two target

sets T1 = {sliding hand right} and T2 = {shaking hands} as our representative examples because

they are exemplars of two different scenarios. Since we seek to showcase an attack on a video

classification system, we care about how the perturbations affect both the appearance information

and temporal flow information, especially the latter. For instance, the ‘sliding hand right’ class has a

temporally similar class ‘sliding two fingers right;’ as a consequence, it may be easier for attackers to

cause clips in the former class to be misclassified as the later class (because the temporal information

does not need to be perturbed much). On the other hand, ‘shaking hands’ is not temporally similar

to any other class. Comparing the results of these two target sets could provide some empirical

evidence on the impact of the temporal flow on our perturbations. Similar to UCF-101, the number

of inputs from the non-target classes is around 26 times the number of inputs from the target class

(since there are 27 classes in total and we only have one target class in each experiment). So we

under-sample the non-target inputs by a factor of 4. We also set up the environment to load half

of the inputs from the target set and the other half from the non-target set, in every batch during

training.

Metrics of interest: For measuring the efficacy of our perturbations, we consider two metrics. First,

the perturbations added to the videos should be quasi-imperceptible. Second, the attack success rate

for the target and the non-target classes should be high. We define attack success rates as follows:

• The attack success rate for the target class is the misclassification rate.

• The attack success rate for the other classes is the correct classification rate.
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3.8.2 Stealth with DUP

Recalling the discussion in §3.6, one can expect that UP would cause inputs from the

target class to be misclassified, but also significantly affect the correct classification of the other

non-target inputs. On the other hand, one would expect that DUP would achieve a stealthy attack,

which would not cause much effect on the classification of non-target classes.

By testing on UCF-101 with ”apply lipstick” as the target class, we observe that with

UP, ”archery” is misclassified as “swing,” “baby crawling” is misclassified as “cutting in kitchen,”

“biking” is misclassified as “golf swing,” and so on. We find that only 45.2% of the video clips from

non-target classes are classified correctly, i.e., the attack success rate for non-target inputs is only

45.2%. This violates the stealthiness needed to successfully launch an attack. However, DUP does

not affect the classification of non-target inputs much; the non-target attack success rate is 88.03%.

At the same time, both UP and DUP work well on target inputs, which means the perturbed target

clips are misclassified at high rate. DUP achieves a attack success rate of 84.49 % for target inputs

and UP achieves 84.01%. These results are obtained under the assumption that clip boundaries are

exactly known while performing the attack. Given the inferior performance of UP on non-target

inputs (i.e., in preserving stealth), we do not consider it any further in our evaluations.

3.8.3 Showcasing C-DUP

In this subsection, we discuss the results of the C-DUP perturbation attack. We use DUPs

as our baselines.
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Experimental Results on UCF101

Visualizing the perturbations: The perturbation clip generated by the DUP model is shown in

Figure 3.10 and the perturbation clip generated by C-DUP model is shown in Figure 3.11. The

visualizations of all perturbations are scaled from [0,10] to [0,255]. We observe that the perturbation

from DUP manifests an obvious disturbance among the frames. With C-DUP, the perturbation

frames look similar, which implies that C-DUP does not perturb the temporal information by much,

in UCF101.

Impact of misalignment and C-DUP performance: Based on the discussion in §3.7, we expect

that DUP would work well only when the perturbation clip is well-aligned with the start point of

each input clip to the classifier; and the attack success rate would degrade as the misalignment

increases. We expect C-DUP would overcome the misalignment effect and provide a better overall

attack performance (even with temporal misalignment).

Case study: We perform a case study to showcase the impact of the misalignment. We

consider one ”apply lipstick” video clip for our case study. When DUP and C-DUP are added to

this clip without any offset (no misalignment) i.e., the clip is in the form [f1, f2, · · · , f16], both

perturbed clips are misclassified to ”apply eye makeup”. When there is an offset of 8, meaning

that DUP and C-DUP are added to the clip in the form [f9, f10, · · · , f16, f1, · · · , f8], DUP fails to

misclassify the clip while C-DUP still successfully misclassifies it. In fact, we observe that C-DUP

works for all offsets from 0 to 15 while DUP only works when the offset = 0, 1, 2, 15, on this input

clip.
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Aggregate results: The attack success rates with DUP and C-DUP, on the UCF-101 test

set, are shown in Figure 3.14a and Figure 3.14b. The x axis is the misalignment between the

perturbation clip and the input clip to the classifier. Figure 3.14a depicts the average attack success

rate for inputs from the target class. We observe that when there is no misalignment, the attack

success rate with DUP is 84.49%, which is in fact slightly higher than C-DUP. However, the attack

success rate with C-DUP is significantly higher when there is misalignment. Furthermore, the

average attack success rate across all alignments for the target class with C-DUP is 84%, while with

DUP it is only 68.26%. This demonstrates that C-DUP is more robust against misalignment.

Figure 3.14b shows that, with regard to the classification of inputs from the non-target

classes, C-DUP also achieves a performance slightly better than DUP when there is mismatch. The

average attack success rate (across all alignments) with C-DUP is 87.52% here, while with DUP it

is 84.19%.

Experimental Results on Jester

Visualizing the perturbations: Visual representations of the C-DUP perturbations for the two

target sets, T1 = {sliding hand right} and T2 = {shaking hands} are shown in Figure 3.12 and

Figure 3.13. The perturbation clip has 16 frames, and we present a visual representation of the first

8 frames for compactness. We notice that compared to the perturbation generated on UCF-101 (see

Figure 3.11). there is a more pronounced evolution with respect to Jester. We conjecture that this is

because UCF-101 is a coarse-grained action dataset in which the spatial (appearance) information

is dominant. As a consequence, the C3D model does not extract/need much temporal information
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to perform well. However, Jester is a fine-grained action dataset where temporal information plays

a more important role. Therefore, in line with expectations, we find that in order to attack the C3D

model trained on the Jester dataset, more significant evolutions of the perturbations on the frames

in a clip are required (i.e., more changes in the temporal dimension).

Attack success rate: To showcase a comparison of the misclassification rates with respect to the

target class between the two schemes (DUP and C-DUP), we adjust the weighting factor λ such that

the classification accuracy with respect to non-target classes are similar. By choosing λ = 1.5 for

DUP and 1 for C-DUP, we are able to achieve this. The attack success rates for the above two target

sets are shown in Figure 3.14c and Figure 3.14d, and Figure 3.14e and Figure 3.14f, respectively.

We see that with respect to T1 = {sliding hand right}, the results are similar to what we observe

with UCF101. The attack success rates for C-DUP are a little lower than those for DUP when the

offset is 0. This is to be expected since DUP is tailored for this specific offset. However, C-DUP

outperforms DUP when there is a misalignment. The average success rate for C-DUP is 85.14% for

the target class and 81.03% for the other (non-target) classes. The average success rate for DUP is

52.42% for the target class and 82.36% for the other (non-target) classes.

Next we consider the case with T2 = {shaking hands}. In general, we find that both DUP

and C-DUP achieve relatively lower success rates especially with regard to the other (non-target)

classes. As discussed in §3.8.1, unlike in the previous case where ‘sliding two fingers right’ is

temporally similar to ‘sliding hand right’, no other class is temporally similar to ‘shaking hand’.

Therefore it is harder to achieve misclassification. The attack success rates with the two approaches

for the target class are shown in Figure 3.14e. We see that C-DUP significantly outperforms DUP

in terms of attack efficacy because of its robustness to temporal misalignment (i.e., the boundary
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effect). The average attack success rate for the target class with C-DUP is 79.03% while for DUP

it is only 57.78%. Overall, our C-DUP outperforms DUP in being able to achieve a better attack

success rate for the target class. We believe that although stealth is affected to some extent, it is still

reasonably high.

3.8.4 Effectiveness of 2D-DUP

The visual representations of the perturbations with C-DUP show that perturbations on

all the frames are visually similar. Thus, we ask if it is possible to add “the same perturbation”

on every frame and still achieve a successful attack. In other words, will the 2D-DUP perturbation

attack yield performance similar to the C-DUP attack ?

Experimental Results on the UCF101 Dataset

Visual impact of the perturbation: We present a sequence of original frames and its corresponding

perturbed frames in Figure 3.15. Original frames are displayed in the first row and perturbed frames

are displayed in the second row. We observe that the perturbation added to the frames is quasi-

imperceptible to human eyes (similar results are seen with C-DUP but are omitted in the interest of

compactness).

Attack success rate: By adding 2D-DUP on the video clip, we achieve an attack success rate of

87.58% with respect to the target class and an attack success rate of 83.37% for the non-target

classes. Recall that the average attack success rates with C-DUP were 87.52% and 84.00%, respec-

tively. Thus, the performance of 2D-DUP seems to be on par with that of C-DUP on the UCF101
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dataset. This demonstrates that C3D is vulnerable even if the same 2D perturbation generated by

our approach is added to every frame.

Experimental Results on Jester Dataset

Attack success rate: For T1 = {sliding hand right}, the attack success rate for the target class is

84.64% and the attack success rate for the non-target classes is 80.04%. This shows that 2D-DUP

is also successful on some target classes in the fine-grained, Jester action dataset.

For the target set T2, the success rate for the target class drops to 70.92%, while the

success rate for non-target class is 54.83%. This is slightly degraded compared to the success rates

achieved with C-DUP (79.03% and 57.78% respectively), but is still reasonable. This degradation

is due to more significant temporal changes in this case (unlike in the case of T1) and a single 2D

perturbation is less effective in manipulating these changes. In contrast, because the perturbations

within C-DUP evolve, they are much more effective in achieving the misclassification of the target

class.

3.9 Discussion

Black box attacks: In this work we assumed that the adversary is fully aware of the DNN being

deployed (i.e., white box attacks). We argue that this is reasonable given that this is one of the first

efforts on generating adversarial perturbations on real-time video classification systems. However,

in practice the adversary may need to determine the type of DNN being used in the video classifica-
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tion system, and so a black box approach may be needed. Given recent studies on the transferability

of adversarial inputs [196], we believe black box attacks are also feasible. We will explore this in

our future work.

Context dependency: Second, the approach that we developed does not account for contextual

information, i.e., consistency between the misclassified result and the context. While in some cases

with a limited set of classes (e.g., actions possible at an elderly care facility), this may be not mat-

ter, in some other cases a loss in context may cause a human operator to notice discrepancies. For

example, if the context relates to a baseball game, a human overseeing the system may notice an

inconsistency when the action of hitting a ball is misclassified into applying makeup. Similarly,

because of context, if there is a series of actions that we want to misclassify, inconsistency in the

misclassification results (e.g., different actions across the clips) may also raise an alarm. For exam-

ple, let us consider a case where the actions include running, kicking a ball, and applying make up.

While the first two actions can be considered to be reasonable with regard to appearing together in

a video, the latter two are unlikely. Generating perturbations that are consistent with the context of

the video is a line of future work that we will explore and is likely to require new techniques. In

fact, looking for consistency in context may be a potential defense, and we will also examine this in

depth in the future.

Data Augmentation: We point out here that for both UPs and DUPs, the training set included all

possible strides (data augmentation). Unfortunately, the issues relating to the boundary effect cannot

be solved by data augmentation. In particular, recall that the misalignment due to the nondetermin-

ism in clip boundaries input to the classifier cause the perturbation clips added by the attacker to

be broken up. While UPs are effective on any video clip, concatenations of broken up UPs are no
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longer UPs and thus, are not effective.

Defenses: In order to defend against the attacks against video classification systems, one can try

some existing defense methods in image area, such as feature squeezing [279, 280] and ensemble

adversarial training [252] (although their effectiveness is yet unknown). Considering the properties

of video that were discussed, we envision some exclusive defense methods for protecting video

classification systems below, which we will explore in future work.

One approach is to examine the consistency between the classification of consecutive

frames (considered as images) within a clip, and between consecutive clips in a stream. A sudden

change in the classification results could raise an alarm. However, while this defense will work well

in cases where the temporal flow is not pronounced (e.g., the UCF101 dataset), it may not work well

in cases with pronounced temporal flows. For example, with respect to the Jester dataset, with just

an image it may be hard to determine whether the hand is being moved right or left.

The second line of defense may be to identify an object that is present in the video, e.g., a

soccer ball in a video clip that depicts a kicking action. We can use an additional classifier to identify

such objects in the individual frames that compose the video. Then, we can look for consistency

with regard to the action and the object, e.g., a kicking action can be associated with a soccer ball,

but cannot be associated with a make up kit. Towards realizing this line of defense, we could use

existing image classifiers in conjunction with the video classification system. We will explore this

in future work.
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3.10 Related Work

There is quite a bit of work [18, 19, 110] on investigating the vulnerability of machine

learning systems to adversarial inputs. Researchers have shown that generally, small magnitude

perturbations added to input samples, change the predictions made by machine learning models.

Most efforts, however, do not consider real-time temporally varying inputs such as video. Unlike

these efforts, our study is focused on the generation of adversarial perturbations to fool DNN based

real-time video action recognition systems.

The threat of adversarial samples to deep-learning systems has also received considerable

attention recently. There are several papers in the literature (e.g., [86, 87, 181, 182, 224]) that have

shown that the state-of-the-art DNN based learning systems are also vulnerable to well-designed

adversarial perturbations [243]. Szegedy et al.show that the addition of hardly perceptible pertur-

bation on an image, can cause a neural network to misclassify the image. Goodfellow et al. [87]

analyze the potency of adversarial samples available in the physical world, in terms of fooling neural

networks. Moosavi-Dezfooli et al. [181–183] make a significant contribution by generating image-

agnostic perturbations, which they call universal adversarial perturbations. These perturbations can

cause all natural images belonging to target classes to be misclassified with high probability.

There are very few recent studies [104, 265] which explore the feasibility of adversar-

ial perturbation on videos. Hosseini et al. [104] attack the Google Cloud Video Intelligence API,

which makes decisions only based on the first frame of every second of the video, by inserting

images/perturbing frames at the rate of one frame per second. This attack method cannot be gener-

alized to the common case where video classification systems use sequences of consecutive frames

to perform activity recognition. In addition, the authors assume that the starting frame used by
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the API is known to the attacker, which in real-time applications is not deterministic (and thus, is

unknown). Wei et al. [265] attack the video recognition system by adding perturbations only on

the first few consecutive frames in a video clip. However, unlike our attack, these attacks do not

work on practical real-time video classification systems when the boundaries of video clips are not

known.

GANs or generative adversarial networks have been employed by Goodfellow et al. [86]

and Radford et al. [209] in generating natural images. Mopuri et al. [184] extend a GAN architec-

ture to train a generator to model universal perturbations for images. Their objective was to explore

the space of the distribution of universal adversarial perturbations in the image space. We signifi-

cantly extend the generative framework introduced by Mopuri et al. [184]. In addition, unlike their

work which focused on generating adversarial perturbations for images, our study focuses on the

generation of effective perturbations to attack videos.

The feasibility of adversarial attacks against other types of learning systems including

face-recognition systems [178, 224, 225], voice recognition systems [29] and malware classifica-

tion systems [90], has been studied. However, these studies do not account for the unique input

characteristics that are present in real-time video activity recognition systems.

3.11 Conclusions

In this chapter, we investigate the problem of generating adversarial samples for attack-

ing video classification systems. We identify three key challenges that will need to be addressed

in order to generate such samples namely, generating perturbations in real-time, making the per-

turbations stealthy and dealing with the intedeterminism of video clip boundaries that are input
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to a real-time video classifier. We exploit recent advances in generative models, extending them

significantly to solve these challenges and generate very potent adversarial samples against video

classification systems. We perform extensive experiments on two different datasets one of which

captures coarse-grained actions (e.g., applying make up) while the other captures fine-grained ac-

tions (hand gestures). We demonstrate that our approaches are extremely potent, achieving around

80 % attack success rates in both cases. We also discuss possible defenses that we propose to

investigate in future work.
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(a) Attack success rate on UCF-101 for target
class
’applying lipstick’. The baseline accuracy of at-
tack success rate without perturbation is 4.5%.

(b) Attack success rate on UCF-101 for other
non-target classes (all except ’applying lipstick’).
The baseline accuracy of attack success rate
without perturbation is 91.8%.

(c) Attack success rate on Jester for target class
’sliding hands right’.The baseline accuracy of at-
tack success rate without perturbation is 12.9%.

(d) Attack success rate on Jester for non-target
classes (all excepet ’sliding right’). The baseline
accuracy of attack success rate without perturba-
tion is 90.4%.

(e) Attack success rate on Jester for target class
’shaking hand’. The baseline accuracy of attack
success rate without perturbation is 6.3%.

(f) Attack success rate on Jester for non-target
classes (all except ’shaking hand’). The baseline
accuracy of attack success rate without perturba-
tion is 89.9%.

Figure 3.14: Attack success rates for DUP and C-DUP along with the offset of mismatch
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Figure 3.15: Visualizing images after adding 2D dual purpose universal perturbation: Original frames are
displayed in the first row and perturbed frames are displayed in the second row. The perturbation added to
the frames in the second row is mostly imperceptible to the human eye.
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Chapter 4

Geometric Transformations for Effective

Black-box Adversarial Attacks on Video

Classifiers

4.1 abstract

When compared to the image classification models, black-box adversarial attacks against

video classification models have been largely understudied. This could be possibly because, with

video, the temporal dimension poses significant additional challenges in gradient estimation. Query-

efficient black-box attacks rely on effective estimated gradients towards maximizing the probability

of misclassifying the target video. In this work, we demonstrate that such effective gradients can be

searched for by parameterizing the temporal structure of the search space with geometric transfor-

mations. Specifically, we design a novel iterative algorithm Geometric TRAnsformed Perturbations
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(GEO-TRAP), for attacking video classification models. GEO-TRAP employs standard geometric

transformation operations to reduce the search space for effective gradients into searching for a

small group of parameters that define these operations. This group of parameters describes the ge-

ometric progression of gradients, resulting in a reduced and structured search space. Our algorithm

inherently leads to successful perturbations with surprisingly few queries. For example, adversarial

examples generated from GEO-TRAP have better attack success rates with ∼ 73.55% fewer queries

compared to the state-of-the-art method for video adversarial attacks on the widely used Jester

dataset. Overall, our algorithm exposes vulnerabilities of diverse video classification models and

achieves new state-of-the-art results under black-box settings on two large datasets.

4.2 Introduction

Adversarial attacks are designed to expose vulnerabilities of Deep Neural Networks (DNNs).

With real-world applications of video classification based on DNNs emerging [45,119], a key ques-

tion that arises is “what type of adversarial inputs can mislead, and thus render video classification

networks vulnerable?” Designing such adversarial attacks not only helps expose security flaws of

DNNs, but can also potentially stimulate the design of more robust video classification models.

Adversarial attacks against image classification models have been studied in both white-

box [31, 88, 235, 243, 271] and black-box [17, 34, 116, 196, 197] settings. In the white-box setting,

an adversary has full access to the model under attack, including its parameters and training set-

tings (hyper-parameters, training data, etc.) In the black-box setting, an adversary only has partial

information about the victim model, such as the predicted labels of the model. In the case of video

classification models, adversarial attacks in both white-box and black-box settings have garnered
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some interest [38, 124, 146, 165, 206, 266, 267, 282, 290], although the body of work here is more

limited than the case of image classification models.

A common black-box attack paradigm is query-based, wherein the attacker can send

queries to the victim model to collect the corresponding predicted labels, and thereby estimate the

gradients needed for curating the adversarial examples. Unlike static images, videos naturally in-

clude additional information from the temporal dimension. This high dimensionality (i.e., sequence

of frames instead of one image) poses challenges to black-box adversarial attacks against video

classification models; in particular, significantly more queries are typically needed for estimating

the gradients for crafting adversarial samples [124, 267, 282, 290]. [124] reduces the number of

queries by adding perturbations on the patch level instead of at the pixel level; [267,282] propose to

add perturbations only on key pixels. [290] considers the intrinsic differences between images and

videos (i.e., the temporal dimension), and proposes to use the optical-flow of clean videos as the

motion prior for adversarial video generation. Similar to [290], we also explicitly consider the tem-

poral dimension of video. However, rather than fixing the temporal search space using the motion

prior of clean videos, we propose to parameterize the temporal structure of the space with geomet-

ric transformations. This results in a better structured and reduced search space, which allows us to

generate successful attacks with much fewer queries in black-box settings than the state-of-the-art

methods, including [290].

Contributions. In this chapter, we propose a novel query-efficient black-box attack algorithm

against video classification models. Due to the extra temporal dimension, generating video per-

turbations by searching for effective gradients remains a challenging task given the exceedingly

large search space. These gradients are estimated by searching for ‘directions’ that maximize the
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Table 4.1: Comparison with state-of-the-art. GEO-TRAP, compared to current black-box attack methods for
videos, doesn’t train a different network to craft perturbations, and parameterizes the temporal dimension of
videos in searching for effective perturbation directions.

Method
WITHOUT training a

“perturbation” network

CONSIDER temporal

dimension?

PARAMETERIZE

temporal dimension?

PATCHATTACK [124] 7 7 7

HEURISTICATTACK [267] X 7 7

SPARSEATTACK [282] 7 7 7

MOTIONSAMPLERATTACK [290] X X 7

GEO-TRAP (Ours) X X X

probability of the victim model mis-classifying the crafted inputs. Our approach drastically reduces

this large search space by defining this space with a small set of parameters that describe the ge-

ometric progression of gradients in the temporal dimension, resulting in a reduced and temporally

structured search space. Conceptually, this parameterization of the temporal structure of the search

space is performed using geometric transformations (e.g. affine transformations). We refer to our

algorithm as Geometrically TRAnsformed Perturbations, or GEO-TRAP. Despite this surprisingly

simple strategy, GEO-TRAP outperforms existing black-box video adversarial attack methods by

significant margins (∼ 1.8% improvement in attack success rate with ∼ 73.55% fewer queries for

targeted attacks in comparison to the state-of-the-art [290] on the Jester dataset [176]).

4.3 Related Works

In this section, we review different black-box adversarial attacks strategies, and categorize

our proposed method with respect to state-of-the-art black-box attacks designed for video classifiers.

71



In most real-world attacks, the adversary only has partial information about the victim

models, such as the predicted labels. In such black-box settings, the adversary can first attack a

local surrogate model and then transfer these attacks to the target victim model [111,162], formally

called as transferability-based black-box attack. Alternatively, they may estimate the adversarial

gradient with zero-order optimization methods such as Finite Differences (FD) or Natural Evolution

Strategies (NES) by querying the victim model [34, 115, 116], which is called query-based black-

box attack. GEO-TRAP falls under the category of query-based black-box attacks (designed for

videos).

Whilst several white-box attacks have been proposed for video classification models [38,

146, 165, 206, 266], black-box video attacks are relatively under explored. PATCHATTACK (V-

BAD) [124] is the first to propose a black-box video attack framework which uses a hybrid attack

strategy of first generating initial perturbations for each video frame by attacking a local image clas-

sifier, and then updating the perturbations by querying the victim model. Compared to PATCHAT-

TACK [124] , GEO-TRAP does not require training a local classifier. PATCHATTACK [124] crafts

video perturbations by treating each frame as a separate image, but reduces the search space of

the gradient estimation by morphing the perturbations in patches/partitions. However, its attack

performance has been shown to be inferior to that of a more recent approach [290] (discussed be-

low). HEURISTICATTACK [267] uses a query-based attack strategy, and reduces the search space by

generating adversarial perturbations only on heuristically selected key frames and salient regions.

SPARSEATTACK [282] reduces the search space by adding perturbations only on key frames using

a reinforcement learning based framework. MOTIONSAMPLERATTACK [290] proposed a query-

based attack strategy that utilizes a motion excited sampler to obtain motion-aware perturbation
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prior by using the optical-flow of the clean video. This motion-aware prior reduces the search space

for gradients resulting in fewer queries. Similar to [290] but different from [124, 267, 282], GEO-

TRAP explicitly considers the temporal dimension of video in order to search for effective gradients.

However unlike [290], GEO-TRAP does not fix the temporal structure of the search space using a

pre-computed fixed motion prior, but parameterize it with simple geometric transformations. These

black-box video attack methods are summarized in Table 4.1.

4.4 Attacking via Geometrically TRAnsformed Perturbations (GEO-

TRAP)

Notation. We denote the tuple of a video clip and its corresponding label as (x, y), which repre-

sents a data-point in the distribution X . Each video sample x ∈ RT×H×W×C has T frames of H

height, W width, and C channels. We denote the victim video classification model as fθ : X → Y ,

where θ represents the model’s parameters learned from the training subset of X , via a mapping

to the label space Y . We further assume X consists of videos from |Y| = K categories. To make

the perturbations imperceptible to humans, we impose the perturbation budget ρmax with the ‖ · ‖p

norm. Throughout this chapter, we consider ‖ · ‖∞ norm following [124,146,290] (the method can

be extended to p = 1, 2 norms). To constrain ‖ · ‖∞ of perturbation below a budget ρmax, we use

the clip(·) function to keep the perturbation pixel value in [−ρmax, ρmax]. The function sign(·)

extracts the sign of given input variable. The superscript i, throughout the chapter, denotes the iter-

ation i. The subscript t denotes the frame index. For clarity, we represent vectors/tensors with the

bold font and scalars with the regular font.
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Problem Statement. We consider the scenario of attacking a standard video classification model

using a query-based paradigm under black-box settings (assuming no access to θ nor the training

subset ofX ). Specifically, we aim to craft perturbed videosxadv with imperceptible differences from

x, in order to alter the decision of the target model fθ via multiple queries to guide the gradient

estimation. This problem can be mathematically formulated as follows.

argmin
xadv

L
(
fθ(xadv), y

)
s.t. ‖xadv − x‖∞ ≤ ρmax (4.1)

L
(
fθ(xadv), y

)
is the objective function, capturing the similarity between the classifier’s output and

the ground truth label y, and varies with different attack goals (targeted or untargeted). The chal-

lenge is to obtainxadv with as few queries as possible by estimating gradient g? = ∇xadvL
(
fθ(xadv), y

)
,

which is unknown in the considered black-box setting.

Overview of GEO-TRAP. We propose a novel iterative video perturbation framework that follows

the principle of the Basic Iterative Method [138] in order to fool fθ under ‖ · ‖∞ norm as follows.

x
(0)
adv = x, x

(i)
adv = clip

(
x
(i−1)
adv − hsign(g(i))

)
(4.2)

where h is a hyperparameter and g(i) is the gradient estimated by querying the black-box victim

model at the ith iteration using our proposed GEO-TRAP algorithm. As shown in (4.2), effective

perturbations rely on the guidance of the gradient g(i). Therefore, efficiently estimating g(i) is at

the core of GEO-TRAP for successfully subverting video classifiers. We execute the following two

steps in each iteration to estimate g(i).

1. For any input video x(i), a random noise tensor rframe ∈ RH×W×C and a set of geometric

transformation parameters Φwarp ∈ RT×D are chosen with each element sampled from a
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standard normal distribution. D represents the number of parameters needed for the geometric

transformation of a single frame (details are provided in Section 4.4.2). In this setup, our

search space for estimating g(i) consists of rframe and Φwarp.

2. We then warp rframe with Φwarp to get the candidate direction π = [r1, r2, · · · , rT ] ∈

RT×H×W×C (see Algorithm 4 TRANS-WARP). π is then employed to compute a gradi-

ent estimator ∆ by querying the black-box victim model with a standard gradient estimation

algorithm (see Algorithm 3 GRAD-EST). The gradient estimator ∆ is then used to update

g(i).

The overall attack strategy is summarized in Algorithm 2 and pictorially illustrated in

Figure 5.2. Since in Step 2 above, the gradient estimation (i.e., GRAD-EST) procedure includes the

geometric transformation strategy (i.e., TRANS-WARP), we will next describe GRAD-EST and then

move on to TRANS-WARP. For the simplicity of exposition, we drop the superscript i and shorten

the loss function to L(xadv, y) to L (since the model parameters θ remain unchanged) in rest of this

section.

4.4.1 GEO-TRAP Gradient Estimation (GRAD-EST)

Let g? = ∇xL be the ideal value of the gradient of L at x, required to create xadv in (4.2).

To find an efficient estimator g for g?, a (new) surrogate loss `(g) = −〈g?, g〉 is defined such that

the estimator g has a sufficiently large inner product with the actual gradient g? (g is normalized

to a unit vector; we ignore the normalization operation for ease of explanation). The loss function

definition and the algorithm to estimate g follow [116].

As g? is unknown in the black-box setting, this surrogate loss function can be estimated
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GRAD-EST
(Algorithm 2)
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(u, v)

geometrically transformed
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Figure 4.1: Overview of Geo-Trap. Geo-TRAP is a black-box attack algorithm guided by the key observation
that strong gradients g(i) can be computed by finding better gradient search direction candidates π. We
propose to search each frame of the directions rt by warping a randomly sampled rframe using a geometric
transformationMφt

; different rt in π are warped by the same rframe, thus have geometric progression among
frames.

as

`(g) = −〈g?, g〉 = −〈∇xL, g〉 ≈ −
L(x+ εg, y)− L(x, y)

ε
. (4.3)

To iteratively estimate g, we need to, in turn, estimate the gradient of `(g), i.e., ∆ = ∇g`(g). With

antithetic sampling [215], ∆ can be estimated as

∆ =
`(g + δπ)− `(g − δπ)

δ
π, (4.4)

where δ is a small number adjusting the magnitude of the loss variation and π ∈ RT×H×W×C is a

random candidate direction. Our core contribution lies in the fact that instead of randomly sampling

π in the search space [116], we reduce the search dimensionality by warping a randomly sampled

tensor rframe ∈ RH×W×C with another randomly sampled geometric (e.g., affine) transformation

parameter tensor Φwarp ∈ RT×D to get π. The search space is then reduced from T×H×W×C to

(H×W ×C)+(T ×D) andD is a relatively small number, D � H×W ×C. Withw1 = g+δπ
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Algorithm 2 GEO-TRAP: Query-based Iterative attack for Video Classifiers
Input : video x, corresponding label y, step-size η for updating the gradient, step-size h for updating ad-

versarial video.

Output: adversarial video xadv

4 Initialize: x(0) = x, g(0) = 0, i = 1

while argmax
(
fθ(x(i))

)
= y do

5 ∆ = GRAD-EST(x(i−1), g(i−1), y) /* Gradient Estimation */

g(i) ← g(i−1) − η∆

x(i) ← clip(x(i−1) − hsign(g(i)))

i← i+ 1

6 end

7 return xadv = x(i)

and w2 = g − δπ and combining (4.3) with (4.4), we get

∆ =
L(x+ εw2, y)− L(x+ εw1, y)

εδ
π. (4.5)

Note that by querying the victim model fθ with x + εw1, we are able to retrieve the value of

L(x+εw1, y); similarly we can obtain the value ofL(x+εw2, y) (L(·) is defined following [206].).

In summary, we estimate ∆ with these two queries to the victim model. The resulting algorithm for

estimating gradient of∇g` or ∆ for consequently estimating g is shown in Algorithm 3. Eventually

at every iteration, we use ∆ to update g by applying a one-step gradient descent as g ← g − η∆,

where η is a hyperparameter to update g. This updated g is later used to obtain xadv using (4.2).

4.4.2 Noise Warping using Geometric Transformation (TRANS-WARP)

To tackle the challenge of the high-dimensionality of the search space, we propose to

parameterize the search space with a single random noise tensor rframe ∈ RH×W×C and a sequence
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of geometric transformations Φwarp ∈ RT×D. Apart from the reduction of the search space of

gradient estimation, our geometric transformation provides a temporal structure to π, which we

discuss next.

At every iteration, π = [r1, r2, . . . , rT ] represents the candidate direction for ∆. These

directions rt ∈ RH×W×C are used to compute ∆ in order to update gradient g. To obtain π, we use

a sequence of transformation vectors Φwarp = [φ1,φ2, . . . ,φT ] where φt ∈ RD. The dimensional-

ity D, chosen by the attacker, can vary depending on the transformation type that is populated from

φt, e.g., D = 6 for affine transformation. We take affine transformation as an example to describe

the warping process. We start by randomly sampling rframe and the sequence of φt along with

initializing each element in the sequence of rt with zero in every iteration. TRANS-WARP then

computes rt by warping rframe using the parameters in φt = [φt11, φ
t
12, φ

t
13, φ

t
21, φ

t
22, φ

t
23] ∈ R6

of Φwarp ∈ RT×6 as follows. For all C channels, let (p, q) and (u, v) be the target and source

coordinates in rt and rframe, respectively. rt (for all channels) is computed as

rt(p, q)← rframe(u, v), 1 ≤ p, u ≤ H, 1 ≤ q, v ≤W. (4.6)

Location (p, q) is computed using the affine transform matrixMφt created with φt in homogeneous

coordinates [94] as shown below. t is dropped for simplicity.

p

q

1


=Mφ



u

v

1


=



φ11 φ12 φ13

φ21 φ22 φ23

0 0 1





u

v

1


(4.7)

We compactly denote this warping operation in (4.6) and (4.7) with rt = T (rframe,φt). Affine

transformation allows translation, rotation, scaling, and skew to be applied to rframe to get each
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Algorithm 3 GRAD-EST(x(i−1), g(i−1) ∈ RT×H×W×C , y)→ Estimate ∆ = ∇g`(g) ∈ RT×H×W×C

Input : video x(i), label y, gradient estimator g(i−1), δ for loss variation, ε for approximation.

Output: estimation of ∆ = ∇g`(g)

8 Sample rframe ∈ RH×W×C , Φwarp ∈ RT×D (each element from a normal distribution N (0, 1))
π = TRANS-WARP(rframe,Φwarp) /* Use Geometric Transformations */

w1 = g(i−1) + δπ, w2 = g(i−1) − δπ
L1 = L(x(i−1) + εw2, y), L2 = L(x(i−1) + εw1, y) /* Query victim model twice */

∆ = (L2 − L1)π/εδ

return ∆

rt. Therefore, the sequence of rt have affine geometric progression among its temporal dimen-

sion. Other examples of geometric transformations may be more constrained, such as the similarity

transformationMS
φ (that allows translation, dilation (uniform scale) and rotation with D = 4) and

translation-dilationMTD
φ (that allows translation and uniform dilation withD = 3) as shown below.

[φ11, φ12, φ13, φ23]→MS
φ =



φ11 φ12 φ13

−φ12 φ11 φ23

0 0 1


, [φ11, φ13, φ23]→MTD

φ =



φ11 0 φ13

0 φ11 φ23

0 0 1


(4.8)

4.5 What Makes GEO-TRAP Effective?

Potent iterative algorithms should rely on few queries for crafting successful perturbations

for time efficiency. To minimize the number of queries, iterative algorithms need to find strong

gradients in their early iterations. As discussed earlier, videos inherently incur a larger search space

due to the temporal dimension and thus, pose challenges in searching for effective gradients. In

this section, we provide empirical evidence to show that by parameterizing the temporal dimension,

GEO-TRAP finds better gradients, in general, than previous works. We use three baselines in this
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Figure 4.2: Gradient Analysis of GEO-TRAP. (a) GEO-TRAP’s high query-efficiency is a direct implication
of good quality gradient estimation (for both targeted and untargeted attack), shown here with higher cosine
similarity with g? compared to other methods. (b) Better quality of estimated gradients by GEO-TRAP results
in a successful attack with fewer queries compared to other attacks.

analysis.

• MULTINOISEATTACK [116] which computes search directions rt separately for each frame by

sampling each element of rt from a standard normal distribution, resulting in a search space

dimension of T ×H ×W ×C. It does not explicitly consider the temporal dimension; temporal

progression in any arbitrary direction is possible between a sequence of perturbation frames.

• ONENOISEATTACK which computes r1 by sampling each element from a standard normal dis-

tribution and applies the same r1 across all rt(t = 1, 2, · · · , T ). ONENOISEATTACK reduces the

search space but completely ignores the temporal dimension when generating the perturbation.

• MOTIONSAMPLERATTACK [290] which uses the optical flow of the original video x to warp

rframe to get each rt. It reduces the search space by using the motion prior of x as the temporal

progression between perturbation frames. In contrast, rather than fixing the temporal search

space using a motion prior, GEO-TRAP parameterizes the temporal structure of the space with

Φwarp.
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Algorithm 4 TRANS-WARP(rframe ∈ RH×W×C , Φwarp ∈ RT×D)→ Estimate π ∈ RT×H×W×C

Input : noise tensor rframe, warp tensors Φwarp, transformation operation Tφ(·).

Output: candidate directions π = [r1, r2, · · · , rT ].

9 Initialize π = ∅

for t = [1, 2, · · · , T ] do

10 φt = Φwarp[t]

rt = T (rframe, φt) /* Warping Operation */

π ← append rt

11 end

12 return π

We measure the gradient estimation quality by calculating the cosine similarity between

the ground truth g? and the estimated gradient g following [124] for the aforementioned baselines.

For each attack, we average over 1000 randomly selected videos with their cosine similarity values

in the first attack iteration. We choose the first iteration because the initial g? is the same for

the different attack methods, ensuring a fair comparison. As shown in Figure 4.2a, our proposed

method for estimating the gradients, yields g of the best quality for both untargeted and targeted

attacks among all evaluated approaches. This leads to faster loss convergence / few queries as

shown in Figure 4.2b. We validate such trends with different loss functions and more datasets in the

Supplementary Material.

The empirical results validate that by carefully considering the temporal dimension and

parameterizing the temporal structure of the gradient search space with geometric transformations,

GEO-TRAP finds better gradients. GEO-TRAP and MOTIONSAMPLERATTACK [290] are better

than the other two; the reason could be that temporally structured perturbations are more likely to

disrupt the motion context of videos. However, the gradients estimated by MOTIONSAMPLERAT-

TACK [290] are not as effective as our proposed approach; the reason could be that the motion-prior
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of the clean video does not necessarily represent the temporal behavior of effective video pertur-

bations. By allowing flexibility of the temporal progression while maintaining only a minimally

sufficient space through its geometric parameterization, GEO-TRAP generates effective temporally

structured perturbations. Note that one could use other, potentially better ways to parameterize the

temporal progression of the video perturbation; this is regarded as future works.

4.6 Experiments

Datasets. Following previous work like [146], we use the human action recognition dataset UCF-

101 [238] and the hand gesture recognition dataset 20BN-JESTER (Jester) [176] to validate our

attacks. UCF-101 includes 13320 videos from 101 human action categories (e.g., applying lipstick,

biking, blow drying hair, cutting in the kitchen). Given the diversity it provides, we consider the

dataset to validate the feasibility of our attacks on coarse-grained actions. Jester, on the other hand,

includes hand gesture videos that are recorded by crowd-sourced workers performing 27 kinds of

gestures (e.g., sliding hand left, sliding two fingers left, zooming in with full hand, zooming out

with full hand). The appearance of different hand gestures is similar; it is the motion information

that matters in the video classification. We use this dataset to validate our attack with regard to

fine-grained actions.

Baselines. Among the four state-of-the-art black-box video attack methods [124, 267, 282, 290]

described in Section 4.3, we use [282, 290] as baselines for following reasons. Our first baseline

is MOTIONSAMPLERATTACK [290], which has been shown to outperform PATCHATTACK [124]

, ONE-NOISE and MULTI-NOISE attacks (introduced in Section. 4.5). Our second baseline is

HEURISTICATTACK [267]. We note that SPARSEATTACK [282] is not included in our analysis
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as we couldn’t replicate their results.

Attack Settings. We consider four state-of-the-art video classification models representing di-

verse methodologies of learning from videos, i.e., C3D [253], SlowFast [75], TPN [283] and

I3D [32], as our black-box victim models to attack. More details about the four video models

are provided in the Supplementary Materials. For UCF-101, we randomly select one video from

each category following the setting in [124,290]. For Jester, since the number of categories is small,

we randomly select four videos from each category. All attacked videos are correctly classified

by the black-box model. For targeted attack, a random target class is chosen for each video. The

maximum noise value ρmax is 10 pixel values (out of 255) following [146, 181, 185]. We provide

more results for different ρmax in Supplementary Material. Note that since the perturbation gen-

erated by HEURISTICATTACK [267] is sparse and thus more imperceptible, we do not impose a

perturbation budget on it. We set the maximum query limit to Q = 60, 000 for untargeted attack

and Q = 200, 000 for targeted attack. The other hyper-parameters, i.e., ε, δ, η, and h take the same

values as mentioned in [290]. Unless otherwise specified, a transformation-dilation transformation

(with D = 3) is used for our query-based attack. We provide the implementation of GEO-TRAP in

the Supplementary Material as code.zip.

Metrics. Following [124, 290], we evaluate GEO-TRAP, in terms of (a) Success Rate (SR), i.e.,

the total success rate in attacking within query and perturbation budgets; and (b) Average Number

of Queries (ANQ) i.e., the average total queries from attacks for all videos (including failed ones).
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Figure 4.3: Visualization of Perturbations and Perturbed Video. We visualize the generated perturbations
and perturbed video for GEO-TRAP and other baselines for UCF-101 (left) and Jester (right) datasets for
untargeted attack against SlowFast classifier with ρmax = 10/255.

4.6.1 Comparison to State-of-the-Art

Untargeted Attack. We report the untargeted attack performance of our attack method and the

baseline methods in Table 4.2. We observe that, in general, GEO-TRAP requires fewer average

number of queries when attacking different black-box victim models: on average over 45 % fewer

queries than MOTIONSAMPLERATTACK [290]. At the same time, GEO-TRAP yields higher attack

success rates: on average about 6% higher than HEURISTICATTACK [267]. When attacking Slow-

Fast model on the Jester dataset, GEO-TRAP achieves 100% successful rate with only 521 queries

while the baseline methods need at least 1906 queries. We also observe that the TPN model is more

robust towards black-box attacks compared with the other three video recognition models.
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Visualization. We show two visualizations of adversarial frames on Jester and UCF-101 in Fig. 4.3.

We observe that the generated adversarial frames have little difference from the clean ones but can

lead to a failed classification. Also, our attack method could lead to sparse perturbations in the spa-

tial and temporal dimension as the perturbations are sometimes zoomed out (thus get very small),

and sometimes are translated out of the sight with choice of geometric transformation. More exam-

ples are in the Supplementary Material.

Targeted Attack. We report the targeted attack performance of our method and the baseline meth-

ods in Table. 4.3. We observe that in some cases, HEURISTICATTACK [267] requires fewer number

of queries than GEO-TRAP, but its attack success rates are pretty low in those cases. For example,

when attacking the TPN model on the Jester dataset, although HEURISTICATTACK [267] requires

only 12k average number of queries, its attack success rate is less than half of ours, 44.4% v.s.

92.6%. The reason is that the gradient estimated by HEURISTICATTACK [267] may vanish after a

certain number of queries. GEO-TRAP consistently yields higher attack success rates, on average

over 30% higher than HEURISTICATTACK [267] and over 8% higher than MOTIONSAMPLERAT-

TACK [290]. In addition, in most cases, GEO-TRAP requires fewer average number of queries

than the two baseline attacks, on average over 45 % fewer queries than MOTIONSAMPLERAT-

TACK [290]. The targeted attack performance further validates the effectiveness of our method.
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Figure 4.4: Performance with different Mφ. GEO-TRAP results in best performance when Mφ is set as
translation-dilation operation.

4.6.2 Different Geometric Transformations in TRANS-WARP

As discussed in Section 4.4.2, different kinds of geometric transformations could be used

in the TRANS-WARP function. In addition to the translation-dilation transformation (MTD
φ in (4.8),

D = 3) employed throughout the chapter, we report the performance of GEO-TRAP with two

other different geometric transformations, i.e., similarity transformation (MS
φ in (4.8), D = 4) and

affine transformation (Mφ in (4.7), D = 6). Figure 4.7 shows the untargeted attack performance

on Jester with these different geometric transformations (more results are available in the Supple-

mentary Material). We observe that the transformation with fewer degrees of freedom (DOF) (

translation-dilation transformation) tends to require fewer queries while having the same or higher

attack success rates (the attack success rates are available in the Supplementary Material). We be-

lieve that D = 3 provides enough temporal flexibility to disrupt the motion context of the videos;

additional degrees of freedom seemingly increase the search space unnecessarily, resulting in more

queries.
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4.7 Conclusion

Black-box adversarial attacks on video classifiers is a challenging problem that has been

largely understudied. In this work, we demonstrate that searching for effectual gradients in a reduced

but structured search space for crafting perturbations leads to highly successful attacks with fewer

queries compared to state-of-the-art attack strategies. In particular, we propose a novel iterative

algorithm that employs Geometric transformations to parameterize and reduce the search space, for

estimating gradients that maximize the probability of mis-classification of the perturbed video. This

simple and novel strategy exposes the vulnerability of widely used video classification models. For

instance, GEO-TRAP decreases average query numbers by 64.78%, 72.66% and 47.21% to attack

C3D, SlowFast, and I3D, respectively, for close to a 100% success rate in untargeted attacks.

4.8 Broader Impact

In this work, by leveraging geometric transformations for effective gradient estimations,

we propose a highly query-efficient adversarial attack on video classification models which demon-

strates state-of-the-art results. As more and more safety-critical systems (e.g., perceptual modules in

autonomous vehicles) nowadays rely on video models, we are hopeful that our work, in addition to

future research, can eventually help build sufficiently robust video models to best avoid malicious

sub-versions. On one hand, we believe our algorithm could allow further research in adversarial

robustness and data augmentation strategies of deep vision models. It should also give a direction

to researchers to design counter defense methodologies. On the other hand, it highlights a key

drawback of different video classifiers which will allow adversaries to design more sophisticated at-

tacks, both in white-box and black-box settings. Addressing such fallacies in designing deep neural
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networks is of utmost importance before introducing them in real-world scenarios.

4.9 Appendix

In this Supplementary Material, we present details about the victim video classification

models used in our experiments. We present more attack performance results with different pertur-

bation budgets to further validate the efficiency and effectiveness of our method, GEO-TRAP. We

report the error bars with respect to three sources of randomness during adversarial attacks. We

compare different geometric transformations on more datasets and attack goals. We measure the

gradient estimation quality with more loss functions and how that GEO-TRAP consistently estimate

better gradients compare to the baseline methods. We provide more visualization examples of the

generated adversarial examples. Last, we talk about the implementation code of GEO-TRAP.

4.9.1 Victim Video Classifiers: Clean Test Accuracy

We consider four state-of-the-art video classification models, representing diverse method-

ologies of learning from videos, i.e., C3D [253], SlowFast [75], TPN [283] and I3D [32], as our

black-box victim models to perform adversarial attack. The C3D model applies 3D convolution to

learn spatio-temporal features from videos. SlowFast uses a two-pathway architecture where the

slow pathway operates at a low frame rate to capture spatial semantics and the fast pathway op-

erates at a high frame rate to capture motion at fine temporal resolution. TPN captures actions at

various tempos by using a feature-level temporal pyramid network. I3D proposes the Inflated 3D

ConvNet(I3D) with Inflated 2D filters and pooling kernels of traditional 2D CNNs. All the models

are trained using open-source toolbox MMAction2 [49] with their default setups. The test accuracy
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of the victim models with clean 16-frame videos on both UCF-101 and Jester datasets are shown in

Table 4.4. Note that both datasets do not contain personally identifiable information and offensive

contents.

4.9.2 Additional Experiments with Different Perturbation Budgets

We present additional analysis of the attack performance of GEO-TRAP and our two base-

line methods, i.e., HEURISTICATTACK [267] and MOTIONSAMPLERATTACK [290] for ρmax =

8, 16 in Table 4.5. Note that for comprehensibility, we also provide the results for ρmax = 10

from the main chapter in Table 4.5. We observe that GEO-TRAP consistently outperforms MO-

TIONSAMPLERATTACK [290]; GEO-TRAP requires less number of queries while achieves same or

higher attack success rates.

4.9.3 Statistical Comparison of Different Attack Methods

We have three sources of randomness in our experiments: a) the sampling of rframe in both

GEO-TRAP and MOTIONSAMPLERATTACK [290] and the sampling of Φwarp in GEO-TRAP; b)

direction initialization sampling in HEURISTICATTACK [267]; c) target label sampling in targeted

adversarial attacks for all three methods. To account for all these three randomness, we run the

targeted attack against I3D model on Jester dataset under perturbation budget ρmax = 16 for the

three methods for five times. Using targeted attack strategy allows us to include the randomness of

the target label sampling. We choose Jester dataset as it generally takes few queries to attack Jester

dataset, thus saving testing time. We choose perturbation budget ρmax = 16 as we observe that the

89



Heuristic Motion Sampler Geo-Trap

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Attack Methods

A
ve
ra
g
e
N
u
m
b
er

of
Q
u
er
ie
s

Heuristic Motion Sampler Geo-Trap

75%

80%

85%

90%

95%

100%

Attack Methods

S
u
cc
es
s
R
at
e

Figure 4.5: Error bar plot to compare the performance (success rate and average number of queries) of
different attack methods. We observe that our method outperforms the baseline methods in a statistically
significant way. Detailed numbers are presented in Table 4.6

attacks under such budget generally take few queries. We choose I3D model because compared to

C3D and SlowFast, the attack success rates against I3D are not always 100%; which is good for

measuring the error bars for the attack success rates. In addition, compared to TPN, it generally

takes fewer queries to launch the attack against I3D.

We report the mean, standard deviation, and standard error in Table 4.6 and present the

error bar plot (with mean and standard error) in Figure 4.5. GEO-TRAP, compared to other methods,

requires statistically fewer number of queries while achieving statistically higher attack success rates

than the baseline methods.

4.9.4 Additional Experiments with Different Geometric Transformations

GEO-TRAP can employ different kinds of geometric transformations in the TRANS-WARP

function. In addition to the translation-dilation transformation (D = 3) employed throughout the

main chapter, we report the performance of GEO-TRAP with two other different geometric transfor-

mations, i.e., similarity transformation (D = 4) and affine transformation (D = 6).

Recall that untargeted attack performance of GEO-TRAP using these three geometric
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transformations on Jester dataset is reported in the main chapter. In this section, we present the

a more comprehensive set of results on both targeted and untargeted attacks, for both Jester and

UCF-101 datasets in Table 4.7. We observe that the transformation with fewer degrees of freedom,

i.e., translation-dilation transformation tends to requires fewer queries while having the same or

higher attack success rates on Jester Dataset; this trend is consistent no matter which attack goal

is used. On UCF-101 dataset, the transformations with fewer degrees of freedom, i.e., translation-

dilation transformation and similarity transformation, require fewer queries while having the same

or higher attack success rates compared to the affine transformation.

4.9.5 Additional Experiments on GEO-TRAP with Different Loss Functions

In this section, we further validate that, compared to our three baseline methods (i.e.,

MULTINOISEATTACK [116], ONENOISEATTACK, MOTIONSAMPLERATTACK [290]), the gradi-

ents searched with GEO-TRAP are better. This is demonstrated by the fact that GEO-TRAP’s gra-

dients generally have larger cosine similarity with the ground truth gradients. This trend is loss

function agnostic, with both untargeted and targeted attacks, as shown in Figure 4.6. We consider

four attack loss functions, three untargeted attack loss functions and one targeted attack loss func-

tion, described below.

We start with explaining the flicker loss used for untargeted attack and the cross-entropy

loss used for targeted attack in the main chapter. Flicker loss is defined with the probability scores

of the top-2 labels returned by fθ(x) following [206]. In particular, if the attack is not successful,

the most likely label predicted by fθ(x) will be the true label y. We denote the probability score

associated with this label as py(x). Similarly, we denote the second most likely label predicted
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by fθ(x) as y′ and its corresponding probability score as py′(x). The loss function is defined

to encourage py′(x) increasing and py(x) decreasing until py′(x) > py(x) and y′ becomes the

predicted top-1 label. This loss function can be mathematically denoted as follows.

Lflicker(x, y) =

[
min

(
1

m
K(x, y)2,K(x, y)

)]
+

with, K(x, y) = py(x)− py′(x) +m (4.9)

Here, [a]+ = max(0, a) and m > 0 is the desired margin of the original class probability below the

adversarial class probability. We refer readers to [206] for more detailed explanation of (4.9).

For the targeted attack, the cross-entropy loss is defined as follows.

L(x, y>) = − log
(
py>(x)

)
(4.10)

where py>(x) is the probability score of the target label returned by fθ(x).

In addition to the above loss functions, we consider two other untargeted loss functions

for gradient analysis of attacks methods. The first one is the untargeted attack loss function defined

in [290] based on CW2 loss [31] as shown in the following.

Lcw(x, y) =
[
py(x)− py′(x)

]
+

(4.11)

where, py(x) is the largest probability score, which should be associated with the true label y, and

py′(x) is the second largest probability score, which is associated with the second most confident

label y′. The second loss is a cross-entropy loss where a lower py(x) is encouraged, as shown in

the following.

Lce(x, y) = − log
(
1− py(x)

)
(4.12)

We calculate the average cosine similarity (over 1000 randomly chosen samples) between

the ground truth gradients and the estimated gradients for GEO-TRAP and the three baselines. As
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shown in Figure 4.6, for all the five different loss functions considered and on both Jester (see

Figure 4.6a) and UCF-101 (see Figure 4.6b) dataset, the gradients searched by GEO-TRAP have

better quality consistently. This explains why GEO-TRAP requires less number of queries while

achieving the same or higher attack success rates.
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Figure 4.6: Evaluation of gradient estimation quality by calculating the cosine similarity between the ground
truth gradient g? and the estimated gradient g calculated by different attack methods.

4.9.6 Additional Examples of Adversarial Videos

In this section, we provide additional adversarial examples on both Jester and UCF-101

datasets as shown in Figure 4.7. We observe that the generated adversarial frames have little differ-

ence from the clean ones but can lead to a failed classification.
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Figure 4.7: The visualization of the perturbation (×10) and adversarial frames of our methods and the two
baseline methods on Jester (left column) and UCF-101 datasets (right column).
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Table 4.2: Untargeted Attacks. GEO-TRAP demonstrates highly successful untargeted attacks (high Success
Rate (SR)) with fewer queries (low Average Number of Queries (ANQ))

Black-box Video Classifiers

C3D SlowFast TPN I3DDatasets Methods

ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑)

Jester

HEURISTICATTACK [267] 4699 99.0% 3572 98.1% 4679 82.0% 4248 98.1%

MOTIONSAMPLERATTACK [290] 4549 99.0% 1906 100% 6269 91.3% 3029 99.4%

GEO-TRAP (Ours) 1602 100% 521 100% 3315 92.4% 1599 100%

UCF-101

HEURISTICATTACK [267] 5206 70.2% 3507 87.2% 6539 71.8% 6949 84.7%

MOTIONSAMPLERATTACK [290] 14336 81.6% 4673 97.2% 20369 75.8% 7400 94.4%

GEO-TRAP (Ours) 11490 86.2% 1547 98.8% 17716 76.1% 4887 97.4%

Table 4.3: Targeted Attacks. GEO-TRAP demonstrates highly successful targeted attacks (high Success Rate
(SR)) with fewer queries (low Average Number of Queries (ANQ))

Black-box Video Classifiers

C3D SlowFast TPN I3DDatasets Methods

ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑)

Jester

HEURISTICATTACK [267] 15595 46.3% 30768 98.1% 12006 44.4% 31088 77.8%

MOTIONSAMPLERATTACK [290] 26704 98.2% 33087 100% 63721 80.9% 39037 90.7%

GEO-TRAP (Ours) 6198 100% 7788 100% 41294 92.6% 19542 98.2%

UCF-101

HEURISTICATTACK [267] 26741 29.0% 22152 61.4% 71828 36.4% 92244 43.7%

MOTIONSAMPLERATTACK [290] 100467 71.1% 57126 86.0% 151409 31.6% 96498 59.6%

GEO-TRAP (Ours) 71820 85.8% 21878 95.0% 141629 40.0% 76708 74.6%
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Table 4.4: Clean test Accuracy of the victim classifiers

Black-box Video Classifiers
Datasets

C3D SlowFast TPN I3D

UCF-101 78.8% 85.4% 74.3% 71.7%

Jester 90.1% 89.5% 90.5% 91.2%
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Table 4.5: Additional analysis of attack performance with different perturbation budgets ρmax

Black-box Video Classifiers

C3D SlowFast TPN I3DBudget Methods

ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑)

Attack: Untargeted, Dataset: Jester

ρmax = 8

MOTIONSAMPLERATTACK [290] 7310 96.3% 1926 100% 8056 91.3% 5482 98.1%

GEO-TRAP (Ours) 2614 100% 553 100% 4518 92.4% 2312 100%

ρmax = 10

MOTIONSAMPLERATTACK [290] 4549 99.0% 1906 100% 6269 91.3% 3029 99.4%

GEO-TRAP (Ours) 1602 100% 521 100% 3315 92.4% 1599 100%

ρmax = 16

MOTIONSAMPLERATTACK [290] 2201 100% 1421 100% 3786 96.3% 1347 100%

GEO-TRAP (Ours) 311 100% 137 100% 3147 96.3% 551 100%

Attack: Untargeted, Dataset: UCF-101

ρmax = 8

MOTIONSAMPLERATTACK [290] 16848 78.0% 5436 95.0% 20687 70.0% 9242 92.0%

GEO-TRAP (Ours) 12100 84.0% 2064 98.0% 18433 74.0% 6647 97.0%

ρmax = 10

MOTIONSAMPLERATTACK [290] 14336 81.6% 4673 97.2% 20369 75.8% 7400 94.4%

GEO-TRAP (Ours) 11490 86.2% 1547 98.8% 17716 76.1% 4887 97.4%

ρmax = 16

MOTIONSAMPLERATTACK [290] 11605 82.0% 1944 99.% 18055 75.8% 4437 96.0%

GEO-TRAP (Ours) 9006 86.2% 858 99.0% 15972 76.1% 2643 98.0%

Attack: Targeted, Dataset: Jester

ρmax = 8

MOTIONSAMPLERATTACK [290] 42136 92.6% 39833 98.1% 121800 52.2% 48788 85.2%

GEO-TRAP (Ours) 9333 100% 11433 98.1% 51799 88.9% 25552 96.3%

ρmax = 10

MOTIONSAMPLERATTACK [290] 26704 98.2% 33087 100% 63721 80.9% 39037 90.7%

GEO-TRAP (Ours) 6198 100% 7788 100% 41294 92.6% 19542 98.2%

ρmax = 16

MOTIONSAMPLERATTACK [290] 8696 100% 18901 100% 40643 90.7% 25308 94.4%

GEO-TRAP (Ours) 4219 100% 3855 100% 16979 96.3% 9110 100%

Attack: Targeted, Dataset: UCF-101

ρmax = 8

MOTIONSAMPLERATTACK [290] 136327 51.7% 72807 76.7% 153355 35.0% 107304 51.1%

GEO-TRAP (Ours) 90401 82.5% 27306 93.0% 150052 36.8% 91773 59.3%

ρmax = 10

MOTIONSAMPLERATTACK [290] 100467 71.1% 57126 86.0% 151409 31.6% 96498 59.6%

GEO-TRAP (Ours) 71820 85.8% 21878 95.0% 141629 40.0% 76708 74.6%

ρmax = 16

MOTIONSAMPLERATTACK [290] 69344 79.6% 37759 92.8% 143504 45.0% 70707 75.0%

GEO-TRAP (Ours) 35641 98.0% 18177 95.0% 132065 45.5% 44400 86.0%
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Table 4.6: Statistical results with respect to the random seed after running attacks multiple times (Attack:
Targeted, victim classifier: I3D, Dataset: Jester, perturbation budget: ρmax = 16)

Methods

HEURISTIC MOTION SAMPLER GEO-TRAP

ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑)

Run 1 31088 77.9% 25308 94.4% 9110 100%

Run 2 38388 76.0% 20290 96.3% 10110 100%

Run 3 42098 74.1% 23356 94.4% 5758 100%

Run 4 42022 74.0% 24464 96.3% 7799 100%

Run 5 27431 81.5% 25312 94.4% 11782 100%

Mean 36205 76.7% 23746 95.2% 8912 100%

Standard Deviation 6643 3.1% 2092 1.0% 2286 0%

Standard Error 2971 1.4% 936 0.5% 1022 0%

99



Table 4.7: Additional analysis of attack performance of GEO-TRAP with different geometric transformations
Mφ

Black-box Video Classifiers

C3D SlowFast TPN I3DGeometric Transformations,Mφ

ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑)

Attack: Untargeted, Dataset: Jester

Translation Dilation 1602 100% 521 100% 3315 92.4% 1599 100%

Similarity 1621 100% 532 100% 3746 92.4% 1629 100%

Affine 2716 100% 1057 100% 4579 91.6% 2679 100%

Attack: Targeted, Dataset: Jester

Translation Dilation 6198 100% 7788 100% 41294 92.6% 19542 98.2%

Similarity 6431 100% 7939 100% 42594 90.7% 19369 98.2%

Affine 10326 100% 15360 100% 55276 90.7% 32006 94.4%

Attack: Untargeted, Dataset: UCF-101

Translation Dilation 11490 86.2% 1547 98.9% 17716 76.1% 4887 97.4%

Similarity 10624 85.8% 1489 98.6% 17492 76.7% 5694 95.0%

Affine 12792 84.8% 3088 98.0% 17773 75.0% 8291 94.0%
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Chapter 5

Connecting the Dots: Detecting

Adversarial Perturbations Using

Context Inconsistency

5.1 Abstract

There has been a recent surge in research on adversarial perturbations that defeat Deep

Neural Networks (DNNs) in machine vision; most of these perturbation-based attacks target object

classifiers. Inspired by the observation that humans are able to recognize objects that appear out

of place in a scene or along with other unlikely objects, we augment the DNN with a system that

learns context consistency rules during training and checks for the violations of the same during

testing. Our approach builds a set of auto-encoders, one for each object class, appropriately trained

so as to output a discrepancy between the input and output if an added adversarial perturbation
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Physical Adversarial Perturbation Attack

 Stop line, zebra crossing, ... 
then speed limit sign? suspicious!

Vulnarable 
DNNs

Proposed Context-
Aware DNN

Figure 5.1: An example of how our proposed context-aware defense mechanism works. Previous studies [69,
235] have shown how small alterations (graffiti, patches etc.) to a stop sign make a vulnerable DNN classify
it as a speed limit. We posit that a stop sign exists within the wider context of a scene (e.g., zebra crossing
which is usually not seen with a speed limit sign). Thus, the scene context can be used to make the DNN
more robust against such attacks.

violates context consistency rules. Experiments on PASCAL VOC and MS COCO show that our

method effectively detects various adversarial attacks and achieves high ROC-AUC (over 0.95 in

most cases); this corresponds to over 20% improvement over a state-of-the-art context-agnostic

method.

Key Words: object detection, adversarial perturbation, context

5.2 Introduction

Recent studies have shown that Deep Neural Networks (DNNs), which are the state-of-

the-art tools for a wide range of tasks [58, 97, 125, 177, 242], are vulnerable to adversarial pertur-

bation attacks [146, 299]. In the visual domain, such adversarial perturbations can be digital or

physical. The former refers to adding (quasi-) imperceptible digital noises to an image to cause

a DNN to misclassify an object in the image; the latter refers to physically altering an object so

that the captured image of that object is misclassified. In general, adversarial perturbations are not

readily noticeable by humans, but cause the machine to fail at its task.

To defend against such attacks, our observation is that the misclassification caused by
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adversarial perturbations is often out-of-context. To illustrate, consider the traffic crossing scene

in Fig. 5.1; a stop sign often co-exists with a stop line, zebra crossing, street nameplate and other

characteristics of a road intersection. Such co-existence relationships, together with the background,

create a context that can be captured by human vision systems. Specifically, if one (physically)

replaces the stop sign with a speed limit sign, humans can recognize the anomaly that the speed

limit sign does not fit in the scene. If a DNN module can also learn such relationships (i.e., the

context), it should also be able to deduce if the (mis)classification result (i.e., the speed limit sign)

is out of context.

Inspired by these observations and the fact that context has been used very successfully

in recognition problems, we propose to use context inconsistency to detect adversarial perturbation

attacks. This defense strategy complements existing defense methods [88, 121, 156], and can cope

with both digital and physical perturbations. To the best of our knowledge, it is the first strategy to

defend object detection systems by considering objects “within the context of a scene.”

We realize a system that checks for context inconsistencies caused by adversarial pertur-

bations, and apply this approach for the defense of object detection systems; our work is motivated

by a rich literature on context-aware object recognition systems [15, 66, 105, 163]. We assume a

framework for object detection similar to [216], where the system first proposes many regions that

potentially contain objects, which are then classified. In brief, our approach accounts for four types

of relationships among the regions, all of which together form the context for each proposed region:

a) regions corresponding to the same object (spatial context); b) regions corresponding to other ob-

jects likely to co-exist within a scene (object-object context; c) the regions likely to co-exist with the

background (object-background context); and d) the consistency of the regions within the holistic
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scene (object-scene context). Our approach constructs a fully connected graph with the proposed

regions and a super-region node which represents the scene. In this graph, each node has, what we

call an associated context profile.

The context profile is composed of node features (i.e., the original feature used for classi-

fication) and edge features (i.e., context). Node features represent the region of interest (RoI) and

edge features encode how the current region relates to other regions in its feature space representa-

tion. Motivated by the observation that the context profile of each object category is almost always

unique, we use an auto-encoder to learn the distribution of the context profile of each category. In

testing, the auto-encoder checks whether the classification result is consistent with the testing con-

text profile. In particular, if a proposed region (say of class A) contains adversarial perturbations

that cause the DNN of the object detector to misclassify it as class B, using the auto-encoder of

class B to reconstruct the testing context profile of class A will result in a high reconstruction error.

Based on this, we can conclude that the classification result is suspicious.

The main contributions of our work are the following.

• To the best of our knowledge we are the first to propose using context inconsistency to detect

adversarial perturbations in object classification tasks.

•We design and realize a DNN-based adversarial detection system that automatically extracts con-

text for each region, and checks its consistency with a learned context distribution of the corre-

sponding category.

•We conduct extensive experiments on both digital and physical perturbation attacks with three dif-

ferent adversarial targets on two large-scale datasets - PASCAL VOC [68] and Microsoft COCO [154].

Our method yields high detection performance in all the test cases; the ROC-AUC is over 0.95 in
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most cases, which is 20-35% higher than a state-of-the-art method [278] that does not use context

in detecting adversarial perturbations.

5.3 Related Work

We review closely-related work and its relationship to our approach.

Object Detection, which seeks to locate and classify object instances in images/videos,

has been extensively studied [153, 158, 214, 216]. Faster R-CNN [216] is a state-of-the-art DNN-

based object detector that we build upon. It initially proposes class-agnostic bounding boxes called

region proposals (first stage), and then outputs the classification result for each of them in the second

stage.

Adversarial Perturbations on Object Detection, and in particular physical perturbations

targeting DNN-based object detectors, have been studied recently [36, 235, 293] (in addition to

those targeting image classifiers [10,69,137]). Besides mis-categorization attacks, two new types of

attacks have emerged against object detectors: the hiding attack and the appearing attack [36, 235]

(see Section 5.4.1 for more details). While defenses have been proposed against digital adversarial

perturbations in image classification, our work focuses on both digital and physical adversarial

attacks on object detection systems, which is an open and challenging problem.

Adversarial Defense has been proposed for coping with digital perturbation attacks in

the image domain. Detection-based defenses aim to distinguish perturbed images from normal

ones. Statistics based detection methods rely on extracted features that have different distributions

across clean images and perturbed ones [76, 99, 156]. Prediction inconsistency based detection

methods process the images and check for consistency between predictions on the original images
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and processed versions [151, 278]. Other methods train a second binary classifier to distinguish

perturbed inputs from clean ones [148, 167, 179]. However many of these are effective only on

small and simple datasets like MNIST and CIFAR-10 [30]. Most of them need large amounts of

perturbed samples for training, and very few can be easily extended to region-level perturbation

detection, which is the goal of our method. Table 5.1 summarizes the differences between our

method and the other defense methods; we extend FeatureSqueeze [278], considered a state-of-

the-art detection method, which squeezes the input features by both reducing the color bit depth of

each pixel and spatially smoothening the input images, to work at the region-level and use this as a

baseline (with this extension its performance is directly comparable to that of our approach).

Context Learning for Object Detection has been studied widely [15, 66, 103, 194, 250].

Earlier works that incorporate context information into DNN-based object detectors [43,77,187] use

object relations in post-processing, where the detected objects are re-scored by considering object

relations. Some recent works [37, 141] perform sequential reasoning, i.e., objects detected earlier

are used to help find objects later. The state-of-the-art approaches based on recurrent units [163] or

neural attention models [105] process a set of objects using interactions between their appearance

features and geometry. Our proposed context learning framework falls into this type, and among

these, [163] is the one most related to our work. We go beyond the context learning method to define

the context profile and use context inconsistency checks to detect attacks.
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Detection

Beyond

MNIST

CIFAR

Do not need

perturbed samples

for training

Extensibility to

object detection

PCAWhiten [99] 7 3 7, PCA is not feasible on large regions

GaussianMix [76] 7 7 7, Fixed-sized inputs are required

Steganalysis [156] 3 7 7, Unsatisfactory performance on small regions

ConvStat [179] 7 7 3

SafeNet [167] 3 7 3

PCAConv [148] 3 7 7, Fixed-sized inputs are required

SimpleNet [84] 7 7 3

AdapDenoise [151] 3 7 3

FeatureSqueeze [278] 3 3 3

Table 5.1: Comparison of existing detection-based defenses; since FeatureSqueeze [278] meets all the basic
requirements of our approach, it is used as a baseline in the experimental analysis.

5.4 Methodology

5.4.1 Problem Definition and Framework Overview

We propose to detect adversarial perturbation attacks by recognizing the context incon-

sistencies they cause, i.e., by connecting the dots with respect to whether the object fits within the

scene and in association with other entities in the scene.

Threat Model. We assume a strong white-box attack against the two-stage Faster R-CNN model
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boat

person
...

horse misclassified as boat
boat

, attack!!≠

Training:

Testing:

context profile
(node features + edge features)

context profile

Figure 5.2: Training phase: a fully connected graph is built to connect the regions of the scene image – details
in Fig. 5.3; context information relating to each object category is collected and used to train auto-encoders.
Testing phase: the context profile is extracted for each region and input to the corresponding auto-encoder to
check if it matches with benign distribution.

where both the training data and the parameters of the model are known to the attacker. Since

there are no existing attacks against the first stage (i.e., region proposals), we do not consider such

attacks. The attacker’s goal is to cause the second stage of the object detector to malfunction by

adding digital or physical perturbations to one object instance/background region. There are three

types of attacks [36, 235, 293]:

• Miscategorization attacks make the object detector miscategorize the perturbed object as belong-

ing to a different category.

• Hiding attacks make the object detector fail in recognizing the presence of the perturbed object,

which happens when the confidence score is low or the object is recognized as background.

• Appearing attacks make the object detector wrongly conclude that the perturbed background

region contains an object of a desired category.

Framework Overview. We assume that we can get the region proposal results from the first stage
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of the Faster R-CNN model and the prediction results for each region from its second stage. We

denote the input scene image as I and the region proposals as RI = [r1, r2, ..., rN ], where N is the

total number of proposals of I . During the training phase, we have the ground truth category label

and bounding box for each ri, denoted as SI = [s1, s2, ..., sN ]. The Faster R-CNN’s predictions on

proposed regions are denoted as S̃I . Our goal as an attack detector is to identify perturbed regions

from all the proposed regions.

Fig. 5.2 shows the workflow of our framework. We use a structured DNN model to build

a fully connected graph on the proposed regions to model the context of a scene image. We name

this as Structure ContExt ModEl, or SCEME in short. In SCEME, we combine the node features and

edge features of each node ri, to form its context profile. We use auto-encoders to detect context

inconsistencies as outliers. Specifically, during the training phase, for each category, we train a

separate auto-encoder to capture the distribution of the benign context profile of that category. We

also have an auto-encoder for the background category to detect hiding attacks. During testing, we

extract the context profile for each proposed region. We then select the corresponding auto-encoder

based on the prediction result of the Faster R-CNN model and check if the testing context profile

belongs to the benign distribution. If the reconstruction error rate is higher than a threshold, we

posit that the corresponding region contains adversarial perturbations. In what follows, we describe

each step of SCEME in detail.

5.4.2 Constructing SCEME

In this subsection, we describe the design of the fully connected graph and the associated

message passing mechanism in SCEME. Conceptually, SCEME builds a fully connected graph on
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c) Message passing in SCEME: 

cj encodes location, scale and appearance of each RoI
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 ri'
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Figure 5.3: (a) The attack target model, the Faster R-CNN, is a two-stage detector. (b) SCEME is built upon
the proposed regions from the first stage of the Faster R-CNN, and updates the RoI features by message
passing across regions. (c) Zooming in on SCEME shows how it fuses context information into each RoI, by
updating RoI features via Region and Scene GRUs.

each scene image. Each node is a region proposal generated by the first stage of the target object

detector, plus the scene node. The initial node features, ri, are the RoI pooling features of the

corresponding region. The node features are then updated (ri → r′i) using message passing from

other nodes. After convergence, the updated node features r′i are used as inputs to a regressor

towards refining the bounding box coordinates and a classifier to predict the category, as shown in

Fig. 5.3(b). Driven by the object detection objective, we train SCEME and the following regressor

and classifier together. We freeze the weights of the target Faster R-CNN during the training. To

force SCEME to rely more on context information instead of the appearance information (i.e., node

features) when performing object detection, we apply a dropout function [101] on the node features

before inputing into SCEME, during the training phase. At the end of training, SCEME should be

able to have better object detection performance than the target Faster R-CNN since it explicitly

uses the context information from other regions to update the appearance features of each region via
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message passing. This is observed in our implementation.

We use Gated Recurrent Units (GRU) [41] with attention [11] as the message passing

mechanism in SCEME. For each proposed region, relationships with other regions and the whole

scene form four kinds of context:

• Same-object context: for regions over the same object, the classification results should be con-

sistent;

• Object-object context: co-existence, relative location, and scale between objects are usually cor-

related;

• Object-background context: the co-existence of the objects and the associated background re-

gions are also correlated;

• Object-scene context: when considering the whole scene image as one super region, the co-

existence of objects in the entire scene are also correlated.

To utilize object-scene context, the scene GRU takes the scene node features s as the input, and up-

dates ri → rscene. To utilize the other kinds of context, since we have no ground truth about which

object/background the regions belong to, we use attention to learn what context category to utilize

from different regions. The query and key (they encode information like location, appearance, scale,

etc.) pertaining to each region are defined similar to [163]. Comparing the relative location, scale

and co-existence between the query of the current region and the keys of all the other regions, the at-

tention system assigns different attention scores to each region, i.e., it updates ri, utilizing different

amount of information from {rj}j 6=i. Thus, rj is first weighted by the attention scores and then all

rj are summed up as the input to the Region GRU to update ri → rregions as shown in Fig. 5.3(c).

The corresponding output, rregions and rscene, are then combined via the average pooling function
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to get the final updated RoI feature vector r′.

5.4.3 Context Profile

In this subsection, we describe how we extract a context profile in SCEME. Recall that a

context profile consists of node features r and edge features, where the edge features describe how

r is updated. Before introducing the edge features that we use, we describe in detail how message

passing is done with GRU [41].

A GRU is a memory cell that can remember the initial node features r and then fuse

incoming messages from other nodes into a meaningful representation. Let us consider the GRU

that takes the feature vector v (from other nodes) as the input, and updates the current node features

r. Note that r and v have the same dimensions since both are from RoI pooling. GRU computes

two gates given v and r, for message fusion. The reset gate γr drops or enhances information in the

initial memory based on its relevance to the incoming message v. The update gate γu controls how

much of the initial memory needs to be carried over to the next memory state, thus allowing a more

effective representation. In other words, γr and γu are two vectors of the same dimension as r and

v, which are learned by the model to decide what information should be passed to the next memory

state given the current memory state and the incoming message. Therefore, we use the gate vectors

as the edge features in the context profile. There are, in total, four gate feature vectors from both the

Scene GRU and the Region GRU. Therefore, we define the context profile of a proposed region as

x = [r, γu1, γu2, γr1, γr2].
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Algorithm 5 SCEME: Training phase
Input : {RI , SI , S̃I}I∈TrainSet
Output: SCEME, AutoEncoderc for each object category c, and thresherr

13 SCEME← TrainSCEME( {RI , SI}I∈TrainSet)

ContextProfiles[c] = [] for each object category c

14 for each RI = [r1, r2, ...] do

15 XI = [x1, x2, ...]← ExtractContextProfiles(SCEME, RI)

for each region, its prediction, and its context profile {rj , s̃j , xj} do

16 c̃← GetPredictedCategory(s̃j)

ContextProfiles[c̃]← ContextProfiles[c̃] + xj

17 end

18 end

19 for each category c do

20 AutoEncoderc ← TrainAutoEncoder(ContextProfiles[c])

21 end

22 thresherr = GetErrThreshold({AutoEncoderc})
return SCEME, {AutoEncoderc}, thresherr

5.4.4 AutoEncoder for Learning Context Profile Distribution

In benign settings, all context profiles of a given category must be similar to each other.

For example, stop sign features exist with features of road signs and zebra crossings. Therefore, the

context profile of a stop sign corresponds to a unique distribution that accounts for these character-

istics. When a stop sign is misclassified as a speed limit sign, its context profile should not fit with

the distribution corresponding to that of the speed limit sign category.

For each category, we use a separate auto-encoder (architecture shown in the supplemen-

tary material) to learn the distribution of its context profile. The input to the auto-encoder is the

context profile x = [r, γu1, γu2, γr1, γr2]. A fully connected layer is first used to compress the node
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features (r) and edge features ([γu1, γu2, γr1, γr2]) separately. This is followed by two convolution

layers, wherein the node and edge features are combined to learn the joint compression. Two fully

connected layers are then used to further compress the joint features. These layers form a bottleneck

that drives the encoder to learn the true relationships between the features and get rid of redundant

information. SmoothL1Loss, as defined in [113, 276], between the input and the output is used to

train the auto-encoder, which is a common practice.

Once trained, we can detect adversarial perturbation attacks by appropriately thresholding

the reconstruction error. Giving a new context profile during testing, if a) the node features are not

aligned with the corresponding distribution of benign node features, or b) the edge features are

not aligned with the corresponding distribution of benign edge features, or c) the joint distribution

between the node features and the edge features is violated, the auto-encoder will not be able to

reconstruct the features using its learned distribution/relation. In other words, a reconstruction error

that is larger than the chosen threshold would indicate either an appearance discrepancy or a context

discrepancy between the input and output of the auto-encoder.

An overview of the approach (training and testing phases) is captured in Algorithms 5 and

6.

5.5 Experimental Analysis

We conduct comprehensive experiments on two large-scale object detection datasets to

evaluate the proposed method, SCEME, against six different adversarial attacks, viz., digital miscat-

egorization attack, digital hiding attack, digital appearing attack, physical miscategorization attack,

physical hiding attack, and physical appearing attack, on Faster R-CNN (the general idea can be
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Algorithm 6 SCEME: Testing phase
Input : RI , S̃I , SCEME, {AutoEncoderc}, thresherr
Output: perturbed regions PerturbedSet

23 PerturbedSet = []

XI = ExtractContextProfiles(SCEME, RI)

for each region, its prediction, and its context profile {rj , s̃j , xj} do

24 c̃← GetPredictedCategory(s̃j)

err = GetAutoEncoderReconErr(AutoEncoderc̃, xj)

if err > thresherr then

25 region← GetRegion(s̃j)

PerturbedSet← PerturbedSet+ region

26 end

27 return PerturbedSet

applied more broadly). We analyze how different kinds of context contribute to the detection per-

formance. We also provide a case study for detecting physical perturbations on stop signs, which

has been used widely as a motivating example.

5.5.1 Implementation Details

Datasets. We use both PASCAL VOC [68] and MS COCO [154]. PASCAL VOC contains 20

object categories. Each image, on average, has 1.4 categories and 2.3 instances [154]. We use

voc07trainval and voc12trainval as training datasets and the evaluations are carried out on voc07test.

MS COCO contains 80 categories. Each image, on average, has 3.5 categories and 7.7 instances.

coco14train and coco14valminusminival are used for training, and the evaluations are carried out

on coco14minival. Note that COCO has few examples for certain categories. To make sure we have

enough number of context profiles to learn the distribution, we train 11 auto-encoders for the 11

categories that have the largest numbers of extracted context profiles. Details are provided in the
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supplementary material.

Attack Implementations. For digital attacks, we use the standard iterative fast gradient sign

method (IFGSM) [137] and constrain the perturbation location within the ground truth bounding

box of the object instance. Because our defense depends on contextual information, it is not sen-

sitive to how the perturbation is generated. We compare the performance against perturbations

generated by a different method (FGSM) in the supplementary material. We use the physical at-

tacks proposed in [69, 235], where perturbation stickers are constrained to be on the object surface;

the color of the stickers should be printable, and the pattern of the stickers should be smooth. For

evaluations on a large scale, we do not print or add stickers physically; we add them digitally onto

the scene image. This favors attackers since they can control how their physical perturbations are

captured.

Defense Implementation. Momentum optimizer with momentum 0.9 is used to train SCEME. The

learning rate is 5e-4 and decays every 80k iterations at a decay rate of 0.1. The training finishes

after 250k iterations. Adam optimizer is used to train auto-encoders. The learning rate is 1e-4 and

reduced by 0.1 when the training loss stops decreasing for 2 epochs. Training finishes after 10

epochs.

5.5.2 Evaluation of Detection Performance

Evaluation Metric. We extract the context profile for each proposed region, feed it to its corre-

sponding auto-encoder and threshold the reconstruction error to detect adversarial perturbations.

Therefore, we evaluate the detection performance at the region level. Benign/negative regions are

the regions proposed from clean objects; perturbed/positive regions are the regions relating to per-
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(a)

(b)

Figure 5.4: (a) Reconstruction errors of benign aeroplane context profiles are generally smaller than those of
the context profiles of digitally perturbed objects that are misclassified as an aeroplane. (b) Thresholding the
reconstruction error, we get the detection ROC curves for all the categories on PASCAL VOC dataset.

turbed objects. We report Area Under Curve (AUC) of Receiver Operating Characteristic Curve

(ROC) to evaluate the detection performance. Note that there can be multiple regions of a perturbed

object. If any of these regions is detected, it is a successful perturbation detection. For hiding

attacks, there is a possibility of no proposed region; however, it occurs rarely (less than 1%).

Visualizing the Reconstruction Error. We plot the reconstruction error of benign aeroplane con-

text profiles and that of digitally perturbed objects that are misclassified as an aeroplane. As shown

in Fig. 5.4(a), the context profiles of perturbed regions do not conform with the benign distribution

of aeroplanes’ context profiles and cause larger reconstruction errors. This test validates our hy-

pothesis that the context profile of each category has a unique distribution. The auto-encoder that
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learns from the context profile of class A will not reconstruct class B well.

Detection Performance. Thresholding the reconstruction error, we plot the ROC curve for “aero-

plane” and other object categories tested on PASCAL VOC dataset, in Fig. 5.4(b). The AUCs for all

21 categories (including background) are all over 90%. This means that all the categories have their

unique context profile distributions, and the reconstruction error of their auto-encoders effectively

detect perturbations. The detection performance results, against six attacks on PASCAL VOC and

MS COCO, are shown in Tab. 5.2. Three baselines are considered.

• FeatureSqueeze [278]. As discussed in Tab. 5.1, many existing adversarial perturbation detection

methods are not effective beyond simple datasets. Most require perturbed samples while training,

and only few can be extended to region-level perturbation detection. We extend FeatureSqueeze,

one of the state-of-the-art methods, that is not limited by these, for the object detection task.

Implementation details are provided in the supplementary material.

• Co-occurGraph [14]. We also consider a non-deep graph model where co-occurrence context is

represented, as a baseline. We check the inconsistency between the relational information in the

training data and testing images to detect attacks. Details are in the supplementary material. Note

that the co-occurrence statistics of background class cannot be modeled, and so this approach is

inapplicable for detecting hiding and appearing attacks.

• SCEME (node features only). Only node features are used to train the auto-encoders (instead

of using context profiles with both node features for region representation and edge features

for contextual relation representation). Note that the node features already implicitly contain

context information since, with Faster R-CNN, the receptive field of neurons grows with depth

and eventually covers the entire image. We use this baseline to quantify the improvement we
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(a)

(b)

(c)

(d)

clean image digital perturbation Bottle misclassified
as TVmonitor

clean image physical perturbation Car misclassified
as Person clean image digital perturbation Bottle misclassified

as Car

clean image digital perturbation Horse misclassified
as Bird

+

+

+

+

The yellow box marks the ground truth perturbed region.
The red box marks the detected

                   perturbed region.

A false positive detection on non-perturbed person instance.

Figure 5.5: A few interesting examples. SCEME successfully detects both digital and physical perturbations
as shown in (a) and (b). (c) shows that the horse misclassification affects the context profile of person and
leads to false positive detection on the person instance. (d) Appearance information and spatial context are
used to successfully detect perturbations.

achieve by explicitly modeling context information with SCEME.

Our method SCEME, yields high AUC on both datasets and for all six attacks; many of

them are over 0.95. The detection performance of SCEME is consistently better than that of Fea-

tureSqueeze, by over 20%. Compared to Co-occurGraph, the performance of our method in detect-

ing miscategorization attacks, is better by over 15%. Importantly, SCEME is able to detect hiding

and appearing attacks and detect perturbations in images with one object, which is not feasible with

Co-occurGraph. Using node features yields good detection performance and further using edge

features, improves performance by up to 8% for some attacks.

Examples of Detection Results. We visualize the detected perturbed regions for both digital and

physical miscategorization attack in Fig. 5.5. The reconstruction error threshold is chosen to make

the false positive rate 0.2%. SCEME successfully detects both digital and physical perturbations as

shown in Fig. 5.5(a)and(b). The misclassification of the perturbed object could affect the context

information of another coexisting benign object and lead to a false perturbation detection on the

benign object as shown in Fig. 5.5(c). We observe that this rarely happens. In most cases, although
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(a) (b)

(c)

Figure 5.6: Subfigures are diverging bar charts. They start with ROC-AUC = 0.5 and diverge in both upper
and lower directions: upper parts are results on PASCAL VOC and lower parts are on MS COCO. For each
dataset, we show both the results from the FeatureSqueeze baseline and SCEME, using overlay bars. (a) The
more the regions proposed, the better our detection performs, as there is more utilizable spatial context; (b)
the larger the overlapped region between the “appearing object” and another object, the better our detection
performs, as the spatial context violation becomes larger and detectable (we only analyze the appearing attack
here); (c) the more the objects, the better our detection performs generally, as there is more utilizable object-
object context (performance slightly saturates at first due to inadequate spatial context).

some part of the object-object context gets violated, the appearance representation and other context

would help in making the right detection. When there are not many object-object context relation-

ships as shown in Fig. 5.5(d), appearance information and spatial context are mainly used to detect

a perturbation.

5.5.3 Analysis of Different Contextual Relations

In this subsection, we analyze what roles different kinds of context features play.

Spatial context consistency means that nearby regions of the same object should yield consistent

prediction. We do two kinds of analysis. The first one is to observe the correlations between the

adversarial detection performance and the number of regions proposed by the target Faster R-CNN

for the perturbed object. Fig. 5.6(a) shows that the detection performance improves when more

regions are proposed for the object and this correlation is not observed for the baseline method (for
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both datasets). This indicates that spatial context plays a role in perturbation detection. Our second

analysis is on appearing attacks. If the “appearing object” has a large overlap with one ground

truth object, the spatial context of that region will be violated. We plot in Fig. 5.6(b) the detection

performance with respect to the overlap between the appearing object and the ground truth object,

measured by Intersection over Union (IoU). We observe that the more these two objects overlap, the

more likely the region is detected as perturbed, consistent with our hypothesis.

Object-object context captures the co-existence of objects and their relative position and scale

relations. We test the detection performance with respect to the number of objects in the scene

images. As shown in Fig. 5.6(c), in most cases, the detection performance of SCEME first drops or

stays stable, and then improves. We believe that the reason is as follows: initially, as the number of

objects increases, the object-object context is weak and so is the spatial context as the size of the

objects gets smaller with more of them; however, as the number of objects increases, the object-

object context dominates and performance improves.

5.5.4 Case Study on Stop Sign

We revisit the stop sign example and provide quantitative results to validate that context

information helps defend against perturbations. We get 1000 perturbed stop sign examples, all of

which are misclassified by the Faster RCNN, from the COCO dataset. The baselines and SCEME,

are tested for detecting the perturbations. If we set a lower reconstruction error threshold, we will

have a better chance of detecting the perturbed stop signs. However, there will be higher false

positives, which means wrong categorization of clean regions as perturbed. Thus, to compare the

methods, we constrain the threshold of each method so as to meet a certain False Positive Rate

(FPR), and compute the recall achieved, i.e., out of the 1000 samples, how many are detected as
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perturbed? The results are shown in Tab. 5.3. FeatureSqueeze [278] cannot detect any perturbation

until a FPR 5% is chosen. SCEME detects 54% of the perturbed stop signs with a FPR of 0.1%.

Further, compared to its ablated version (that only uses node features), our method detects almost

twice as many perturbed samples when the FPR required is very low (which is the case in many

real-world applications).

5.6 Conclusions

Inspired by how humans can associate objects with where and how they appear within a

scene, we propose to detect adversarial perturbations by recognizing context inconsistencies they

cause in the input to a machine learning system. We propose SCEME, which automatically learns

four kinds of context, encompassing relationships within the scene and to the scene holistically.

Subsequently, we check for inconsistencies within these context types, and flag those inputs as

adversarial. Our experiments show that our method is extremely effective in detecting a variety of

attacks on two large scale datasets and improves the detection performance by over 20% compared

to a state-of-the-art, context agnostic method.
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Method
Digital Perturbation Physical Perturbation

Miscateg Hiding Appearing Miscateg Hiding Appearing

Results on PASCAL VOC:

FeatureSqueeze [278] 0.724 0.620 0.597 0.779 0.661 0.653

Co-occurGraph [14] 0.675 - - 0.810 - -

SCEME (node features only) 0.866 0.976 0.828 0.947 0.964 0.927

SCEME 0.938 0.981 0.869 0.973 0.976 0.970

Results on MS COCO:

FeatureSqueeze [278] 0.681 0.682 0.578 0.699 0.687 0.540

Co-occurGraph [14] 0.605 - - 0.546 - -

SCEME (node features only) 0.901 0.976 0.810 0.972 0.954 0.971

SCEME 0.959 0.984 0.886 0.989 0.968 0.989

Table 5.2: The detection performance (ROC-AUC) against six different attacks on PASCAL VOC and MS
COCO dataset

False Positive Rate 0.1% 0.5% 1% 5% 10%

Recall of FeatureSqueeze [278] 0 0 0 3% 8%

Recall of SCEME (node features only) 33% 52% 64% 83% 91%

Recall of SCEME 54% 67% 74% 89% 93%

Table 5.3: Recall for detecting perturbed stop signs at different false positive rate.
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5.7 Supplementary Material

In this supplementary material, we provide: 1) numbers used for the plots in this chapter; 2) the

architecture of the auto-encoders; 3) how we extend the state-of-the-art adversarial perturbation

detection method FeatureSqueeze to defend object detection system; 4) how we apply non-deep

Co-occurGraph to defend object detection system using cooccurrence relations inside the scene

images; 5) the detection performance of our proposed method against digital perturbations generated

by various generation mechanisms; 6) comparing our proposed method with others that use context

inconsistency to detect adversarial perturbations.

5.7.1 Values in the Plots

In the chapter, some experimental results have been provided as plots for better visual-

ization. We provide a table for each plot in this supplementary material. Tab. 5.4 and Tab. 5.5

correspond to the upper part and the lower part of Fig. 5.6(a). Tab. 5.6 corresponds to Fig. 5.6(b).

Tab. 5.7 and Tab. 5.8 correspond to the upper part and lower part of Fig. 5.6(c). Some entries are

missing due to inadequate number of samples. For example, there are no entries for digital hiding

attack for images with 6 objects in Tab. 5.7 because there are only 14 hiding-attacked images and the

AUC reported would not be accurate. We report AUC when we have at least 50 attacked samples.
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#Proposals
Digital Perturbations Physical Perturbations

Miscategorization Hiding Appearing Miscategorization Hiding Appearing

FeatureSqueeze [278]:

1-3 0.751 0.628 0.587 0.762 0.679 0.647

3-6 0.712 0.626 0.614 0.749 0.633 0.653

6-9 0.748 0.612 0.609 0.784 0.654 0.688

9-12 0.727 0.576 0.629 0.767 0.672 0.692

Our method:

1-3 0.830 0.977 0.843 0.940 0.955 0.950

3-6 0.902 0.995 0.859 0.983 0.982 0.977

6-9 0.933 0.999 0.903 0.993 0.998 0.985

9-12 0.950 0.983 0.929 0.996 1.000 0.991

Table 5.4: The detection performance against different attacks w.r.t. the number of proposals on the perturbed
objects in PASCAL VOC dataset.

5.7.2 Architecture of the Auto-encoders

For each category, we use a separate auto-encoder to learn the distribution of its context

profile. The architecture of the auto-encoders is identical and is shown in Fig. 5.7. The input to the

auto-encoder is the context profile x = [r, γu1, γu2, γr1, γr2]. We denote the height and width of the

input as H and W . W = 5 since there are 5 feature vectors in x and H equals to the dimension of

the RoI pooling feature. A fully connected layer is first used to compress the node features (r) and

edge features ([γu1, γu2, γr1, γr2]) separately. This is followed by two convolution layers, wherein
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#Proposals
Digital Attack Physical Attack

Miscategorization Hiding Appearing Miscategorization Hiding Appearing

FeatureSqueeze [278]:

1-3 0.704 0.692 0.594 0.670 0.678 0.502

3-6 0.656 0.679 0.569 0.719 0.692 0.528

6-9 0.584 - 0.562 0.653 0.641 0.552

9-12 0.616 - 0.521 0.682 - 0.556

Our method:

1-3 0.896 0.961 0.804 0.918 0.938 0.952

3-6 0.947 0.992 0.876 0.985 0.982 0.973

6-9 0.978 - 0.90 0.983 0.999 0.989

9-12 0.988 - 0.932 0.995 - 0.987

Table 5.5: The detection performance against different attacks w.r.t. the number of proposals on the perturbed
objects in MS COCO dataset.

the node and edge features are combined to learn the joint compression. Two fully connected layers

are then used to further compress the joint features. These layers form a bottleneck that drives the

encoder to learn the true relationships between the features and get rid of redundant information.
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IoU
PASCAL VOC MS COCO

Digital Appearing Physical Appearing Digital Appearing Physical Appearing

FeatureSqueeze [278]:

0.0 0.605 0.653 0.614 0.550

0.0-0.1 0.606 0.605 0.557 0.552

0.1-0.2 0.592 0.642 0.549 0.518

0.2-0.3 0.602 0.752 0.521 0.478

0.3-0.4 0.590 0.640 0.504 0.586

0.4-0.5 0.594 0.644 0.510 0.474

Our method:

0.0 0.748 0.939 0.769 0.977

0.0-0.1 0.872 0.945 0.827 0.970

0.1-0.2 0.879 0.966 0.849 0.978

0.2-0.3 0.906 0.980 0.850 0.984

0.3-0.4 0.905 0.986 0.855 0.996

0.4-0.5 0.924 0.994 0.910 0.990

Table 5.6: The detection performance against appearing attacks w.r.t. the overlap (IoU) between the per-
turbed region and some ground truth object in PASCAL VOC and MS COCO
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#Objects
Digital Perturbation Physical Perturbations

Miscategorization Hiding Appearing Miscategorization Hiding Appearing

FeatureSqueeze [278]:

1 0.724 0.627 0.600 0.726 0.617 0.657

2 0.715 0.624 0.574 0.806 0.679 0.635

3 0.733 0.610 0.661 0.834 0.716 0.631

4 0.760 0.615 0.584 0.806 0.683 0.578

5 0.740 0.612 0.611 0.879 0.789 0.640

6 0.778 - 0.666 0.825 0.735 0.675

Our method:

1 0.927 0.994 0.829 0.986 0.987 0.966

2 0.901 0.986 0.838 0.972 0.940 0.979

3 0.888 0.960 0.810 0.913 0.898 0.977

4 0.889 0.969 0.813 0.984 0.976 0.987

5 0.890 0.958 0.902 0.980 1.000 0.986

6 0.912 - 0.968 0.987 0.998 0.995

Table 5.7: The detection performance against different attacks w.r.t. the number of objects in the scene
images in PASCAL VOC dataset.

5.7.3 Extending FeatureSqueeze to Region-level Perturbation Detection

FeatureSqueeze

FeatureSqueeze [278] proposes to squeeze the search space available to an adversary,

driven by the observation that the feature input spaces are often unnecessarily large, which provides
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#Object
Digital Attack Physical Attack

Miscategorization Hiding Appearing Miscategorization Hiding Appearing

FeatureSqueeze [278]:

1 0.683 0.681 0.590 0.674 0.701 0.565

2 0.677 0.676 0.573 0.692 0.688 0.550

3 0.693 0.683 0.562 0.714 0.636 0.539

4 0.676 0.691 0.584 0.707 0.749 0.532

5 0.662 0.676 0.528 0.654 0.596 -

6 0.699 0.683 0.611 0.751 0.621 -

Our method:

1 0.976 0.991 0.853 0.993 0.957 0.984

2 0.964 0.987 0.824 0.984 0.967 0.975

3 0.922 0.972 0.884 0.982 0.967 0.967

4 0.891 0.938 0.882 0.986 0.984 0.936

5 0.952 0.963 0.903 0.995 0.992 0.995

6 0.965 0.983 0.909 0.991 0.994 0.997

Table 5.8: The detection performance against different attacks w.r.t. the number of objects in the scene
images in COCO dataset.

extensive opportunities for an adversary to construct adversarial examples. There are two feature

squeezing methods used in their implementation: a) reducing the color bit depth of each pixel; b)

spatial smoothing. By comparing a DNN model’s prediction on the original input with that on
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Figure 5.7: Auto-encoder structure. One auto-encoder is learned for each category. The structure of the
auto-encoders is identical.

Figure 5.8: This figure is from paper [278]. “The model is evaluated on both the original input and the
input after being pre-processed by feature squeezers. If the difference between the models prediction on a
squeezed input and its prediction on the original input exceeds a threshold level, the input is identified to be
adversarial.”

Figure 5.9: Extending the DNN of FeatureSqueeze to region-level classification

squeezed ones, feature squeezing detects adversarial examples with high accuracy and few false

positives. The framework of FeatureSqueeze [278] is shown in Fig. 5.8.
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Extending to Region-level Detection

To detect perturbed regions inside scene images, the DNN model of FeatureSqueeze is

required to operate on region-level. We crop the ground-truth regions, denoted as r, as the input

to the DNN model. The output of the DNN model is the predicted category. To deal with region

inputs with various size, we use RoI pooling [82] (box size equals to input region size) as the last

feature extraction layer as shown in Fig. 5.9. Softmax function [21] is used as the last layer and

cross entropy loss [85] is used as the objective loss function.

Implementation Details

We initialize the feature extractor with the weights pretrained on ImageNet. Momentum

optimizer with momentum 0.9 is used to train the classifier. The learning rate is 1e-4 and decays

every 80k iterations at decay rate 0.1. Training ends after 240k iterations. The final classification

accuracy for the 20 categories in PASCAL VOC dataset is 95.6%. The final classification accu-

racy for the 80 categories in MS COCO dataset is 87.1%. The accuracy is not high because MS

COCO is biased among categories, for example, more than 100k person instances v.s. less than 1k

hair dryer instances. Even after we balance the number of samples among different categories, the

performance is not good because some categories have too few examples, like the hair dryer cate-

gory. The hyperparameters used for feature squeezing are exactly the same as the authors’ GitHub

implementation [255].

132



5.7.4 Co-occurGraph for Misclassification Attack Detection

We consider a non-deep model as baseline where co-occurrence statistics are used to de-

tect misclassification due to adversarial perturbation. This approach uses the inconsistency between

prior relational information obtained from the training data and inferred relational information con-

ditioned on misclassified detection to detect the presence of adversarial perturbation. As the co-

occurrence statistics of background class cannot be modeled, this approach is not applicable for

detecting hiding and appearing attacks.

Prior Relational Information. Same as [14], we use the co-occurrence frequency of different

categories of objects in the training data to obtain the prior relational information. Co-occurrence

statistics gives an estimate of how likely two object classes will appear together in an image.

Graphical Representation. To encode the relational information of different classes of objects

present in an image, we represent each image as an undirected graph G = (V,E). Here, a node

in V represents a single proposed region by the region proposal network. The edges E = {(i, j)|

if region vi and vj are linked} represent the relationships between the regions. We formulate a

tree structure graph where the region of interest is connected with all other proposed regions. The

estimate of class probabilities of each proposed region generated by the object detection model is

used as the node potential and the co-occurrence statistics is used as the edge potential.

Detection of Misclassification Attack. For each image instance in test-set, we estimate its class

conditional relatedness with other classes by making conditional inference on the representative

graph. Conditional inference gives the pairwise conditional distribution of classes for each edge,

which we use to obtain the posterior relational information of that image conditioned on the mis-

classified label. Based on the inconsistency among the prior relational information and posterior
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relational information, we detect if there is any misclassification attack.

Implementation Details. We use the Faster R-CNN [216] as the object detection and region pro-

posal generation module. For each image, we consider top 20 proposed regions based on the class

confidence score. To formulate the graph and make conditional inference, we use the publicly

available UGM Toolbox [220].

5.7.5 Detection performance w.r.t. various perturbation generation mechanisms

Previously, we show our proposed method is effective in detecting six different pertur-

bation attacks, i.e., digital miscategorization attack, digital hiding attack, digital appearing attack,

physical miscategorization attack, physical hiding attack and physical appearing attack. These at-

tacks are different in terms of their attack goals and perturbation forms. Other defense papers also

evaluate their defense methods w.r.t different perturbation generation mechanisms. Our defense

strategy is dependent on the contextual information, and therefore should not rely heavily on the

mechanism to generate the perturbation. We validate our hypothesis by testing our method against

different perturbation generation mechanisms. The results in Tab. 5.9 show that our method is con-

sistently effective against all the perturbation generation mechanisms.

As stated before, COCO has few examples for certain categories. To make sure we have

enough number of context profiles to learn the distribution, out of all the 80 categories, we choose

10 categories with the largest number of context profiles extracted. These 10 categories are “car”,

“diningtable”, “chair”, “bowl”, “giraffe”, “person”, “zebra”, “elephant”, “cow”, “cat”. We also

choose “stop sign” category because attacks on stop signs have gained long-lasting attentions. In

addition to “background”, we have in total 12 categories and learn 12 autoencoders separately. We
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Perturbation Generation Mechanism PASCAL VOC MS COCO

FeatureSqueeze [278]:

FGSM [88] 0.788 0.678

BIM [137] 0.724 0.681

Our method:

FGSM 0.947 0.915

BIM 0.938 0.959

Table 5.9: The detection performance against digital miscategorization attacks w.r.t. different perturbation
generation mechanisms on PASCAL VOC and MS COCO

use these 12 autoencoders and evaluate misclassifications to these categories in our experiments.

5.7.6 Comparison with other context inconsistency based adversarial defense meth-

ods

The general notion of using context has been used to detect anomalous activities [28, 95,

277, 301]. When it comes to adversarial perturbation detection, spatial context has been used to

detect adversarial perturbations against semantic segmentation [271]. Temporal context has been

used to detect adversarial perturbation against video classification [120]. Context inconsistency has

never been used to detect adversarial examples against objection detection systems. Essentially, our

approach utilizes different kinds of context, including the spatial one from these prior works and

object-level inter-relationships for the first time, as discussed in Tab. 5.10.
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Detection Temporal Spatial Object-object Object-background Object-scene Task

Video [120] 3 video classification

Seg [271] 3 semantic segmentation

Our method 3 3 3 3 object detection

Table 5.10: Comparison with other context inconsistency based adversarial detection methods
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Chapter 6

Conclusions

The dissertation presents several novel methods in the direction of adversarial attacks

on deep learning in computer vision. Despite the high accuracies of deep neural networks on a

wide variety of computer vision tasks, their vulnerability to subtle adversarial perturbations under

various attack settings is revealed by the proposed adversarial attack methods. It is demonstrated

that currently deep learning can not only be effectively attacked in the white-box setting but also in

the black-box setting. From another point of view, adversarial examples are hard to defend against

because they require machine learning models to produce good outputs for every possible input. The

dissertation makes contributions towards this by proposing an effective adversarial defense strategy

where context information in the natural images is learnt and the context violations triggered by

adversarial attacks are detected with high detection rates. With deep learning at the heart of the

current advances in machine learning and artificial intelligence, this dissertation sheds lights on

devising adversarial attacks and their defenses for deep learning.
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