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Abstract: Visceral hemangiosarcoma (HSA) is one of the more frequent cancers in dogs and has
a high metastatic rate and poor prognosis, as clinical signs only become apparent in advanced
stages of tumor development. In order to improve early and differential diagnostic capabilities and
hence, prognosis for dogs with HSA, two types of biomarker are needed: a point-of-care diagnostic
biomarker and a prognostic biomarker—preferentially based on samples obtained with minimally
invasive methods. In this study, we applied a lectin magnetic bead array-coupled tandem mass spec-
trometry (LeMBA-MS/MS) workflow through discovery and validation phases to discover serum
glycoprotein biomarker candidates for canine HSA. By this approach, we found that Datura stramo-
nium (DSA), wheat germ agglutinin (WGA), Sambucus nigra (SNA), and Pisum sativum (PSA) lectins
captured the highest number of validated candidate glycoproteins. Secondly, we independently
validated serum LeMBA-MS/MS results by demonstrating the in situ relationship of lectin-binding
with tumor cells. Using lectin-histochemistry and immunohistochemistry (IHC) for key proteins
on tissues with HSA and semi-quantitation of the signals, we demonstrate that a combination of
DSA histochemistry and IHC for complement C7 greatly increases the prospect of a more specific
diagnosis of canine HSA.

Keywords: hemangiosarcoma; dog; glycoprotein; lectin; histochemistry; H-score; complement C7

1. Introduction

The visceral form of hemangiosarcoma (HSA) remains one of the more frequent, and
invariable fatal, cancers in dogs, where it most commonly develops in spleen, liver, and
heart. There are no specific clinical signs until the tumor ruptures, resulting in massive
blood loss, or metastasizes to organs such as brain, lung, or locally within the body cavities.
Sudden death or euthanasia are often the consequence. In clinical practice, the mass,
along with part or the entire affected organ, especially the spleen, may be surgically
removed. However, the survival time of dogs diagnosed with HSA is less than a year [1,2].
A confirmatory diagnosis of the cancer relies on histopathological assessment of tissue
samples and yet, no definite prognosis can be derived despite several evaluation methods
or tissue markers applied [3].
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To improve the quality of life for dogs with HSA, two types of biomarker are needed:
a point-of-care diagnostic biomarker for early and differential diagnosis, and a prognostic
biomarker to assess survival prospects after surgical or other interventions and preferen-
tially using non- or minimally invasive approaches for sample procurement. The goal
of HSA biomarker studies is to detect HSA cell products, such as proteins, in the blood
and this is a major focus of many current projects [4–6]. Among potential serum protein
biomarkers for canine visceral HSA reported in the literature, serum collagen XXVII alpha-
1, big endothelin-1 (ET-1), and procoagulant tissue factor (TF) are considered promising
candidates [6–8]. While serum ferritin, thymidine kinase 1 (TK-1), alpha-1 acid glyco-
protein (AGP), plasma cardiac troponin I (cTnI), and vascular endothelial growth factor
(VEGF) are also important biomarkers for several vascular diseases, they are less specific
for HSA [2,4,9–11].

Aberrant glycosylation has been associated with multiple aspects of cancer, and many
existing cancer markers are glycosylated proteins [12]. Lectins are naturally occurring pro-
teins that are widely used to recognize different glycosylated forms of proteins. Previously,
our group developed a lectin magnetic bead array-coupled tandem mass spectrometry
(LeMBA-MS/MS) workflow and demonstrated its application in human, mouse, and ca-
nine serum samples [13]. Here, we applied a LeMBA-MS/MS workflow through discovery
and validation phases to discover serum glycoprotein biomarker candidates in canine HSA.
By this approach we found that Datura stramonium (DSA), wheat germ agglutinin (WGA),
Sambucus nigra (SNA), and Pisum sativum (PSA) lectins captured the highest number of
validated candidate glycoproteins. Finally, we independently validated the serum LeMBA-
MS/MS results by demonstrating the in situ relationship of lectin-binding with tumor cells.
This was achieved by (i) lectin histochemistry with identification of the location of the
glycoproteins in spleen tissues, either in normal or cancer tissue; and (ii) quantification
of the lectin-bound glycoproteins and key proteins (maltase-glucoamylase, vitronectin,
complement C7) in the tissues using a semi-quantitative lectin/immunohistochemical
signal scoring method. In addition, we assessed the potentials of those ligands to be ap-
plied as diagnostic histochemical marker(s) for canine HSA compared to a routinely used
immunohistochemical endothelial cell marker, platelet endothelial cell adhesion molecule
1 (PECAM-1, CD31). Here, we report that a combination of DSA lectin histochemistry
and complement C7 immunohistochemistry may afford a more specific diagnostic tool for
canine HSA.

2. Materials and Methods
2.1. Samples for Discovery Proteomics Acquisition and Analysis

A total of 20 serum samples were used for the discovery phase, 10 HSA and 10 normal
(Table S1A). Of the 10 HSA samples, eight were purchased from the Colorado State Uni-
versity (CSU) Sample Bank (Fort Collins, CO, USA) and two samples were collected from
the Brisbane Veterinary Specialist Centre (BVSC), Albany Creek, Australia. Serum samples
from normal, cancer-free dogs were collected from the University of Queensland Small
Animal Teaching Hospital.

All samples were collected with ethical approval obtained from the University of Queens-
land Animal Ethics Committee (permit nos. SVS/470/12/AACF and SVS/438/15/Kibble/CRF).
For the proteomics validation (Table S1), 43 serum samples from dogs with HSA and
20 serum samples from dogs with an HSA-like splenic mass, which included all other
splenic masses excluding HSA, were purchased from the CSU Sample Bank. Thirty serum
samples from normal dogs were collected at the University of Queensland Small Animal
Teaching Hospital. Twelve HSA and 13 HSA-like samples were collected from the Univer-
sity of Queensland Small Animal Teaching Hospital, Brisbane Veterinary Specialist Centre,
and Queensland Veterinary Specialists (QVS).
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2.2. Discovery Proteomics

LeMBA-MS/MS was conducted using 20 individual lectins exactly as previously
described [13]. Briefly, individual lectins (AAL, Aleuria aurantia lectin; BPL, Bauhinia
purpurea lectin; ConA, Concanavalin A from Canavalia ensiformis; DSA, Datura stramonium
agglutinin; ECA, Erythrina cristagalli agglutinin; EPHA, Erythroagglutinin Phaseolus vulgaris;
GNL, Galanthus nivalis lectin; HAA, Helix aspersa agglutinin; HPA, Helix pomatia agglutinin;
JAC, Jacalin from Artocarpus integrifolia; LPHA, Leukoagglutinating phytohemagglutinin;
MAA, Maackia amurensis agglutinin; NPL, Narcissus pseudonarcissus lectin; PSA, Pisum
sativum agglutinin; SBA, Soybean agglutinin; SNA, Sambucus nigra agglutinin; STL, Solanum
tuberosum lectin; UEA, Ulex europeus agglutinin-I; WFA, Wisteria floribunda agglutinin; WGA,
Wheat germ agglutinin) were coupled to MyOne tosyl-activated magnetic Dynabeads from
Thermo Fischer Scientific (Waltham, MA, USA).

Ten picomole (pmol) of the internal standard protein, chicken ovalbumin, was spiked
into 50 µg of serum protein per pulldown. The sample was denatured in 20 mM Tris-HCl
(pH 7.4), 20 mM dithiothreitol (DTT), 1% SDS, and 5% Triton X-100 for 30 min at 60 ◦C and
alkylated in 100 mM iodoacetamide for 2 h in the dark at room temperature. Denatured
serum was diluted 10-fold in binding buffer according to the following recipes: (i) Binding
buffer for lectins EPHA, SNA, and STL (Binding buffer A)—20 mM Tris-HCl (pH 7.4), 0.2%
SDS, 1 mM DTT, 150 mM NaCl, 1 mM CaCl2, 1 mM MnCl2, 1% Triton. (ii) Binding buffer
for other lectins (Binding buffer B)—20 mM Tris-HCl (pH 7.4), 0.05% SDS, 1 mM DTT,
300 mM NaCl, 1 mM CaCl2, 1 mM MnCl2, 1% TritonL.

LeMBA-pulldown and tryptic digest was conducted on the Bravo liquid handler
(Agilent Technologies, Santa Clara, CA, USA). After beads were aliquoted into wells,
diluted serum samples were aliquoted into each well and then incubated with shaking
for 1 h at 4 ◦C. After the incubation, the beads were washed 3 times in the same binding
buffer and after the last wash, the beads were transferred into a new plate. The beads were
then washed three times in 50 mM NH4HCO3 and transferred to a new plate again after
the last wash. The beads were washed twice in 50 mM NH4HCO3 and transferred to a
new plate for the last time after the last wash. The beads were washed once after the last
transfer. To each well, 0.95 µg of modified sequencing grade trypsin (Promega. Madison,
WI, USA) diluted in 20 µL of 50 mM ammonium bicarbonate was added and incubated in
a shaking oven overnight at 37 ◦C. The supernatant was collected in a new plate and the
beads were washed with 20 µL of 50 mM ammonium bicarbonate and mixed in the new
plate. The supernatant was left to sit on the magnet to eliminate any carryover of beads
and was transferred to a new plate. This process was repeated twice. Lastly, 20 µL of 5%
formic acid was mixed with the supernatant and dried in a vacuum evaporator. The plates
were kept at −80 until mass spectrometry analysis.

Tryptic peptides were subjected to LC-MS/MS using an Agilent 6520 QTOF (Santa
Clara, CA, USA) coupled with a Chip CUBE and 1200 HPLC. The analytical or nano pump
was set at 0.3 µL/min and the capillary pump at 4 µL/min. The HPLC-chip used contained
a 160 nl trapping column, and a 150 mm, 300A, 5 µm C18 resolving column (Large Capacity
Chip (II), Agilent Technologies, Santa Clara, CA, USA). For peptides from glycoprotein
capture, the gradient went from 6% to 46% Buffer B (90% isocratic grade or gradient grade
acetonitrile, 0.1% mass spectrometry grade formic acid in MilliQ water) in 40 min, 50% to
95% Buffer B at 41 min, plateaued at 95% until 56 min, and then returned to 6% Buffer B at
57 min until 67 min. The mass spectrometer was programmed to acquire 8 precursor MS1
spectra per second and 4 MS/MS spectra per second. Dynamic exclusion was applied after
2 MS/MS within 0.25 min.

The raw data files were processed with Spectrum Mill (Rev B.04.00.127, Agilent
Technologies, Santa Clara, CA, USA). Data were extracted with carbamidomethylated
cysteine as a fixed modification and then searched against an in-house canine database
(described below). The following parameters were used for the search: 2 maximum
missed cleavages, precursor mass tolerance of +/−20 ppm, and product mass tolerance of
+/−50 ppm. For the search, carbamidomethylation was selected as the fixed modification
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and oxidized methionine was selected as the variable modification. Results were filtered by
protein score >15, peptide score >6, and % scored peak intensity (% SPI, >60). Automatic
validation was used to validate proteins and peptides with default settings, and false
discovery rates (FDRs) were calculated using reversed database scores with the maximum
peptide FDR threshold set to 1%. Only single peptide proteins with peptide score of >15, %
SPI > 80, and up to 1 miss cleavage were included in the analysis.

Protein databases were downloaded from UniProt (SwissProt and TrEMBL; https:
//www.uniprot.org/; accessed on 9 January 2013), NCBI (https://www.ncbi.nlm.nih.gov/
protein/; accessed on 4 February 2013) and Ensembl (https://www.ensembl.org/index.
html?redirect=no; accessed on 23 February 2013) using Canis familiaris (Taxon: 9615) as the
species. Sequences shorter than 30 amino acids were removed. The canine databases were
merged together and reciprocal best hit (RBH) basic local alignment search tool (BLAST)
was performed [14]. RBH BLAST, a BLAST method where the input and database file
used are the same, was performed on the University of Queensland High Performance
Computing Server to find more confident hits. Each match was given a score based on %
identity, e-value, and coverage where the match was assigned +2 and +1 for a % identity
of above 97.5% and 95%, respectively, +2 and +1 for an e-value of below 1E-180 and
1E-150, respectively, and +1 if coverage was above 0.95, resulting in scores ranging from
0 to 5. Priority was given to longer sequences and if the same length and similarity, in
the following order: SwissProt, Ensembl, NCBI, TrEMBL, and GENESCAN. A total of
50,349 proteins remained which was used for subsequent BLAST, InterProScan, and mass
spectrometry analysis.

Candidate selection was conducted using both sparse partial least squares-discriminant
analysis (sPLS-DA) and group-binding difference via an in-house tool, GlycoSelector plat-
form as previously reported [15]. Briefly, the intensities of ovalbumin peptides were
extracted from Spectrum Mill and used for normalization. For each sample, all ovalbumin
peptide intensities for all lectins were compiled into a single comma-separated value (csv)
file and uploaded into GlycoSelector. Normalization of each peptide and calculation of
the normalization factor was performed within GlycoSelector. Since each lectin binds to
ovalbumin with different affinity, normalization was performed for each lectin across all
samples. The normalization factor was calculated by dividing individual peptide intensi-
ties by the mean peptide intensity of all samples for that particular peptide for each lectin.
Then, the mean of 4 or more ovalbumin peptides was calculated as the normalization factor.

The exported search file and internal standard file containing information for oval-
bumin intensities for each run, along with information on the patient and sample, were
uploaded into GlycoSelector. The following steps were taken in order: (1) sample outlier
detection, (2) classification error, sensitivity, and specificity calculation, (3) stability analysis,
and (4) sPLS-DA analysis. The top 100 lectin-protein candidates were exported, and those
with stability scores higher than 0.6 were selected, resulting in 82 glycoproteins candidates
determined by lectin-binding and protein accession (Table S1B).

In addition to sPLS-DA, group binding difference was also performed in GlycoSelector
to identify biomarkers that were bound in more than 60% of one sample group but less
than 40% of the other group and vice versa. Such flexible measures were used to identify as
many candidates through this method as possible. Based on this criterion, group binding
difference identified a total of 64 glycoprotein candidates with potential present/absent
glycosylation changes (Table S1C). Combining with the sPS-DA-derived candidates, there
were 49 individual proteins, with diverse lectin-binding glycoforms.

2.3. LeMBA-Multiple Reaction Monitoring-Mass Spectrometry (MRM-MS) for
Biomarker Qualification

A custom-scheduled MRM method was developed for 58 proteins, 49 being discovery
proteomics-derived candidates plus 8 literature-derived candidate proteins (angiopoietin-
1, angiopoietin-4, vascular endothelial growth factor receptor 1, angiopoietin-1 receptor,
vascular endothelial growth factor C, integrin alpha-V, ephrin type-B receptor 3, ephrin
type-A receptor 1), and the internal standard protein chicken ovalbumin. The MRM Selector

https://www.uniprot.org/
https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/protein/
https://www.ncbi.nlm.nih.gov/protein/
https://www.ensembl.org/index.html?redirect=no
https://www.ensembl.org/index.html?redirect=no
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function of Spectrum Mill (Agilent Technologies, Santa Clara, CA, USA) was utilized to
export potential transitions based on previous QTOF runs. The retention time and collision
energy were optimized. For each protein, the number of peptides was limited to five with
a score of above 10 and % score peak intensity of 70%. Only the y ions and the top five
transitions > precursor m/z were selected. A maximum of 200 transitions was used to
generate a method with a dwell time of 1 sec. The collision energy (CE) for each precursor
was calculated using the formula: CE = 0.036 m/z−4.8. For both loading and analytical
pumps, 3% Buffer B was maintained as baseline. The gradient run of the analytical pump
was as follows: 10% B at 0.5 min, 40% B at 20.5 min, 95% B at 21.5 min plateauing until
23.5 min and dropping back down to 3% at 24.5 min until 27 min when the run was
completed. The HPLC-chip used contained a 360 nl trapping column and a 150 mm, 180A,
3 µm C18 resolving column (Polaris-HR-Chip 3C18; Agilent Technologies, Santa Clara, CA,
USA). Transitions without prominent peaks and shifting retention time were discarded.

The final method monitored a total of 362 transitions with an average of 3 peptides per
protein and two products per peptide. The dwell time varied, depending on the number
of transitions being analyzed, from 5.29 to 248.86 ms. For serum glycoprotein biomarker
validation, LeMBA was performed using seven shortlisted lectins (AAL, DSA, LPHA, NPL,
PSA, SNA, and WGA), chosen based on the number of candidates identified for the lectin,
and the overall or mean ranking of candidates and then analyzed by the custom MRM
assay. A total of N = 98 samples were analyzed (N = 30 from clinically normal dogs, N = 55
from HSA group and N = 33 from HSA-like cases (Table S2A)).

The resulting LeMBA-MRM-MS dataset (Table S2B) was filtered based on the following
parameters (Table S3A–C): (i) peptides with median intensity of less than 500 across all
samples were removed, (ii) peptides that were not detected in at least 90% of the samples
in any one of the groups were removed, (iii) peptide intensity was Log2 transformed and
median intensity (called dilution factor) of all the peptides for each sample was calculated.
Samples showing median peptide intensity of Log2 > 1 or Log2 < 1 were removed. (iv)
Correlation between all the peptides belonging to the same protein was performed and
peptides with <0.6 Pearson correlation cut-off were removed. (v) Missing values were
imputed as 1 (Log2(1) = 0). (vi) Samples were normalized based on the dilution factor. (vii)
Peptide intensity was converted to protein intensity by giving equal weight to each peptide.
Log2 (fold change) and p-value were calculated for each lectin-glycoprotein biomarker
candidate. Data analysis was carried out using an in-house R script.

2.4. Samples for Lectin and Immunohistochemistry

Formalin-fixed paraffin-embedded (FFPE) and fresh-frozen splenic tumor tissues
were collected between 2010 and 2017 from the Veterinary Medical Centre, the Univer-
sity of Queensland, and Brisbane Veterinary Specialist Centre (BVSC). Archival samples
were provided by the Small Animal Specialist Hospital (SASH), Sydney. The sample
collection at the University of Queensland Veterinary Medical Centre and BVSC was per-
formed with University of Queensland Animal Ethics Committee approval (permit no.
SVS/438/15/KIBBLE/CRF) and with the animal owner’s consent. The inclusion criteria
prioritized cases presenting with an abnormal mass in spleen regardless of the final diag-
noses. Cases with an HSA-suspected mass in other internal organs, such as liver and heart,
were also collected.

Fifty-eight FFPE samples were selected after histopathologic diagnosis was made by
pathologists (Table S4). Forty-nine samples were collected from spleen, six from liver, and
one sample from heart, peritoneal mass, and sternal mass, respectively. Immunohistochem-
istry (see later) targeting CD31 and myeloid lineage antigen (MAC387) were performed
on ambiguous samples to confirm the endothelial or macrophage/monocyte cell origin,
respectively.

The samples were assigned to two groups, HSA (n = 32) and non-HSA (n = 26). For
HSA samples, histopathological grades were applied based on (i) cancer differentiation,
from well-differentiated (grade 1), moderately differentiated (grade 2) to poorly differen-
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tiated (grade 3), and (ii) growth patterns (typical slit-like, solid, cavernous, and mixed
pattern) [16–19]. For the non-HSA group, the 26 samples were diagnosed as the following:
adenocarcinoma (n = 1), apocrine gland tumor (n = 1), fibrohistocytic nodule (n = 1), hem-
orrhage (n = 2), hepatocellular carcinoma (n = 5), hematoma (n = 5), lymphoid hyperplasia
(n = 1), lymphoma (n = 3), nodular hyperplasia (n = 1), normal spleen tissue (n = 3), splenitis
(n = 1), ambiguous diagnosis (n = 2). One patient had two lesions presented, HSA and
lymphoid hyperplasia. A summary of subject profiles is presented in Table S4.

2.5. Lectin-Histochemistry (LHC)

Five micrometer FFPE tissue sections were cut and placed on Menzel-Glaser Superfrost
PLUS® 25 × 75 × 1 mm3 microscope slides (Thermo® Scientific, Waltham, MA, USA), heat-
fixed for 90 min at 60 ◦C, then cooled before deparaffinization and rehydration. No antigen
retrieval was performed prior to DSA and WGA histochemistry, while Heat-Induced
Epitope Retrieval (HIER) using Tris/EDTA buffer, pH 9 (Dako®, Agilent Technologies,
Santa Clara, CA, USA) was performed for SNA lectin. Blocking of nonspecific peroxidase
activity and protein binding were performed by incubating with peroxidase (Peroxidase
Block, Dako®, Agilent Technologies, Santa Clara, CA, USA) for 15 min at room temperature
followed by 15 min incubation with 0.15 M glycine in PBS, where a quick rinse with
Tris-buffered saline and Tween-20 (TBST) wash buffer (0.05 mol/L Tris-HCl, 0.3 mol/L
NaCl, 0.1% Tween 20, 0.01%, pH 7.6; Dako®, Agilent Technologies, Santa Clara, CA, USA)
was applied in between. This was followed by incubation with “antibody diluent with
background reducing components ready-to-use” (Dako®, Agilent Technologies, Santa
Clara, CA, USA) for 30 min at room temperature.

Glycan (sugar) chains of the tissue glycoproteins (GlcNAc)2-4, GlcNAc,
Neu5Acα6Gal/GalNAc, and αMan/αGlc were detected by biotinylated lectins;
DSA (Datura stramonium), WGA (wheat germ agglutinin), SNA (Sambucus nigra), and
PSA (Pisum sativum), respectively (all from Vector Laboratories Ltd., Burlingame, CA,
USA). Lectins and preferred sugar specificity are shown in Table S5. The slides were
incubated in a moist chamber at room temperature for one hour. The binding was
visualized using the avidin-biotin peroxidase complex method (Vectastain Elite® ABC Kit
Standard, Vector Laboratories Ltd., Burlingame, CA, USA) and the chromogen substrate
3-amino-9-ethylcarbazole (AEC), resulting in a bright red signal on a background of
hematoxylin counterstain (Mayer’s Hematoxylin (Lillie’s Modification) Histological
Staining Reagent; Dako® Agilent Technologies, Santa Clara CA, USA). A summary of the
lectin-histochemistry protocols is shown in Table S5. The sections, mounted with aqueous
base mounting medium, Faramount® (Dako®, Agilent Technologies), were examined by
light microscopy and scanned (Olympus slide scanner VS120, Olympus®, Tokyo, Japan)
for further analysis.

2.6. Immunohistochemistry (IHC)

For comparison to lectin-histochemistry results, immunolabeling of candidate glyco-
proteins, maltase-glucoamylase (MGAM), complement C7, and vitronectin (VTN) was per-
formed, using anti-MGAM (HPA002270, Sigma Life Science, Saint Louis, MO, USA), anti-
complement C7 (ab192346, abcam, Cambridge, UK), and anti-VTN (PA5-27909, Thermo
Fisher Scientific, Waltham, MA, USA) antibody, respectively. A routinely used endothelial
cell marker, CD31 (mouse monoclonal antibody Clone JC70A, M0823; Dako®, Agilent
Technologies, Santa Clara, CA, USA), was used to confirm the endothelial cell origin of
target cells. Mouse monoclonal anti-human myeloid lineage marker MAC 387 (Dako®,
Agilent Technologies, Santa Clara, CA, USA) was used to aid in the diagnosis of ambiguous
tissue samples, notable differentiation of has, and histiocytic proliferative diseases (in older
studies in the literature known as “fibrous histiocytoma” [19]).

Following tissue deparaffinization and rehydration, antigen retrieval and blocking of
non-specific binding sites were performed as described for lectin-histochemistry. Antigen
retrieval methods and antibody dilutions for each of the antibodies are shown in Table S6.
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Sections were incubated with the primary antibodies in a moist chamber overnight at 4 ◦C.
Detection of bound antibodies was performed using the Dako Envision system (EnVision+
System HRP; Dako®, Agilent Technologies, Santa Clara, CA, USA) with visualization using
AEC substrate and counterstaining with Meyer’s hematoxylin.

To establish optimal dilutions for lectins and primary antibodies, various tissue antigen
retrieval (AR) techniques including no-AR, HIER with Tris/EDTA buffer, pH9, citrate
buffer, pH6 (Target Retrieval Solution, S2367, S1699, Dako®, Agilent Technologies, Santa
Clara, CA, USA), and proteinase K treatment (Proteinase K Ready-to-use; Dako®, Agilent
Technologies, Santa Clara, CA, USA) were trialed on two randomly selected HSA tissue
samples. The optimized antigen retrieval techniques and dilutions for each ligand are
shown in Table S5.

2.7. Positive and Negative Controls

To ensure constant signal intensity of the lectin/immunohistochemical labelling and
to facilitate relative signal intensity scoring, a control for lectin/immunohistochemistry
was chosen from trial experiments amongst several tissue blocks that had indisputable
typical HSA features. Out of the sacrifice tissue block, two microscopic slides with 5 µm
consecutive tissue sections were included in every experimental batch, one being a positive
control and the other for a negative control. The internal positive controls were normal
vascular endothelial cells in the samples, which showed lectin/immunohistochemical
reaction at various intensities (see Results). For the CD31 ligand, archival baboon (Papio sp.)
intestinal tissue (courtesy of Dr. P. Farrell, Univ. of Sydney, with approval from the
SSWAHS Animal Welfare Committee) was used as positive control in addition to canine
splenic tissue. For the external negative controls, antibody diluent was applied instead of
the primary antibody/lectin, while the secondary antibody and chromogen were applied
as described above.

2.8. Semi-Quantitative Lectin/Immunohistochemistry Scoring

To quantify the candidate glycoprotein expressions in HSA tissues compared to non-
HSA, each sample was assessed by components that expressed the glycoproteins, i.e.,
(i) HSA cells, (ii) arterial endothelial, and (iii) venous endothelial cells. The scoring sys-
tem used for the assessment of lectin/immunohistochemical reaction in this study was
modified from the H-score system, which is widely used for evaluating immunohisto-
chemical reaction signal intensity expressed by tissues/cells such as for the evaluation of
steroid receptors in breast cancer [20]. The scores were given subjectively to each tissue
component separately.

The data collected were based on the assessment of two parameters for tissue glyco-
protein expression: the intensity level of the lectin/immunohistochemical reaction (mild,
moderate, high or 1–3) and the proportion of cells expressing the glycoprotein as a per-
centage. When combining those two parameters, the H-scores ranged between 0 and 300,
which then were classified into four overall intensities from no signal detected to high
signal intensity (Figure S1).

2.9. Statistical Analysis

The overall intensities of the lectin-immunohistochemical signal of each ligand
and tissue components of the samples were assessed. The comparisons were per-
formed at three levels. The first level, microscopic components, was to compare
lectin-immunohistochemical signal intensities expressed by each antibody/lectin across
tissue components, i.e., HSA cells, arterial endothelium, and venous endothelium, as
described in the previous section. The Wilcoxon-signed rank test was applied to test
for the difference between each pair of tissue components. Bonferroni correction was
performed to adjust p-values for multiple comparison. The second level was to compare
the signal intensities across two sample populations: dogs with HSA and dogs without
HSA. The Kruskal–Wallis test was applied for this comparison. The graphical illustrations
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and statistical analysis were created and performed using R (3.5.1–3.6.1) and R package,
ggplot2 [21].

The third level was to assess the performance of those lectins/antibodies used in the
study, by prioritizing the reagents that had the ability to distinguish between HSA tissues
and non-HSA tissues. In this analysis, the LHC/IHC H-scores of “HSA” tissue samples
(n = 33) were compared with tissue samples that had similar histologic morphology to
HSA, but were not HSA, i.e., “HSA-like” (n = 6). HSA-like samples included four splenic
hematomas and two cases of hemorrhage. Data were visualized by matrix scatter plots
and analyzed by Recursive Partitioning using R package, Rpart [22].

In addition, the trends of relationship between lectin/immunohistochemical signal
intensity by H-scores and HSA histopathological grades or growth pattern were also
assessed. For the relationship between H-scores and HSA histopathological grades, the
Jonckheere–Terpstra trend test and testing of linear model fitting were performed using
clinfun, R package [23]. The Kruskal–Wallis test was applied for assessing the difference
of H-scores among HSA growth patterns. For all statistical analyses, p-values < 0.05 were
considered statistically significant.

3. Results
3.1. Serum Glycoprotein Biomarker Candidates

The biomarker discovery workflow is depicted in Figure 1A. From the validation
phase data, setting 1.5-fold change as a threshold and p-value < 0.05 as cut-off, six can-
didates were upregulated and six candidates were downregulated in HSA compared to
non-HSA (Figure 1B). The upregulated glycoprotein candidates included four different
lectin binding forms of α-1B-glycoprotein (A1BG), NPL-binding fibronectin 1 (FN1), and
SNA-binding Inter-Alpha-Trypsin Inhibitor Heavy Chain 4 (ITIH4). The glycoproteins
found to be downregulated in sera from dogs with HSA compared to non-HSA were three
different lectin binding forms of maltase-glucoamylase (MGAM), DSA-binding comple-
ment component 7 (C7), SNA-binding complement component 3 (C3), and LPHA-binding
ceruloplasmin (CP).
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are highlighted.
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3.2. Establishing Control Framework for LHC/IHC Analysis

In order to ascertain whether glycoproteins detected by LeMBA-MRM-MS in serum
from dogs with HSA originated from the neoplastic endothelial cells or from adjacent
tissues reacting to the presence and growth of the neoplastic cells, we applied LHC and
IHC to tissues with HSA and other neoplasms, diagnosed by histopathology by veterinary
pathologists, as well as to non-cancerous tissues.

Even though the tissue trimming process aimed to collect tissue samples where
the normal/cancer tissue margin was presented, not all tissue sections contained every
component of interest (cancer cells, endothelium of normal arteries, and veins). Poor
quality tissue samples (e.g., extensive tissue necrosis, containing more than 50% area of cell
debris and/or blood clots) were excluded from the analysis. Consecutive tissue sections
from the selected control HSA sample (sample with indisputable HSA characteristics—refer
to Figure 2) were included in every batch of lectin-immunohistochemistry labeling. A
summary of the number of experimental repeats, average H-scores for each ligand, and the
Coefficient of Variations (CV, %) for the control sample is presented in Table S6.
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Figure 2. Lectin-histochemistry and immunohistochemical labelling of canine splenic HSA. Formalin-
fixed paraffin-embedded (FFPE) sections were reacted with anti-human CD31 antibody, anti-human
VTN antibody, anti-human complement C7 antibody, and biotinylated lectins DSA (Datura stramo-
nium), WGA (Wheat Germ Agglutinin), and SNA (Sambucus nigra) lectins) on consecutive splenic
HSA sections (sample 13_019400E). Binding was visualized using AEC substrate (red) following
either incubation with secondary antibody (Envision Kit) or streptavidin-horse radish peroxidase
conjugate. Microphotos were generated using Aperio scans. Original magnifications 20×.
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CD31 immunolabeling was used to confirm the endothelial cell origin of the HSA
tissue samples. The signal for CD31 immunohistochemical labeling on vascular endothe-
lium appeared bright red when visualized with AEC (Figures 2, S2 and S3). Notably, in
canine spleen with HSA, CD31 mainly labelled arterial endothelium rather than venous
endothelium, as indicated by the overall H-score (Tables S7 and S8). In contrast, in baboon
tissue, the CD31 immunohistochemical signal intensities were almost similar for arterial
and venous endothelium (average H-score = 280.8 for arterial endothelium and 275.4 for
venous endothelium; Table S6).

3.3. Lectin Histochemistry

DSA: Thirty-two HSA tissue samples were included in the DSA histochemistry. All
samples expressed DSA-bound glycoproteins with various intensities. Among the three
target tissue components, HSA cells, arterial endothelium, and venous endothelium, a DSA
histochemical signal was observed with the highest intensities in the cytoplasm of venous
endothelium compared to arterial endothelium, where heterogeneous signal intensities
were observed in HSA cells (Tables S7–S9). Examples of labelling are shown in Figures 2,
S2 and S3. Labelling was also observed on some mononuclear cells, red blood cells, and
cellular debris, the latter considered a non-specific reaction.

Blocking of the DSA lectin reactions with a specific blocking agent, chitin hydrolysate
(Vector® Laboratories Ltd, Burlingame, CA, USA.), was tested in four different conditions:
(i) prior to lectin incubation, the tissues were pre-incubated with 1:10 dilution of Chitin
hydrolysate for 1 h at 37 ◦C; (ii) 1:5 dilution for 1.30 h at 37 ◦C; (iii) 1:5 dilution overnight
at 4 ◦C followed by incubation with DSA; and (iv) using Chitin hydrolysate instead of
antibody diluent for the DSA lectin solution. The best result was obtained with overnight
incubation at 4 ◦C, but even that gave incomplete blocking of DSA binding sites.

WGA: WGA histochemistry also labelled the three tissue components. However, the
overall H-scores observed for venous endothelium and arterial endothelium were the
opposite of what was seen for DSA: less to no histochemical signal was observed on the
venous endothelium, while most of the histochemical signal was observed in the arterial
endothelium (Tables S7–S9; Figures 2, S2 and S3). Labelling was observed on some of the
mononuclear cells in the spleen. Background staining was common, especially on cellular
debris.

SNA and VTN: Unlike WGA and DSA, the lectin histochemical signals expressed in
the cell components were very low to undetectable. Low histochemical signal intensity was
observed in the endothelial cells of the arteries, while almost none was observed in the
endothelial cells of the veins. The HSA cells also expressed low lectin histochemical signal,
while most of the positive lectin histochemical reaction was observed extracellularly, either in
between chambers of the slit-like HSA tissues or in vascular lumens (Figures 2, S2 and S3). The
labelling pattern of VTN was similar to that of SNA, with signal intensity low and appearing
extracellularly rather than intracellularly, as shown in Figures 2, S2 and S3.

3.4. Immunohistochemistry for Complement C7

The immunohistochemical signal for complement C7 was observed in the cytoplasm
of HSA cells and appeared granular (Figures 2, S2 and S3), with signal intensity being
relatively uniform across each sample. Some labelling was also observed in mononuclear
cells and macrophages in the spleen.

3.5. Glycoproteins Expression on the Tissue Components Assessed by H-Scores

Overall, H-scores assessed in the HSA cells, arterial endothelium, and venous en-
dothelium were compared and statistically analyzed. The results demonstrated varying
levels of lectin and immunohistochemical signal, representing tissue glycan or glycoprotein
expression (Figure 3). The actual distribution of the H-score assessed in HSA cells (cancer
component), arterial endothelium, and venous endothelium are displayed in Figure S4.
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Figure 3. Boxplot representing overall lectin-histochemistry (DSA, WGA, SNA) and immunohis-
tochemical (CD31, VTN, C7) signal intensities. Three tissue components—HSA/cancer, arterial
endothelium, and venous endothelium—were assessed in two sample groups—dogs with HSA
and dogs without HSA. Differences in the level of tissue glycoprotein expression between tissue
components and between HSA and non-HSA were compared.

3.6. Comparison of the Tissue Glycoprotein Expression of Normal Vascular Endothelium between
HSA Tissues and Non-HSA Tissues

The results described above showed that the expression of glycoproteins differed for
arterial and venous endothelial cells, respectively, as demonstrated by the overall H-scores
for lectin-histochemistry and immunohistochemical labelling. We, therefore, compared
overall H-scores of the arterial and venous endothelium among two disease condition
groups: tissue samples from dogs with HSA (HSA) and from dogs without HSA (non-
HSA). The boxplots in Figure 4 demonstrate the comparison for each ligand. There was no
statistically significant difference among the glycoprotein expressed by either arterial or
venous endothelial cells. The results suggested that glycoproteins or glycans expressed
by normal vascular endothelium of the spleen were not altered by the presence of HSA in
the organ. This supports the use of adjacent normal vascular endothelium as an internal
control when performing lectin/immunohistochemistry using the lectins and antibodies
employed in this study.

3.7. Associations between HSA Grades and Growth Patterns and Expression of
Glycans/Glycoproteins Detected by Lectin-Histochemistry and Immunohistochemistry

The histopathological grades were applied to thirty-two HSA samples based on cancer
differentiation, from well-differentiated (grade 1), moderately differentiated (grade 2) to
poorly differentiated (grade 3) [17–19]. The majority of the HSA samples (n = 14) were
moderately differentiated, while fewer samples (n = 11) were poorly differentiated and only
seven samples were well-differentiated HSA. The growth patterns of the HSA were also
identified as: typical (n = 10), solid (n = 7), cavernous (n = 2), and mixed pattern (n = 13).

For CD31, which was considered the standard marker of endothelial cell origin, the
HSA cells of the well-differentiated and poorly differentiated cancers tended to express
lower levels of CD31 than those of the moderately differentiated HSA. No statistically
significant differences among histopathological grades were observed after testing by the
Jonckheere–Terpstra trend test, with the obtained p-values = 0.62. However, the dispersion of
H-scores, demonstrated by the length of the boxplot (Figure S5) and the IQRs (grade 1 = 10,
grade 2 = 85, and grade 3 = 192.5; Table S9), increases along with the cancer grades.
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Levels of DSA histochemical reaction on HSA cells and venous endothelial cells as-
sessed by H-score were statistically significantly different among histopathological grades,
with increasing DSA-expression as the HSA became less differentiated (Figure S5). The
Jonckheere–Terpstra trend test returned p-values = 0.04 and the fitting of linear model
testing yielded a p-value = 0.026 for the F-statistic.

For SNA lectin, there was a borderline trend of decreasing HSA cell expression of
the SNA-binding glycoproteins with decreasing differentiation, when performing the
Jonckheere–Terpstra trend test and fitting of linear model testing, with p-values = 0.07 and
0.06, respectively. No significant differences in lectin/histochemical reaction among three
HSA histopathological grades were observed for WGA, VTN, and C7 lectin/histochemistry
(Figure S5).

For growth patterns assessment, there was only a limited number of samples with
cavernous growth pattern. Hence, only solid and typical types of HSA growth patterns
were included for the comparison. No statistical differences between the overall H-scores
were detected. However, for the solid type of has, there was a trend of lesser expression
of CD31, complement C7, VTN, DSA, and SNA bound glycoproteins than in typical HSA
(Figure S6). In contrast, WGA bound glycoproteins gave the opposite result: solid HSA
was more likely to express higher WGA bound glycoproteins than typical HSA (Figure S6).

3.8. Potential HSA Tissue Markers Assessed by Recursive Partitioning

The final objective was to select top reactants among the six antibodies/lectins (as
tissue markers) that could best distinguish HSA from HSA-like according to their differ-
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ences in the level of lectin-immunohistochemical signal intensities. The expected patterns
of signal intensities were either high in HSA/low in HSA-like or vice versa.

A matrix scatter plot of the sample H-scores distribution when paired with different
possibilities was created (Figure 5A). Recursive partitioning results suggested two of the
markers tested would be useful in distinguishing between HSA and HSA-like tissues based
on cut-off point values. The complement C7 antibody and DSA lectin were the top two
target-reagents based on this set of data. Two cut-off points, at the C7 H-score above 67.5
and DSA H-score above 145, allowed for conclusive distinction of HSA tissue samples from
HSA-like tissue, as shown in Figure 5B.
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Figure 5. Scatter plots of H-scores distribution, assessed from lectin-immunohistochemical labelling
for complement C7 and VTN as well as DSA, WGA, and SNA. (A) Matrix scatter plots created for the
candidate antibodies/lectins H-scores. The darker dots (dark brown) represent H-score assessed from
the cancer component of HSA splenic tissue samples, while the lighter dots (light green) represent
H-score assessed from the HSA-like lesion of non-HSA (hematoma and hemorrhage) splenic tissue
samples. (B) Scatter plot of H-scores distribution assessed from lectin-immunohistochemical labelling
with the anti-human complement C7 antibody and DSA lectin. The pair of reactants was selected
from recursive partitioning results. Two cut-off points, complement C7 (H-score > 67.5) then DSA
(H-score > 145), allow clear distinction between HSA and HSA-like tissues.
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4. Discussion

Many serum cancer markers are glycoproteins, but discovery of new serum protein
markers is highly challenging due to the complexity of the serum proteome. In this
study, we applied a multi-phase biomarker discovery and validation glycoproteomics
workflow and discovered novel serum glycoprotein biomarkers for canine HSA, followed
by tissue immuno- and lectin histochemistry validation in independent samples. The
highly interdisciplinary approach confirmed DSA and C7 staining as potential canine HSA
diagnostic markers.

There were three reasons for manual LHC/IHC signal intensity assessment or a semi-
quantitative method to be chosen over image analysis software or an immunofluorescence
technique: (i) The organ of primary interest, the spleen, contains large quantities of red
blood cells and background labelling “noise” was common. Immunofluorescence labelling
was attempted but yielded no promising results. Eventually, bright red colored 3-amino-
9-ethylcarbazole (AEC) substrate chromogen was used for lectin/histochemical reaction
visualization instead of the commonly used 3,3′-diaminobenzidine, which presents in
brown color and can mimic the color of erythrocytes in some samples and hemosiderin
in splenic macrophages. (ii) There was no specific antibody or lectin which only labelled
HSA cells without labelling the adjacent normal endothelial cells encountered elsewhere
in the tissue samples. The image analysis software would need to be able to distinguish
these cells based on morphology alone, which is still a challenging task, although machine
learning algorithms may eventually be possible [24]. (iii) HSA is a non-uniform cancer;
it has various growth patterns and degrees of differentiation [17–19]. Due to the nature
of the samples, semi-quantitative LHC/IHC was considered the most suitable data col-
lection method for this study design. It is acknowledged that the tissue pre-processing
(sample collection, preservation, paraffin embedding) might contribute to inconsistencies
of LHC/IHC reactions. However, considering that glycoprotein expression on normal
vascular endothelium was consistent between samples, it may be concluded that sample
handling and processing were of lesser concern.

Small sample size and non-comprehensive sampling are other common limitations
when studying archival samples of naturally occurring diseases. The larger distribution of
moderate and high-grade HSA in the sample population may, at least in part, reflect that
the animals were diagnosed when the cancer had already advanced to a critical clinical
stage, although it should be noted that there is no documented staging of HSA based on
histopathology. An attempt to minimize the effect of this limitation was to apply two
dimensions of data observation—the modified H-scoring system [20]. The samples are
tissue sections which comprise >50 million cells per 5 × 10 mm2 tissue section, assuming
the 5 µm-thick tissue section contains one cell layer. The size of the tissue sections included
in this study varied between 5× 10 mm2 to 20× 30 mm2, equivalent to at least 2900 million
cells. The H-scoring system allowed us to gather information from the LHC/IHC results at
a deeper level, not only binomial, but the level of signal intensity plus proportion of cells in
each level. It was shown to be a robust approach to protein expression measurement, which
could be applied in automated quantitative immunohistochemistry for measuring human
epidermal growth factor receptor 2 (HER2) expression in breast cancer [25]. Depending on
the nature of samples, various IHC scoring systems may be assessed to determine the most
suitable for the study [26]. For spleen samples, the H-scoring system appeared useful for
LHC/IHC as the signal intensity of reactants could vary across the sample.

In addition to the HSA cancer cells, arterial and venous endothelial cells also showed
heterogeneity of glycoprotein expression. Distinctive patterns of glycoprotein expression on
different types of vascular endothelium (artery vs. vein) were demonstrated. Dog spleen
arterial endothelium expressed greater levels of CD31 and WGA targets than venous
endothelium, while greater expression of VTN, complement C7, and DSA targets was
detected in the venous endothelium. This is in line with findings in humans, where arterial
and venous endothelial cells expressed proteins differently and molecular identification
markers for arterial and venous endothelium have been established: VEGF-R2, Notch,
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and Ephrin-B2 for arteries; BRG1, COUP-TFII, and Eph-B4 for veins (reviewed in [27,28]).
Based on this finding, caution should be exercised when assessing the LHC/IHC signal
intensity of endothelial cell markers on dog endothelial cells, i.e., the type of endothelial
cell should be clearly identified and recorded.

The heterogeneity of LHC/IHC reactions on HSA cells may be due to the heterogenous
nature of the cancer, where cell functions may have been altered and protein expression
in the cells likewise changed over the course of development [29]. In contrast, there was
consistency in the LHC/IHC signal intensity on arterial and venous endothelia, respectively,
for all the antibodies and lectins used, regardless of whether the spleen contained HSA
or not. Therefore, normal vascular endothelium can be used as an internal control, when
performing LHC/IHC labelling with anti-human CD31, VTN, complement C7 antibodies,
and DSA, WGA, and SNA lectins on dog spleen tissue. Whether this will apply to other
endothelial molecules remains to be ascertained but seems likely.

No statistical difference was found when glycoprotein expression was compared
between normal vascular endothelial cells of the HSA and non-HSA groups. This suggests
that differences in the levels of serum glycoprotein biomarkers (Figure 1) were unlikely to
be influenced by normal vascular endothelium, but rather that HSA cells or possibly liver,
if the cancer has an effect on liver functions [30], were the source of such changes. Still,
the roles of normal vascular endothelia in HSA cannot be completely ruled out based on
this study alone, as there were two limitations to the study: the relatively small number
of samples examined and the heterogeneity of the non-HSA group. The non-HSA group
included various splenic lesions and only three out of 26 tissue samples were normal spleen.
It is possible that other disease conditions could affect the level of glycoprotein expression
of the vascular endothelium as well. To validate this, comparison of vascular endothelial
cell glycoprotein expression between three groups—HSA, non-HSA, and healthy control
in a larger cohort—will have to be conducted.

The trend in decreasing HSA cell expression of SNA bound glycans or glycoproteins
as the cancer becomes more poorly differentiated, which is the opposite of what was seen
for DSA bound glycans or glycoproteins, suggests SNA bound glycans may be involved in
the HSA cancer biological process as well. However, the evidence from this study is not
as robust as for the DSA bound glycans. Previously, glycosylation changes in HSA cancer
cells were demonstrated by lectin immunohistochemistry using a panel of lectins, but DSA
and SNA were not included [31]. The question remains what the underlying reasons for the
altered lectin-histochemical signal intensities are, i.e., whether it is changes in the proteins
or the glycan parts of the glycoproteins or both. To determine this will require that the DSA
and SNA bound glycoproteins are identified, with complement C7 and C3, MGAM, and
ITIH4 being amongst the likely candidates (Figure 1). However, there could be additional
glycoproteins not detected in this study. Some of the possibilities of biological events
leading to changes in glycoprotein expression in HSA are (i) impaired function of the cell
protein synthesis process (impaired transcription, translation); (ii) protein is synthesized
but cannot be conjugated with the glycans (post translational modification problems); or
(iii) glycan changes (increase or decrease) by an unknown mechanism [32]. Thus, further
studies with a focus on glycans are required.

Complement C7 is overexpressed in HSA cells compared to the immunohistochemical
signal presented on hematoma tissues. This finding suggested complement C7 may be
involved in HSA cancer biology. Complement C7 is a glycoprotein that forms a membrane
attack complex (MAC) together with complement components C5b, C6, C8, and C9 [33].
The C7 gene is conserved in human and some other species, including dog. Their DNA and
amino acid sequences are 84.4% and 81.4% identical, respectively [34]. Apart from the liver,
complement C7 is also secreted by endothelial cells [35]. Proposed roles of complement
C7 in ovarian and non-small cell lung cancer are inflammatory process regulation and
possibly tumor suppression [36,37]. In hepatocellular carcinoma, complement C7 was
highly expressed in the cancer cells, where the role was demonstrated to be maintenance of
tumor initiating cell stemness [38]. Since common sites for canine HSA are spleen and liver,
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which both contain large numbers of immune cells, it could be surmised that modulation
of inflammatory responses is a key function of complement C7 in this cancer and hence,
the upregulation.

5. Conclusions

In conclusion, potential HSA biomarker candidates were identified and the locations
of some of these candidates and the lectin-binding glycan/glycoprotein expression profile
in spleen were demonstrated. Levels of glycoprotein expression were assessed using a semi-
quantitative lectin/immunohistochemistry approach. The results suggest that complement
C7 and DSA may supplement the use of CD31 and von Willebrand factor in IHC to confirm
vascular endothelial cell origin in HSA suspected tumors. However, practicality should be
evaluated in a larger sample size, especially with more and greater variety of controls. The
results suggest that complement C7 may play a potential role in HSA biology. Identifying
further glycoproteins which bind the lectins DSA and SNA may also be key to a better
understanding of HSA pathobiology and should be pursued.
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