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Ultimate Instability of Exponential Back-Off 
Protocol for Acknowledgment-Based 

Transmission Control of Random 
Access Communication Channels 

DAVID J. ALDOUS 

Abstracr-When several users simultaneously transmit over a shared 
communication channel, the messages are lost and must be retransmitted 
later. Various protocols specifying when to retransmit have been proposed 
and studied in recent years. One protocol is “binary exponential back-off,” 
used in the local area network Efhernet. A mathematical model with 
several idealizations (discrete time slots, infinite users, no deletions) is 
shown to be unstable in that the asymptotic rate of successful transmis- 
sions is zero, however small the arrival rate. 

I. INTRODUCTION 

M ULTIACCESS communication channels have been 
the object of intense study in recent years, moti- 

vated by problems of communications between computers. 
A special journal issue [6] provides an overview of the 
field; Kelly [7, sec. 41 gives a concise account of the 
specific problem treated here. Consider N geographically 
separated “users” who can communicate with each other 
via one shared channel to which all users are constantly 
listening. When one user has a message it wishes to send to 
another, it can transmit the message over the channel, and 
the message will be successfully received provided no other 
user is simultaneously transmitting, in which case no’ne of 
the conflicting transmissions are successfully received. In 
designing such a system one might seek to avoid such 
conflicts by having a centralized controller who schedules 
transmissions; the difficulty is that users would then have 
to tell the controller when they have messages to send, and 
they have to use the channel to send this information! 
Instead, it is easier to implement systems where each user 
acts autonomously: if a transmission is unsuccessful, the 
user waits a random time (determined by some strategy) 
and then retransmits the message, continuing until a trans- 
mission is successful. 

A standard simplified model is as follows. Divide time 
into slots (t, t + l), t = O,l, 2; . ., of unit length, and 
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suppose all messages take unit time. Each user originates a 
new message in each time slot (t - 1, t) with probability p 
(independently over users and time slots); such a new 
message is transmitted as soon as possible, that is, in slot 
(t, t + 1). The strategy for retransmitting is described by a 
vector (hi: 1 I i < K), where 0 < hi < 1 and K I co. In 
slot (t, t + 1) each message which has had i previous 
unsuccessful transmissions is selected for transmission with 
probability hi (independently over messages and time 
slots). After K unsuccessful transmissions a message is 
deleted and declared lost. This kind of control policy is 
called “acknowledgment based” (or collision detect) be- 
cause the only information a user requires is the acknowl- 
edgment of successful receipt of its own messages. More 
sophisticated policies, where each user monitors the chan- 
nel continuously and notes whether 0, 1, or more than one 
transmission is attempted in each slot, have been studied 
[6] but will not be treated here. 

To avoid the possibility that one user may have more 
than one message to transmit at one time, it is convenient 
to pass to the “infinite-users” model in which we let 
N -+ co, p + 0 and Np + v > 0. The state of the system 
at time t is described by a vector x = (xi: 1 I i < K) 
where xi is the number of messages which have been 
unsuccessfully transmitted exactly i times. A random sub- 
set of these messages (selected as described earlier using 
(hi)) together with a Poisson (v) number of new messages 
(those originating during (t - 1, t)) are transmitted during 
(t, t + 1); if exactly one transmission is made, then it is 
successfully received, otherwise, all transmissions are un- 
successful. This describes a countable state-space Markov 
chain X(t) = (X,(t): 1 I i < K) whose transition prob- 
abilities depend only on v and (hi). 

Studies of this and closely related models, with particu- 
lar attention to the special cases hi = h (the ALOHA 
policy) and hi = 2-j (binary exponential back-off, or the 
ETHERNET policy) have been given in [2]-[9] and the 
papers referenced therein. Let N(t) be the number of 
successful transmissions made during time [0, t]. For K < 
cc it is easy to show that X is positive recurrent, though 
no useful form of the stationary distribution is known. It 
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follows that the asymptotic rate of successful transmissions 

p = a.s. Ibz N( t)/t 

exists, and 0 < p < v. Therefore, a proportion 1 - p/v of 
messages are lost. From now on, consider the case where 
K = a, that is, messages are never deleted. It is natural to 
hope that, for some choice of (hi), the process X will still 
be positive recurrent and p = v. However, some negative 
results are known. Kelly [7] and Kelly and MacPhee [8] 
give a formula for a critical value v, (depending on (hi)) 
such that 

lim N(t) = 00 a.s., v<v c t+a, 

lim N(t) < CQ a.s., v > v,. (1-l) t--,CO 
For the ALOHA scheme vC = 0; for binary exponential 
back-off v, = log 2. Obviously, this implies p = 0 for 
v > vC. However, this result and related results of Fayolle 
[3] and Rosenkrantz [9] leave open the behavior of p for 
small v in the binary exponential back-off case. 

Theorem I: For K = cc and any v > 0 the binary ex- 
ponential back-off policy is unstable in the sense that the 
chain X(t) is transient and N(t)/t + 0 a.s. 

The proof is given in Section II with technical lemmas 
deferred to Section III. The argument is rather more 
delicate than previous cases, though some of the ingredi- 
ents are the same, e.g., comparisons with the externally 
jammed channel. We end with a series of remarks. 

a) Without checking the details, I believe the argument 
could be modified to show instability for every (hi): the 
essential change would be in the definition of ( ti) to follow 
in (2.5). A harder problem is to show that every acknowl- 
edgment-based policy is unstable since one could invent 
policies much more complicated than those considered 
here. 

b) A slight tightening of our argument shows 

N(t) = o( t”) a.s., all a > 1 - v/log2. (1.2) 

Note that this is consistent with (1.1). These results suggest 
that for v < log 2 the asymptotic growth rate of N(t) is on 
the order of t1-vAog2. However, asymptotics are rather 
misleading. Simulations and heuristic arguments [2], [4], [5] 
suggest that, for fairly general (hi), if v is rather smaller 
than l/e, then the process X(t) quickly reaches a quasista- 
tionary distribution which persists for a long, but finite, 
time TV before instability sets in. Formalizing this and 
estimating ET, is another challenging problem. 

c) The significant idealizations made in our model are 
1) time is divided into discrete slots 2) infinite users, and 
3) no deletions of unsuccessfully transmittted messages. 
Discussions of models without one of these simplifications 
are given in [8], [4], and [5], respectively. 

II. CONSTRUCTION AND PROOF 

We start by giving a “balls in boxes” description of our 
process. Imagine boxes 1,2,3, . . . in a line left to right, 
and another box 0 containing an infinite supply of balls. 

The state of the process is a vector y = (vi: i L 1) indicat- 
ing yi balls in box i. Given state y at time t, the state at 
time t + 1 is determined as follows. Each ball in boxes 
i 2 1 is either moved one box to the right (with chance 
2-‘) or remains in box i, independently for different balls. 
Further, a Poisson (v) number of balls are moved from 
box 0 to box 1. Here v > 0 is a fixed parameter. This 
specifies a Markov process Y(t) = (Y,.(t): i 2 l), t 2 0. 
The fact that balls progress independently makes it easy to 
verify that Y(t) has a stationary distribution Y = (q) 
given by 

( Yi: i 2 1) are independent, q =” Poisson (~2~). 

(2.1) 

Give Y(0) this stationary distribution. We now introduce a 
coloring scheme. At time 0 let the balls in boxes i 2 1 be 
colored red and the balls in box 0 be colored white. 
Therefore, balls keep their color, except for the proviso: if 
the set of balls moved at one time contains exactly one 
white ball, then that white ball is colored red. Let Xi(t) be 
the number of white balls in box i at time t, and let 
X(t) = (Xi(t): i 2 1). Therefore, X(t) is a nonstationary 
Markov process, and a moment’s thought shows it is 
precisely the same as the binary exponential back-off 
process of Section I with the white balls in box i corre- 
sponding to messages which have been unsuccessfully 
transmitted i times and the “recoloring? corresponding 
to successful transmissions. Moreover, Y(t) evolves as the 
externally jammed process where no transmissions are 
successful. 

Note that the inequality Xi(t) I q(t) implies EX,(t) 5 
ET(t) = ~2~, yielding a simpler proof of bounds obtained 
in [9]. The basic idea of our proof is as follows. For the 
externally jammed channel Y we have EYi(t) = ~2’. For 
the real channel X, even if it were stable, occasional times 
s would occur when “by chance” Xi(s) 2 v2’ for an 
arbitrarily long block of i’s. We shall show (2.5) that when 
this happens, a positive chance exists that the channel 
becomes more and more jammed. 

We now start the mathematical analysis, deferring proofs 
of lemmas. Let 

f(x) = f xi2+. (2.2) 
i=l 

Lemma I: P(some ball recolored on (t + 1)th move 
IX(t) = x) 5 2exp(-(1/2)f(x)). 

We shall prove 

f(W)) -+ co a.s.ast--+ cc. (2.3) 

Then X(t) is transient, and using Lemma 1, the asymp- 
totic rate of recolorings is a.s. zero, proving Theorem 1. 

Let L, be an integer, sufficiently large to satisfy various 
constraints we shall specify later. For s 2 2Lo+5 let A, be 
the event 

Xi(S) 2 v2i, foralll I il L,. (24 
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Lemma 2: P(A, happens infinitely often) = 1. 
Let 3 be the u-field generated by (X(U), Y(u); u I s). 

We shall prove that for each s 
1 

P(f(X(t)) --f cc as t -+ co]% ) 2 2 on A,. (2.5) 

Writing B for the event f( X(t)) -+ cc as t -+ co, Lemma 
2 and (2.5) imply 

limsupP(BI3 ) 2 i a.s. 
s--too L 

However, the martingale convergence theorem [l, p. 931 
says 

Hence 1, 2 l/2 a.s.; in other words, P(B) = 1. This gives 
(2.3) and thence Theorem 1. 

To prove (2.5), fix s and define inductively 

t, = s 

ti - tjpl = zLo+6+‘. 

For t 2 s define 

L(t) = L, + i on ti I t < tj+I 

c, = j(x(t)) 2 fvL(t)) 
1 

B, = n cu. 
SUlf 

We shall prove that 

C P( f(X(t)) < ivL(t), B,-Jq ) I f on A,. 
t>s+1 

(2.6) 

Now this sum is 

c wL&T ) - WtI% K 
ttst1 

and P(B,I$) = 1 on A, by construction, so (2.6) implies 

p(;scul~ 1 t+OO = lim P(B,l% ) 2 i on A,, 

which implies (2.5). 
So far we have argued “backwards” and shown that it 

suffices to prove (2.6). We now start arguing “forwards.” 
For t 2 to let Z,(t) be the number of balls in box i at time 
t which were in box 0 at time t - 24+‘. Let Di(t) be the 
total number of recolorings during the interval [t - 24+i, t]. 
Then 

xi(t) 2 q(t) - q(t) (2.7) 

because any ball in box i at time t which left box 0 after 
time t - 24+i and has not been recolored must be white. 
Write 

(Y(L) = exo~-v2L’10/200~. (2.8) 
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Lemma 3: If t - to 2 24+i and i 2 L(t)/lO, then 

P Di(t) 2 ;v2’, BtJS&) I a(L(t)). 
i 

Lemma 4: If t - to 2 24+i and i 2 L(t)/lO, then 

P zi(t) I $2i) I a(L(t)). 
i 

Noting that Zi(t) is independent of gtO if t - to 2 24+i, 
we can combine (2.7) and Lemmas 3 and 4 to get 

P Xi(t) I ;v2’, Bt&F,o) < 2a(L(t)), 
i 

provided t - to 2 24+i, i 2 L(t)/lO. (2.9) 

To cover the case where t - to is small, a separate argu- 
ment exists for the following lemma. 

Lemma 5: If 0 I t - to I 2’-* and L&O I i I Lo, 
then 

P Xi(t) I kv2’& I cw(L,) on A,. 
i 1 

Given t 2 to, consider for how many i’s in the range 
L(t)/10 I i 5 L(t) the inequality (2.9) is true. If t 2 t, = 
to + 2Lo+6, then the condition t - to 2 24+’ holds for all 
i I L(t) by construction of L(t). If t < t,, then L(t) = Lo, 
and at most nine values of i exist in the desired range for 
which the conditions of neither (2.9) nor Lemma 5 are 
satisfied. Since the conclusion of Lemma 5 implies the 
weaker assertion (2.9) on A,, we have proved the follow- 
ing: given t 2 to, the inequality 

P Xi(t) I gv2’, BtpJFto) I 2ar(L(t)) on A, (2.10) 
i 

holds for at least (9/10)L(t) - 9 values of i. 
Now f(X( t)) = CF=i Xi(t)2-‘, and by taking Lo suffi- 

ciently large, 

L 2 Lo. 

Therefore, (2.10) implies that for t > to = s, 

p f(x(t)) s ;vL(t), Bt-&%o 
i i 

5 2L(t)ar(L(t)) on A,. 

Thus to prove (2.6), it suffices to show that for sufficiently 
large Lo 

t~oLo4w)) < ;> 

and this is just calculus. 

III. TECHNICALLEMMAS 

Recall the elementary large deviation bounds for an 
arbitrary random variable Z: 

P(Z 2 z) I infoe-szEesz (3.1) 

P(Z 5 z) I ji~eezEe-‘“. (3.2) 
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Proof of Lemma 1: Given X(t) = x, the number N of 
white balls in boxes i 2 1 which are moved in the next 
step is 

N= xBi, (B,)independent, Bizbinomial(xi,2-i). 
it1 

In order that some ball be recolored, it is necessary that 
N I 1, and so it suffices to prove 

P(N I 1) 5 2exp 
i 1 

-;fb, . 

However, this follows from (3.2) with 0 = log 2 via routine 
calculations. 

Proof of Lemma 2: Suppose we modify the process as 
follows: all balls moved from box Lo to box Lo + 1 are 
colored red. For this modified process let X *(t) = (X,*(t): 
1 I i I Lo) be the counts of white balls in boxes i. A 
routine coupling argument shows we can construct X* 
and X together in such a way that the wmte balls in X* 
are identified with a subset of the white balls in X, and so 

xi*(t) I x;(t), i I Lo, t 2 0. (3.3) 
Now X* is an irreducible countable-state Markov chain; 
it is dominated by Y(t) (the process counting balls regard- 
less of color) which has a stationary distribution, and it 
easily follows that X* is ergodic. Now define (compare 
(2.4)) A: to be the event 

x;*(s) 2 v2;, for all 1 I i I Lo. 

From the coupling, A: c A,. Now if we run the process 
X * with its stationary distribution, then the event A: has 
nonzero probability. By ergodicity P(A: happens in- 
finitely often) = 1 regardless of the initial distribution, and 
the lemma is proved. 

Lemma 6: a) If Z =” binomial (N, q), then P( Z 2 
2Nq) < exp (- (3 - e)Nq). b) Let (5.) be increasing u- 
fields, let E;. E T., and let D,, = C;=, 1,. Let Qj = 
{P(4+,l&) I q for all 0 5 i <j}. Then ’ 

P(D, 2 2Nq,!J2,) I exp(-(3 - e)Nq). 

Proof: In case a) we have 

EeeZ = (1 + (ee - l)q)N, e > 0, 

and the result follows from (3.1) setting 8 = 1. In case b) 
we shall prove 

EeeDnl,,g I (1 + (e” - l)q)“, 1 I n I N, (3.4) 

and then the result for b) follows similarly. 
To prove (3.4), 

EC” eD~+lloJ~) = l,~+leeDnE( e%+11%) 

I lcn+leeDn(l + (ee - 1)q) 

because on Q2,+ i the conditional probability of Fn+I is at 
most q. Since Q2,+ i c a,,, taking expectations gives 

E ( lp,,+leeD~~+l ) I (1 + (e” - l)q)E(l,“eeDn), 

and (3.4) follows by induction. 

Proof of Lemma 3: Fix t and let u. = t - 24+i 2 to. 
Then 

t-1 

‘itt) = C ‘5 
j=u, 

where 5 is the event that some ball is recolored on the jth 
move. Recall 5 = a(X(u), Y(u): u I j). For u. I j < t, 

P(l$+lIS$) I 2exp( -if(X(j))) byLemma 

5 lexp( -avL(j)) on B,-, 

By taking Lo sufficiently large, we may assume 
2 exp (- (1/4)vL,) I 2-5v/10 = q, say. Then applying 
Lemma 6b), 

P(D;(t) 2 2 . 24+iq, B,-,) I exp (-(3 - e)24+‘q). 

Substituting the value of q, 

P(D;(t) 2 v2’/10, B,-,) I exp (-(3 - e)2’/20). 

Using the hypothesis i 2 L(t)/lO, this yields the result of 
Lemma 3 for unconditional probabilities, and the argu- 
ment works unchanged conditionally on St;,. 

Proof of Lemma 4: Recall that Y(t) = (K(t): i > 1) 
is the process counting balls regardless of color and is 
started with its stationary distribution (2.1). Let Y * be the 
time-reversed process. Then Y * is necessarily stationary 
Markov. It is easy to verify that the transition mechanism 
for Y * is the same as for Y, except that balls removed 
from a box i are put into box i - 1 instead of box i + 1. 
Fix i. Then the quantity Zi = Zi(t) of Lemma 4 is distrib- 
uted as the number of balls in the time-reversed process 
which start in box i at time 0 and are in box 0 at time 24+‘. 

Since Y,:*(O) 2 Poisson (v2’), 

Zi =” Poisson (~28) (3.5) 

where B is the chance that a given ball started in box i in 
the time-reversed process reaches box 0 before time 24+i. 
Now 

p = P( q + 7j:-, + . *. + TI I 24+9 

where q. is the holding time in box j. However, EI; = 2j, 
so summing over j and using Markov’s inequality, 

/3 2 7/8. (3.6) 
Now routine calculations from (3.2) with 8 = l/9 show 
that if 

Z =” Poisson (A), ii 2 A, 

then 

P(Zs f”) sexp(-ih/92). 



ALDOUS: ULTIMATE INSTABILITY OF EXPONENTIAL BACK-OFF PROTOCOL 223 

Applying (3.5) and (3.6), prove 

P( Z, 5 Iv2’) 5 exp(-v2i/200)j 
P ( ti 2 c/10) < exp ( - c/200). 

However, this follows froin Lemma 6a). 
establishing the lemma. 

Proof of Lemma 2: We must estimate a conditional ACKNOWLEDGMENT 
probability given T;, on AtO. Therefore, we may suppose 
X(t,) = x(to) is given and (by definition of A,J that 
xi(to) 2 v2;, i I Lo, and it will suffice to prove that 

My thanks to F. Kelly for suggesting the problem, to W. 
Rosenkrantz for catching a slip in the first version, and to 

5 exp(-v2’/200), 
a referee for helpful comments. 

0 I t - to I 2i-5, i I Lo. (3.7) 

Fix i, and let c be the least integer not less than ~2’. PI 
Consider a subset of c white balls in box i at time to, and f2] 
let N be the number of these balls which remain in box i 
at time to + 2’-‘. For to I; t I to + 2jP5, [31 

Xi(t) 2 N =” binomial( c, (1 - 2-‘)“-‘). 
[41 

Thus it suffices to prove 
151 

I exp (-c/200). 
I61 

Let N =” binomial (c, 2-5). Since 
I71 

PI 

(1 - 2-i)2i-5 2 1 - z-5, 
[91 

N stochastically dominates c - 3, and so it suffices to 
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