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Abstract: Background: Recent data suggest that epicardial left atrial appendage closure (LAAC) is as-
sociated with several short-term neurohormonal effects. However, the long-term effects are currently
unknown. Objective: To investigate the effects of percutaneous epicardial left atial appendage (LAA)
exclusion using LARIAT on neurohormonal profiles at long-term follow-up. Methods: In a prospec-
tive single centre study, 60 patients with long-standing, persistent atrial fibrillation (AF) LARIAT were
treated. The major hormones of the adrenergic system, renin-angiotensin-aldosterone system (RAAS),
and natriuretic peptides were assessed before the intervention and at regular intervals during the
following two years. Results: In patients with epicardial LAAC, atrial natriuretic peptide (ANP) levels
were significantly increased from baseline at 24 h and decreased at 7 days, 1 month, and 3 months,
while remaining unchanged at 12 and 24 months. Noradrenaline levels were significantly lower at
24 h, 7 days, 1 month, 6 months, 12 months, and 24 months, while epinephrine levels decreased
significantly at 1 month, 6 months, 12 months, and 24 months. Plasma renin activity significantly
decreased at 7 days, 1 month, 6 months, 12 months, and 24 months, while aldosterone levels signifi-
cantly decreased at 6 months, 12 months, and 24 months. Endothelin-1 and vasopressin showed a
significant increase and decrease, respectively, at 24 h, 7 days, 1 month, 6 months, 12 months, and
24 months. There was also a significant decrease in systolic and diastolic blood pressure at 3 months,
6 months, 1 year, and 2 years after the intervention. Conclusions: Epicardial LAAC in AF patients is
associated with persistent neurohormonal changes favouring blood pressure reduction.

Keywords: left atrial appendage closure (LAAC); LARIAT; blood pressure (BP); neurohormonal
changes; systemic hemostasis
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1. Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia with an increased
predisposition to systemic embolism, such as transient ischaemic attack (TIA) or stroke. In
patients with non-valvular AF and a contraindication to oral anti-coagulation (OAC) ther-
apy, epicardial left atrial appendage closure (LAAC) with the LARIAT device (Sentreheart,
Redwood City, CA, USA/currently Atricure Inc.) has been used to exclude the left atrial
appendage (LAA) and prevent thrombus formation [1]. As a consequence of epicardial
LAA exclusion, our group observed several significant differences in the haemodynamics
and neurohormonal effects of epicardial LAAC and a significant reduction in systolic blood
pressure during 3-month follow-up [2]. With increased application of percutaneous LAAC
therapies for stroke prophylaxis, it is currently unknown whether elimination of atrial
natriuretic peptide (ANP) secretion from the LAA may have adverse effects on long-term
physiological regulation of fluid volume, brain natriuretic peptide (BNP), salt-water balance,
renin-angiotensin-aldosterone system (RAAS), adrenergic system, and blood pressure (BP).
Therefore, we aimed to investigate the serial changes in the adrenergic system, electrolytes,
ANP, BNP, and RAAS during acute, intermediate, and long-term follow-up in patients
undergoing percutaneous epicardial LAA ligation with the LARIAT device (Sentreheart,
Redwood City, CA, USA/currently Atricure Inc.).

2. Methods
2.1. Patient Population

This is a single-center prospective study including 60 patients with long-standing
persistent AF who underwent percutaneous epicardial LAA ligation with the LARIAT
device. Informed consent was obtained from all patients. The protocol was conducted with
the approval of the local ethics committee at Jagiellonian University, Krakow, Poland.

2.2. Inclusion/Exclusion Criteria

The following criteria were met to be included in this study: (1) age 18 years or older;
(2) non-valvular long-standing persistent AF; (3) at least one risk factor for embolic stroke
(congestive heart failure, hypertension, age > 65 years, diabetes mellitus, previous TIA,
or prior vascular disease); (4) considered poor candidates for long-term anticoagulant
therapy; and (5) transthoracic echocardiogram performed within 30 days and 1 year after
the procedure.

Patients were excluded from the study if they met the following exclusion criteria:
(1) history of cardiac surgery; (2) severe pectus excavatum; (3) myocardial infarction within
3 months; (4) previous embolic event within the last 30 days; (5) New York Heart func-
tional class IV heart failure symptoms; (6) history of chest radiation; (7) atrial–septal
defect; (8) patent foramen ovale with atrial septal aneurysm; or (9) mechanical prosthetic
heart valve.

All patients underwent screening contrast computed tomography (CT) to assess the
left atria (LA) size and LAA geometry. Based on the CT scan, the following additional
exclusion criteria were established: (1) LAA width > 50 mm; (2) a superiorly oriented LAA
with LAA apex directed behind the pulmonary trunk; (3) bi-lobed LAA or multi-lobed LAA,
in which lobes were oriented in different planes exceeding 50 mm; and (4) a posteriorly
rotated heart.

2.3. Procedure Details

All 60 patients underwent percutaneous epicardial LAA ligation with the LARIAT de-
vice as previously described [3,4]. A transesophageal echocardiogram (TEE) was performed
before the procedure to rule out LAA thrombus.

Blood samples were collected from an antecubital vein before the LARIAT procedure
and 24 h, 7 days, 1 month, 3 months, 6 months, 12 months, and 24 months after the
procedure. The pre-procedure blood samples were collected after overnight fasting in all
patients. The blood samples were collected in vacutainer tubes (tubes were anticoagulated
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with K3-EDTA for complete blood count, 0.109 M sodium citrate was added for haemostasis
and fibrinolysis tests, and serum vacuum tubes were used for routine clinical chemistry
laboratory tests and ELISA tests. In addition, anti-factor Xa activity (IU/mL) was measured
in all patients before the procedure. All patients were instructed to maintain their usual
diet and not to consume any additional salts or carbohydrates for up to 48 h before the
blood draw.

The following blood samples were collected: International Normalized Ratio (INR),
activated partial thromboplastin time (APTT), high sensitivity C-reactive protein (CRP),
sodium, potassium, chloride, and glycated hemoglobin (HbA1c). In addition, NT-proANP
(Invitrogen ThermoFisher, Waltham, MA USA), NT-proBNP (Biomedica, Vienna, Aus-
tria), adrenaline (IBLInternational, Hamburg, Germany), noradrenaline (IBLInternational,
Hamburg, Germany), aldosterone (Cayman, Ann Arbor, MI, USA), plasma renin activ-
ity (IBLInternational, Hamburg, Germany), vasopressin (FineTest, Wuhan, China), and
endothelin-1 (Cayman)were determined by ELISA.

2.4. Clinical Follow Up

Patients were on stable medical BP reduction therapy prior to the procedure and were
instructed not to change their medications throughout the follow-up period. All blood
pressure medications were routinely continued, with the exception of diuretics, which
were discontinued on the day of the procedure. Patient adherence to medication was
strictly monitored by interview and patient diary. There were no changes in blood pressure
medication that were noted during follow-up that could affect the obtained results.

Blood pressure and heart rate were measured at baseline, 3 months, 6 months, 12 months,
and 24 months after the intervention.. All recordings were obtained in the supine position
with an automatic blood pressure monitor using the standard BP measurement protocol to
avoid discrepancies.

2.5. Statistical Analysis

Continuous variables were presented as mean ± standard deviation or median (in-
terquartile range) while categorical variables were presented as a number or percentages.
Continuous variables were compared using Student’s t-test or Mann–Whitney U Test. For
repeated measures, the ANOVA or Friedman test were used. The categorical variables
were compared using the chi-Square test or Fisher’s Exact test. Statistical analysis was
performed using IBM SPSS Statistics version 24 (IBM, Armonk, NY, USA). A p-value of
<0.05 was considered significant.

3. Results
3.1. Baseline Characteristics

A total of 60 patients were followed up prospectively over 24 months. The mean
age of the patient population was 67.5 ± 8.1 years and 66.7% were men. The body mass
index of the patient population was 28 ± 2.9 kg/m2. The most common cardiovascular
risk factors were hypertension (80%), followed by diabetes (25%), coronary artery disease
(CAD) (18.3%), and congestive heart failure (13.3%). The mean CHA2DS2-VASc score was
4 ± 1.7 and the HAS-BLED score was 3.6 ± 1.2 (Table 1).

3.2. Impact of Epicardial LAA Ligation on Electrolytes

The mean baseline values for sodium, potassium, and chloride and the values after
24 h, 7 days, 1 month, 3 months, 6 months, 12 months, and 24 months are shown in
Table 2. Compared to baseline, there was a significant decrease in sodium levels at 24 h
(138.4 ± 2.6 mmol/L; p value < 0.05). However, there was no significant difference in
sodium at subsequent time intervals. There were also no significant changes in potassium
and chloride levels at any time as compared to baseline (Table 2).
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Table 1. Baseline characteristics of the cohort.

Variable n = 60

Age, yrs 67.5 ± 8.1
Male, n (%) 40 (66.7)
Body mass index, kg/m2 28.7 ± 2.9
Coronary artery disease, n (%) 11 (18.3)
Hypertension, n (%) 48 (80)
Diabetes, n (%) 15 (25)
Congestive heart failure, n (%) 8 (13.3)
CHA2DS2-VASc 4.0 ± 1.7
HAS-BLED 3.6 ± 1.2
Long-standing persistent AF 60 (100)

Table 2. Sequential change in serum electrolytes after LAAC from baseline to 24 months follow up.

Variable Baseline 24 h 7 Days 1 Month 3 Months 6 Months 12 Months 24 Months

Sodium, mmol/L 141.1 ± 2.6 138.4 ± 2.2 * 142.1 ± 3.2 142.1 ± 2.6 140 ± 4.1 139.5 ± 4.5 140.7 ± 2.6 140.7 ± 3.1
Potassium, mmol/L 4.3 ± 0.4 4.1 ± 0.7 4.4 ± 0.5 4.5 ± 0.4 4.4 ± 0.5 4.3 ± 0.5 4.4 ± 0.3 4.1 ± 0.4
Chlorides, mmol/L 107.6 ± 4.2 109.8 ± 2.9 107.9 ± 4.4 104.3 ± 3.5 104.2 ± 3.3 103.2 ± 2.9 103.7 ± 2.8 100.4 ± 4.2

* p < 0.05 compared to baseline.

3.3. Impact of Epicardia; LAA Closure on Natriuretic Peptides and Adrenaline

NT-proANP: The mean baseline value of NT-proANP measured before the intervention
was 9.94 (4.09–16.87) ng/mL. Compared with baseline, there was a significant increase in NT-
proANP levels when measured 24 h after the procedure (15.39 (10.93–16.10); p value < 0.05).
However, there was a significant decrease in the levels of NT-proANP measured at 7 days (6.31
(3.71–11.79); p value < 0.05), 1 month (5.44 (4.29–10.58); p value < 0.05), and 3 months (4.58
(4.00–5.48); p value < 0.05). In addition, there was no significant difference in the levels of NT-
proANP measured at 6 months (8.36 (5.10–14.80); p value > 0.05), 12 months (9.03 (4.73–13.98);
p value > 0.05), and 24 months (11.01 (4.98–19.81); p value > 0.05) (Tables 3 and 4). For NT-
proANP, there were significant differences in repeated measurements (p value < 0.05).

Table 3. Sequential changes in natriuretic peptides and adrenergic markers from baseline to 24 months
after LAAC. (*—the result was statistically significant).

Variable Baseline 24 h 7 Days 1 Month 3 Months 6 Months 12 Months 24 Months

NT-proANP,
ng/mL

9.94
(4.09–16.87)

15.39
(10.93–16.10) *

6.31
(3.71–11.79) *

5.44
(4.29–10.58) *

4.58
(4.00–5.48) *

8.36
(5.10–14.80)

9.03
(4.73–13.98)

11.01
(4.98–19.81)

NT-proBNP,
pg/mL

167.8
(63.7–238.7)

248.6
(101.3–331.2)

189.9
(73.9–299.5)

189.9
(79.8–225.4)

154.3
(86.6–193.9)

132.8
(72.4–189.2)

123.2
(59.0–171.5) *

100.9
(65.4–134.5) *

Adrenaline,
pg/mL

97.8
(52.8–120.0)

67.0
(58.0–103.4)

66.7
(50.1–82.4)

56.0
(45.2–67.9) *

53.5
(47.9–64.4) *

53.4
(41.9–63.2) *

60.0
(52.7–70.2) *

52.0
(48.9–57.9) *

Noradrenaline,
ng/mL

584
(401–772)

270
(94–398) *

227
(163–548) *

246
(188–518) *

233
(188–282) *

176
(150–208) *

135
(97–253) *

115
(89–193) *

Aldosterone,
pg/mL

165.6
(153.2–178.0)

173.7
(151.9–186.6)

163.9
(131.3–181.6)

158.6
(153.2–195.3)

159.2
(158.1–185.5)

146.0
(130.3–142.7) *

126.3
(105.0–148.9) *

123.5
(114.9–130.2) *

Plasma renin
activity,
ng/mL/h

1.63
(1.16–1.96)

1.66
(1.25–1.99)

1.29
(1.22–1.45) *

1.30
(1.18–1.60) *

1.19
(0.88–1.44) *

1.25
(1.17–1.35) *

1.12
(0.89–1.33) *

1.21
(1.02–1.33) *

Vasopressin,
pg/mL

8.29
(6.26–13.86)

6.97
(6.23–7.56) *

3.44
(2.38–4.39) *

3.05
(2.29–4.57) *

4.26
(3.89–4.63) *

2.87
(1.60–5.26) *

2.85
(1.47–4.63) *

2.79
(2.03–4.18) *

Endothelin-1,
pg/mL

1.98
(1.31–2.52)

2.21
(1.92–2.61) *

2.35
(1.52–2.80) *

2.56
(1.94–3.14) *

2.78
(1.85–3.32) *

2.84
(2.05–3.80) *

2.94
(2.44–3.01) *

3.50
(2.89–4.05) *
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Table 4. Changes in electrolytes, natriuretic peptide, and adrenergic markers after LAAC compared
to baseline.

Factor 24 h 7 Days 1 Month 3 Months 6 Months 12 Months 24 Months

NT-proANP ↑ ↓ ↓ ↓ - - -
NT-proBNP - - - - - ↓ ↓
Adrenaline - - ↓ ↓ ↓ ↓ ↓

Noradrenaline ↓ ↓ ↓ ↓ ↓ ↓ ↓
Aldosterone - - - - ↓ ↓ ↓
Plasma renin

activity - ↓ ↓ ↓ ↓ ↓ ↓

Vasopressin ↓ ↓ ↓ ↓ ↓ ↓ ↓
Endothelin ↑ ↑ ↑ ↑ ↑ ↑ ↑

All values compared to baseline levels, - no change, ↑ increased level, ↓ decreased level.

NT-proBNP: The mean baseline value of NT-proBNP measured before the intervention
was 167.8 (63.7–238.7) pg/mL. Compared with baseline, there was no significant difference
in the levels of NT-proBNP measured at 24 h (248.6 (101.3–331.2); p value > 0.05), 7 days
(189.9 (73.9–299.5); p value > 0.05), 1 month (189.9 (79.8–225.4); p value > 0.05), 3 months
(154.3.6 (86.6–193.9); p value > 0.05), and 6 months (132.8 (72.4–189.2); p value > 0.05). How-
ever, there was a significant decrease in the levels of NT-proBNP measured at 12 months
(123.2 (59.0–171.5); p value < 0.05) and 24 months (100.9 (65.4–134.5); p value < 0.05), re-
spectively (Tables 3 and 4). For NT-proBNP, there were significant differences in repeated
measurements (p value < 0.05).

Adrenaline: The mean baseline adrenaline level measured before the procedure was
97.8 (52.8–120.0) pg/mL. Compared with baseline, there was no significant difference in
adrenaline levels measured at 24 h (67.0 (58.0–103.4); p value > 0.05) and 7 days (66.7
(50.1–82.4); p value > 0.05). However, there was a significant decrease in adrenaline
levels measured at 1 month (56.0 (45.2–67.9); p value < 0.05), 3 months (53.5 (47.9–64.4);
p value < 0.05), 6 months (53.4 (41.9–63.2); p value < 0.05), 12 months (60.0 (52.7–70.2);
p value < 0.05), and 24 months (52.0 (48.9–57.9); p value < 0.05) (Tables 3 and 4). For
adrenaline, there were significant differences in repeated measurements (p value < 0.05).

Noradrenaline: The mean baseline noradrenaline level measured before the interven-
tion was 584 (401–772) ng/mL. Compared with baseline, there was a significant decrease
in noradrenaline levels, which was observed at 24 h (270 (94–398); p value < 0.05), 7 days
(227 (163–548); p value < 0.05), 1 month (246 (188–518); p value < 0.05), 3 months (233
(188–232); p value < 0.05), 6 months (176 (150–208); p value < 0.05), 12 months (135 (97–253);
p value < 0.05), and 24 months (115 (89–193); p value < 0.05) (Tables 3 and 4). For nora-
drenaline, there were significant differences in repeated measurements (p value < 0.05).

3.4. Impact of LAA Closure on Adrenergic System and RAAS

Aldosterone: The mean baseline aldosterone level measured before the procedure was
165.6 (153.2–178.0) pg/mL. Compared with baseline, there was no significant difference
in adrenaline levels measured at 24 h (173.7 (151.9–186.6); p value > 0.05), 7 days (163.9
(131.3–181.6); p value > 0.05), 1 month (158.6 (153.2–195.3); p value > 0.05), and 3 months
(159.2 (158.1–185.5); p value > 0.05). However, there was a significant decrease in the
levels of aldosterone measured at 6 months (146.0 (130.3–142.7); p value < 0.05), 12 months
(126.3 (105.0–148.9); p value < 0.05), and 24 months (123.5 (114.9–130.2); p value < 0.05)
(Tables 3 and 4). For aldosterone, there were significant differences in repeated measure-
ments (p value < 0.05).

Plasma Renin Activity: The mean baseline value of plasma renin activity measured
before the intervention was 1.63 (1.16–1.96) ng/mL/h. Compared to baseline, there was no
significant difference in plasma renin activity values measured after 24 h (1.66 (1.25–1.99);
p value > 0.05). However, there was a significant decrease in plasma renin activity mea-
sured at 7 days (1.29 (1.22–1.45); p value < 0.05), 1 month (1.30 (1.18–1.60); p value < 0.05),
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3 months (1.19 (0.88–1.44); p value < 0.05), 6 months (1.25 (1.17–1.35); p value < 0.05),
12 months (1.12 (0.89–1.33); p value < 0.05), and 24 months (1.21 (1.02–1.33); p value < 0.05)
(Tables 3 and 4). For plasma renin activity, there were significant differences in repeated
measurements (p value < 0.05).

Vasopressin: The mean baseline vasopressin level measured before the intervention
was 8.19 (6.26–13.86) pg/mL. Compared with baseline, there was a significant decrease
in vasopressin levels measured at 24 h (6.97 (6.23–7.56); p value < 0.05), 7 days (3.44
(2.38–4.39); p value < 0.05), 1 month (3.05 (2.29–4.57); p value < 0.05), 3 months (4.26
(3.89–4.63); p value < 0.05), 6 months (2.87 (1.60–5.26); p value < 0.05), 12 months (2.85
(1.47–4.63); p value < 0.05), and 24 months (2.79 (2.03–4.18); p value < 0.05) (Tables 3 and 4).

Endothelin: The mean baseline endothelin level measured before the intervention was
1.98 (1.31–2.52) ng/mL. Compared with baseline, there was a significant increase in endothe-
lin levels at 24 h (2.21 (1.92–2.61); p value < 0.05), 7 days (2.35 (1.52–2.80); p value < 0.05),
1 month (2.56 (1.94–3.14); p value < 0.05), 3 months (2.78 (1.85–3.32); p value < 0.05)
6 months (2.84 (2.05–3.80); p value < 0.05), 12 months (2.94 (2.44–3.01); p value < 0.05), and
24 months (3.50 (2.89–4.05); p value < 0.05) (Tables 3 and 4). For endothelin, there were
significant differences in repeated measurements (p value < 0.05).

3.5. Impact of Epicardial LAA Closure on Systolic and Diastolic Blood Pressure

The mean systolic blood pressure (SBP) at baseline was 133.9 ± 20.6 mmHg. Af-
ter LAAC, SBP was significantly lower at 3 months (118.2 ± 10.3 mmHg), 6 months
(115.0 ± 11.4 mmHg), 12 months (118.3 ± 8.6 mmHg), and 24 months (117.9 ± 5.8 mmHg),
respectively. Mean diastolic blood pressure (DBP) was 82.4 ± 11.0 mmHg at baseline.
After LAAC, DBP was significantly lower at 3 months (68.9 ± 7.6 mmHg), 6 months
(70.6 ± 8.8 mmHg), 12 months (70.4 ± 7.2 mmHg), and 24 months (75.6 ± 6.5 mmHg),
respectively. Figure 1 illustrates the trend in blood pressure measurements at follow-up.

Figure 1. In a 2-year follow-up after LAAO procedure, mean SBP and DBP in our study is
(119.4 ± 4.8 mmHg) and (73.2 ± 3.7 mmHg), respectively.

4. Discussion
4.1. Main Findings

In patients with long-standing persistent AF, epicardial LAAC led to numerous acute
and long-term neurohormonal and blood pressure changes. The epicardial LAAC proce-
dure minimally affected electrolytes and acutely increased ANP, while, in the long term,
there was a significant decrease in noradrenaline, adrenaline, and RAAS levels—while en-
dothelin levels were increased during the follow-up period. There was a sustained decrease
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in systolic and diastolic blood pressure, reflecting the long-term decrease in adrenergic
neurohormones and RAAS.

4.2. Impact of Epicardial LAAC on Serum Electrolytes

Launi et al. demonstrated that the sodium and potassium levels had not significantly
changed in the 6 and 24 weeks following the WATCHMAN procedure, but no acute levels
were measured after the procedure [5]. Maybrook et al. demonstrated a decrease in serum
sodium levels immediately after the epicardial LAAC procedure that normalized at six
months [6]. The current study also showed an acute decrease in serum sodium level within
24 h; whereas serum sodium level did not change significantly at 7 days, 1 month, 3 months,
6 months, 12 months, and 24 months. Although the acute changes in serum sodium
level can be explained by a short-term increase in ANP level (leading to natriuresis), the
absence of long-term changes in serum sodium level from baseline suggests the existence
of alternative cardiac sites for natriuretic peptide secretion that may compensate for the
loss of ANP secretion in the LAA [7]. Clinical factors that may influence the occurrence of
hyponatremia after epicardial LAAC include low BMI (<25 kg/m2), increased LA diameter,
and low systolic blood pressure [8].

4.3. Impact of Epicardial LAAC on Natriuretic Peptides and Adrenergic System

Previous investigators have studied the changes in natriuretic peptides, adrenergic
system, and RAAS and have shown different results due to neurohumoral modulation,
especially in epicardial LAAC compared to endocardial LAAC [7]. Endocardial LAAC
also demonstrated different concentrations of natriuretic peptides during the follow-up
period [5,9,10], possibly due to a different extent of leakage around the device and the
absence of acute and chronic LAA necrosis. Mechanistically, epicardial LAAC is different
from endocardial LAAC [11]. Epicardial LAAC leads to inflammation of the LAA, which
is later followed by fibrosis, scarring, closure, and permanent resorption of the LAA over
a prolonged period [12]. A previous study reported the changes in ANP three months
after epicardial LAAC [13], but acute changes were not investigated. Suture application
around the base of the LAA causes ischemia and pressure necrosis of the LAA, resulting in
an initial massive release of ANP into the circulation within 24 h and 72 h, until stores are
depleted. The results of this study confirmed the acute significant increase in ANP by 24 h,
and further examined the mid- and long-term ANP changes, which showed a decrease in
ANP from 7 days to 3 months before normalizing to baseline from 6 months to 24 months.
Since fibrosis and resorption of the LAA occurs after epicardial LAAC, the normalisation of
ANP is a compensatory production of ANP from tissues other than the LAA [14].

In our previous study, we demonstrated a reduction in adrenaline and noradrenaline
levels at 24 h and 3 months after epicardial LAAC [2,6]. The results of this current study are
consistent with those of our previous study and further demonstrate a sustained reduction
in adrenaline and noradrenaline levels at long-term follow-up at 12 and 24 months. The
sustained reduction in adrenaline and noradrenaline levels may be due to the depletion
of the LAA of natriuretic peptides and destruction of the afferent fibres and ganglionic
plexi surrounding the LAA due to epicardial LAAC, which results in the disruption of the
natriuretic peptide pathway and neural reflexes [7]. Although the interaction between natri-
uretic peptides and adrenaline remains unknown, a previous clinical study has shown that
epicardial LAAC can lead to downregulation of adrenaline through negative feedback [2].

4.4. Impact of Epicardial LAAC on Renin Angiotensin Aldosterone System

One of the important physiological functions of ANP is to inhibit angiotensin-II-
induced drinking, pituitary hormone release, and fluid and sodium retention [15]. Given
the antagonistic effect of ANP on the RAAS, any acute change in ANP levels in patients
receiving epicardial LAAC should be accompanied by an opposite change in the RAAS
that returns to normal over time. A sustained reduction in renin and aldosterone levels
is observed in both the short term [2] and the long term (current study). As ANP levels
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normalise after six months, the RAAS levels remain reduced and the reduction in RAAS
may be influenced by other factors such as sympathetic neurohormones, which are also
reduced in the long term.

Fat pad necrosis around the LAA due to suture ligation, resulting in permanent
damage to the afferent and efferent autonomic inputs, could contribute to the ongoing
downregulation of the RAAS [2]. As the current evidence is insufficient to explain these
anatomical abnormalities due to LAA suture ligation, it would be beneficial to conduct
larger prospective studies to understand the complex interplay of these afferent and efferent
innervations of the LAA ganglionic structures, baroreceptors, and RAAS and the resulting
clinical outcomes [2].

Our study is unique in that there is no previous study that has investigated the
changes in vasopressin levels after epicardial LAAC. According to Sun et al., blood serum
endothelin-1 levels did not change significantly at 24 h, 3 months, 6 months, and 12 months
after percutaneous epicardial LAAC [16], a finding that is at odds with our study. The
exact mechanism for this consistent increase in endothelin-1 levels in this study is currently
unknown. According to Mayyas, et al., higher endothelin-1 levels were associated with
larger atrial size, fibrosis, hypertrophy, and persistence of AF [17], leading to increased
all-cause and cardiovascular mortality [18].

In patients with systemic hypertension and heart failure, an upregulated RAAS can
lead to AF [19]. Recent clinical trials have demonstrated that RAAS antagonism may
reduce the incidence of new onset AF [20–23]. Therefore, it can be assumed that sustained
downregulation of the RAAS is one of the supporting mechanisms of LAA suture closure
devices to prevent the occurrence of a new onset AF.

4.5. Impact of Epicardial LAAC on Systemic Blood Pressure

In a previous LAA hemostasis study by our group, we observed that blood pressure
was lowered 24 h and 3 months after epicardial LAAC [2]. The acute reduction in blood
pressure is due to the release of ANP and the development of hyponatremia, which
generally resolves within 2–7 days [8]. In another prospective, non-randomised registry,
a significant reduction in systolic blood pressure was observed 3 months and 1 year after
the procedure in hypertensive patients who underwent epicardial LAAC compared with
patients who received endocardial LAAC [24]. Similar to the above results, we found
a significant reduction in systolic and diastolic blood pressure 1 year and 2 years after
epicardial LAAC, independent of the serum levels of ANP and sodium. We hypothesise
that the LARIAT procedure downregulates RAAS and adrenergic activity andthus is the
possible underlying mechanism for the reduction in blood pressure over a long term
period of time in our study. Further studies are needed to assess whether epicardial LAAC
has long-term effects on blood pressure control that may translate into a reduction in
antihypertensive medication, as no changes in medication occurred in the postoperative
period in our study.

4.6. Study Limitations

A limitation of the study is the single-arm nature, using a method of epicardial LAAC
with the LARIAT device. This does not allow for generalization to other methods of
epicardial LAAC or comparison with endocardial LAAC procedures. The main objective of
the study was to see how the RAAS system and hormone levels are changed during the
follow-up period after LAA closure therapy. However, the lower systolic and diastolic blood
pressure observed in this study at the 1- and 2-year follow-up period is only a consequence
of lower RAAS and adrenergic activity. Nevertheless, our study provides a trend in
neurohormonal biomarkers after epicardial LAA ligation with the LARIAT device that can
be further investigated and explored in larger clinical trials that are already underway.

Biomarker changes also did not correlate with clinical outcomes, hospital readmissions,
mortality, and healthcare cost utilisation in patients with long-standing persistent AF who
underwent percutaneous epicardial LAA ligation. Therefore, it is difficult to interpret
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whether changes in biomarkers have an impact on long-term clinical outcomes. Another
limitation of the study is the lack of a homogeneous study group in terms of comorbidities.
The simultaneous presence of chronic diseases such as diabetes, ischaemic diseases, or
heart failure, as well as as the use of medication, may have an impact on hormone levels.
In addition, the influence of confounding factors may be amplified by the small size of
the study group. Future studies need to assess the long-term clinical and health economic
aspects as well as the impact on the development of atrial myopathy.

5. Conclusions

Epicardial LAAC in AF patients is associated with persistent neurohormonal changes
that favor blood pressure reduction. Future prospective studies are needed to confirm the
effects on blood pressure and to understand the mechanistic basis of these physiological
changes observed in this study.
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