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MPH: a Library for Distributed Multi-Component Environment

Chris Ding and Yun He

NERSC Division, Lawrence Berkeley National Laboratory

University of California, Berkeley, CA 94720, USA

Abstract

Many current large and complex HPC applications are based on semi-independent program

components developed by di�erent groups or for di�erent purposes. On distributed memory par-

allel supercomputers, how to perform component-name registration and initialize communications

between independent components are among the �rst critical steps in establishing a distributed

multi-component environment. Here we describe MPH, a multi-component handshaking library

that resolves these tasks in a convenient and consistent way. MPH uses MPI for high perfor-

mance and supports many PVM functionality. It supports two major parallel integration mecha-

nism: multi-component multi-executable (MCME) and multi-component single-executable (MCME).

It is a simple, easy-to-use module for developing practical codes, or as basis for larger software

tools/frameworks.

Keywords: multi-component multi-executable, multi-component single-executable, distributed envi-

ronment, software integration

1 Introduction

With rapid increase of computing powers of the distributed-memory computers, clusters of Symmet-

ric Multi-Processors (SMP), the application problems also grow rapidly both in scale and complexity.

E�ectively organizing large and complex simulation programs such that it is maintanable, re-useable,

shareable and high-performance at same time, becomes an important task for high performance com-

puting.

Multiple component approach as a way to organize software is a natural evolution for many large

scale simulations, such as climate modeling, engine combustion simulations, etc. For example, in mod-

eling long-term global climate, NCAR's community climate system model (CCSM)[3] consists of an

atmosphere model, an ocean model, a sea-ice model and land surface model. These model components

interact with each other through a ux coupler component.

Very often, program components of the simulation system are developed by di�erent groups in

di�erent organizations. Thus e�ective management of large scale software systems typically follows the

modular approach, i.e, each program component is a self-consistent, semi-independent system. Each

component talks to other components through a well de�ned interface and data structures involved

in the interface. This approach allows maximum exibility and independence. The developers of a

particular component can use whatever the algorithm and method they see �t, depending on suitability,
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time to completion, practicality etc. This trend is well reected in the software industry. The prominent

example is CORBA [4]. Another development along this line within the high performance computing

community is the Common Component Architecture (CCA) project [2].

We also note that there are other software development trends that emphasize completeness of the

software system. Here we mention two popular types. A framework paradiagm de�nes most common

data and software structures and provide full-feature functionality, which goes much beyond pure in-

terface. Some examples are PETSc [12], POOMA [13], ESMF [5], to name a few. Another type is the

Problem Solving Environment, which essentially de�nes all the structures and skeleton codes for solving

many di�erent problems within a clearly de�ned special domain, such as Purdue PSEs [14], ASCI PSE

[1], or even more focused on special area such as NWChem [9]. However, our goal here is on devel-

oping complex simulation packages that utilizes semi-independent components which are developed by

di�erent groups.

Here we emphasize modularity in software developments, and therefore the (semi)independence of

program components. Irrespect to components, object-oriented programming should be dopted every,

especially within each program component (which could still be a large system such as an ocean model

with up to 100,000 lines of Fortran codes).

When this multiple components approach is used in developing applications on distributed memory

computers, di�erent components often live on di�erent subsets of processors. How to initially identify

each component to all other components, i.e., a handshaking process is necessary to set a registry of

components and communication channels (we deal with MPI communicators for high performance and

portability).

Of course, it is possible to hardwire the codes so that each component knows who else would be

present in the system at codes compilation time, as has been done in practice (CCSM, for example).

However, this is highly restrictive. What if a new component is needed or an existing one is not needed?

What if a component's name is changed? How many processors are allocated for each component? This

hardwired approach is also non-standard | it is not easy to be adopted for other applications.

In this paper, we describe MPH, a library implemented as a Fortran 90 module, that handles this

initial components handshaking and registration process in a distributed environment. It is exible: the

number of components, names of each components are all determined by a components registration �le

read in when the executables start on di�erent subsets of processors. In some sense, MPH's main role

is similar to the functionality provided by PVM [11], except its interface and usage is much simpler,

the codes are much smaller (a few hundred lines, publically available online [7]). MPH also supports

two software integration mechanism: multi-component multi-executable, and multi-component single-

executable, with processor overlapping or non-overlapping. Furthermore MPH implementation scales

up as log of number of processors, instead of linear in processors in PVM, particularly useful for large

scale problems. MPH also promotes a certain number of programing styles that help making software

more portable and re-useable.

2 A distributed multi-component environment

We focus on developing large scale simulation systems consists of (semi)independent components running

on distributed memory HPC platforms. For this type of tightly integrated systems, we use MPI for
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high performance and portability. MPH provides most necessary functionality and support for this

multi-component environment.

MPH supports component name registration, resource allocation for each component, di�erent soft-

ware integration mechanism, standard-out redirection, etc., with complete exibility.

Using multi-component approach in codes development for distributed memory computers will lead

to two di�erent components integration mechanism which leads to di�erent job execution modes:

(1) Multi-Component Multi-Executable (MCME)

(2) Multi-Component Single-Executable (MCSE)

We discuss them in some details.

2.1 MCME mechanism

Each program component is itself a complete program and compiled into an independent executable

image. Inside the component, there are ags to detect if the component is running in a stand-alone mode

or in a joint multi-component environment. This integration mechanism allows maximum exiblity in

software developments. Di�erent components can use di�erent programing languages, di�erent internal

structures and conventions, etc. Di�erent components do not even know the source codes of other

components. They communicate with each other through a well de�ned common interface, which is the

only constraint in development. CORBA is taking this approach. The �rst version of Climate System

Model also uses this approach. One issue with this approach is the job launching process. On di�erent

vendor systems, the launching mechanism vary slightly. But this is manangeable, since major HPC

vendors are rather limited.

Note that in MCME, no component overlap on subset of processors. With multiple executable

images, components overlap is not feasible in most parallel computer systems todays, because in this

integration mechanism, each processor group would have two separate user executables running at same

time. On most distributed systems, each node is dedicated to the user who �rst occupies it, no other

users or second job of the same user is allowed. It is possible that this resource allocation policy can be

modi�ed. In that case, however, the entire load balance in both data distribution and task distribution

of a parallel application will become questionable, because suddenly a processor (or a SMP node) will

have another user job that takes CPU cycles and memory away in an entirely unpredictable way.

2.2 MCSE mechanism

All components are written as modules and are �nally merged into one single source codes. In this tight

software integration mechanism, there are many programing issues associated with this approach. Name

conicts has to be resolved. Static allocation will increase unnecessary memory usage: component A

on processor group A will still allocate memory for statical allocations in module component B which

actually sits in processor group B. Data inputs and outputs also becomes more complicated. A large

number of coordination must be done to ensure consistency, user interface exibility, etc. Furthermore,

if one needs to create a standard-alone version of the component, suÆcient modi�cations (such as

preprocessor ifdef etc) needs to be inserted. The good feature of this approach is that the codes is a
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single program, something everyone ( including those with least programming experience) understand.

The job launching process is also simpli�ed greatly: it is just like any other normal program.

Note that in MCSE, di�erent components may overlap, i.e., two di�erent components could run on

the same set of processors. they will run one after another, in a sequential fashion. This integration

mechanism allow more exibility. For example, the parallel climate model [10] uses this integration

mechanism.

3 Interface and Functionality

3.1 MPH setup

Because di�erent execution integration mechanism run di�erently, di�erent MPH invocation procedures

are necessary. For example, in Single Excutation integration mechanism, there is a master program that

prepares and initiate di�erent components on di�erent (or overlapping) subsets of processors, whereas

no master program exists for Multiple Executable integration mechanism. Other di�erences also exist.

Despite these di�erences, the calling procedures can be designed to be very similar. We describe

them below.

(1) Multi-Component Multi-Executable (MCME)

In this integration mechanism, each component has a main program and is a complete standard

alone executable. Each component calls the shared handshaking routine with an input nametag and an

output which is a MPI communicator.

For example, using the climate modeling system as the example. On atmosphere component, in the

main program, we call

call MPH_setup ("atmosphere", atmosphere_World)

On ocean component,in the main program, we call

call MPH_setup ("ocean", ocean_World)

Similarly, for \land", \ice", and \coupler" components. The names of the components are registered in

"components.in" �le. The order of �le names are irrelevant.

COMPONENT_LIST

BEGIN

atmosphere

ocean

land

ice

coupler

END
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An important feature of MPH is that the nametag is for identifying a given component; its exact

name is entirely arbitrary. One may use "NCAR atm", or "UCLA atm", or any other names for

atmosphere component. The only necessary constraint here is that the nametags called in atmosphere

component must appear correctly in the registration �le. In this way, nothing is hardwired into the

implementation. Suppose later, one has a need to insert a graphics component to produce a movie

about the simulation, one can simply add the nametag of the graphics into the registration �le.

(2) Multi-Component Single-Executable (MCSE)

In this integration mechanism, each component is a subroutine. but all subroutines are compiled

into a single executable. A master program will call the appropriate subroutine on the appropriate

subset of processors. In the master program, the following MPH set is called:

call MPH_setup_SE(

"atmosphere", ! "atmosphere" is present

"ocean", ! "ocean" is present

"coupler" ! "coupler" is present

) ! You can add more components here.

This setup routine informs MPH that there will be 3 components, with nametags "atmosphere", "ocean"

and "coupler". Here again, nametags are arbitrary, except they must match the processor.map �le that

determines which processors are associated with which component.

Afterwards in the master program, we call

if(PE_in_component("ocean", comm)) call ocean_v1(comm)

if(PE_in_component("atmosphere",comm)) call atmosphere_v2(comm)

if(PE_in_component("coupler",comm)) call coupler_v3(comm)

Note that subroutine names do not have be to same as the corresponding nametags. We use " v1",

" v2" etc to emphasize this fact.

The resource allocation \processor.map" is a user-supplied �le. It contains the list of component

nametags and processor ranges. For example, one processor.map �le is

PROCESSOR_MAP

BEGIN

atmosphere 0 15

ocean 16 30

coupler 31 32

land 33 35

ice 36 39

END

for 5 components on 40 processors. In this \processor.map" �le, no component overlap with another on

the same processor.
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But MPH allows components to overlap on their processor allocations. The following is a legitimate

processor.map �le for 64 processors:

atmosphere 0 23

land 0 23 ! overlap with atmoshpere

coupler 24 29

biosphere 30 31

ocean 32 63

ice 32 63 ! overlap with ocean

It is users' responsibility to know who is overlapping with who else, and invoke components appropriately.

One can always use the logical function PE_in_component("ocean", ocean_comm) to check if "ocean"

covers this processor, and obtain the correct "ocean" communicator \ocean comm".

A simpler version of MPH_setup for MCSE is also provided for the case: (1) the master program

simply launches separate components on separate subset of nodes. (2) Each component remains on

the same subset of nodes during entire computation. This situation is very similar to the MCME case,

the only exception is that each component is now a module (or a subroutine), instead of a separate

executable image. This case allows a much simpler interface, although it can also be accomplished using

MPH_setup_SE() in above. The master program calls the following:

call MPH_setup_MCSE(

& atmosphere = atm_subroutine, ! on atmosphere processors

& ocean = ocean_subroutine, ! on ocean processors

& coupler = coupler_subroutine,! on coupler processors

communicater = MyWorld) ! get proper communicator on this proc

Here \atmosphere", \ocean", \coupler", \communicater" are KEYWORDS. Additional keywords \sea ice",

\land", \biosphere", \io" are supported. Order of names are irrelevant. Components are all optional:

You may invoke "ocean=ocean v1, ice=ice v3" only. Inside MPH_setup_MCSE, di�erent subroutines,

atm_subroutine, ocean_subroutine, ice_subroutine are called on di�erent processors speci�ed in

"processor.map" �le.

3.2 Joining two components

Besides solving the basic handshaking problem, MPH also provide a number of other functionalities for

the ease of communication between components.

A joint communicator between any two components could be created by a call to

MPH_comm_join ("atmosphere", "ocean", comm_new)

The output Comm-new communicator will contain all processors in both components, with processors

in "atmosphere" component ranked �rst (rank 0 - 15) and processors in "ocean" component ranked

second (rank 16 - 23) assuming atmosphere has 16 processors and ocean has 8 processors. If you reverse
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atmosphere with ocean in the call, then ocean processors will rank 0 - 7 and atmosphere processors

will rank 8-23. With this joint communicator, collective operations such as a data redistribution could

easily be performed.

3.3 Inter-component communications

MPI communication between local processors and remote processors (processors on other components)

are invoked through component names and the local id. E.g., a processor on atmosphere wants to send

Process 3 on ocean, it invokes

MPI_send(..., MPH_global_id("ocean", 3),MPI_Global_comm,.....)

MPI_Global_comm is the global communicator within this part of the application. It will be MPI_World_comm

for a simple multi-component application. The reason we did not use inter-communicator is because the

entire application is assumed to run on a tighly coupled HPC computer with a single MPI_World_comm.

An inter-communicator would be more appropriate for a heterogeneous client-server environment, where

CORBA or DCE are more widely used.

3.4 Inquiry on multi-component environment

MPH also provides a set of inquiry functions to get information about the multi-component environ-

ment. At run time, a component simply calls these subroutines to �nd out the processor con�guration,

component-name, etc. Some examples are:

MPH_local_proc_id()

MPH_global_proc_id()

MPH_component_name()

MPH_total_components()

MPH_up_proc_limit()

MPH_low_proc_limit().

3.5 Standard Output

Suppose we have an application with �ve components running. Each component normally prints out

messages by print *, write(*) for monitoring, control, dignostics, and other purposes. If nothing

special is done, all these messages sent to stdout will go to the session launching terminal. The mixed

output would be extremely diÆcult to dicipher.

The ideal solution to this problem is for each component to write to its own output (log) �le.

In practice, however, there are a number of diÆculties. First, �le systems on di�erent platforms are

typically very di�erent. Some of the parallel �le system on the platform provides a \log" mode, i.e.,

writes from di�erent processors will be bu�erred and appended in some (random) order, such as PFS

on Intel Paragon (without this \log" mode, in the usual "unformatted" mode, di�erent writes could
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over-write each other and cause error conditions). In these cases, we need to modify the these print *,

write(*) statements and �le open statements to achieve the desired e�ects. However, many existing

components contain very large number of these statements which will be very time-consuming to modify.

We need �nd a way to do this automatically.

On many �le systems, such as IBM SP's GPFS, there is no such a \log" mode. Although MPI-IO [8]

does support the "log" mode, the write statement syntax in MPIO are suÆcient di�erent from print

*, write(*) that makes a simple script-based automatic preprocessing diÆcult. (We emphasize here

that the stdout on SP does support bu�ered I/O, similar to \log" mode; but it support only one such

I/O stream, not multiple stdout streams; that is the diÆculty).

MPH resolves this diÆculty by redirect the stdout. Typically, local processor 0 of each component

is responsible for print out messages. The stdoutfor this processor is redirected by

MPH_redirect_output(component_name)

and the output messages from each component will go to component_name.log �le. All other occasional

writes from all the other processors are stored in one combined standand output �le. The log �le names

of those components are de�ned by run time environment variables either in command line or in batch

run script. This method is originally implemented in NCAR's CCSM codes.

4 Implementation

A design goal for MPH is to scale to large number of nodes and large number of components. For

this purpose, we implement MPH using a two-stage fan-in-fan-out scheme, with a timing complexity

proportional to log(P) (P is the total number of nodes).

It is important to note that on most current HPC platforms, with K components in K executables,

when components start, they all share the same MPI_Comm_World, but with di�erent logical processor

ids. No local MPI communicator exists for each component. MPH establish the multi-component

environment by �rst creating local communicators for each component. We use MPI_Comm_Split to

split MPI_Comm_world into non-overlap local communicators, making use of the fact each component

has a unique component-name provided by the run-time registration �le.

To facilitate information exchange, we create another communicator COMM_master, which consists

of K processor, one from each component. Every processors in COMM_master are ranked 0 in their

own component. With these two layered communicators, all relevant information can be gathered and

exchanged using fan-in-fan-out method. For example, the global processor ids of a component are �rst

fan-in to master processor (rank 0) on each component using the local communicator; then fan-in again

to the global master processor using COMM_master. All these information are then broadcasted (fan-out)

�rst within masters (using COMM_master), and then within each component. Note that processor ids of

each component are not required to be consecutive. This adds some exibility in processor allocations.

As mentioned earlier, in MCSE mode, di�erent components are allowed to overlap on processors.

In these cases, the above implementation fails since it requires each processor belonging to one and

one component only. In this integration mechanism, we create the local communicators in a di�erent
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algorithm. In this algorithm we loop over all components and repeatedly create the appropriate local

communicator one at a time, instead of creating them simultaneously using a simple MPI_Comm_Split.

Most of other codes remain same.

The codes are written in Fortran 90 (for suppporting CCSM development at present. We will create

a C++ version later). A separate module for each integration/execution mode. All three integration

mechanism have slightly di�erent invocation mechanism (or interfaces), but share all lower-level build-

ing blocks, and same utilities. For convenience, we also provide a combined implmentation of three

integration/execution modes with three separate communication modules included in one �le "mph.F',

one for each mode.

MPH is currently working on IBM SP, SGI Origin, Compaq AlphaSC and Cray T3E. Source codes

and instructions on how to compile and run on all these platforms are publicly available on our MPH

web site [7].

5 Applications

The development of the MPH library is primarily motivated for NCAR Community Climate System

Model (CCSM) development, as mentioned earlier. The large number of di�erent components in CCSM,

atmosphere, ocean, land, ice, ux coupler and many other potential components such as biochemistry,

graphics for visulization, etc., requries a general purpose handshaking libarary to setup the distributed

multi-component environment. MPH is currently used in CCSM development. A larger scale utility

Model Coupling Toolkit [6] uses MPH for this purpose.

An important decision in using the multi-component paradiagm in an application codes is to choose

between the MCSE or MCME integration/execution mechanisms. This is largely determined by how

the component programs are developed, and if a tight MCSE integration is necessary. Fortunately, with

MPH, the coding e�orts required to switch between di�erent integration mechanism are much reduced.

Another design goal of MPH is that codes for di�erent integration mechanism could co-exist in a sin-

gle program, and easily switch between di�erent integration mechanism using #ifdef CPP preprocessor

options.

In our online distribution, we have a complete coding example of 3-component application. The

three component programs "atm.F", "ocean.F" and "coupler.F" contains the source codes which can

be easily converted to/from stand-alone, MCME or MCSE with 3-4 lines changes. Note that a master

program (the main program) is needed for MCSE.

A by-product of MPH is that it strongly promote a good programming style which emphasizes

modularity and codes re-useability. For exmaple, in any component, a user-de�ned communicator

MPI_my_world is mandatory, no MPI_Comm_World is allowed. This way, the component can use any

communicator from a MPH-type multi-component environment without a single line change of codes.

Another example is data redistribution, say between two components. A single redistribution tool can

be written that assumes all processors inside a single communicator with processors ranked from 0 to

P-1. Using MPH_comm_join to join the two relevant components, the redistribution tool can be directly

invoked on the joint communicator. to perform the redistribution task without any code change.
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