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Functional brain connectivity is predictable from anatomic 
network’s Laplacian eigen-structure
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aRadiology, Weill Cornell Medical College, New York, NY, USA

bNeurology, New York University, New York, NY, USA

cDepartment of Physiology, Neuroscience & Behavioral Sciences, St. George’s University, 
Grenada, West Indies

Abstract

How structural connectivity (SC) gives rise to functional connectivity (FC) is not fully understood. 

Here we mathematically derive a simple relationship between SC measured from diffusion tensor 

imaging, and FC from resting state fMRI. We establish that SC and FC are related via (structural) 

Laplacian spectra, whereby FC and SC share eigenvectors and their eigenvalues are exponentially 

related. This gives, for the first time, a simple and analytical relationship between the graph 

spectra of structural and functional networks. Laplacian eigenvectors are shown to be good 

predictors of functional eigenvectors and networks based on independent component analysis of 

functional time series. A small number of Laplacian eigenmodes are shown to be sufficient to 

reconstruct FC matrices, serving as basis functions. This approach is fast, and requires no time-

consuming simulations. It was tested on two empirical SC/FC datasets, and was found to 

significantly outperform generative model simulations of coupled neural masses.
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Introduction

The interplay between the brain’s function and structure is of immense interest in 

neuroscience, and its elucidation can potentiate novel approaches for mapping and treating 

brain diseases. Structural connectivity (SC) measures anatomical white matter fiber 

connectivity between gray matter regions and is obtained from diffusion tensor imaging 

(DTI) (Hagmann et al., 2008; Iturria-Medina et al., 2008; Gong et al., 2009). Functional 

connectivity (FC) is typically defined as the temporal correlation of neurophysiological time 

series obtained via fMRI or EEG (Chang and Glover, 2010). Euclidean distance between 

regions is a good predictor of FC (Pineda-Pardo et al., 2015; Vertes et al., 2012). Strong 

correlation is known between functional and structural connections, where the former 

appears to be constrained by the latter (Honey et al., 2009; van den Heuvel et al., 2009; 
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Hermundstad et al., 2013; Rubinov et al., 2009; Ghosh et al., 2008; Wang et al., 2014; Park 

and Friston, 2013). Important graph properties are shared by both SC and FC networks, such 

as small world, power-law degree distribution, hierarchy, modularity, and highly connected 

hubs (Bullmore and Sporns, 2009; He et al., 2007; Filippi et al., 2013).

However, a full exposition of the structure-function relationship requires mathematical, 

rather than statistical modelling. Some progress in this area has been made (Galán, 2008; 

Honey et al., 2007; Ghosh et al., 2008; Vertes et al., 2012; Goni et al., 2014; Abdelnour et 

al., 2014), but the field has eschewed simple models in favor of complex generative models, 

involving large-scale neural simulations of synthetic activity time series (Honey et al., 2007, 

2009; Deco et al., 2011). Anatomic connectivity between nodes is employed indirectly, as 

coupling constants between node-level dynamics. Function is therefore only deducible 

indirectly from thousands of trial runs of time-consuming simulations, and the essential 

minimal rules of organization and dynamics of the brain remain invisible.

Here we demonstrate, for the first time, that in fact, SC and resting state FC are related in a 

simple and deterministic fashion via just a few eigenvectors of the graph Laplacian. This 

strong relationship is not apparent at the node-pair level, but rather at the level of eigen-

spectra of the brain graph. We had previously reported that the brain network can be 

decomposed into its constituent “eigenmodes”, which play an important role in both healthy 

brain function and pathophysiology of disease (Raj et al., 2012; Abdelnour et al., 2014, 

2015). We show that presented eigen-relationships arise naturally from a biophsysical 

abstraction of fine-scaled and complex brain activity into a simple linear model of how 

mutual dynamic influences or perturbations can spread within the underlying structural brain 

network, a notion advocated previously (Goni et al., 2014). We present a simple fitting 

procedure to predict functional eigenvectors and eigenvalues from structural ones. In turn, 

eigenvectors are combined to construct the full functional connectivity in a completely 

analytical, i.e. closed-form, manner. The resulting model is verified using empirical healthy 

SC/FC data, and compared against the previous graph diffusion (Abdelnour et al., 2014) and 

nonlinear neural mass model (NMM) simulations (Honey et al., 2009; Breakspear et al., 

2003; Abdelnour et al., 2014). Further, it is shown that Laplacian eigenvectors can efficiently 

predict classic functional networks computed from independent components analysis, e.g. 

default-mode, executive, etc, networks, at least at group level.

Such an analytical approach is quite rare in brain science. Its power derives from the general 

property that any physical linearized system can be described by a few constituent 

eigenmodes. Eigenfunctions are key features of classical mechanics; e.g., standing waves in 

continuous media are eigenfunctions. In quantum mechanics, the “probability cloud” of the 

electron’s orbit around the nucleus is described via eigenfunctions of the Schrodinger wave 

equation (Schrodinger, 1940). In structural biology, the so-called “normal modes” that 

describe the degrees of freedom of large molecules are the eigenfunctions of pairwise atomic 

bonds (Heller, 1981). The sinusoids of the celebrated Fourier basis are eigenfunctions of 

bounded-energy linear time-invariant filter (Candan et al., 2000). Similarly, the field of 

spectral graph theory (Ng et al., 2002) studies how signals on graphs can be efficiently 

described via constituent graph eigenmodes. Our approach is therefore a “spectral graph 

theory of brain functional connectivity”. It is closely related to our earlier proposal that 
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diffusion processes, or equivalently, random walks, constrained on the structural network, 

can predict functional covariances via the so-called graph diffusion kernel 

FC = exp − βtℒ , involving the Laplacian of SC, ℒ (Abdelnour et al., 2014, 2015). The 

kernel is computed via the eigen decomposition of ℒ , hence eigenvectors and eigenvalues 

of SC and FC must be related (Abdelnour et al., 2015). In this paper we make these eigen-

relationships explicit and independent of graph diffusion or any other model. To our 

knowledge, these results have not appeared before.

Materials & methods

Network notation

In a brain network each node represents a gray matter region located on either the neocortex 

or in deep brain subcortical areas. We define a network  = (V,ℰ ) with a set of N nodes 

given by V = vi i ∈ 1, …, N  and a set of edges given by an ordered node pair 

E = i, j i ∈ V , j ∈ V  (Chung, 1997). Between any two nodes i and j there might exist a 

fibre pathway whose connectivity weight 𝑐ij ∈ [0,∞) can be measured from dMRI 

tractography, and this defines a connectivity matrix Cs = ci, j i, j ∈ ℰ . Although some 

individual neurons are known to be directional, dMRI does not allow measurement of 

directionality. Major fiber bundles resolvable by dMRI, especially cortico-cortical pathways 

are generally bidirectional, having roughly equal number of connections in either direction 

(Albright, 1984). We define the connectivity strength or the weighted degree of a node i in 

this graph as the sum of all connection weights: δi = ∑
j i, j ∈ ℰ

ci, j .

The table below describes the various parameters and variables used in this work (see Table 

1).

The graph diffusion model

We had previously described a linear graph model predicting a subject’s functional 

connectivity matrix from their structural connectivity matrix via graph diffusion (GD) 

(Abdelnour et al., 2014), briefly described here for completeness. Two cortical regions Ri 

and Rj are connected by a fibre population with weight ci;j, then activity in one region affects 

activity in the other via the first-order diffusion-like dynamics

dxi t

dt = β δi
− 1

2 ∑
j

ci, jδi
− 1

2 t − xi t

where the last term reflects self-decay within regions as a result of local inhibition, 

desynchronization and other effects that serve to limit local activity. Over the entire network, 

the resulting graph diffusion FC estimate, C f
GD, is given simply by

C f
GD t = e−βℒt (1)
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where ℒ = I − Δ−1/2CsΔ−1/2. Matrix Δ is diagonal with Δii = δi and Cs is the structural 

connectivity matrix with elements Ci;j. Matrix ℒ is simply the symmetric normalized 

Laplacian matrix of Cs. At some diffusion point tmax the correlation R between the estimated 

functional connectivity matrix C f
GD and the empirical FC matrix reaches a maximum.

By factoring matrix ℒ into its eigenvalues 𝛬l and eigenvectors Ul matrices we have 

ℒ = UlΛlU . From Eq. (1) the GD model can be written as C f
GD = Ule

−βΛltUl′ .

Proposed eigen decomposition model

From the above, the structural connectivity’s Laplacian matrix ℒ and the GD estimated 

functional connectivity matrix C f
GD must share the same eigenvectors Ul = Uf and the 

eigenvalues must be directly related by Λ f
GD = e

−βΛlt, where Λ f
GD is the functional 

adjacency matrix C f
GD eigenvalues.

In this work we focus on and expand this eigen relationship, and model the functional 

eigenvalues 𝛬f and their Laplacian counterparts 𝛬l by a more general exponential 

relationship:

Λ f
eig = ae

−αΛl + bI (2)

where Λ f
eig is the diagonal matrix containing the estimated functional eigenvalues, and where 

diffusion depth t is now absorbed into parameter α. The eigen decomposition model 

eigenvectors are assumed to be identical to the Laplacian eigenvectors, similar to (Abdelnour 

et al., 2014). Functional connectivity matrix is then estimated from C f
eig = UlΛ f

eigUl′, or since 

the Laplacian eigenvectors are always orthogonal we obtain

C f
eig = aUle

−αΛlUl′ + bI

= ∑
i = 1

N
uiu′i se

−αλi + b

(3)

where N is the order of the graph  and λi is the ith eigenvalue of ℒ. It can be easily shown 

that the above “eigen” model corresponds to a linear first order differential equation:

dx t
dt = − βℒ x t − x*

where x* is the steady state solution. The solution of this differential equation is given by
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x t = x* + e−βℒt x 0 − x*

Following (Abdelnour et al., 2014), this signal dynamics, when evaluated repeatedly with 

initial signal x(0) concentrated at each node, gives a predicted FC matrix

C f
eig = ae−βℒt + K

for some constant matrix K. Here we assert K = bI, a = E x 0 Tx 0  which α = βt, which 

makes the above equation equivalent to (3).

Although the summation in (3) involves all eigenvectors, in this work, we will exclude 

eigenvectors u1 and u2. Eigenvector u1 simply captures uniform background connectivity (K 
above), and is usually regressed out from fMRI data. Eigenvector u2 reflects left-right 

connectivity, which is poorly measured by DTI tractography, and this aspect of functional 

connectivity is well known to be underestimated by SC measurements. When only a single 

hemisphere is considered, only eigenvector u1 is excluded, but not u2. Equation (3) makes it 

possible to find the contribution of subsets of the eigen components. We show in Results that 

only a handful of the eigen components are needed to capture the essentials of the FC 

adjacency matrix, which is usually rather low-rank. Hence, a small subspace spanned by a 

handful of structural Laplacian eigenvectors is sufficient to construct FC.

NYU MR imaging and preprocessing

26 healthy subjects were recruited. The subjects underwent scanning on a Siemens Allegra 

3T scanner at New York University Center for Brain Imaging. All participants had a T1-

weighted MRI sequence optimized for gray-white matter contrast. (TR = 2530 ms, TE = 

3.25 ms, T1 = 1100 ms, flip angle = 7 deg, field of view (FOV) = 256 mm, matrix = 256 256 

192, voxel size = 1 1:33 1:33 mm). Images were corrected for nonlinear warping caused by 

nonuniform fields created by the gradient coils. Resting state fMRI scans included 197 

contiguous echo planar imaging functional volumes for each subject (TR = 2000 ms; TE = 

25 ms; flip angle = 90, 39 slices, matrix = 64 64; FOV = 192 mm; acquisition voxel size = 3 

3 3 mm). All participants were instructed to lie as still as possible with their eyes open for 

the duration of the 6 min, 38 s scan.

DTI data were acquired with 65 isotropically distributed diffusionencoding directions at b ¼ 

1000 s=mm2 and one at b ¼ 0 s=mm2, obtained at 47 2:5 mm thick interleaved slices with 

no gap between slices and 96 × 96 matrix size with a FOV of 117:5 mm.

Structural and diffusion MR volumes were coregistered using SPM tools in MATLAB 

(Aleman-Gomez et al., 2006; Friston et al., 1994), and then parcellated into 90 cerebral 

cortical structures as per (Tzourio-Mazoyer et al., 2002). Parcellated regions were used to 

seed probabilistic tractography in coregistered diffusion MRI volumes. Connectivity 

between any two regions was given by the sum of tracts going between them (Iturria-Medina 

et al., 2007). Simple statistical thresholding was performed to remove spurious weak 
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connections, defined as those below the p = 0:001 level of significance. Probabilistic masks, 

including both white and GM, were obtained. Threshold level p > 0:001 has been previously 

reported in (Ivkovic et al., 2012). A voxel was included in the mask if both its GM and WM 

probabilities exceeded 0.5.

All fMRI data were preprocessed using DPARSF version 2.1 (Song et al., 2010). The first 

seven time points for each subject were discarded. Spatial resolution was set at 2×2×2mm3. 

Standard steps in fMRI preprocessing were followed, including head motion correction, 

normalization across the subjects, smoothing, linear trend removal, bandpass filtering (0.01–

0.08 Hz), and finally nuisance covariates removal closely following (Song et al., 2010). The 

latter step includes the removal of the global signal, the cerebrospinal fluid (CSF) and white 

matter signals so as to reduce the effects of head motion and non-neuronal BOLD 

fluctuations. The time series of all voxels were averaged to 90 regions for each subject using 

the anatomical AAL atlas (Song et al., 2010) (cerebellum not included). Due to the weak 

recovery of the left and right pallidum in addition to their extremely small size, they were 

excluded from the networks. Thus the structural and functional networks used had 88 nodes 

each.

NYU functional and structural matrices

The FC matrix elements were obtained by evaluating the Kendall tau correlation between all 

88 time series for all subjects. We opt for the Kendall tau because it is nonparametric and 

thus makes no a priori assumption on the distribution of the functional time-series from 

which the FC connectivity matrix is obtained. Weak functional connectivity, defined as 

smaller than 0:05 C f
max in the absolute, is set to zero, with C f

max the largest absolute value of 

interregional functional connectivity matrix Cf .

Segmentation: For each subject, tissue probability maps (GM, WM, CSF) were obtained 

with the SPM New Segment module which relied on the DARTEL nonlinear transformation 

TNative → MNI from native to MNI space (Ashburner, 2007). The subject brain mask was 

computed by applying a series of morphological operations on the resulting tissue 

probability maps. A 96-region parcellation of each subject T1 volume was obtained by 

applying the inverse of the previously calculated native → MNI transform to the AAL 116-

region GM atlas and excluding the 20 regions associated to the cerebellum. The warped atlas 

in subject space was masked by the thresholded subject GM mask. The intersection between 

the dilated GM mask and the WM mask provided the interface between WM and GM.

Connectivity: The diffusion data was fitted to the diffusion tensor with FSL (Smith et al., 

2004) in order to obtain FA maps. The transform TFA → T1 between diffusion and T1 

space was computed by registering FA to T1 with a nonlinear deformation initialized from a 

linear registration (FSL FNIRT and FLIRT toolboxes respectively). The inverse transform 

TT1 → FA was calculated and applied to the WM/GM interface, so as to provide a seed 

mask for tractography, as well as to the 90-region parcellation to give the target ROIs 

required to obtain connectivity matrices. Whole-brain deterministic tractography was 

performed based on the previous seed mask and on fiber directions extracted from the 

diffusion profile estimated with Q-Ball ((Tuch, 2004; Hess et al., 2006)) as implemented in 
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Camino (Cook et al., 2006). The count and average length of fibers connecting each pair of 

regions in the parcellated volume were calculated, and provided two connectivity matrices 

(associated with fiber count and average length respectively). In this work we use fiber count 

between two regions to construct the structural network.

ICA computation

Group level independent components analysis (ICA) of all the NYU subjects’ BOLD EPI 

volumes was performed using toolbox GIFT (Calhoun et al., 2009) and the infomax 

algorithm, resulting in 20 spatial ICA components. Individual subjects’ expression of the 

group level components were obtained. Finally, the resulting components are each averaged 

over each ROI region, leading to a 88×1 vector (after removing the two pallidum nodes) for 

each ICA component.

Correlation metrics used

Pearson correlation R is used as a measure of how close the models discussed in this work 

are to the empirical FC connectivity matrix Cf . Importantly, we exclude the diagonal 

elements of both matrices in the Pearson correlation computation, as their inclusion appears 

to cause an upward bias of R.

Results

We show that the SC and FC connectivity matrices reveal an exponential relationship 

predicted by the Laplacian’s eigen components between the eigenvalues λf and λl, and the 

tight relationship between the corresponding eigenvectors Ul and Uf . The Laplacian and 

functional eigenvalues (𝛬l𝛬f) and eigenvectors (UlUf ) were obtained. For each subject an 

exponential curve fit of the {λf} and {λl} eigenvalues of the form ae−αx + b was computed 

via unconstrained non-linear minimization (Lagarias et al., 1998). To evaluate the accuracy 

of the FC connectivity matrix estimate, we compute the Pearson correlation between the 

estimated and the empirical FC matrices, excluding the matrices’ diagonal elements. All 

three models (GD, NMM, eigen decomposition) are explored and evaluated on 26 subjects 

obtained from NYU (Methods Section). The eigen decomposition model is additionally 

tested on a separate cohort of eight subjects obtained at Weill Cornell Medicine, See Sec 

SI-1 for MR imaging and networks construction.

Performance of the graph diffusion and neural mass models

Given that the current model is motivated by the GD model of (Abdelnour et al., 2014), we 

first evaluate how well it performs on the NYU subjects. As in (Abdelnour et al., 2014), the 

GD model was evaluated over a range of diffusion depths βt, Eq. (1). The resulting FC 

estimates give an R range of 0.29–0.41, with a mean of 0:35 ± 0:03. Fig. 1(a) depicts the 

resulting R curves for all subjects. In addition to the mean R obtained from the full brain 

network, Fig. 1(b) gives the mean R obtained when the GD model is applied to the full 

network as well as individual hemispheres only. Additional properties of R and βt can be 

found in Sec SI-2.
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In order to compare proposed and GD models to the more commonly reported generative 

simulations involving nonlinear neural dynamics, we implemented the NMM model of 

(Breakspear et al., 2003; Honey et al., 2009), using the same model parameters previously 

used in (Abdelnour et al., 2014). The free coupling parameter c modulates the inter-regional 

coupling. In this implementation the model is tested on all subjects with c taking on the 

values {0:02; 0:07; 0:12; 0:17; 0:22; 0:27; 0:32}. The estimated FC networks give R in the 

range 0.21–0.33 with a mean 0:2622 ± 0:03. Fig. 1(c) gives R vs coupling coefficient for all 

subjects and all values of c.

FC and SC Laplacian eigenvectors are related, and their eigenvalues bear an exponential 
relationship

In both the GD and Laplacian eigen decomposition models, an exponential relationship 

between the functional eigenvalues, λf and the Laplacian ones, λl, is expected. Additionally, 

the model implies that the matrix U’
lUf should approximate the identity matrix. We 

computed the product T = U’lCf Ul for each subject, and evaluated the mean value of T over 

all subjects to reduce the role of inter-subject variability. If the product U’
lUf indeed 

approximates identity, we expect T to be a neardiagonal matrix. FC matrix is predicted from 

the Laplacian eigenvectors Ul and eigenvalues 𝛬l, following Eq. (3), where parameters {a, 

α, b}are estimated from curve fitting of λf vs λl stacked over all subjects. For all subjects 

we have b ≥ − 1.

Fig 2(a) gives the empirical λf vs λl eigenvalues plot for all subjects. The plot closely 

approximates an exponential curve of the form ae−αx + b, with {a,α,b}={11.66, 

4.08,−0.75}. A semi-log scatter plot of all subjects’ FC eigenvalues λf vs the Laplacian 

eigenvalues λl is depicted in Fig. 2(b). The plot reveals an approximately linear relationship 

between log(λf) and λl(Fig. 2(c) gives the mean empirical FC eigenvalues λf over all 

subjects as a diagonal matrix. The eigenvectors’ function-structure relationship is observed 

at group level, where we compute the mean matrix T over all subjects. The resulting matrix 

is given in Fig. 2(d), where the matrix is nearly diagonal, similar to the empirical mean 

eigenvalues of Fig. 2(c), suggesting that at least at group level eigenvector matrices Ul and 

Uf are approximately equal.

We next examine the case where only the right hemisphere is considered. Consistent with 

the full network, the functional, λf, and Laplacian, λl, eigenvalues exhibit largely 

exponential relationship, see Fig. 2(e) where the stacked FC and Laplacian eigenvalues over 

all subjects are plotted. The resulting curve fitting coefficients are {a,α,b}={6.40, 2.78, 

−0.81}. The SC/FC eigenvalues relationship is further revealed in Fig. 2(f) where log(λf) vs 

λlscatter plot of all subjects highlights a nearly linear relationship. Fig. 2(g) gives the mean 

eigenvalues over all subjects as a diagonal matrix. Evaluating the mean value of T over all 

subjects reveals a near diagonal matrix, Fig. 2(h), similar to the mean eigenvalues matrix 

depicted in Fig. 2(g). Similar results are obtained in the case of the left hemisphere, where 

once again the λf and λl eigenvalues exhibit exponential relationship, and T largely 

approximates a diagonal matrix. For completeness, matrices U’lCf Ul for individual subjects 

are supplied in Fig SI-1 (Sec SI-3). Although there is clearly a substantial inter-subject 
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variability in these projection matrices, there is also clear evidence of an underlying 

diagonal-dominant pattern shown in Fig. 2.

FC eigenvalues can be predicted from SC Laplacian eigenvalues

Given that the SC and FC eigenvalues/eigenvectors are related as expected by our model, we 

predict the FC eigenvalues λf given a subject’s Laplacian matrix L , after fitting the 

coefficients fa;α;bg as described above. The FC eigenvalues are estimated using Eq. (2). Fig. 

3(a) gives the scatter plot of λ f
eigvs λ f  The mean correlation between λ f

eigand λ f  for all 

subjects is R = 0.9907 ± 0.0053. When only the right hemisphere is considered, λ f
eigand λ f

for all subjects have mean correlation R = 0:9890 ± 0.0070, the λ f
eigvs λ f  scatter plot is given 

in Fig. 3(b). Similar results are obtained in the case of the left hemisphere, where the mean 

correlation between the empirical and estimated eigenvalues for each subject is R = 0:9892 

± 0:0047. For all three cases the eigenvalues are closely captured. Additionally, for all cases 

the prediction is less accurate for the larger values of empirical λf. Scatter plots of 

C f
eigand C f  for each subject are given in Fig SI-2 (Sec SI-4).

We observe that for the parameters {a,α} at subject level, a and α appear to be correlated 

across the subjects. Specifically, for the case of the full network a and α correlation gives R 

¼ 0:93. Similarly, left hemisphere network gives R ¼ 0:916. Finally, the right hemisphere 

gives similar results, with R ¼ 0:934. Parameter b appears to depend on α. Furthermore, the 

Pearson correlation between α and 1/b is 0.86 for the full network, 0.903 for the right 

hemispheres, and 0.914 for the right hemisphere. The parameters’ properties are further 

discussed in Sec SI-5 where Fig SI-3 summarizes the values of {a,α,b} over all subjects.

FC can be recovered from the Laplacian

Using the successful prediction of FC eigenvalues and eigenvectors from SC Laplacian, we 

constructed theoretic FC for each subject. Only a subset of the Laplacian eigenvectors is 

needed to capture the essentials of the FC connectivity matrix Cf . As discussed in Theory 

section, the low frequency Laplacian eigenvectors u1 and u2 are excluded. We investigated 

the contribution of subsets of Ul to the FC estimate as the number of eigenvectors 

progressively increases, and where for the full network u1 and u2 are excluded and for the 

hemisphere networks eigenvector u1 is excluded. Evaluating Eq. (3) over a subset of 

eigenvectors, the resulting correlation R was computed; the process was repeated as more 

eigenvectors contribute to the FC estimate until all of the eigenvectors are exhausted. Fig. 

4(a) gives the R values for all subjects starting with u3 up to and including u88. The resulting 

correlation R for the full network has a mean of R = 0:39 ±0.07 when only eigenvectors 

u312 were used, and R = 0:41 ± 0.06 when eigenvectors u3−88 were used for FC estimation. 

Proceeding similarly with the right hemisphere, we obtained R = 0:42 ± 0.07 when 

eigenvectors u2−11 were used, and R = 0:45 ± 0.06 when eigenvectors u244 were included 

(Fig. 4(b)). Likewise with the left hemisphere (not shown), the FC estimate gives R = 0:43 

± 0.08 using u2−11, and R = 0:46 ± 0.07 when using u2−44. It is clear that most of the 

information in Cf is captured in the first few eigen components. To summarize, the Pearson 

correlation obtained using the eigen decomposition approach is encapsulated in Fig. 4, 
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where the mean R for the full network as well as the left/right hemispheres is given in Fig. 

4(c).

To verify that the model works specifically on the subjects’ SC network and is not simply 

due to randomness, we applied the above procedure to simulated random networks 

preserving SC’s weight, degree, and strength distribution using BCT (Rubinov and Sporns, 

2010). Fig. 4(d) gives the histogram of R over 1; 000 iterations averaged over all subjects 

and the mean R obtained from the true SC networks. Clearly, the model is specific to the SC 

connectivity matrix. The R histograms obtained from the random networks simulation for 

the individual subjects is given in Fig SI-4, with additional discussion in Sec SI-6.

Fig. 5(a) summarize the eigen decomposition model’s performance vs the GD and NMM 

models for all subjects. The proposed model consistently results in R equal to or higher than 

the GD and NMM models. We also show for comparison the direct correlation between 

empirical SC and FC, since the two are themselves known to be correlated to each other. As 

observed from Fig 5a, however, their Pearson R is weak, in the range of 0.1–0.2, which is 

much smaller than what is achieved by the proposed model.

Fig. 5(b–e) illustrate the models’ performance for a single subject (subject 12 in Fig. 5(a)). 

Fig. 5(a) shows the subject’s empirical FC network. Fig. 5(b) gives the FC estimate using 

the GD model, Fig. 5(d) manifests the estimate obtained via the NMM model. It can be 

appreciated that the eigen decomposition model (Fig. 5(e)) most closely captures the 

empirical FC.

Effects of non-stationarity

The model’s linearity and lack of temporal dynamics implies an assumption of stationarity. 

The underlying fMRI time series are likely non-stationary, which may explain why a high R 

prediction of the eigenvectors occurs at group level only. To further explore this point, the 

fMRI time series are windowed into lengths of 60 time points, and the window is repeatedly 

shifted by 10 time points. For each window shift the FC network is computed from BOLD 

data, compared against the (stationary) eigenvector model, and the corresponding R is 

computed. Fig. 6 depicts the model’s performance over all subjects and shifts. Fig. 6(a) 

gives the resulting R for all subjects and all shifts. Clearly, R changes as the window slides, 

revealing a degree of non-stationarity. Interestingly, the eigenvector model continues to 

predict instantaneous FC quite strongly, although not as strongly as against the full time 

series FC. However, when maximum R for each subject is plotted in Fig. 6(b), the pattern 

generally follows that of the full time series given in Fig. 5(a).

Dominant Laplacian components

To illustrate how FC can be constructed using a small number of structural Laplacian 

eigenvectors, FC estimates using various subsets of eigenvectors is shown in Fig. 7. The 

matrices uiu’
i constitute the building blocks of the FC estimate, with 

C f
eig = ∑

i ∈ M
uiui′ ae

−αλi + b  where M is asubset of indices of eigenvectors used for 

estimating Cf . Fig. 8 illustrates the leading six Laplacian eigenvectors on glass brain.
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Fig. 1(a) gives the mean SC matrix of all subjects, and Fig. 1(b–d) show the matrices 

obtained from eigenvectors uiu’
i with i = 4,7,11.. Fig. 1(e) shows the estimated FC C f

eig

reconstructed from eigenvectors u34 only. The resulting matrix is a poor estimate of FC. 

Using eigenvectors u3−7 improves the FC estimate (Fig. 1(f)). Finally, eigenvectors u3−11 

(Fig. 1(g)) give yet closer estimate of the empirical mean functional network depicted in Fig. 

1(h).

Proposed model and ICA decomposition

The majority of the brain FC/SC connectivities information is encoded in only a handful of 

the Laplacian eigenvectors. This is reflected in Fig. 9 where the Pearson correlation between 

the first six empirical FC eigenvectors (corresponding to the six largest FC eigenvalues) and 

the Laplacian eigenvectors averaged over all subjects is illustrated.

To further convey the importance of the Laplacian eigenvectors, we perform independent 

components analysis (see Sec 2.6). Pearson correlation between each of the first six ICA 

components and all Laplacian eigenvectors is computed. The results are given in Fig. 10 

where once again the network information is encoded only in a handful of the Laplacian 

eigenvectors. Additionally, each panel of the figure gives the corresponding empirical FC 

eigenvector on the glass brain. Fig SI-5 gives the full set of correlation plots. Similar steps 

are followed using the ICA decomposition obtained in Smith et al. (2009) (and using the 

NYU SC matrices) where once again only a handful of the Laplacian eigenvectors and ICA 

components are highly correlated (Fig SI-6). Correlation plots for all 20 components are 

given in Fig SI-7 (see Sec SI-7).

Results from additional cohort

A separate, 8 healthy subjects data set, obtained at Weill Cornell Medicine were used in 

order to independently confirm the model’s validity (consult Sec SI-1 for MR imaging and 

preprocessing and networks’ construction). Fig SI-8 shows very similar behavior to the 

NYU data presented in this work. Fig SI-8(a) gives the scatter plot of the empirical FC 

eigenvalues vs the eigenvalues of the Laplacian for all subjects. The resulting fitting 

parameter α = 434 over all stacked subjects is similar to the one obtained with the NYU 

data. Fig SI-8(b) gives the semi-log plot of FC eigenvalues vs Laplacian eigenvalues for all 

subjects, approximating a straight line. The functional and Laplacian eigenvectors fit the 

eigen decomposition model at group level, see Fig SI-8(c) where the elements of matrix 

U’lCf Ul tend to stand out near the diagonal, similar to the empirical Cf eigenvalues in Fig 

SI-8(d). This strongly suggests that the additional set of data closely fits the proposed eigen 

decomposition model.

Discussion

Summary of main results

We proposed a novel spectral graph approach that predicts function from the eigen 

decomposition of the structural network’s Laplacian matrix. The basis of the model is that 

any well-behaved diffusion process on the structural graph, e.g. (Abdelnour et al., 2014), 

must lead to an eigen relationship between SC and FC. We exploit this to develop a very 
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simple model-independent analytical predictor of FC from SC Laplacian. When compared 

with the model developed in (Abdelnour et al., 2014), the eigenvalues estimate has a 

constant offset b. On a purely mechanical level, perhaps the easiest explanation is that unlike 

the GD model that can accommodate only non-negative eigenvalues for the estimated FC, 

here we allow the FC eigenvalues to take on positive as well as negative eigenvalues, which 

is more realistic. The parameter b reflects this shift. The predictor can be evaluated 

analytically on the whole brain at once, requiring neither numerical simulations nor 

explicitly computing pairwise measures of functional connectivity. The presented linear 

spectral graph model explicitly incorporates the role of macroscopic structural connectivity 

in governing the stationary covariance structure of functional data in a mechanical fashion 

without involving any details of local dynamics. While local brain dynamics are not linear or 

stationary, the emergent stationary behavior of long-range interactions can be independent of 

detailed local dynamics (Misic et al., 2015), hence amenable to linear modelling. Ensemble-

averaged behavior of large connected but individually nonlinear neural populations can be 

quite linear (Enno Stephan et al., 2008).

We showed that the theoretical SC-FC predictions of both eigenspectra and full connectomes 

strongly recapitulate empirical data from two independent cohorts of 26 and 8 healthy 

subjects. We note that although empirical SC and FC are themselves correlated to each other, 

their Pearson R is weak, in the range of 0.1–0.2, which is much smaller than what is 

achieved by the proposed model (Fig. 5(a)). Empirical FC eigenvectors were shown identical 

to SC Laplacian eigenvectors at the group level, and predictable from very few SC Laplacian 

eigenvectors, spanning low graph frequency components, at the individual level. Further, we 

showed that Laplacian eigenvectors can efficiently predict, using only 1–3 eigenvectors, 

many classic functional networks computed from independent components analysis, e.g. 

default-mode, executive, etc, networks. This suggests that much of the information 

contained in conventional functional connectomes are already present in SC. The proposed 

model suggests that the FC network may be largely reproduced by the Fourier transform of 

the structural network with the domain mapped as an exponential of the Laplacian 

eigenvalues. This indicates that a large portion of the functional signal can be explained in 

purely static, mechanistic manner, from the brains structural connectivity organization.

The first structural Laplacian eigenvector u1 is trivial, with values proportional to node 

degree. In terms of graph diffusion, it is simply the steady state (infinite time limit) pattern; 

consequently it has little biophysical interpretability, since actual neural activity is not 

typically allowed to decay to steady state. In terms of our SC-FC model, this would 

correspond to the global functional signal correlation, which is typically regressed out. 

These points were noted previously in (Abdelnour et al., 2014). The second eigenvector u2 is 

omitted for a different reason. Previous studies on the eigen-structure of the structural 

Laplacian showed that u2 merely captures left-right gradients in diffusion (Wang et al., 

2017); this was further confirmed in Fig. 7. In real functional brain activity such a strong 

lateralization is absent, and both left and right hemispheres show laterally symmetric activity 

patterns at BOLD frequencies, probably due to shared sensory and thalamic drive. These 

commissural connections are not easily captured by current DTI and tractography, which 
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significantly underestimates inter-hemispheric callosal connections, as is demonstrated in 

Fig SI-11, hence the removal of u2.

There is clearly substantial individual-level variation from the diagonal matrix, and we 

should not be particularly surprised by this. A purely mechanistic structure-function 

relationship will not account for timevariant and non-stationary behavior. The proposed 

model, being linear, can only capture the stationary component of the functional eigenvalues. 

Therefore one possible explanation of the eigenvectors matching the proposed model only at 

group level is that the time series leading to the functional connectivity network are non 

stationary. On the other hand, the ability to predict the eigenvalues at subject level appears to 

suggest that the functional eigenvalues remain largely stationary. Fig. 6 shows the model 

match against “instantaneous” functional connectivity, measured using a sliding window. 

Indeed, we found substantial variability between and even within the same individual. We 

think this new result has added an interesting new dimension to the issue, and helped clarify 

the strengths and limitations of the proposed technique.

When compared against two state of the art recent approaches, (analytical) GD and 

(generative) NMM model, the proposed model yields consistently higher similarity for all 

subjects, as seen from Fig. 5. The SC/ FC eigenvalues’ exponential relationship gives a close 

fit to empirical data at both subject and group levels, and holds for full network as well as 

single hemisphere networks. Notably, the empirical eigenvectors Ul and Uf of individual 

subjects are not identical as predicted by the eigendecomposition model, even as the mean of 

U’
lCf Ul is nearly diagonal at group level. This is to be expected, as there is considerable 

inter-subject variability that can not be accounted for in a simple eigen-space model. Despite 

this, the overall prediction of stationary FC from SC is robustly achieved, with better 

performance than any competing method we have so far investigated. Ultimately, the 

maximum R achievable by any predictive model is limited by natural variability, non-

stationarity and likely presence of several “meta-stable” states (Deco et al., 2012; 

Panagiotaropoulos et al., 2013).

In this work we opted to construct the functional networks using Kendall tau correlation 

rather than the more commonly used Pearson correlation (See Sec SI-8). The results are 

quite comparable with those obtained using Pearson correlation. Fig SI-9 summarizes the 

results of applying the eigen decomposition model to FC networks obtained via Pearson 

correlation. The eigenvalue (Fig SI-9(a)) and group level eigenvectors (Fig SI-9(b)) 

relationships predicted by the model are preserved. Moreover, the R obtained for the full 

network (Fig SI-9(c)) and the right hemisphere (Fig SI-9(d)) are comparable with the 

estimates obtained using Kendall tau. Fig SI-10 shows how the Pearson-generated FC 

networks of the Weill Cornell data match the proposed model of an exponential relationship 

between the FC and Laplacian eigenvalues (Figs SI-10(a-b)), and the group level 

eigenvectors fitting the model (Figs SI10(c-d)).

Related work

Compared with our previous work on graph diffusion, the current proposal is model-

independent and also gives better performance. A linear generative model developed by 

Galan (2008) that predicts neural activity from anatomic connectivity also relies on eigen 
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decomposition, but was proposed for modelling local circuitry only. The model of (Galan, 

2008), in turn, is motivated by a large body of work on the eigen structure of memory 

circuits. Here we favor graph Laplacian of whole brain connectome, compared to Galan’s 

use of synthetic adjacency matrix of local, intracortical synaptic strengths. The Galan model 

was adopted by Honey et al. for predicting brain-wide functional connectivity from 

structural connectivity (Honey et al., 2009), and compared against a nonlinear generative 

neural mass model (NMM) first reported by (Breakspear et al., 2003). The linear model 

underperformed the NMM. NMMs have been previously used for predicting function from 

structure via a system of second order, nonlinear differential equations (Honey et al., 2009; 

Deco et al., 2011, 2012; Panagiotaropoulos et al., 2013). Neural activities at nodes influence 

each other via inter-regional couplings weighted by anatomic connectivity. In contrast, our 

spectral graph model is completely analytical, and can be evaluated for the whole brain FC 

using only a single matrix exponentiation. In contrast to conventional nonlinear generative 

simulations, for instance using neural mass models, the proposed model is entirely linear and 

analytic. Its linearity makes it simple to implement, requiring only the computation of the 

Laplacian eigen components from Cs. Several analytic measures of functional connectivity 

based on inter-node communication between pairs of SC nodes were proposed by Goni et 

al., including~ search information and path transitivity (Goni~ et al., 2014). These measures 

are superior to previous “shortest path” measures, because they can account for how several 

possible paths between node pairs are embedded within the rest of the structural network. 

Although this approach incorporates some of the shortest parts between region pairs, it does 

not account for all possible paths between them. Further, it requires explicit computation of 

these FC measures between all region pairs, whereas here we can predict the entire FC 

matrix via a handful of structural eigenvectors.

Eigen decomposition as a tool for predicting FC from SC, a key component of the proposed 

model, is not in itself new. In a series of articles, Robinson (2012, 2014) and Robinson et al. 

(2014) develop a linear relationship between function and structure exploiting spike-based as 

well as neural field interactions. The model considers excitatory as well as inhibitory 

activities. Importantly, the authors incorporate delays between the time series in the model 

using propagator theory. In particular, Robinson et al. (2014) develop a function-structure 

relationship where matrices Cs and Cf are assumed to share the eigenvectors, similar to 

(Galan, 2008). Additionally, function and structure eigenvalues are assumed to be related via 

an inverse square relationship. This is distinctly different from the proposed model where the 

eigenvectors Ul obtained from the Laplacian (rather than Cs) predict FC eigenvectors, and 

the functional eigenvalues are obtained via an exponential relationship, as revealed in Fig. 2. 

We believe this is the key assumption leading to improved R between the empirical FC data 

and the estimated functional networks. Deco et al. (2013) approximate the nonlinear brain 

dynamics by assuming stationary covariance of spontaneous fluctuations relating function 

and structure. The model then is described by a linear first order system. The estimated FC 

matrix incorporates the eigenvectors of the system’s Jacobian matrix, which in turn is related 

to the structural connectivity matrix Cs. The resulting R (5 healthy subjects) hovers around 

0.45. This is comparable with both the NYU data, Fig. 4(a), and the Weill Cornell, Fig 

SI-9(c), data when eigenvectors u388 are used. However, the proposed model is inherently 

linear, simple to implement, and does not require a linearization step.
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Study limitations and future work

Tractography methods are known to under-estimate inter-hemispheric connections involving 

long fibers, due to which our predicted FC also shows lower inter-hemispheric FC than 

observed. Fig SI-11 (Sec SI-9) gives an example of missing inter-hemispheric connectivity. 

One way of improving the FC estimate may be to apply pre-determined weights to the nodes 

known to be strongly connected but underestimated by DTI. Next, our prediction gives long-

time correlation structure of the stationary portion of functional activity. Hence it cannot 

account for time varying, non-stationary and possibly chaotic behavior exhibited by real 

brain signals (Matthew Hutchison et al., 2013). Nonetheless, most current approaches to FC 

also rely on stationarity. In the fMRI frequency range (< 0:2 Hz) axonal conduction speed is 

not relevant, but future extensions into higher frequencies will require incorporating 

temporal delays within the nodes and edges of the network.

Conclusion

In this work we modify the graph diffusion model and explicitly estimate the functional 

network from the structure Laplacian’s eigen components. The model assumes that the 

functional network is driven by an external process. It is shown that only a subset of the 

Laplacian eigen components is sufficient to estimate the functional network. For future 

work, we plan to incorporate networks’ nodes and edges delays for a more realistic 

modelling using EEG data.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Functional network estimate using the graph diffusion model. and the neuronal mass model: 

(a) GD model R vs t, full network; (b) Mean GD Pearson correlation R for the full network 

(left), left hemisphere (middle), and right hemisphere (right); (c) NMM model: Plots of R 

for all subjects and over a range of the coupling coefficient c. The resulting R has a mean of 

0.2622 0.0259. Recall that R here refers to Pearson’s R statistic computed between two FC 

matrices (model and empirical).
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Fig. 2. 
Figs (a-d) Full brain: (a) Curve fitting of λf vs λl when all subjects’ Laplacian and FC 

eigenvalues are stacked. The curve is exponential with α = 4:08, (b) Scatter semi-log plot of 

subjects’ Laplacian and FC eigenvalues, largely a linear plot. (c) Mean empirical 𝛬f over all 

subjects, (d) Matrix obtained from mean U’
lCfUl over all subjects. Resulting matrix is nearly 

diagonal. Figs (e-h) Right hemisphere: (e) Curve fitting when all subjects’ Laplacian and FC 

eigenvalues are stacked, α = 2:78. (f) Scatter semi-log plot of subjects’ Laplacian vs 

empirical FC eigenvalues, (g) Mean FC eigenvalues over all subjects. (h) Mean U’
lCfUl over 

all subjects, leading to a nearly diagonal matrix.
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Fig. 3. 
Scatter plots of the estimated functional eigenvalues vs empirical FC eigenvalues, (a) full 

network, and (b) right hemisphere. For both cases the eigenvalues are closely captured using 

the eigen decomposition model.
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Fig. 4. 
(a) Pearson correlation R between model and empirical FC matrices as a function of the 

number of eigenvectors over all subjects. Recall that R here refers to Pearson’s R statistic 

computed between two FC matrices - model and empirical - as described in Section 2.7 (b) 

R for the right hemisphere only. (c) Mean R for the full network and the hemispheres using a 

subset of the eigenvectors {ui}. (d) Histogram depicting mean R obtained from random 

networks preserving the weight, degree, and strength distributions of Cs evaluated over all 

subjects, and the mean R obtained from the empirical Cs networks
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Fig. 5. 
Summary of the three models and the resulting R for all subjects, R for each subject and 

each model. The proposed model consistently results in R equal to or higher than the GD 

and NMM models. Interestingly, subject 18 has the lowest NMM R but scores the highest 

eigen decomposition R. (b) Empirical FC for subject 12 in Fig 5(a) above, (c) FC recovery 

using GD model, (d) Recovery using the NMM model, (e) Recovery using the proposed 

eigen decomposition model. Recall that R here refers to Pearson’s R statistic computed 

between two FC matrices (model and empirical), as described in Section 2.7.
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Fig. 6. 
Investigating the effects of non-stationarity. (a) R when the empirical FC is obtained from 

time series windows of length 60 and shifted by 10 time samples for each bin. There is clear 

evidence of nonstationarity; however, the proposed model continues to give good match 

against instantaneous FC. (b) Maximum R for each subject over all shifts. For comparison, 

the model match against full time series FC is also shown. Despite non-stationarity, the 

maximum R over all sliding windows is consistent with the model match against FC 

computed on the full time-series.
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Fig. 7. 
The first 6 eigenvectors of the graph Laplacian of the average healthy connectome. We 

hypothesize that these are the most important eigenvectors of the graph, and a linear 

combination of a few of these eigenvectors can effectively reproduce most eigen-vectors of 

the FC matrix, as well as the entire FC matrix itself. Blue refers to negative components, 

while green refers to positive components. Ball size reflects the component’s magnitude.
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Fig. 8. 
Estimating FC from a subset of the Laplacian eigenvectors. (a) Mean SC matrix, (b-d) FC 

network “building blocks” uiu’
i with i = 4,7,11. FC estimates using eigenvectors u3–4 (e), 

u3–7. (f), and u3–11 (g). Last panel (h) gives the mean empirical FC.
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Fig. 9. 
Pearson correlation between each of the six dominant empirical FC eigenvectors and all 

Laplacian eigenvectors averaged over all subjects. Eigenvector index i refers to the 

eigenvector indexed by the ith smallest Laplacian eigenvalue. Each panel shows the 

corresponding FC eigenvector on the glass brain. Blue refers to negative components, while 

green refers to positive components. Ball size reflects the component’s magnitude. Only a 

handful of the Laplacian eigenvectors encode most of the FC/SC networks information
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Fig. 10. 
Pearson correlation between each of the six dominant empirical FC group level ICA spatial 

components and all Laplacian eigenvectors averaged over all subjects. Eigenvector index is 

similar to that of Fig 9. Each panel of the figure gives the corresponding ICA component on 

the glass brain. Ball size and color uses are identical to Fig 9.
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Table 1

Summary of the variables and definitions used in this text.

 Parameter or variable Role

 structural network of N nodes

 set of nodes of 

 i ith node of 

 ℰ set of edges of 

 Cs structural connectivity matrix

  Ci,j element (i,j) of Cs

  Cf functional connectivity matrix

 C f
GD graph diffusion estimate of Cf

 C f
eig eigen decomposition estimate of Cf

 δi weighted degree of node i

 ℒ Laplacian of Cs

 Ul eigenvectors of ℒ

 Λl eigenvalues of ℒ

 Λ f
eig proposed model eigenvalues

 Λ f
GD eigenvalues of the GD model

 ui ith eigenvector of ℒ

 Δ diagonal degree matrix of Cs

 β diffusion rate
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