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ABSTRACT OF THE DISSERTATION

Floer Homology Theories for Knots in Lens Spaces

by

Allen David Boozer

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Ciprian Manolescu, Chair

We describe two projects involving the construction of Floer homology theories for knots in

lens spaces. In the first project, we propose definitions of complex manifolds PM(X,m, n)

that could potentially be used to construct the symplectic Khovanov homology of n-stranded

knots in lens spaces. The manifolds PM(X,m, n) are defined as moduli spaces of Hecke

modifications of rank 2 parabolic bundles over an elliptic curve X. To characterize these

spaces, we describe all possible Hecke modifications of all possible rank 2 vector bundles

over X, and we use these results to define a canonical open embedding of PM(X,m, n) into

M s(X,m + n), the moduli space of stable rank 2 parabolic bundles over X with trivial

determinant bundle and m + n marked points. We explicitly compute PM(X, 1, n) for n =

0, 1, 2. For comparison, we present analogous results for the case of rational curves, for

which a corresponding complex manifold PM(CP1, 3, n) is isomorphic for n even to a space

Y(S2, n) defined by Seidel and Smith that can be used to compute the symplectic Khovanov

homology of n-stranded knots in S3.

In the second project, we describe a scheme for constructing generating sets for Kron-

heimer and Mrowka’s singular instanton knot homology for the case of knots in lens spaces.

The scheme involves Heegaard-splitting a lens space containing a knot into two solid tori.

One solid torus contains a portion of the knot consisting of an unknotted arc, as well as

holonomy perturbations of the Chern-Simons functional used to define the homology theory.

The other solid torus contains the remainder of the knot. The Heegaard splitting yields a
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pair of Lagrangians in the traceless SU(2)-character variety of the twice-punctured torus,

and the intersection points of these Lagrangians comprise the generating set that we seek.

We illustrate the scheme by constructing generating sets for several example knots. Our

scheme is a direct generalization of a scheme introduced by Hedden, Herald, and Kirk for

describing generating sets for knots in S3 in terms of Lagrangian intersections in the traceless

SU(2)-character variety for the 2-sphere with four punctures.
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CHAPTER 1

Introduction

Knots and links play a key role in the study of 3-manifolds. Indeed, any 3-manifold can

be obtained by performing Dehn surgery on a suitable link in S3. One can consider knots

in any 3-manifold, but so far most work on knot invariants has focused on knots in S3.

Little is known about invariants of knots in arbitrary 3-manifolds, but, partly because of

the close connection between knots and 3-manifold topology, such results would be of great

interest. If one quantifies the complexity of a 3-manifold by its Heegaard genus, then by this

measure S3, with Heegaard genus zero, is the simplest 3-manifold. The next simplest class

of 3-manifolds are those with Heegaard genus one, i.e., lens spaces. We describe two projects

involving the construction of Floer homology theories for knots in lens spaces.

1.1 Symplectic Khovanov homology for knots in lens spaces

The first project we consider describes an initial step towards the construction of symplectic

Khovanov homology for knots in lens spaces. Khovanov homology is a powerful invariant for

distinguishing links in S3 [Kho00]. Khovanov homology can be viewed as a categorification

of the Jones polynomial [Jon85]: one can recover the Jones polynomial of a link from its

Khovanov homology, but the Khovanov homology generally contains more information. For

example, Khovanov homology can sometimes distinguish distinct links that have the same

Jones polynomial, and Khovanov homology detects the unknot [KM11a], but it is not known

whether the Jones polynomial has this property. The Khovanov homology of a link can

be obtained in a purely algebraic fashion by computing the homology of a chain complex

constructed from a generic planar projection of the link. The Khovanov homology can also
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be obtained in a geometric fashion by Heegaard-splitting S3 into two 3-balls in such a way

that the intersection of the link with each 3-ball consists of r unknotted arcs. Each 3-

ball determines a Lagrangian in a symplectic manifold Y(S2, 2r) known as the Seidel-Smith

space, and the Lagrangian Floer homology of the pair of Lagrangians yields the Khovanov

homology of the link (modulo grading) [AM17, SS06]. Recently Witten has outlined gauge

theory interpretations of Khovanov homology and the Jones polynomial in which the Seidel-

Smith space is viewed as a moduli space of solutions to the Bogomolny equations [Wit12,

Wit11, Wit16].

We consider here the problem of generalizing symplectic Khovanov homology to knots in

lens spaces. In analogy with the Seidel-Smith approach to Khovanov homology, one could

Heegaard-split a lens space into two solid tori, each containing r unknotted arcs, and compute

the Lagrangian Floer homology of a pair of Lagrangians intersecting in a symplectic manifold

Y(T 2, 2r) that generalizes the Seidel-Smith space Y(S2, 2r). To perform the construction,

one first needs to determine a suitable symplectic manifold Y(T 2, 2r), and we propose two

natural candidates for this space.

In outline, our approach is as follows. First, using a result due to Kamnitzer [Kam11],

we reinterpret the Seidel-Smith space Y(S2, 2r) as a moduli space H(CP1, 2r) of equivalence

classes of sequences of Hecke modifications of rank 2 holomorphic vector bundles over a

rational curve. Roughly speaking, a Hecke modification is a way of locally modifying a

holomorphic vector bundle near a point to obtain a new vector bundle. We show that there

is a close relationship between Hecke modifications and parabolic bundles, and we use this

relationship to reinterpret the Kamnitzer space H(CP1, 2r) as a moduli space PM(CP1, 2r)

of isomorphism classes of parabolic bundles with marking data. The space PM(CP1, 2r) has

two natural generalizations PM(X, 1, 2r) and PM(X, 3, 2r) to the case of an elliptic curve X,

and we propose these spaces as candidates for Y(T 2, 2r).
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1.2 Singular instanton homology for knots in lens spaces

The second project we consider describes a scheme for constructing generating sets for Kro-

nheimer and Mrowka’s singular instanton homology for the case of knots in lens spaces.

Singular instanton homology was introduced by Kronheimer and Mrowka to describe knots

in 3-manifolds [KM11b, KM11a, KM14]. Singular instanton homology is defined in terms of

gauge theory, but has important implications for Khovanov homology. Specifically, given a

knot K in S3, Kronheimer and Mrowka showed that there is a spectral sequence whose E2

page is the reduced Khovanov homology of the mirror knot K̄, and that converges to the

singular instanton homology of K. Using this spectral sequence, Kronheimer and Mrowka

proved that Khovanov homology detects the unknot. This result is obtained by proving the

analogous result for singular instanton homology and then using the rank inequality implied

by the spectral sequence.

Calculations of singular instanton homology are generally difficult to carry out, though

some results are known. For example, Kronheimer and Mrowka showed that the singular

instanton homology of an alternating knot in S3 is isomorphic to the reduced Khovanov

homology of its mirror (modulo grading), since for such knots the spectral sequence collapses

at the E2 page. In recent work, Hedden, Herald, and Kirk have described a scheme for

producing generating sets for singular instanton homology for a variety of knots in S3, which

can sometimes be used to compute the singular instanton homology itself [HHK14]. Their

scheme works as follows.

Singular instanton homology is defined in terms of the Morse complex of a perturbed

Chern-Simons functional. The unperturbed Chern-Simons functional is typically not Morse,

so to obtain a well-defined homology theory it is necessary to include a small perturbation

term. For the case of knots in S3, Hedden, Herald, and Kirk show how a suitable perturbation

can be constructed. Their scheme involves Heegaard-splitting S3 into a pair of solid 3-balls

B1 and B2. The ball B1 contains a portion of the knot K consisting of two unknotted

arcs, together with a specific holonomy perturbation of the Chern-Simons functional. The

ball B2 contains the remainder of the knot. The Heegaard splitting of S3 yields a pair of

3



Lagrangians L1 and L2 in the traceless SU(2)-character variety of the 2-sphere with four

punctures R(S2, 4), a symplectic manifold known as the pillowcase that is homeomorphic to

the 2-sphere. Specifically, the Lagrangians L1 and L2 describe conjugacy classes of SU(2)-

representations of the fundamental group of the 2-sphere with four punctures that extend

to B1 − K and B2 − K, respectively. In many cases, the points of intersection of L1 and

L2 constitute a generating set for singular instanton homology. The essential idea of the

scheme is to confine all of the perturbation data to a standard ball B1 corresponding to a

Lagrangian L1 that can be described explicitly. The problem of constructing a generating set

for a particular knot thus reduces to describing the Lagrangian L2, a task that is facilitated

by the fact that the Chern-Simons functional is unperturbed on the ball B2. In further work,

Hedden, Herald, and Kirk define pillowcase homology to be the Lagrangian Floer homology

of the pair (L1, L2) [HHK18]. They conjecture that pillowcase homology is isomorphic to

singular instanton homology and compute some examples that support this conjecture.

We generalize the scheme of Hedden, Herald, and Kirk to the case of knots in lens spaces.

We Heegaard-split a lens space Y containing a knot K into two solid tori U1 and U2. The

solid torus U1 contains a portion of the knot consisting of an unknotted arc, together with

a specific holonomy perturbation. The solid torus U2 contains the remainder of the knot.

From the Heegaard splitting of Y we obtain a pair of Lagrangians L1 and L2 in the traceless

SU(2)-character variety of the twice-punctured torus R(T 2, 2), and in many cases the points

of intersection of L1 and L2 constitute a generating set for the (reduced) singular instanton

homology I\(Y,K).

Our scheme is particularly well-suited for the case of (1, 1)-knots. By definition, a (1, 1)-

knot is a knot K in a lens space Y that has a Heegaard splitting into a pair of solid tori

U1, U2 ⊂ Y such that the components U1 ∩ K and U2 ∩ K of the knot in each solid torus

are unknotted arcs. It is known that (1, 1)-knots include all torus knots and 2-bridge knots.

We illustrate our scheme by calculating generating sets for several example (1, 1)-knots. We

first rederive known results for knots in S3: we produce generating sets for the unknot (one

generator) and trefoil (three generators), which allow us to compute the singular instanton

homology for these knots. Next we consider knots in lens spaces L(p, 1). We prove:
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Theorem 1.2.1. If p is not a multiple of 4, then the rank of I\(L(p, 1), U) for the unknot

U in the lens space L(p, 1) is at most p.

A knot K in a lens space L(p, q) is said to be simple if the lens space can be Heegaard-

split into solid tori U1 and U2 with meridian disks D1 and D2 such that D1 intersects D2 in

p points and K ∩Ui is an unknotted arc in disk Di for i = 1, 2 (see [Hed11]). Up to isotopy,

there is exactly one simple knot in each nonzero homology class of H1(L(p, q);Z) = Zp. We

prove:

Theorem 1.2.2. If K is the unique simple knot representing the homology class 1 ∈ Zp =

H1(L(p, 1);Z) of the lens space L(p, 1), then the rank of I\(L(p, 1), K) is at most p.

To our knowledge, Theorems 1.2.1 and 1.2.2 give the first rank bounds on instanton

homology for knots in 3-manifolds other than S3. For a simple knot K in the lens space

Y = L(p, q), the knot Floer homology ĤFK(Y,K) has rank p (see [Hed11]). Thus, Theorem

1.2.2 is consistent with Kronheimer and Mrowka’s conjecture that for a knot K in a 3-

manifold Y , the ranks of I\(Y,K) and ĤFK(Y,K) are the same (see [KM10] Section 7.9).
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CHAPTER 2

Symplectic Khovanov homology for knots in lens

spaces

2.1 Introduction

Our goal is to generalize the Seidel-Smith space Y(S2, 2r) to the case of elliptic curves by ex-

ploiting Kamnitzer’s reinterpretation of this space as a moduli space of Hecke modifications

H(CP1, 2r). Our approach is as follows. Given a rank 2 holomorphic vector bundle E over a

curve C, we define a set Htot(C,E, n) of equivalence classes of sequences of n Hecke modifi-

cations of E. As is well-known, the set Htot(C,E, n) has the structure of a complex manifold

that is (noncanonically) isomorphic to (CP1)n, where each factor of CP1 corresponds to a

single Hecke modification. The Kamnitzer space H(CP1, 2r) is then defined to be the open

submanifold of Htot(CP1,O⊕O, 2r) consisting of equivalence classes of sequences of Hecke

modifications for which the terminal vector is semistable.

Example 2.1.1. For r = 1, we have that

Htot(CP1,O ⊕O, 2) = (CP1)2, H(CP1, 2) = (CP1)2 − {(a, a) | a ∈ CP1}.

To generalize the Kamnitzer space to curves of higher genus, we want to define moduli

spaces of sequences of Hecke modifications in which the initial vector bundle in the sequence

is allowed to vary. We define such spaces via the use of parabolic bundles. For any curve

C and any natural numbers m and n, we define a moduli space P totM (C,m, n) of marked

parabolic bundles. We prove:

Theorem 2.1.2. The moduli space P totM (C,m, n) naturally has the structure of a complex

manifold isomorphic to a (CP1)n-bundle over M s(C,m).
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Here the complex manifold M s(C,m) is the moduli space of stable rank 2 parabolic bun-

dles over a curve C with trivial determinant bundle and m marked points. Roughly speaking,

the space P totM (C,m, n) describes isomorphism classes of sequences of n Hecke modifications

in which the initial vector bundle in the sequence is allowed to range over isomorphism classes

that are parameterized by M s(C,m). By imposing a condition analogous to the semistability

condition used to define the Kamnitzer space H(CP1, 2r), we identify an open submanifold

PM(C,m, n) of P totM (C,m, n). We prove that P totM (CP1, n) := P totM (CP1, 3, n) is isomorphic

to Htot(CP1,O⊕O, n) and PM(CP1, 2r) := PM(CP1, 3, 2r) is isomorphic to to H(CP1, 2r).

Thus the Seidel-Smith space Y(S2, 2r), the Kamnitzer space H(CP1, 2r), and the space of

marked parabolic bundles PM(CP1, 2r) are all isomorphic. However, unlike Y(S2, 2r) or

H(CP1, 2r), the space PM(CP1, 2r) naturally generalizes to case of elliptic curves.

Although our primary motivation for introducing the spaces P totM (CP1, n) and

PM(CP1, n) is to facilitate generalization, they are also useful for proving canonical versions

of certain results for CP1. For example, we prove a canonical version of the noncanonical

isomorphism Htot(CP1,O ⊕O, n)→ (CP1)n for P totM (CP1, n):

Theorem 2.1.3. There is a canonical isomorphism P totM (CP1, n)→ (M ss(CP1, 4))n.

Here the complex manifold M ss(CP1, 4) ∼= CP1 is the moduli space of semistable rank 2

parabolic bundles over CP1 with trivial determinant bundle and 4 marked points. We also

prove:

Theorem 2.1.4. There is a canonical open embedding PM(CP1,m, n)→M s(CP1,m+n).

Corollary 2.1.5. There is a canonical open embedding PM(CP1, 2r)→M s(CP1, 2r + 3).

Here the complex manifold M s(CP1,m+n) is the moduli space of stable rank 2 parabolic

bundles over CP1 with trivial determinant bundle and m + n marked points. For r = 1, 2

we have verified that the embedding of PM(CP1, 2r) into M s(CP1, 2r + 3) agrees with

a (noncanonical) embedding due to Woodward of the Seidel-Smith space Y(S2, 2r) into

M s(CP1, 2r + 3), and we conjecture that the agreement holds for all r.
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We next proceed to the case of elliptic curves. We show that our reinterpretation

PM(CP1, 2r) of the Seidel-Smith space Y(S2, 2r) has two natural generalizations to the case

of an elliptic curve X, namely PM(X, 1, 2r) and PM(X, 3, 2r). We prove an elliptic-curve

analog to Theorem 2.1.3:

Theorem 2.1.6. There is a canonical isomorphism P totM (X, 1, n)→ (M ss(X))n+1.

Here the complex manifold M ss(X) ∼= CP1 is the moduli space of semistable rank

2 vector bundles over an elliptic curve X with trivial determinant bundle. Compar-

ing Theorems 2.1.3 and 2.1.6, we see that P totM (CP1, n) is (noncanonically) isomorphic

to (CP1)n, whereas P totM (X, 1, n) is (noncanonically) isomorphic to (CP1)n+1. The extra

factor of CP1 for P totM (X, 1, n) can be understood from Theorem 2.1.2, which states that

P totM (CP1, n) = P totM (CP1, 3, n) is a (CP1)n-bundle over M s(CP1, 3) and P totM (X, 1, n) is

a (CP1)n-bundle over M s(X, 1). But M s(CP1, 3) is a single point, whereas M s(X, 1) is

isomorphic to CP1. We use Theorem 2.1.6 to explicitly compute PM(X, 1, n) for n = 0, 1, 2:

Theorem 2.1.7. The space PM(X, 1, n) for n = 0, 1, 2 is given by

PM(X, 1, 0) = CP1, PM(X, 1, 1) = (CP1)2 − g(X), PM(X, 1, 2) = (CP1)3 − f(X),

where g : X → (CP1)2 and f : X → (CP1)3 are holomorphic embeddings defined in Sections

2.6.5.2 and 2.6.5.3.

We also generalize the embedding result of Theorem 2.1.4 to the case of elliptic curves:

Theorem 2.1.8. There is a canonical open embedding PM(X,m, n)→M s(X,m+ n).

Here the complex manifold M s(X,m+ n) is the moduli space of stable rank 2 parabolic

bundles on X with trivial determinant bundle and m + n marked points. In order to prove

Theorems 2.1.6, 2.1.7, and 2.1.8, we construct a list of all possible Hecke modifications of all

possible rank 2 vector bundles on an elliptic curve X.

In Section 2.7, we discuss possible applications of our results to the problem of generaliz-

ing symplectic Khovanov homology to lens spaces. We observe that the embedding results of
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Theorems 2.1.4 and 2.1.8 could be related to a conjectural spectral sequence from symplectic

Khovanov homology to symplectic instanton homology, which would generalize the spectral

sequence due to Kronheimer and Mrowka from Khovanov homology to singular instanton

homology [KM14]. Based on such considerations, we make the following conjectures:

Conjecture 2.1.9. The space PM(C, 3, 2r) is the correct generalization of the Seidel-Smith

space Y(S2, 2r) to a curve C of arbitrary genus.

Conjecture 2.1.10. Given a curve C of arbitrary genus, there is a canonical open embedding

PM(C,m, n)→M s(C,m+ n).

2.2 Vector bundles

Here we briefly review some results on holomorphic vector bundles and their moduli spaces

that we will use throughout the dissertation. Useful references on vector bundles are [Le 97,

Sch15, Big, Tu93].

Definition 2.2.1. The slope of a holomorphic vector bundle E over a curve C is slopeE :=

(degE)/(rankE) ∈ Q.

Definition 2.2.2. A holomorphic vector bundle E over a curve C is stable if slopeF <

slopeE for any proper subbundle F ⊂ E, semistable if slopeF ≤ slopeE for any proper

subbundle F ⊂ E, strictly semistable if it is semistable but not stable, and unstable if there

is a proper subbundle F ⊂ E such that slopeF > slopeE.

If E is a stable vector bundle, then Aut(E) = C× consists only of trivial automorphisms

that scale the fibers by a constant factor.

Definition 2.2.3. Given a semistable vector bundle E, a Jordan-Hölder filtration of E is a

filtration

F0 = 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = E

of E by subbundles Fi ⊂ E for i = 0, · · · , n such that the composition factors Fi/Fi−1 are

stable and slopeFi/Fi−1 = slopeE for i = 1, · · · , n.
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Every semistable vector bundle E admits a Jordan-Hölder filtration. The filtration is

not unique, but the composition factors Fi/Fi−1 for i = 1, · · · , n are independent (up to

permutation) of the choice of filtration.

Definition 2.2.4. Given a semistable holomorphic vector bundle E over a curve C, the

associated graded vector bundle grE is defined to be

grE =
n⊕
i=1

Fi/Fi−1,

where F0 = 0 ⊂ F1 ⊂ · · · ⊂ Fn = E is a Jordan-Hölder filtration of E.

The bundle grE is independent (up to isomorphism) of the choice of filtration, and

slope(grE) = slopeE.

Definition 2.2.5. Two semistable vector bundles are said to be S-equivalent if their asso-

ciated graded bundles are isomorphic.

Example 2.2.6. In Section 2.6.1 we define a strictly semistable rank 2 vector bundle F2

and a stable rank 2 vector bundle G2(p) over an elliptic curve X. A Jordan-Hölder filtration

of F2 is O ⊂ F2, and the associated graded bundle is grF2 = O ⊕O. It follows that F2 and

O⊕O are S-equivalent. A Jordan-Hölder filtration of G2(p) is just G2(p), and the associated

graded bundle is grG2(p) = G2(p).

Isomorphic bundles are S-equivalent. For rational curves, S-equivalent bundles are iso-

morphic, but this is not true in general. For example, on an elliptic curve the bundles F2

and O ⊕O are S-equivalent but not isomorphic.

For many applications we will want to quantify the degree to which a vector bundle is

unstable. To do so, we introduce some terminology specific to this dissertation:

Definition 2.2.7. Given a rank 2 holomorphic vector bundle E over a curve C, we define the

instability degree of E to be degL− degE/L, where L ⊂ E is a line subbundle of maximal

degree.

10



The degree of the proper subbundles of a vector bundle E on a curve C is bounded above

(see for example [Sch15] Lemma 3.21), so the notion of instability degree is well-defined.

The instability degree is positive for unstable bundles, 0 for strictly semistable bundles, and

negative for stable bundles.

Definition 2.2.8. We define M ss(C) (respectively M s(C)) to be the moduli space of

semistable (respectively stable) rank 2 holomorphic vector bundles over curve C with trivial

determinant bundle, mod S-equivalence. This space is defined in [Ses67]; see also [MO12].

Remark 2.2.9. An alternative way of interpreting M ss(C) is as the space of flat SU(2)-

connections on a trivial rank 2 complex vector bundle E → C, mod gauge transformations.

Yet another way of interpreting the space M ss(C) is as the character variety R(C) of conju-

gacy classes of group homomorphisms π1(C)→ SU(2).

The moduli space M s(C) has the structure of a complex manifold of dimension 3(g− 1),

where g is the genus of the curve C. The space M s(C) carries a canonical symplectic form,

which is obtained by interpreting M s(C) as a Hamiltonian reduction of a space of SU(2)-

connections.

Example 2.2.10. For rational curves, the bundle O ⊕ O is the unique semistable rank 2

bundle with trivial determinant bundle, and there are no stable rank 2 bundles, so

M ss(CP1) = {pt} = {[O ⊕O]}, M s(CP1) = ∅.

Example 2.2.11. For an elliptic curveX, semistable rank 2 bundles with trivial determinant

bundle have the form L ⊕ L−1, where L is a degree 0 line bundle, or F2 ⊗ Li, where Li for

i = 1, · · · , 4 are the four 2-torsion line bundles. The bundles Li ⊕ Li and F2 ⊗ Li are S-

equivalent. The bundles L ⊕ L−1 and L−1 ⊕ L are isomorphic, hence S-equivalent. There

are no stable rank 2 bundles with trivial determinant bundle. As shown in [Tu93], we have

that

M ss(X) = {[L⊕ L−1] | [L] ∈ Jac(X)} = CP1, M s(X) = ∅.
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2.3 Parabolic bundles

Here we briefly review some results on parabolic bundles and their moduli spaces that we will

use throughout the dissertation. Useful references on parabolic bundles are [MS80, Nag17].

2.3.1 Definition of a parabolic bundle

The concept of a parabolic bundle was introduced in [MS80]:

Definition 2.3.1. A parabolic bundle of rank r on a curve C consists of following data:

1. A rank r holomorphic vector bundle πE : E → C.

2. Distinct marked points (p1, · · · , pn) ∈ Cn.

3. For each marked point pi, a flag of vector spaces Ej
pi

in the fiber Epi = π−1
E (pi) over

the point pi:

E0
pi

= 0 ⊂ E1
pi
⊂ E2

pi
⊂ · · · ⊂ Esi

pi
= Epi .

4. For each marked point pi, a strictly decreasing list of weights λjpi ∈ R:

λ1
pi
> λ2

pi
> · · · > λsipi .

We refer the data of the marked points, the flags, and the weights as a parabolic structure

on E. We refer to the data of just the marked points and flags, without the weights,

as a quasi-parabolic structure on E. We define the multiplicity of the weight λjpi to be

mj
pi

:= dim(Ej
pi

) − dim(Ej−1
pi

). The definition of a parabolic bundle given in [MS80] differs

slightly from our definition, in that the marked points are unordered and the weights are

required to lie in the range [0, 1).

Definition 2.3.2. Two parabolic bundles with underlying vector bundles E and F are

isomorphic if the marked points and weights for the two bundles are the same, and there is

a bundle isomorphism α : E → F that carries each flag of E to the corresponding flag of F ;

that is, α(Ej
pi

) = F j
pi

for j = 1, · · · , si and i = 1, · · · , n.
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Definition 2.3.3. The rank of a parabolic bundle is the rank of its underlying vector bundle.

Definition 2.3.4. The parabolic degree and parabolic slope of a parabolic bundle E with

underlying vector bundle E are defined to be

pdeg(E) = degE +
n∑
i=1

si∑
j=1

mj
pi
λjpi ∈ R, pslope(E) = (pdeg E)/(rank E) ∈ Q.

We will not need the full generality of the concept of a parabolic bundle. Rather, we

will consider only parabolic line bundles and rank 2 parabolic bundles of a certain restricted

form.

First we consider parabolic line bundles. For such bundles there is no flag data, so the

parabolic structure is specified by a list of marked points p1, · · · , pn and a list of weights

λ1
p1
, · · · , λ1

pn . We fix a parameter µ > 0 and restrict to the case λ1
pi
∈ {±µ} for i = 1, · · · , n.

A parabolic line bundle of this form thus consists of the data (L, σp1 , · · · , σpn), where πL :

L → C is a holomorphic line bundle and σpi ∈ {±1}. The parabolic degree and parabolic

slope of a parabolic line bundle (L, σp1 , · · · , σpn) are given by

pdeg(L, σp1 , · · · , σpn) = pslope(L, σp1 , · · · , σpn) = degL+ µ
n∑
i=1

σpi .

Next we consider rank 2 parabolic bundles. We fix a parameter µ > 0 and restrict to

the case si = 2, m1
pi

= m2
pi

= 1, and λ1
pi

= −λ2
pi

= µ for i = 1, · · · , n. A rank 2 parabolic

bundle of this form thus consists of the data (E, `p1 , · · · , `pn), where πE : E → C is a rank

2 holomorphic vector bundle and `pi ∈ P(Epi) is a line in the fiber Epi = π−1
E (pi) over the

point pi for i = 1, · · · , n. The parabolic slope and parabolic degree of a rank 2 parabolic

bundle (E, `p1 , · · · , `pn) are given by

pdeg(E, `p1 , · · · , `pn) = degE, pslope(E, `p1 , · · · , `pn) = slopeE.

2.3.2 Stable, semistable, and unstable parabolic bundles

Consider a rank 2 parabolic bundle (E, `p1 , · · · , `pn) and a line subbundle L ⊂ E. There are

induced parabolic structures on the line bundles L and E/L given by (L, σp1 , · · · , σpn) and
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(E/L,−σp1 , · · · ,−σpn), where

σpi =

 +1 if Lpi = `pi ,

−1 if Lpi 6= `pi .

Definition 2.3.5. Given a rank 2 parabolic bundle (E, `p1 , · · · , `pn) and a line subbundle

L ⊂ E, we say that the induced parabolic bundle (L, σp1 , · · · , σpn) is a parabolic subbundle

of (E, `p1 , · · · , `pn) and the induced parabolic bundle (E/L,−σp1 , · · · ,−σpn) is a parabolic

quotient bundle of (E, `p1 , · · · , `pn).

Definition 2.3.6. A rank 2 parabolic bundle (E, `p1 , · · · , `pn) is said to be decomposable if

there exists a decomposition E = L⊕L′ for line bundles L and L′ such that `pi ∈ {Lpi , L′pi}

for i = 1, · · · , n. For a rank 2 decomposable parabolic bundle (E, `p1 , · · · , `pn) we write

(E, `p1 , · · · , `pn) = (L, σp1 , · · · , σpn)⊕ (L′, σ′p1 , · · · , σ
′
pn),

where (L, σp1 , · · · , σpn) and (L′, σ′p1 , · · · , σ
′
pn) are the induced parabolic structures on L and

L′.

Definition 2.3.7. A rank 2 parabolic bundle is stable if its parabolic slope is strictly greater

than the parabolic slope of any of its proper parabolic subbundles, semistable if its parabolic

slope is greater than or equal than the parabolic slope of any of its proper parabolic sub-

bundles, strictly semistable if it is semistable but not stable, and unstable if it has a proper

parabolic subbundle of strictly greater slope.

If E is a stable parabolic bundle, then Aut(E) = C× consists only of trivial automorphisms

that scale the fibers of the underlying vector bundle by a constant factor.

Theorem 2.3.8. If the rank 2 parabolic bundle (E, `p1 , · · · , `pn) is semistable and µ < 1/2n,

then E is semistable.

Proof. We will prove the contrapositive, so assume that E is unstable. Then there is a

line subbundle L ⊂ E such that slopeL > slopeE. Consider the parabolic structure

(L, σp1 , · · · , σpn) induced on L by (E, `p1 , · · · , `pn). We have that

pslope(L, σp1 , · · · , σpn)− pslope(E, `p1 , · · · , `pn) = slopeL+ µ

n∑
i=1

σpi − slopeE. (2.1)
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Since slopeL is an integer, slopeE is an integer or half-integer, and slopeL > slopeE, it

follows that slopeL−slopeE ≥ 1/2. From equation (2.1) and the assumption that µ < 1/2n,

it follows that

pslope(L, σp1 , · · · , σpn)− pslope(E, `p1 , · · · , `pn) ≥ 1/2− nµ > 0,

so (E, `p1 , · · · , `pn) is unstable.

Throughout this dissertation we will always assume µ� 1, by which we mean that µ is

always chosen to be sufficiently small such that Theorem 2.3.8 holds under whatever circum-

stances we are considering. We now introduce some terminology specific to this dissertation:

Definition 2.3.9. Given a rank 2 vector bundle E over a curve C and a point p ∈ C, we

say that a line `p ∈ P(Ep) in the fiber Ep over p is bad if there is a line subbundle L ⊂ E of

maximal degree such that Lp = `p, and good otherwise.

Definition 2.3.10. Given a rank 2 vector bundle E over a curve C and points p1, · · · , pn ∈

C, we say that lines `pi ∈ P(Epi) for i = 1, · · · , n are bad in the same direction if there is a

line subbundle L ⊂ E of maximal degree such that Lpi = `pi for i = 1, · · · , n.

Definition 2.3.11. Given a semistable rank 2 vector bundle E over a curve C and a point

p ∈ C, we say that a line `p ∈ P(Ep) is destabilizing if there is a line subbundle L ⊂ E such

that degL ≥ degE and Lp = `p.

Definition 2.3.12. Given a semistable rank 2 vector bundle E over a curve C and points

p1, · · · , pn ∈ C, we say that lines `pi ∈ P(Epi) for i = 1, · · · , n are destabilizing in the same

direction if there is a line subbundle L ⊂ E such that degL ≥ degE and Lpi = `pi for

i = 1, · · · , n.

Example 2.3.13. For the trivial bundle O⊕O over CP1, all lines are bad and destabilizing.

Consider a rank 2 vector bundle E over a curve C. If E is unstable, then Theorem 2.3.8

implies that the parabolic bundle (E, `p1 , · · · , `pn) is unstable. If E is a semistable, then the

stability of the parabolic bundle (E, `p1 , · · · , `pn) can be characterized as follows:
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Theorem 2.3.14. Consider a rank 2 parabolic bundle of the form (E, `p1 , · · · , `pn) with

E semistable. Let m be the maximum number of lines that are destabilizing in the same

direction. Such a parabolic bundle is stable if and only if m < n/2, semistable if and only if

m ≤ n/2, and unstable if and only if m > n/2. In particular, if n is odd then stability and

semistability are equivalent.

Example 2.3.15. As a special case of Theorem 2.3.14, consider parabolic bundles

(E, `p1 , · · · , `pn) over CP1 with underlying vector bundle E = O ⊕ O. We can globally

trivialize E and identify all the fibers with C2. All lines of E are destabilizing, and lines are

destabilizing in the same direction if and only if they are equal under the global trivializa-

tion. Let m denote the maximum number of lines `pi equal to any given line in CP1. From

Theorem 2.3.14, we find that (E, `p1 , · · · , `pn) is stable if m < n/2, semistable if m ≤ n/2,

and unstable if m > n/2. For example, (E, `p1) is unstable, (E, `p1 , `p2) is strictly semistable

if the lines are distinct and unstable otherwise, and (E, `p1 , `p2 , `p3) is stable if the lines are

distinct and unstable otherwise.

2.3.3 S-equivalent semistable parabolic bundles

There is Jordan-Hölder theorem for parabolic bundles, which asserts that any semistable

parabolic bundle of parabolic degree 0 has a filtration in which quotients of successive

parabolic bundles (composition factors) in the filtration are stable with parabolic slope 0

(see [MS80] Remark 1.16). The filtration is not unique, but the composition factors are

unique up to permutation. It follows that one can define an associated graded bundle of a

semistable parabolic bundle of parabolic degree 0 that is unique up to isomorphism.

We will need the concept of an associated graded parabolic bundle only for the case of

semistable rank 2 parabolic bundles. If such a parabolic bundle E is stable, then its associated

graded parabolic bundle gr E is just E . Now consider a strictly semistable parabolic bundle

E = (E, `p1 , · · · , `pn). Under our standard assumption that µ� 1, it follows from Theorem

2.3.8 that E is semistable. The associated graded parabolic bundle gr E is given by

gr(E, `p1 , · · · , `pn) = (L, σp1 , · · · , σpn)⊕ (E/L,−σp1 , · · · ,−σpn),
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where L ⊂ E is a line subbundle such that slopeL = slopeE, and (L, σp1 , · · · , σpn) and

(E/L,−σp1 , · · · ,−σpn) are the induced parabolic structures on L and E/L. Note that

pslope(gr(E, `p1 , · · · , `pn)) = pslope(E, `p1 , · · · , `pn) = slopeE.

Definition 2.3.16. We say that two semistable rank 2 parabolic bundles are S-equivalent

if their associated graded bundles are isomorphic.

Isomorphic parabolic bundles are S-equivalent. Here we give an example to show that

the converse does not always hold:

Example 2.3.17. Consider parabolic bundles over CP1 with underlying vector bundle E =

O⊕O. We can globally trivialize E and identify all the fibers with C2. Let A, B, and C be

distinct lines in CP1, and consider the two parabolic bundles

E := (E, `p1 = A, `p2 = A, `p3 = B, `p4 = C),

E ′ := (E, `′p1 = B, `′p2 = C, `′p3 = A, `′p4 = A).

Let L ∼= O be the line subbundle of E such that Lp = A for any point p ∈ CP1. The bundles

E and E ′ are not isomorphic but are S-equivalent, since the associated graded bundles of

both bundles are isomorphic to

(L, σp1 = 1, σp2 = 1, σp3 = −1, σp4 = −1)⊕ (E/L, σp1 = −1, σp2 = −1, σp3 = 1, σp4 = 1).

2.3.4 Moduli spaces of rank 2 parabolic bundles

Definition 2.3.18. We define M ss(C, n) (respectively M s(C, n)), to be the moduli space

of semistable (respectively stable) rank 2 parabolic bundles of the form (E, `p1 , · · · , `pn)

such that E has trivial determinant bundle, mod S-equivalence. In particular, M ss(C, 0) =

M ss(C) and M s(C, 0) = M s(C). As always, we assume that µ � 1. This space is defined

in [MS80]; see also [Bho89].

Remark 2.3.19. An alternative way of interpreting M ss(C, n) is as the space of flat SU(2)-

connections on a trivial rank 2 complex vector bundle E → C − {p1, · · · , pn}, where the
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holonomy around each puncture point pi is conjugate to diag(e2πiµ, e−2πiµ), mod SU(2) gauge

transformations. Yet another way of interpreting the space M ss(C, n) is as the character

variety R(C, n) of conjugacy classes of group homomorphisms π1(C−{p1, · · · , pn})→ SU(2)

that take loops around the marked points to matrices conjugate to diag(e2πiµ, e−2πiµ). Note

that µ = 1/4 corresponds to the traceless character variety.

For rational µ, the moduli space M s(C, n) has the structure of a complex manifold of

dimension 3(g − 1) + n, where g is the genus of the curve C, and M s(C, n) is compact

for n odd. The space M s(C, n) carries a canonical symplectic form, which is obtained by

viewingM s(C, n) as a Hamiltonian reduction of a space of SU(2)-connections with prescribed

singularities.

Example 2.3.20. Let C = CP1 be a rational curve. If we fix n ≤ 3, then all rank 2

parabolic bundles of the form (O ⊕ O, `p1 , · · · , `pn) for which all the lines are distinct are

isomorphic. From this fact, together with the results of Example 2.3.15, we find that

M ss(CP1, 0) = {pt}, M ss(CP1, 1) = ∅, M ss(CP1, 2) = {pt}, M ss(CP1, 3) = {pt},

M s(CP1, 0) = ∅, M s(CP1, 1) = ∅, M s(CP1, 2) = ∅, M s(CP1, 3) = {pt}.

Using the cross-ratio and considerations of S-equivalence as described in Example 2.3.17,

one can show

M ss(CP1, 4) = CP1, M s(CP1, 4) = CP1 − {3 points}.

Example 2.3.21. Let X be an elliptic curve. From Corollary 2.6.25, Example 2.2.11, and

Theorem 2.3.14, we have that

M ss(X, 0) = CP1, M s(X, 0) = ∅, M ss(X, 1) = CP1, M s(X, 1) = CP1.

In [Var16] it is shown that

M ss(X, 2) = (CP1)2, M s(X, 2) = (CP1)2 − g(X),

where g : X → (CP1)2 is a holomorphic embedding. We also derive this result in Section

2.6.5.2.
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Remark 2.3.22. Throughout this dissertation we assume µ� 1, but for some applications

one wants to take µ = 1/4 in order to interpret M ss(C, n) as a traceless character variety, as

described in Remark 2.3.19. In general M ss(C, n) depends on µ; for example, for 0 ≤ n ≤ 4

the space M ss(CP1, n) is the same for µ � 1/4 and µ = 1/4, but, as shown in [Sei03], for

n = 5 we have

M ss(CP1, 5) =

 CP2#4CP
2

for µ� 1,

CP2#5CP
2

for µ = 1/4.

The dependence of M ss(C, n) on µ is discussed in [BH95].

2.4 Hecke modifications

2.4.1 Hecke modifications at a single point

A fundamental concept for us is the notion of a Hecke modification of a rank 2 holomorphic

vector bundle. This notion is described in [Kam11, KW07]. Here we consider the case of a

single Hecke modification.

Definition 2.4.1. Let πE : E → C be a rank 2 holomorphic vector bundle over a curve

C. A Hecke modification E
α←−
p
F of E at a point p ∈ C is a rank 2 holomorphic vector

bundle πF : F → C together with a bundle map α : F → E that satisfies the following two

conditions:

1. The induced maps on fibers αq : Fq → Eq are isomorphisms for all points q ∈ C such

that q 6= p.

2. We also impose a condition on the behavior of α near p. We require that there is an

open neighborhood U ⊂ C of p, local coordinates ξ : U → V for V ⊂ C such that

ξ(p) = 0, and local trivializations ψE : π−1
E (U)→ U ×C2 and ψF : π−1

F (U)→ U ×C2
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of E and F over U such that the following diagram commutes:

π−1
E (U) π−1

F (U)

U ×C2 U ×C2,

ψE
∼= ψF

∼=

α

where the bottom horizontal arrow is

(ψE ◦ α ◦ ψ−1
F )(q, v) = (q, ᾱ(ξ(q))v)

and ᾱ : V →M(2,C) has the form

ᾱ(z) =

 1 0

0 z

 .

It follows directly from Definition 2.4.1 that detF = (detE) ⊗ O(−p) and degF =

degE − 1. There is a natural notion of equivalence of Hecke modifications:

Definition 2.4.2. We say that two Hecke modifications E
α←−
p
F and E

α′←−−
p

F ′ of E at a

point p ∈ C are equivalent if there is an isomorphism φ : F → F ′ such that α = α′ ◦ φ.

Definition 2.4.3. We define the total space of Hecke modifications Htot(C,E; p) to be the

set of equivalence classes of Hecke modifications of a rank 2 vector bundle πE : E → C at a

point p ∈ C.

As is well-known, the set Htot(C,E; p) naturally has the structure of a complex manifold

that is (noncanonically) isomorphic to CP1. A canonical version of this statement is:

Theorem 2.4.4. There is a canonical isomorphism Htot(C,E; p) → P(Ep), [E
α←−
p
F ] 7→

im(αp : Fp → Ep).

It is also useful to think about Hecke modifications in terms of sheaves of sections.

Consider a rank 2 vector bundle E and a line `p ∈ P(Ep). Let E be the sheaf of sections of

E, and define a subsheaf F of E whose set of sections over an open set U ⊂ C is given by

F(U) = {s ∈ E(U) | p ∈ U =⇒ s(p) ∈ `p}.
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Define F to be the vector bundle whose sheaf of sections is F , and define α : F → E to

be the bundle map corresponding to the inclusion of sheaves F → E . Then [E
α←−
p
F ] ∈

Htot(C,E; p) corresponds to `p ∈ P(Ep) under the isomorphism described in Theorem 2.4.4.

We have an exact sequence of sheaves

0 F E Cp 0,

where Cp is a skyscraper sheaf supported at the point p. It is important to note, however,

that the usual notion of equivalence of extensions differs from the notion of equivalence of

Hecke modifications given in Definition 2.4.2.

2.4.2 Sequences of Hecke modifications

We would now like to generalize the notion of a Hecke modification of a vector bundle at

a single point p ∈ C to the notion of a sequence of Hecke modifications at distinct points

(p1, · · · , pn) ∈ Cn.

Definition 2.4.5. Let πE : E → C be a rank 2 holomorphic vector bundle over a curve

C. A sequence of Hecke modifications E
α1←−−
p1

E1
α2←−−
p2
· · · αn←−−

pn
En of E at distinct points

(p1, p2, · · · , pn) ∈ Cn is a collection of rank 2 holomorphic vector bundles πEi
: Ei → C and

Hecke modifications Ei−1
αi←−−
pi

Ei for i = 1, 2, · · · , n, where E0 := E.

Definition 2.4.6. Two sequences of Hecke modifications E
α1←−−
p1

E1
α2←−−
p2
· · · αn←−−

pn
En and

E
α′1←−−
p1

E ′1
α′2←−−
p2
· · · α′n←−−

pn
E ′n are equivalent if there are isomorphisms φi : Ei → E ′i such that

the following diagram commutes:

E E1 E2 · · · En

E E ′1 E ′2 · · · E ′n.

=

α1

φ1∼=

α2

φ2∼=

α3 αn

φn∼=

α′1 α′2 α′3 α′n

Definition 2.4.7. We define the total space of Hecke modifications Htot(C,E; p1, · · · , pn) to

be the set of equivalence classes of sequences of Hecke modifications of the rank 2 vector

bundle πE : E → C at points (p1, · · · , pn) ∈ Cn. For simplicity, we will often suppress the

dependence on p1, · · · , pn and denote this space as Htot(C,E, n).
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Definition 2.4.8. We say that an isomorphism of vector bundles φ : E → E ′ is an isomor-

phism of equivalence classes of sequences of Hecke modifications φ : [E
α1←−−
p1

E1
α2←−−
p2
· · · αn←−−

pn

En]→ [E ′
α′1←−−
p1

E ′1
α′2←−−
p2
· · · α′n←−−

pn
E ′n] if

[E ′
β1←−−
p1

E1
α2←−−
p2
· · · αn←−−

pn
En] = [E ′

α′1←−−
p1

E ′1
α′2←−−
p2
· · · α′n←−−

pn
E ′n],

where β1 := φ ◦ α1, or equivalently, if there are isomorphisms φi : Ei → E ′i such that the

following diagram commutes:

E E1 E2 · · · En

E ′ E ′1 E ′2 · · · E ′n.

φ∼=

α1

φ1∼=

α2

φ2∼=

α3 αn

φn∼=

α′1 α′2 α′3 α′n

In what follows, it will be useful to reinterpret equivalence classes of sequences of Hecke

modifications in terms of parabolic bundles. The relevant background material on parabolic

bundles is discussed in Section 2.3. For our purposes here, a rank 2 parabolic bundle over

a curve C consists of a rank 2 holomorphic vector bundle πE : E → C, a parameter µ > 0,

called the weight, and a choice of line `pi ∈ P(Epi) in the fiber Epi = π−1
E (pi) over the

point pi ∈ C for a finite number of distinct points (p1, · · · , pn) ∈ Cn. The data of just the

marked points and lines, without the weight, is referred to as a quasi-parabolic structure on

E. The additional data of the weight allows us to define the notions of stable, semistable,

and unstable parabolic bundles.

Definition 2.4.9. We define P tot(C,E; p1, · · · , pn) = P(Ep1)×· · ·×P(Epn) to be the set of

all quasi-parabolic structures with marked points (p1, · · · , pn) ∈ Cn on a rank 2 holomorphic

vector bundle πE : E → C. For simplicity, we will often suppress the dependence on

p1, · · · , pn and denote this space as P tot(C,E, n).

Since P(Epi) is (noncanonically) isomorphic to CP1, the set P tot(C,E; p1, · · · , pn) natu-

rally has the structure of a complex manifold that is (noncanonically) isomorphic to (CP1)n.

We have the following generalization of Theorem 2.4.4, which allows us to reinterpret Hecke

modifications in terms of parabolic bundles:
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Theorem 2.4.10. There is a canonical isomorphism Htot(C,E; p1, · · · , pn) →

P tot(C,E; p1, · · · , pn) given by

[E
α1←−−
p1

E1
α2←−−
p2
· · · αn←−−

pn
En] 7→ (E, `p1 , · · · , `pn),

where `pi := im((α1 ◦ · · · ◦ αi)pi : (Ei)pi → Epi).

Under our reinterpretation of Hecke modifications in terms of parabolic bundles, an

isomorphism of equivalence classes of sequences of Hecke modifications corresponds to an

isomorphism of parabolic bundles:

Definition 2.4.11. We say that an isomorphism of vector bundles φ : E → E ′ is an

isomorphism of parabolic bundles φ : (E, `p1 , · · · , `pn) → (E ′, `′p1 , · · · , `
′
pn) if φ(`pi) = `′pi for

i = 1, · · · , n.

Theorem 2.4.12. Two equivalence classes of sequences of Hecke modifications are isomor-

phic if and only if their corresponding parabolic bundles are isomorphic.

Proof. This is a direct consequence of Theorem 2.4.10 and Definitions 2.4.8 and 2.4.11.

For many applications, given an equivalence class [E
α1←−−
p1

E1
α2←−−
p2
· · · αn←−−

pn
En] of

sequences of Hecke modifications we will be interested only in the isomorphism class of the

terminal vector bundle En, and it is useful to have a means of extracting this information

from the corresponding parabolic bundle (E, `p1 , · · · , `pn):

Definition 2.4.13. Let (E, `p1 , · · · , `pn) be a parabolic bundle over a curve C. We define

the Hecke transform H(E, `p1 , · · · , `pn) of E to be the vector bundle F that is constructed as

follows. Let E be the sheaf of sections of E. Define a subsheaf F of E whose set of sections

over an open set U ⊂ C is given by

F(U) = {s ∈ E(U) | pi ∈ U =⇒ s(pi) ∈ `pi for i = 1, · · · , n}.

Now define F to be the vector bundle whose sheaf of sections is F .

In particular, H(E, `p1 , · · · , `pn) is isomorphic to En. We will often want to pick out an

open subset of P tot(C,E, n) by using the Hecke transform to impose a semistability condition:
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Definition 2.4.14. Given a rank 2 holomorphic vector bundle E over a curve C and distinct

points (p1, · · · , pn) ∈ Cn, we define P(C,E, n) to be the subset of P tot(C,E, n) consisting of

parabolic bundles (E, `p1 , · · · , `pn) such that H(E, `p1 , · · · , `pn) is semistable:

P(C,E, n) = {(E, `p1 , · · · , `pn) ∈ P tot(C,E, n) | H(E, `p1 , · · · , `pn) is semistable}.

For simplicity, we are suppressing the dependence of P(C,m, n) on p1, · · · , pn in the notation.

Theorem 2.4.15. The set P(C,E, n) is an open submanifold of P tot(C,E, n).

Proof. This follows from the fact that semistability is an open condition.

We have generalized the notion of a Hecke modification to the case of multiple points

p1, · · · , pn by considering sequences of Hecke modifications, for which the points must be

ordered. For most of our purposes we could equally well use an alternative generalization,

described in [Kam11], for which the the points need not be ordered. Though we will not

use it here, we briefly describe this alternative generalization and show how it relates to

parabolic bundles:

Definition 2.4.16. Let πE : E → C be a rank 2 holomorphic vector bundle over a curve

C. A simultaneous Hecke modification E
α←−−−−−−{p1,··· ,pn}

F of E at a set of distinct points

{p1, p2, · · · , pn} ⊂ C is a rank 2 holomorphic vector bundle πF : F → C and a bundle

map α : F → E that satisfies the following two conditions:

1. The induced map on fibers αq : Eq → Fq is an isomorphism for all points q /∈

{p1, · · · , pn}.

2. Condition (2) of Definition 2.4.1, which constrains the local behavior of α near a Hecke-

modification point, holds at each of the points p1, · · · , pn.

Definition 2.4.17. Two simultaneous Hecke modifications E
α←−−−−−−{p1,··· ,pn}

F and E
α′←−−−−−−{p1,··· ,pn}

F ′ are equivalent if there is an isomorphism φ : F → F ′ such that α = α′ ◦ φ.

Definition 2.4.18. We define the total space of simultaneous Hecke modifications

H̄tot(C,E, {p1, · · · , pn}) to be the set of equivalence classes of simultaneous Hecke modi-

fications of the rank 2 vector bundle πE : E → C at the set of points {p1, · · · , pn} ⊂ C. For
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simplicity, we will often suppress the dependence on {p1, · · · , pn} and denote this space as

H̄tot(C,E, n).

We can define a set of parabolic bundles P̄ tot(C,E, n) for which the marked points are

unordered. We can define an isomorphism H̄tot(C,E, n)→ P̄ tot(C,E, n) by

[E
α←−−−−−−{p1,··· ,pn}

F ] 7→ (E, `p1 , · · · , `pn),

where `pi = im(αpi : Fpi → Epi). Since the Hecke transform does not depend on the

ordering of the points, it is well-defined on parabolic bundles in P̄(C,E, n), and we have

that H(E, `p1 , · · · , `pn) is isomorphic to F .

2.4.3 Moduli spaces of marked parabolic bundles

So far we have considered spaces of isomorphism classes of sequences of Hecke modifications

in which the initial vector bundle in the sequence is held fixed. But in what follows we

will want to generalize these spaces so the initial vector bundle is allowed to range over the

isomorphism classes in a moduli space of vector bundles. Translating into the language of

parabolic bundles, such spaces are equivalent to spaces of isomorphism classes of parabolic

bundles in which the underlying vector bundles are allowed to range over the isomorphism

classes in a moduli space of vector bundles. However, there is a problem with defining such

spaces arising from the fact that vector bundles often have nontrivial automorphisms.

To illustrate the problem, consider the space P tot(CP1,O ⊕O; p1), which is (noncanon-

ically) isomorphic to CP1. We might want to reinterpret this space as a moduli space of

isomorphism classes of parabolic bundles of the form (E, `p1) for [E] ∈ M ss(CP1), where

M ss(CP1), the moduli space of semistable rank 2 vector bundles over CP1 with trivial de-

terminant bundle, consists of the single point [O ⊕ O]. But Aut(O ⊕ O) = GL(2,C), and

for any pair of parabolic bundles (O ⊕ O, `p1) and (O ⊕ O, `′p1) there is an automorphism

φ ∈ Aut(O ⊕ O) such that φ(`p1) = `′p1 . It follows that all parabolic bundles of the form

(O⊕O, `p1) are isomorphic and our proposed moduli space collapses to a point, when what

we wanted was CP1.
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To remedy the problem, we will add marking data to eliminate the nontrivial automor-

phisms. In particular, since stable parabolic bundles have no nontrivial automorphisms, we

make the following definition:

Definition 2.4.19. Given a curve C and distinct points (q1, · · · , qm, p1, · · · , pn) ∈ Cm+n,

we define the total space of marked parabolic bundles P totM (C,m, n) to be the set of isomor-

phism of classes of parabolic bundles of the form (E, `q1 , · · · , `qm , `p1 , · · · , `pn) such that

[E, `q1 , · · · , `qm ] ∈M s(C,m):

P totM (C,m, n) = {[E, `q1 , · · · , `qm , `p1 , · · · , `pn ] | [E, `q1 , · · · , `qm ] ∈M s(C,m)}.

For simplicity, we are suppressing the dependence of P totM (C,m, n) on q1, · · · , qm, p1, · · · , pn

in the notation.

Here the complex manifold M s(C,m) is the moduli space of stable rank 2 parabolic

bundles over C with trivial determinant bundle and m marked points. We will refer to the

lines `q1 , · · · , `qm as marking lines, since their purpose is to add additional structure to E

so as to eliminate nontrivial automorphisms. We will refer to the lines `p1 , · · · , `pn as Hecke

lines, since their purpose is to parameterize Hecke modifications at the points p1, · · · , pn.

Because we have defined P totM (C,m, n) in terms of stable parabolic bundles, which have no

nontrivial automorphisms, the collapsing phenomenon described above does not occur, and

we have the following result:

Theorem 2.4.20. The set P totM (C,m, n) naturally has the structure of a complex manifold

isomorphic to a (CP1)n-bundle over M s(C,m).

The base manifold M s(C,m) constitutes the moduli space over which the isomorphism

classes of vector bundles with marking data range, and the (CP1)n fibers correspond to a

space of Hecke modifications CP1 for each of the points p1, · · · , pn. We will prove Theorem

2.4.20 by constructing P totM (C,m, n) from a universal CP1-bundle, which we first describe

for the case m = 0:
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Lemma 2.4.21. There is a universal CP1-bundle P → C × M s(C), which has the the

property that for any complex manifold S and any CP1-bundle Q→ C × S, the bundle Q is

isomorphic to the pullback of P along 1C × fQ for a unique map fQ : S →M s(C).

Lemma 2.4.21 is proven in [BBN09]. One way to understand this result is as follows. Let

M s
r,d(C) denote the moduli space of stable vector bundles of rank r and degree d on a curve

C. As discussed in [Hof07], one can define a corresponding moduli stack Bunsr,d(C) and a

Gm-gerbe π : Bunsr,d(C)→ Hom(−,M s
r,d(C)); this is a morphism of stacks for which all the

fibers are isomorphic to BGm. The stack Hom(−, C)×Bunsr,d(C) carries a universal rank 2

vector bundle E . One can show (see [Hei10] Corollary 3.12) that if gcd(r, d) = 1 then M s
r,d(C)

is a fine moduli space and E descends to a universal vector bundle E → C ×M s
r,d(C), which

can be viewed as a generalization of the Poincaré line bundle L→ C × Jac(C) for the case

r = 1, d = 0. By projectivizing E, we also get a universal CP1-bundle P(E)→ C×M s
r,d(C).

If gcd(r, d) 6= 1, then M s
r,d(C) is not a fine moduli space and C ×M s

r,d(C) does not carry

a universal vector bundle. It is still possible, however, to use E to construct a universal

CP1-bundle P → C ×M s
r,d(C), only now this CP1-bundle is not the projectivization of a

universal vector bundle. One way to make this result plausible is to note that whereas a

stable vector bundle has automorphism group C×, consisting of automorphisms that scale

the fibers by a constant factor, the projectivization of a stable vector bundle has trivial

automorphism group, consisting of just the identity automorphism.

Similar results hold for moduli spaces of stable vector bundles for which the determinant

bundle is a fixed line bundle. In particular, the space M s(C) of stable rank 2 vector bundles

with trivial determinant bundle is not a fine moduli space and C ×M s(C) does not carry a

universal vector bundle; nonetheless, it does carry a universal CP1-bundle P → C×M s(C).

We will use this universal CP1-bundle to construct P totM (C,m, n) for the case m = 0:

Proof of Theorem 2.4.20. First consider the case m = 0, and note that M s(C, 0) = M s(C).

Given a point p ∈ C, let P (p) → M s(C) denote the pullback of the universal CP1-bundle

P → C ×M s(C) described in Lemma 2.4.21 along the inclusion ip : M s(C)→ C ×M s(C),

[E] 7→ (p, [E]). Given distinct points (p1, · · · , pn) ∈ Cn, we can pull back the (CP1)n-
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bundle P (p1) × · · · × P (pn) → (M s(C))n along the diagonal map M s(C) → (M s(C))n,

[E] 7→ ([E], · · · , [E]) to obtain P totM (C, 0, n).

The proof for m > 0 is the same. One can define a moduli stack corresponding to

M s(C,m) that carries a universal rank 2 parabolic bundle [Hof07]. Using a numerical con-

dition analogous to the condition gcd(r, d) = 1 for vector bundles (see [Hof07] Example 5.7

and [BH95] Proposition 3.2), one can show that M s(C,m) is a fine moduli space for m > 0

and the universal parabolic bundle on the moduli stack descends to a universal parabolic

bundle on C ×M s(C,m). We can projectivize this latter bundle and use it to construct

P totM (C,m, n) in the same manner as for the m = 0 case.

We will often want to pick out an open subset of P totM (C,m, n) by imposing a semistability

condition:

Definition 2.4.22. Given a curve C and distinct points (q1, · · · , qm, p1, · · · , pn) ∈

Cm+n, we define PM(C,m, n) to be the subset of P totM (C,m, n) consisting of points

[E, `q1 , · · · , `qm , `p1 , · · · , `pn ] such that H(E, `p1 , · · · , `pn) is semistable:

PM(C,m, n) =

{[E, `q1 , · · · , `qm , `p1 , · · · , `pn ] ∈ P totM (C,m, n) | H(E, `p1 , · · · , `pn) is semistable}.

For simplicity, we are suppressing the dependence of PM(C,m, n) on q1, · · · , qm, p1, · · · , pn

in the notation.

Theorem 2.4.23. The set PM(C,m, n) is an open submanifold of P totM (C,m, n).

Proof. This follows from the fact that semistability is an open condition.

We can interpret marked parabolic bundles in terms of Hecke modifications as follows:

Definition 2.4.24. We define a sequence of Hecke modifications of a parabolic bundle

(E, `q1 , · · · , `qm) to be a sequence of Hecke modifications of the underlying vector bundle

E.
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Definition 2.4.25. We say that two sequences of Hecke modifications

(E, `q1 , · · · , `qm)
α1←−−
p1

E1
α2←−−
p2
· · · αn←−−

pn
En, (E ′, `′q1 , · · · , `

′
qm)

α′1←−−
p1

E ′1
α′2←−−
p2
· · · α′n←−−

pn
E ′n

are equivalent if there are isomorphisms φi : Ei → E ′i for i = 0, · · · , n such that the following

diagram commutes:

(E, `q1 , · · · , `qm) E1 E2 · · · En

(E ′, `′q1 , · · · , `
′
qm) E ′1 E ′2 · · · E ′n.

φ0∼=

α1

φ1∼=

α2

φ2∼=

α3 αn

φn∼=

α′1 α′2 α′3 α′n

The space P totM (C,m, n) can then be interpreted as a moduli space of equivalence classes

of sequences of Hecke modifications of parabolic bundles, and the space PM(C,m, n) can be

interpreted as the subspace P totM (C,m, n) consisting of equivalence classes of sequences for

which the terminal vector bundles are semistable. We will not use these interpretations here,

since it is simpler to work directly with the marked parabolic bundles.

2.5 Rational curves

2.5.1 Vector bundles on rational curves

Grothendieck showed that all rank 2 holomorphic vector bundles on (smooth projective)

rational curves are decomposable [Gro57]; that is, they have the form O(n) ⊕ O(m) for

integers n andm. The instability degree ofO(n)⊕O(m) is |n−m|, so the bundleO(n)⊕O(m)

is strictly semistable if n = m and unstable otherwise. There are no stable rank 2 vector

bundles on rational curves.

2.5.2 List of all possible single Hecke modifications

Here we present a list of all possible Hecke modifications at a point p ∈ CP1 of all possible

rank 2 vector bundles on CP1. We will parameterize Hecke modifications of a vector bundle

E at a point p in terms of lines `p ∈ P(Ep), as described in Theorem 2.4.4. Since we are
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always free to tensor a Hecke modification with a line bundle, it suffices to consider vector

bundles of nonnegative degree.

Theorem 2.5.1. Consider the vector bundle O(n)⊕O for n ≥ 1 (unstable, instability degree

n). The possible Hecke modifications are

O(n)⊕O ←

 O(n)⊕O(−1) if `p = O(n)p (a bad line),

O(n− 1)⊕O otherwise (a good line).

Proof. (1) The case `p = O(n)p. A Hecke modification α : O(n) ⊕ O → O(n) ⊕ O(−1)

corresponding to `p is

α =

 1 0

0 f

 ,

where f : O(−1)→ O is the unique (up to rescaling by a constant) nonzero morphism such

that fp = 0 on the fibers over p.

(2) The case `p 6= O(n)p. Since n ≥ 1, we can choose a section t of O(n) such that

t(p) 6= 0. Choose a section s = (at, b) of O(n)⊕O for a, b ∈ C such that s(p) 6= 0 and s ∈ `p.

A Hecke modification α : O(n)⊕O → O(n− 1)⊕O corresponding to `p is

α =

 f at

0 b

 ,

where f : O(n− 1)→ O(n) is the unique (up to rescaling by a constant) nonzero morphism

such that fp = 0 on the fibers over p.

Theorem 2.5.2. Consider the vector bundle O ⊕ O (strictly semistable, instability degree

0). The possible Hecke modifications are

O ⊕O ← O ⊕O(−1) for all `p (all lines are bad).

Proof. Define a section s = (a, b) of O ⊕O for a, b ∈ C such that s(p) 6= 0 and s(p) ∈ `p. If

b = 0, then a Hecke modification α : O ⊕O(−1)→ O⊕O corresponding to `p is

α =

 a 0

0 f

 ,
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and if b 6= 0, then a Hecke modification α : O ⊕O(−1)→ O⊕O corresponding to `p is

α =

 a f

b 0

 ,

where f : O(−1)→ O is the unique (up to rescaling by a constant) nonzero morphism such

that fp = 0 on the fibers over p.

2.5.2.1 Observations

From this list, we make the following observations:

Lemma 2.5.3. The following results hold for Hecke modifications of a rank 2 vector bundle

E over CP1:

1. A Hecke modification of E changes the instability degree by ±1.

2. Hecke modification of E corresponding to a line `p ∈ P(Ep) changes the instability

degree by −1 if `p is a good line and +1 if `p is a bad line.

3. A generic Hecke modification of E changes the instability degree by −1 unless E has

the minimum possible instability degree 0, in which case all Hecke modifications of E

change the instability degree by +1.

2.5.3 Moduli spaces P totM (CP1,m, n) and PM(CP1,m, n)

Our goal is to define a moduli space of Hecke modifications that is isomorphic to the Seidel-

Smith space Y(S2, 2r). Kamnitzer showed that such a space can be defined as follows:

Definition 2.5.4 (Kamnitzer [Kam11]). Given distinct points (p1, · · · , p2r) ∈ (CP1)2r, de-

fine the Kamnitzer space H(CP1, 2r) to be the subset of Htot(CP1,O ⊕ O, 2r) consisting

of equivalence classes of sequences of Hecke modifications O ⊕O α1←−−
p1

E1
α2←−−
p2
· · · αn←−−

p2r
E2r

such that E2r is semistable.

In particular, the condition that E2r must be semistable implies that E2r = O(−r) ⊕

O(−r).
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Theorem 2.5.5 (Kamnitzer [Kam11]). The Kamnitzer space H(CP1, 2r) has the structure

of a complex manifold isomorphic to the Seidel-Smith space Y(S2, 2r).

We will describe the Seidel-Smith space Y(S2, 2r) and Kamnitzer’s isomorphism in Sec-

tion 2.5.6. We can use the results of Section 2.4.2 to reinterpret the Kamnitzer space

H(CP1, 2r) in terms of parabolic bundles:

Definition 2.5.6. Define P tot(CP1, n) := P tot(CP1,O ⊕ O, n) and P(CP1, 2r) :=

P(CP1,O ⊕O, 2r).

Theorem 2.5.7. There is a canonical isomorphism H(CP1, 2r)→ P(CP1, 2r).

Proof. This follows from restricting the domain and range of the canonical isomorphism

Htot(CP1,O ⊕O, 2r)→ P tot(CP1,O ⊕O, 2r) described in Theorem 2.4.10.

We can also reinterpret the spaces P tot(CP1, n) and P(CP1, 2r) in terms of the moduli

spaces of marked parabolic bundles that we defined in Section 2.4.3. In what follows, we will

choose a global trivialization O⊕O → CP1×C2 and identify all the fibers of O⊕O with C2.

We can then identify lines `p ∈ P(Ep) with points in CP1 and speak of lines in different fibers

as being equal or unequal. In Section 2.2 we define a moduli space M ss(CP1) of semistable

rank 2 vector bundles with trivial determinant bundle, and in Section 2.3 we define a moduli

space M s(CP1,m) of stable rank 2 parabolic bundles with trivial determinant bundle and

m marked points. From the fact that M ss(CP1) = {[O⊕O]} and Aut(O⊕O) = GL(2,C),

we obtain the following results:

Theorem 2.5.8. The moduli space M s(CP1, 3) consists of the single point [O ⊕

O, `q1 , `q2 , `q3 ], where `q1 , `q2 , `q3 are any three distinct lines. Given any two stable parabolic

bundles of the form (O ⊕ O, `q1 , `q2 , `q3) and (O ⊕ O, `′q1 , `
′
q2
, `′q3), there is a unique (up to

rescaling by a constant) automorphism φ ∈ Aut(O⊕O) such that φ(`qi) = `′qi for i = 1, 2, 3.

Corollary 2.5.9. There is an isomorphism M s(CP1, 3)→M ss(CP1), [O⊕O, `q1 , `q2 , `q3 ] 7→

[O ⊕O].
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These results motivate the following definitions of “marked” versions of P tot(CP1, n) and

P(CP1, 2r):

Definition 2.5.10. Define P totM (CP1, n) := P totM (CP1, 3, n) and PM(CP1, n) :=

PM(CP1, 3, n).

The marked and unmarked versions of these spaces are easily seen to be isomorphic:

Theorem 2.5.11. The spaces P totM (CP1, n) and P tot(CP1, n) are (noncanonically) isomor-

phic.

Proof. Choose three distinct lines `q1 , `q2 , `q3 , and define an isomorphism P tot(CP1, n) →

P totM (CP1, n) by

[O ⊕O, `p1 , · · · , `pn ] 7→ [O ⊕O, `q1 , `q2 , `q3 , `p1 , · · · , `pn ].

The isomorphism is not canonical, since it depends on the choice of lines `q1 , `q2 , `q3

Theorem 2.5.12. The spaces PM(CP1, n) and P(CP1, n) are (noncanonically) isomorphic

Proof. This follows from restricting the domain and range of the isomorphism

P tot(CP1, n)→ P totM (CP1, n) described in Theorem 2.5.11

Our primary motivation for defining P totM (CP1, n) is to draw a parallel with the case

of elliptic curves, which we consider in Section 2.6. But the space P totM (CP1, n) also has

an advantage over P tot(CP1, n) in that we can use the marking lines to render certain

constructions canonical. For example, we can define a canonical version of the noncanonical

isomorphism P tot(CP1, n) = P tot(CP1,O ⊕O, n)→ (CP1)n:

Lemma 2.5.13. Fix distinct points q1, q2, q3, p ∈ CP1 and a parabolic bundle (E, `q1 , `q2 , `q3)

such that [E, `q1 , `q2 , `q3 ] ∈ M s(CP1, 3). There is a canonical isomorphism P(Ep) →

M ss(CP1, 4) ∼= CP1 given by

`p 7→ [E, `q1 , `q2 , `q3 , `p].
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Proof. This follows from the fact that (E, `q1 , `q2 , `q3) is stable, so the lines `q1 , `q2 , `q3 are all

distinct under the global trivialization of E.

Theorem 2.5.14. There is a canonical isomorphism h : P totM (CP1, n)→ (M ss(CP1, 4))n.

Proof. Define maps hi : P totM (CP1, n)→M ss(CP1, 4) for i = 1, · · · , n by

hi([E, `q1 , `q2 , `q3 , `p1 , · · · , `pn ]) = [E, `q1 , `q2 , `q3 , `pi ].

Then h := (h1, · · · , hn) is an isomorphism by Theorem 2.4.20 and Lemma 2.5.13.

Remark 2.5.15. Definition 2.4.22 for PM(C,m, n) implies that PM(CP1,m, n) = ∅ for

odd n, since there are no semistable rank 2 vector bundles of odd degree on CP1. We could

alternatively define PM(CP1,m, n) by requiring that H(E, `p1 , · · · , `pn) have the minimal

possible instability degree, which is 0 for n even and 1 for n odd. This condition is equivalent

to semistability for n even, but is a distinct condition for n odd, and gives a nonempty space.

2.5.4 Embedding PM(CP1,m, n)→M s(CP1,m+ n)

We will now describe a canonical open embedding of the space PM(CP1,m, n) into the space

of stable parabolic bundles M s(CP1,m+ n). We first need two Lemmas:

Lemma 2.5.16. Given a parabolic bundle (O⊕O, `p1 , · · · , `pn) over CP1, if `p1 , · · · , `pn are

bad in the same direction then H(O ⊕O, `p1 , · · · , `pn) = O ⊕O(−n).

Proof. Since `p1 , · · · , `pn are bad in the same direction, we have that `p1 = · · · = `pn under

a global trivialization of O ⊕ O in which all the fibers are identified with C2. An explicit

sequence of Hecke modifications with `p1 = · · · = `pn is given by

O ⊕O α1←−−
p1
O ⊕O(−1)

α2←−−
p2
· · · αn←−−

pn
O ⊕O(−n),

where O ⊕O α1←−−
p1
O ⊕O(−1) is a Hecke modification corresponding to the line `p1 and for

i = 2, · · · , n we define

αi =

 1 0

0 fi

 ,
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where fi : O(−i−1)→ O(−i) is the unique (up to rescaling by a constant) nonzero morphism

such that (fi)pi = 0 on the fibers over pi.

Lemma 2.5.17. Given a parabolic bundle (O ⊕ O, `p1 , · · · , `pn) over CP1, if H(O ⊕

O, `p1 , · · · , `pn) is semistable then (O ⊕O, `p1 , · · · , `pn) is semistable.

Proof. We will prove the contrapositive, so assume that (O⊕O, `p1 , · · · , `pn) is unstable. It

follows that more n/2 of the lines are bad in the same direction. Let s denote the number of

such lines, and choose a permutation σ ∈ Σn such that the first s points of (σ(p1), · · · , σ(pn))

correspond to these lines. By Lemma 2.5.16 we have that H(O⊕O, `σ(p1), · · · , `σ(ps)) = O⊕

O(−s), which has instability degree s. Lemma 2.5.3 states that a single Hecke modification

changes the instability degree by ±1, so H(O⊕O, `σ(p1), · · · , `σ(pn)) = H(O⊕O, `p1 , · · · , `pn)

has instability degree at least s− (n− s) = 2s− n > 0, and is thus unstable.

Remark 2.5.18. The converse to Lemma 2.5.17 is does not always hold; for example,

consider the semistable parabolic bundle (O ⊕ O, `p1 , `p2 , `p3 , `p4) for points pi = [1 : µi] ∈

CP1, where

`p1 = [1 : 0], `p2 = [0 : 1], `p3 = [1 : 1], `p4 = [(µ3 − µ1)(µ4 − µ2) : (µ3 − µ2)(µ4 − µ1)].

One can show that H(O ⊕O, `p1 , `p2 , `p3 , `p4) = O(−3)⊕O(−1), which is unstable.

Theorem 2.5.19. There is a canonical open embedding PM(CP1,m, n)→M s(CP1,m+n).

Proof. Take [E, `q1 , · · · , `qm , `p1 , · · · , `pn ] ∈ PM(CP1,m, n); note that E = O ⊕ O. Since

(E, `q1 , · · · , `qm) is stable, fewer than m/2 of the lines `q1 , · · · , `qm are equal under the

global trivialization of E. Since H(E, `p1 , · · · , `pn) is semistable, it follows from Lemma

2.5.17 that (E, `p1 , · · · , `pn) is semistable, so at most n/2 of the lines `p1 , · · · , `pn are equal.

It follows that fewer than (m + n)/2 of the lines `q1 , · · · , `qm , `p1 , · · · , `pn are equal, so

(E, `q1 , · · · , `qm , `p1 , · · · , `pn) is stable. So PM(CP1,m, n) is a subset of M s(CP1,m +

n). Specifically, the set PM(CP1,m, n) consists of points [E, `q1 , · · · , `qm , `p1 , · · · , `pn ] ∈

M s(CP1,m + n) such that (E, `q1 , · · · , `qm) is stable and H(E, `p1 , · · · , `pn) is semistable.

Since stability and semistability are open conditions, we have that PM(CP1,m, n) is an open

subset of M s(CP1,m+ n).
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2.5.5 Examples

We can generalize the Kamnitzer space H(CP1, n) to allow for both even and odd n, in

analogy with the generalization described in Remark 2.5.15:

Definition 2.5.20. Given distinct points (p1, · · · , pn) ∈ (CP1)n, define the Kamnitzer space

H(CP1, n) to be the subset of Htot(CP1,O ⊕ O, n) consisting of equivalence classes of se-

quences of Hecke modifications O ⊕ O α1←−−
p1

E1
α2←−−
p2
· · · αn←−−

pn
En such that En has the

minimum possible instability degree (0 for n even, 1 for n odd.)

Here we compute Kamnitzer space H(CP1, n) for n = 0, 1, 2, 3.

2.5.5.1 Calculate H(CP1, 0)

We have

H(CP1, 0) = Htot(CP1, 0) = {O ⊕O}.

2.5.5.2 Calculate H(CP1, 1)

All Hecke modifications of O ⊕O give O ⊕O(−1), which has instability degree 1, so

H(CP1, 1) = Htot(CP1, 1) = CP1.

2.5.5.3 Calculate H(CP1, 2)

A sequence of two Hecke modifications of O ⊕O must have one of two forms:

O ⊕O α1←−−
p1
O ⊕O(−1)

α2←−−
p2
O(−1)⊕O(−1), O ⊕O α1←−−

p1
O ⊕O(−1)

α2←−−
p2
O ⊕O(−2).

In the first case the terminal bundle O(−1)⊕O(−1) is semistable, whereas in the second case

the terminal bundle O⊕O(−2) is unstable. So H(CP1, 2) is the complement in Htot(CP1, 2)

of sequences of Hecke modifications of the second form. As we showed in the proof of Lemma

2.5.16, the resulting space is

H(CP1, 2) = (CP1)2 − {(a, a) | a ∈ CP1}.
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2.5.5.4 Calculate H(CP1, 3)

Now consider a sequence of three Hecke modifications of O ⊕ O. The only sequences for

which the terminal bundle does not have instability degree 1 are of the form

O ⊕O α1←−−
p1
O ⊕O(−1)

α2←−−
p2
O ⊕O(−2)

α3←−−
p3
O ⊕O(−3).

So H(CP1, 3) is the complement in Htot(CP1, 3) of sequences of Hecke modifications of this

form. As we showed in the proof of Lemma 2.5.16, the resulting space is

H(CP1, 3) = (CP1)3 − {(a, a, a) | a ∈ CP1}.

2.5.6 The Seidel-Smith space Y(S2, 2r)

Here we compare the embedding of PM(CP1, 2r) into M s(CP1, 2r + 3) that we defined in

Theorem 2.5.19 with an embedding of the Seidel-Smith space Y(S2, 2r) into M s(CP1, 2r+3)

due to Woodward. We begin by defining the Seidel-Smith space Y(S2, 2r).

Definition 2.5.21. We define the Slodowy slice S2r to be the subspace of gl(2r,C) consisting

of matrices with 2× 2 identity matrices I on the superdiagonal, arbitrary 2× 2 matrices in

the left column, and zeros everywhere else.

Example 2.5.22. Elements of S6 have the form
Y1 I 0

Y2 0 I

Y3 0 0

 ,

where Y1, Y2, and Y3 are arbitrary 2× 2 complex matrices.

Definition 2.5.23. Define a map χ : S2r → C2r/Σ2r that sends a matrix to the multiset of

the roots of its characteristic polynomial, where a root of multiplicity m occurs m times in

the multiset.

Definition 2.5.24. Given distinct points (µ1, · · · , µ2r) ∈ C2r, define the Seidel-Smith space

Y(S2, 2r) to be the fiber χ−1({µ1, · · · , µ2r}). For simplicity, we are suppressing the depen-

dence of Y(S2, 2r) on µ1, · · · , µ2r in the notation. This space was introduced in [SS06], which

denotes Y(S2, 2r) by Yr.
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The Seidel-Smith space Y(S2, 2r) naturally has the structure of a complex manifold,

in fact a smooth complex affine variety. In what follows, it will be useful to define local

coordinates ξ : U → V on CP1, where U = {[1 : z] | z ∈ C} ⊂ CP1, V = C, and

ξ([1 : z]) = z. We define points pi := ξ−1(µi) ∈ CP1 corresponding to µi for i = 1, · · · , 2r.

2.5.6.1 Kamnitzer isomorphism H(CP1, 2r)→ Y(S2, 2r)

Here we describe an isomorphism due to Kamnitzer from the space of Hecke modifications

H(CP1, 2r) to the Seidel-Smith space Y(S2, 2r).

Define global meromorphic sections sn of O(n) such that div sn = n · [∞]. For each rank

2 vector bundle E = O(n)⊕O(m), define standard meromorphic sections

e1
E = (sn, 0), e2

E = (0, sm),

and define a standard local trivialization ψE : π−1
E (U)→ U ×C2 of E over U by

e1
E(p) 7→ (p, (1, 0)), e2

E(p) 7→ (p, (0, 1)).

Consider an element of H(CP1, 2r):

[E0
α1←−−
p1

E1
α2←−−
p2
· · · α2r←−−−

p2r
E2r], (2.2)

where E0 = O⊕O. Define rank 2 free C[z]-modules Li for i = 0, · · · , 2r as spaces of sections

of Ei over U :

Li = Γ(U,Ei) = C[z] · {e1
Ei
, e2
Ei
}.

The sequence of Hecke modifications (2.2) then yields a sequence of C[z]-module morphisms

ᾱi:

L0 L1 · · · L2r.
ᾱ1 ᾱ2 ᾱ2r

We can also view ᾱi as a holomorphic map ᾱi : V →M(2,C), defined as in Definition 2.4.1

such that

(ψEi−1
◦ αi ◦ ψ−1

Ei
)(q, v) = (q, ᾱi(ξ(q))v).
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Define an 2r-dimensional complex vector space V by

V = coker(ᾱ1 ◦ ᾱ2 ◦ · · · ◦ ᾱ2r) = L0/(ᾱ1 ◦ ᾱ2 ◦ · · · ◦ ᾱ2r)(L2r).

One can show that an ordered basis for V is given by

(zr−1e1
E0
, zr−1e2

E0
, · · · , ze1

E0
, ze2

E0
, e1

E0
, e2

E0
).

Note that z acts C-linearly on V , and thus defines a 2r × 2r complex matrix A relative to

this basis.

Theorem 2.5.25 (Kamnitzer [Kam11]). We have an isomorphism H(CP1, 2r)→ Y(S2, 2r)

given by

[E0
α1←−−
p1

E1
α2←−−
p2
· · · α2r←−−−

p2r
E2r] 7→ A.

To perform calculations, it is useful to have explicit expressions for the maps ᾱi. For

each vector bundle E and point p = [1 : µ] ∈ U , we use the standard trivialization

ψE : π−1(E) → U × C2 to identify P(Ep) with CP1. For each line `p ∈ P(Ep) = CP1, we

give a holomorphic map ᾱ : V → M(2,C) that describes a Hecke modification α : F → E

corresponding to `p:

Hecke modifications of O(n)⊕O for n ≥ 1:

`p = [1 : 0] : O(n)⊕O α←−
p
O(n)⊕O(−1), ᾱ(z) =

 1 0

0 z − µ

 ,

`p = [λ : 1] : O(n)⊕O α←−
p
O(n− 1)⊕O, ᾱ(z) =

 z − µ λ

0 1

 .

Hecke modifications of O ⊕O:

`p = [1 : 0] : O ⊕O α←−
p
O ⊕O(−1), ᾱ(z) =

 1 0

0 z − µ

 ,

`p = [λ : 1] : O ⊕O α←−
p
O ⊕O(−1), ᾱ(z) =

 λ z − µ

1 0

 .
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2.5.6.2 Woodward embedding Y(S2, 2r)→M s(CP1, 2r + 3)

Here we describe an embedding due to Woodward [Woo] of the Seidel-Smith space Y(S2, 2r)

into the space of stable rank 2 parabolic bundles M s(CP1, 2r + 3). We first make the

following definition:

Definition 2.5.26. Given distinct points (p1, · · · , pn) ∈ (CP1)n, define a subspace

Pss(CP1, n) of P tot(CP1,O ⊕ O, n) consisting of semistable parabolic bundles (O ⊕

O, `p1 , · · · , `pn).

In particular, Pss(CP1, n) consists of parabolic bundles (O ⊕ O, `p1 , · · · , `pn) for which

at most n/2 of the lines are equal to any given line under a global trivialization of O ⊕ O.

Given distinct points (q1, q2, q3, p1, · · · , pn) ∈ (CP1)n+3 and distinct lines `q1 , `q2 , `q3 ∈ CP1,

we can define an embedding Pss(CP1, n)→M ss(CP1, n+ 3),

(O ⊕O, `p1 , · · · , `pn) 7→ [O ⊕O, `q1 , `q2 , `q3 , `p1 , · · · , `pn ].

We will define an embedding Y(S2, 2r) → Pss(CP1, 2r). Composing with Pss(CP1, 2r) →

M s(CP1, 2r + 3) will then yield the Woodward embedding. We first define some vectors.

Define vectors x, y ∈ C2 by

x = (1, 0) ∈ C2, y = (0, 1) ∈ C2.

Define vectors x1, · · · , xr, y1, · · · , yr ∈ C2r by

x1 = (x, 0, · · · , 0) ∈ C2r, x2 = (0, x, 0, · · · , 0) ∈ C2r, · · · , xr = (0, · · · , 0, x) ∈ C2r,

y1 = (y, 0, · · · , 0) ∈ C2r, y2 = (0, y, 0, · · · , 0) ∈ C2r, · · · , yr = (0, · · · , 0, y) ∈ C2r.

Define vectors x(µ), y(µ) ∈ C2r by

x(µ) = (µr−1x, µr−2x, · · · , µx, x) = µr−1x1 + µr−2x2 + · · ·+ µxr−1 + xr ∈ C2r,

y(µ) = (µr−1y, µr−2y, · · · , µy, y) = µr−1y1 + µr−2y2 + · · ·+ µyr−1 + yr ∈ C2r.

We use the vectors to define a subspace W (s, t) of C2r, and we calculate its dimension:
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Definition 2.5.27. Given (s, t) ∈ C2, define a subspace W (s, t) = C·{sx(µ)+ty(µ) | µ ∈ C}

of C2r.

Lemma 2.5.28. For (s, t) ∈ C2 − {0}, we have that dimW (s, t) = r.

Proof. Define a vector w(s, t, µ) ∈ C2r by

w(s, t, µ) := sx(µ) + ty(µ) = µr−1(sx1 + ty1) + · · ·+ µ(sxr−1 + tyr−1) + (sxr + tyr). (2.3)

Let S ⊂ C2r denote the span of the linearly independent vectors {sx1 + ty1, · · · , sxr + tyr}.

ClearlyW (s, t) ⊆ S. Form an r×r matrix V whose i-th row vector consists of the components

of w(s, t, i) relative to the ordered basis (sx1 + ty1, · · · , sxr + tyr) of S. From equation (2.3),

it follows that the (i, j) matrix element of V is given by

Vij = (i)r−j.

So V is a Vandermonde matrix corresponding to the distinct integers (1, 2, · · · , r), and thus

has nonzero determinant. It follows that the vectors {w(s, t, 1), · · · , w(s, t, r)} are linearly

independent, hence W (s, t) = S and dimW (s, t) = dimS = r.

We are now ready to define the Woodward embedding. Take a matrix A ∈ Y(S2, 2r).

Let v(µ) ∈ C2r be a left-eigenvector of A with eigenvalue µ:

v(µ)A = µv(µ).

Given the form of A, it follows that

v(µ) = X(µ)x(µ) + Y (µ)y(µ)

for some X(µ), Y (µ) ∈ C. Since A ∈ Y(S2, 2r), the eigenvalues of A are µ1, · · · , µ2r ∈ C.

Define lines `pi ∈ CP1 for i = 1, · · · , 2r by

`pi = [X(µi) : Y (µi)].

Theorem 2.5.29 (Woodward [Woo]). We have an embedding Y(S2, 2r) → Pss(CP1, 2r),

A 7→ (O ⊕O, `p1 , · · · , `p2r).
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Proof. A priori the codomain of the map is P tot(CP1, 2r), so we need to show that the image

is in fact contained in Pss(CP1, 2r). Note that if `pi = [s : t] then v(µi) ∈ W (s, t). Since the

eigenvalues µ1, · · · , µ2r are distinct, the eigenvectors {v(µ1), · · · , v(µ2r)} are linearly inde-

pendent, so the maximum number of eigenvectors that can live in W (s, t) is dimW (s, t) = r

by Lemma 2.5.28. So at most r of the lines `p1 , · · · , `p2r can be equal to any given line [s : t]

in CP1, and thus (O ⊕O, `p1 , · · · , `p2r) is semistable.

Lemma 2.5.17 states that we have an embedding P(CP1, 2r) → Pss(CP1, 2r). We can

precompose this embedding with the canonical isomorphism H(CP1, 2r) → P(CP1, 2r)

described in Theorem 2.5.7 to obtain an embedding H(CP1, 2r) → Pss(CP1, 2r), and we

obtain a commutative diagram

H(CP1, 2r) Pss(CP1, 2r)

PM(CP1, 2r) M ss(CP1, 2r + 3),

∼=

where the bottom horizontal arrow is the embedding described in Theorem 2.5.19. It

is interesting to compare the embedding H(CP1, 2r) → Pss(CP1, 2r) to the embedding

Y(S2, 2r)→ Pss(CP1, 2r) from Theorem 2.5.29. We make the following conjecture:

Conjecture 2.5.30. There is a commutative diagram

H(CP1, 2r) Pss(CP1, 2r)

Y(S2, 2r) Pss(CP1, 2r),

∼= ∼=

where the left downward arrow is the Kamnitzer isomorphism and the right downward arrow

is the map on parabolic bundles induced by φ ∈ Aut(O ⊕O) = GL(2,C), where

φ =

 0 −1

1 0

 .

Theorem 2.5.31. Conjecture 2.5.30 holds for r = 1 and r = 2.

Proof. This can be shown by a direct calculation.
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2.6 Elliptic curves

2.6.1 Vector bundles on elliptic curves

Vector bundles on elliptic curves have been classified by Atiyah [Ati57]:

Definition 2.6.1. Define E(r, d) to be the set of isomorphism classes of indecomposable

vector bundles of rank r and degree d on an elliptic curve X.

The set E(r, d) naturally has the structure of a complex manifold, and we have the

following result:

Theorem 2.6.2 (Atiyah [Ati57]). There are isomorphisms Jac(X) → E(r, d) for all r and

d.

In particular, E(1, d) is the set of isomorphism classes of line bundles of degree d, and

the isomorphism Jac(X)→ E(1, d) is given by [L] 7→ [L⊗O(d · e)] for a choice of basepoint

e ∈ X. Here we summarize the facts we will need regarding line bundles and rank 2 vector

bundles on elliptic curves. Results that are well-known will be stated without proof; full

proofs can be found in [Ati57, Ien11, Big].

Definition 2.6.3. We say that a degree 0 line bundle L is 2-torsion if L2 = O.

There are four 2-torsion line bundles on an elliptic curve. We will denote the 2-torsion

line bundles by Li for i = 1, 2, 3, 4, with the convention that L1 = O.

Definition 2.6.4. Given line bundles L and M on an elliptic curve, an extension of L by

M is an exact sequence

0 M E L 0,

where E is a rank 2 vector bundle.

Lemma 2.6.5. Given line bundles L and M on an elliptic curve, equivalence classes of

extensions of L by M are classified by Ext1(L,M) = H0(L⊗M−1).
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Lemma 2.6.6 (Teixidor [Big], Lemma 4.5). If [E] ∈ E(2, d), then h0(E) = 0 if d < 0 and

h0(E) = d if d > 0, where h0(E) := dimH0(E).

We will now list the rank 2 vector bundles on an elliptic curve X. Up to tensoring with

a line bundle, we have the following vector bundles:

2.6.1.1 Rank 2 decomposable vector bundles

Decomposable bundles have the form L1 ⊕ L2, where L1 and L2 are line bundles. The

instability degree of L1⊕L2 is | degL1−degL2|, so L1⊕L2 is strictly semistable if degL1 =

degL2 and unstable otherwise. The proof of the following result is straightforward:

Lemma 2.6.7. Let E = L1⊕L2, where L1 and L2 are line bundles such that degL1 > degL2.

At a point p ∈ X the line (L1)p is bad, and all other lines in P(Ep) are good.

A semistable decomposable bundle must have even degree, so after tensoring with a

suitable line bundle it has the form L ⊕ L−1, where L is a degree 0 line bundle. There

are two subclasses of such bundles: the four bundles Li ⊕ Li, and bundles L ⊕ L−1 such

that L2 6= O. These two subclasses of semistable decomposable bundles have very different

properties:

Lemma 2.6.8. The bundle Li ⊕ Li has no good lines, and Aut(Li ⊕ Li) = GL(2,C).

Lemma 2.6.9. Let E = L⊕ L−1, where L is a degree 0 line bundle such that L2 6= O. The

automorphism group Aut(E) is the subgroup of GL(2,C) matrices of the form A 0

0 D

 .

At a point p ∈ X the lines Lp and (L−1)p are bad, and all other lines in P(Ep) are good.

Given a pair of good lines `p, `
′
p ∈ P(Ep), there is a unique (up to rescaling by a constant)

automorphism φ ∈ Aut(E) such that φ(`q) = φ(`′q).

The proofs of Lemmas 2.6.8 and 2.6.9 are straightforward and have been omitted.
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2.6.1.2 Rank 2 degree 0 indecomposable bundles

There is a unique indecomposable bundle F2 that can be obtained via an extension of O by

O:

0 O F2 O 0.α β
(2.4)

The bundle F2 is strictly semistable, and hence has instability degree 0. The map Jac(X)→

E(2, 0), [L] 7→ [F2⊗L] is an isomorphism, so in particular F2⊗L = F2 if and only if L = O.

Lemma 2.6.10. If L is a degree 0 line bundle, then

Hom(L, F2) =

 C · α if L = O,

0 otherwise.
Hom(F2, L) =

 C · β if L = O,

0 otherwise.

Proof. Apply Hom(L,−) to the short exact sequence (2.4) to obtain

0 Hom(L,O) Hom(L, F2) Hom(L,O) Ext1(L,O).
α∗ β∗ δ (2.5)

If L 6= O, then Hom(L,O) = 0 and the long exact sequence (2.5) implies that Hom(L, F2) =

0. So assume L = O. Then Hom(L,O) = C · 1O. To prove that Hom(L, F2) = C · α, it

suffices to show that δ(1O) 6= 0. Assume for contradiction that this is not the case. Then

the long exact sequence (2.5) implies that there is a morphism f ∈ Hom(L, F2) such that

β∗(f) = β ◦ f = 1O. It follows that the short exact sequence (2.4) splits, contradiction.

The claim regarding Hom(F2, L) can be proven in a similar manner by applying

Hom(−, L) to the short exact sequence (2.4).

Lemma 2.6.11. Given a point q ∈ X, there are nonzero sections t0 and t1 of F2 ⊗ O(q)

such that

1. H0(F2 ⊗O(q)) = C · {t0, t1},

2. div t0 = 0 and div t1 = q,

3. t1(p) ∈ O(q)p for all p ∈ X, where O(q) → F2 ⊗ O(q) is the unique degree 1 line

subbundle of F2 ⊗O(q),
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4. {t0(p), t1(p)} are linearly independent for all p ∈ X such that p 6= q.

Proof. Tensoring α : O → F2 with O(q) and precomposing with the unique (up to rescaling

by a constant) nonzero morphism O → O(q), we obtain a section t1 of F2 ⊗O(q) such that

div t1 = q and t1(p) ∈ O(q)p for all p ∈ X. By Lemma 2.6.6 we have that h0(F2⊗O(q)) = 2,

so we can choose a section t0 of F2 ⊗O(q) linearly independent from t1.

We claim that div t0 = 0. Assume for contradiction that this is not the case. We obtain a

subbundle O(div t0)→ F2⊗O(q), and by semistability of F2⊗O(q) it follows that div t0 = p

for some p ∈ X. We thus obtain a subbundle O(p) → F2 ⊗ O(q), hence a subbundle

O(p− q)→ F2. But this contradicts Lemma 2.6.10 unless p = q, in which case t0 and t1 are

linearly dependent.

We claim t0(p) and t1(p) are linearly independent at all points p ∈ X such that p 6= q.

Assume for contradiction that they are linearly dependent at some point p distinct from q.

Then we can choose a nonzero section s = at0+bt1 of F2⊗O(q) for a, b ∈ C such that s(p) = 0.

We thus obtain a subbundle O(div s)→ F2⊗O(q). We have that p ∈ div s, so semistability

of F2 ⊗O(q) implies that div s = p. We thus obtain a subbundle O(p)→ F2 ⊗O(q), hence

a subbundle O(p− q)→ F2. But this contradicts Lemma 2.6.10.

Lemma 2.6.12. The automorphism group Aut(F2) is the subgroup of GL(2,C) matrices of

the form  A B

0 A

 .

At a point p ∈ X the line Op is bad, where O → F2 is the unique degree 0 subbundle of F2,

and all other lines in P((F2)p) are good. Given a pair of good lines `p, `
′
p ∈ P((F2)p), there is

a unique (up to rescaling by a constant) automorphism φ ∈ Aut(E) such that φ(`q) = φ(`′q).

Proof. Apply Hom(−, F2) to the short exact sequence (2.4) to obtain

0 Hom(O, F2) Hom(F2, F2) Hom(O, F2).
β∗ α∗ (2.6)

Note that α∗(1F2) = α, so Lemma 2.6.10 implies that α∗ is surjective and thus the sequence

(2.6) is in fact short exact. It follows that Hom(F2, F2) = C · {1F2 , η}, where η := β∗(α) =
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α ◦ β. Note that η ◦ η = 0, so we can define an injective group homomorphism Aut(F2) →

GL(2,C) by

A 1F2 +B η 7→

 A B

0 A

 .

The fact that Op is the unique bad line of (F2)p follows from Lemma 2.6.10. Given good

lines `p, `
′
p ∈ P((F2)p), choose nonzero vectors v, v′, w ∈ (F2)p such that v ∈ `p, v′ ∈ `′p, and

w ∈ Op. Since `p 6= Op, it follows that {v, w} is a basis for (F2)p. Define a, b ∈ C such

that v′ = av + bw; note that since `′q 6= Op we have that a 6= 0. Define c ∈ C such that

ηp(v) = cw; note that since ηp(w) = 0 and ηp 6= 0, we have that c 6= 0. Then v′ = φp(v),

where φ = a1F + (b/c)η ∈ Aut(F2). Hence φ(`p) = `′p, and φ is clearly unique up to rescaling

by a constant.

2.6.1.3 Rank 2 degree 1 indecomposable bundles

Given a point p ∈ X, there is a unique degree 1 indecomposable bundle G2(p) that can be

obtained via an extension of O(p) by O:

0 O G2(p) O(p) 0.

The bundle G2(p) is stable, with instability degree −1. The map E(1, 1)→ E(2, 1), [O(p)] 7→

[G2(p)] is an isomorphism, with inverse isomorphism given by det : E(2, 1)→ E(1, 1), [E]→

[detE]. It follows that for any degree 0 divisor D on X we have that

G2(p+ 2D) = G2(p)⊗O(D),

and in particular G2(p)⊗ L ∼= G2(p) if and only if L2 = O.

Lemma 2.6.13. We have that Aut(G2(p)) = C× consists only of trivial automorphisms that

scale the fibers by a constant factor.

Proof. This follows from the fact that G2(p) is stable.

Lemma 2.6.14. Any degree 0 line bundle L is a subbundle of G2(p) via a unique (up to

rescaling by a constant) inclusion map L→ G2(p).
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Proof. Let L be a degree 0 line bundle. By Lemma 2.6.6 we have that h0(G2(p) ⊗ L−1) =

1, hence G2(p) ⊗ L−1 has a nonzero section s. We thus obtain a subbundle O(div s) →

G2(p) ⊗ L−1. By stability of G2(p) ⊗ L−1, we must have div s = 0. Tensoring with L, we

obtain a subbundle L → G2(p). The claim regarding uniqueness follows from the fact that

h0(G2(p)⊗ L−1) = 1.

Corollary 2.6.15. All lines of G2(p) are bad.

Proof. This is shown in Theorem 2.6.19.

2.6.2 List of all possible single Hecke modifications

Here we present a list of all possible Hecke modifications at a point p ∈ X of all possible

rank 2 vector bundles on X, up to tensoring with a line bundle. We will parameterize Hecke

modifications of a vector bundle E at a point p in terms of lines `p ∈ P(Ep), as described in

Theorem 2.4.4. Since we are always free to tensor a Hecke modification with a line bundle,

it suffices to consider vector bundles of nonnegative degree.

To construct the list, we will often use the following strategy. By tensoring E with a

line bundle of sufficiently high degree if necessary, we can assume without loss of generality

that E is generated by global sections. Consider a Hecke modification α : F → E of E at

p corresponding to a line `p := imαp ∈ P(Ep). Since we have assumed E is generated by

global sections, there is a section s of E such that s(p) 6= 0 and s(p) ∈ `p. We then get a

subbundle O(div s)→ E and a commutative diagram

0 O(div s) F L⊗O(−p) 0

0 O(div s) E L 0,

= α f

where f is the unique (up to rescaling by a constant) nonzero morphism L ⊗ O(−p) → L.

Thus F is an extension of L⊗O(−p) by O(div s), and we can often use this information to

determine F .
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2.6.2.1 Rank 2 bundles of degree greater than 1

Theorem 2.6.16. Consider a bundle of the form L⊕O for L a line bundle of degree greater

than 1 (unstable, instability degree degL). The possible Hecke modifications are

L⊕O ←

 L⊕O(−p) if `p = Lp (a bad line),

(L⊗O(−p))⊕O otherwise (a good line).

Proof. (1) The case `p = Lp. A Hecke modification α : L⊕O(−p)→ L⊕O corresponding

to `p is

α =

 1 0

0 f

 ,

where f is the unique (up to rescaling by a constant) nonzero morphism O(−p)→ O.

(2) The case `p 6= Lp. Since degL > 1, we can choose a nonzero section t of L such that

t(p) 6= 0. Since t is nonvanishing at p, we can choose a section s = (at, b) of L⊕O for a, b ∈ C

such that s(p) 6= 0 and s(p) ∈ `p. A Hecke modification α : (L ⊗ O(−p)) ⊕ O → L ⊕ O

corresponding to `p is

α =

 f at

0 b

 ,

where f is the unique (up to rescaling by a constant) nonzero morphism L⊗O(−p)→ L.

2.6.2.2 Rank 2 bundles of degree 1

Theorem 2.6.17. Consider the bundle O(q)⊕O with q 6= p (unstable, instability degree 1).

The possible Hecke modifications are

O(q)⊕O ←

 O(q)⊕O(−p) if `p = O(q)p (a bad line),

O(q − p)⊕O otherwise (a good line).

Proof. One can prove this result by using the fact that O(q) has a section t such that t(p) 6= 0

and writing down explicit Hecke modifications, as in the proof of Theorem 2.6.16.
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Theorem 2.6.18. Consider the bundle O(p)⊕O (unstable, instability degree 1). The possible

Hecke modifications are

O(p)⊕O ←


O(p)⊕O(−p) if `p = O(p)p (a bad line),

O ⊕O if `p = Op (a good line),

F2 otherwise (a good line).

Proof. (1) The case `p = O(p)p. A Hecke modification α : O(p) ⊕ O(−p) → O(p) ⊕ O is

given by

α =

 1 0

0 f

 ,

where f is the unique (up to rescaling by a constant) nonzero morphism O(−p)→ O.

(2) The case `p = Op. A Hecke modification α : O ⊕O → O(p)⊕O is given by

α =

 t 0

0 1

 ,

where t is the unique (up to rescaling by a constant) nonzero morphism O → O(p).

(3) The case `p 6= O(p)p and `q 6= Op. Pick a point q ∈ X such that q 6= p. Choose a

nonzero section t0 of O(p + q) such that t0(q) 6= 0 and t0(p) 6= 0. Choose a nonzero section

t1 of O(q). Note that div t1 = q. Since t0(p) 6= 0 and t1(p) 6= 0, we can define a section

s = (at0, bt1) of O(p + q) ⊕ O(q) for a, b ∈ C such that s(p) 6= 0 and s(p) ∈ `p. Since

`p 6= O(p)p and `q 6= Op, it follows that a 6= 0 and b 6= 0, thus div s = 0 and we obtain a

subbundle O(div s) = O → O(p+ q)⊕O(q), 1 7→ s. Thus we have a commutative diagram

0 O F O(2q) 0,

0 O O(p+ q)⊕O(q) O(2q + p) 0.

= α

The bundle F cannot split, since there are no nonzero morphisms O(2q)→ O(p+ q)⊕O(q),

hence F is indecomposable. Since detF = O(2q) it follows that F = F2 ⊗ O(q) ⊗ L for a

2-torsion line bundle L. We can compose α with projection onto the second summand of

O(p+ q)⊕O(q) to obtain a nonzero morphism F → O(q), so Lemma 2.6.10 implies L = O

and F = F2 ⊗O(q).
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Theorem 2.6.19. Consider the bundle G2(p) (stable, instability degree −1). There is a

canonical isomorphism P(G2(p)p)→M ss(X) ∼= CP1 given by

`p 7→ [H(G2(p), `p)].

All lines of G2(p) are bad.

Proof. By Lemma 2.6.14, any degree 0 line bundle L is a subbundle of G2(p) via a unique

(up to rescaling by a constant) inclusion map L → G2(p). Thus we have a commutative

diagram

0 L F L−1 0,

0 L G2(p) L−1 ⊗O(p) 0.

= α

Note that Ext1(L−1, L) = H0(L−2). If L2 6= O then H0(L−2) = 0, so F splits, thus F =

L⊕ L−1.

Now suppose L2 = O. We claim that F is indecomposable; assume for contradiction that

this is not the case. Then F = L⊕L, so α : F → G2(p) gives a map O⊕O → G2(p)⊗L that

is an isomorphism away from p, so we obtain two linearly independent sections of G2(p)⊗L.

But by Lemma 2.6.6 we have that h0(G2(p) ⊗ L) = 1, contradiction. It follows that F is

indecomposable. Since detF = O, it follows that F = F2 ⊗M for a 2-torsion line bundle

M . Since we have a nonzero morphism L → F , Lemma 2.6.10 implies that M = L and

F = F2 ⊗ L.

Our results show that we have a surjection Jac(X) → M ss(X), [L] 7→ [F ]. The vector

bundle F is isomorphic to H(G2(p), `p), where `p ∈ P(G2(p)p) is the line corresponding to

[G2(p)p
α←−
p
F ] ∈ Htot(X,G2(p); p) under the canonical isomorphism described in Theorem

2.4.4, and we have a commutative diagram

Jac(X) M ss(X)

P(G2(p)p).
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Here Jac(X)→ P(G2(p)p) is given by [L] 7→ Lp and P(G2(p)p)→M ss(X) is given by `p 7→

[H(G2(p), `p)]. Since Jac(X) → M ss(X) is surjective, we have that Jac(X) → P(G2(p)p)

is surjective and P(G2(p)p) → M ss(X) is an isomorphism. The surjectivity of Jac(X) →

P(G2(p)p) implies that all lines of P(G2(p)p) are bad. Since G2(p) = G2(q)⊗M for a suitable

degree 0 line bundle M , all lines of G2(p) are bad.

2.6.2.3 Rank 2 bundles of degree 0

Theorem 2.6.20. Consider the bundle O⊕O (strictly semistable, instability degree 0). The

possible Hecke modifications are

O ⊕O ← O ⊕O(−p) for all `p (all lines are bad).

Proof. We can choose a section s of O ⊕O such that s(p) 6= 0 and s = `p. We thus obtain

a subbundle O → O ⊕O, 1 7→ s and a commutative diagram

0 O F O(−p) 0,

0 O O ⊕O O 0.

= α

Since Ext1(O(−p),O) = H0(O(−p)) = 0, we have that F splits, thus F = O ⊕ O(−p).

Alternatively, one can write down explicit Hecke modifications, as in the proof of Theorem

2.6.16.

Theorem 2.6.21. Consider a bundle of the form L⊕L−1, where L is a degree 0 line bundle

such that L2 6= O (strictly semistable, instability degree 0). The possible Hecke modifications

are

L⊕ L−1 ←


L⊕ (L−1 ⊗O(−p)) if `p = Lp (a bad line),

(L⊗O(−p))⊕ L−1 if `p = (L−1)p (a bad line),

G2(p)⊗O(−p) otherwise (a good line).

Proof. For `p = Lp or `p = (L−1)p, we can write down explicit Hecke modifications, as in

the proof of Theorem 2.6.16. So assume `p 6= Lp and `p 6= (L−1)p. Choose a point e ∈ X
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such that (L ⊕ L−1) ⊗ O(e) = O(q1) ⊕ O(q2) for points q1, q2 ∈ X distinct from p. Since

L2 6= O, it follows that q1 6= q2. Note that q1 + q2 = 2e. Let tk be the unique (up to rescaling

by a constant) nonzero section of O(qk); note that div tk = qk. We can define a section

s = (at1, bt2) of O(q1)⊕O(q2) for a, b ∈ C such that s(p) 6= 0 and s(p) ∈ `p. Since `p 6= Lp

and `p 6= (L−1)p, it follows that a 6= 0 and b 6= 0, thus div s = 0. We thus obtain a subbundle

O(div s) = O → O(q1)⊕O(q2), 1 7→ s and a commutative diagram

0 O F O(q1 + q2 − p) 0,

0 O O(q1)⊕O(q2) O(q1 + q2) 0.

= α

There are no nonzero morphisms O(q1 + q2 − p) → O(q1) ⊕ O(q2), so F cannot split.

Since detF = O(q1 + q2 − p), we have that F = G2(q1 + q2 − p) = G2(2(e − p) + p) =

G2(p)⊗O(e− p).

Theorem 2.6.22. Consider the bundle F2 (strictly semistable, instability degree 0). The

possible Hecke modifications are

F2 ←

 O ⊕O(−p) if `p = Op (a bad line),

G2(p)⊗O(−p) otherwise (a good line),

where O → F2 is the unique degree 0 line subbundle of F2.

Proof. (1) The case `q = Op. We have a commutative diagram

0 O F O(−p) 0,

0 O F2 O 0.

= α

Since Ext1(O(−p),O) = H0(O(−p)) = 0, we have that F splits, thus F = O ⊕O(−p).

(2) The case `p 6= Op. Pick a point q ∈ X such that q 6= p. Choose sections t0 and t1 of

F2⊗O(q) as in Lemma 2.6.11. We can define a section s = at0 +bt1 of F2⊗O(q) for a, b ∈ C

such that s(p) 6= 0 and s(p) ∈ `p. Since `q 6= Op it follows that a 6= 0, thus div s = 0. We
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thus obtain a subbundle O(div s) = O → F2 ⊗O(q), 1 7→ s and a commutative diagram

0 O F O(2q − p) 0,

0 O F2 ⊗O(q) O(2q) 0.

= α

We claim that F cannot split. Assume for contradiction that F splits, thus F = O⊕O(2q−p).

Then we can precompose α with the inclusion O(2q−p)→ O⊕O(2q−p) to obtain a nonzero

morphism O(2q − p)→ F2 ⊗O(q), contradicting Lemma 2.6.10. Since F does not split and

detF = O(2q− p), we have that F = G2(2q− p) = G2(2(q− p) + p) = G2(p)⊗O(q− p).

2.6.2.4 Observations

From this list, we make the following observations:

Lemma 2.6.23. The following results hold for Hecke modifications of a rank 2 vector bundle

E on an elliptic curve:

1. A Hecke modification of E changes the instability degree by ±1.

2. Hecke modification of E corresponding to a line `p ∈ P(Ep) changes the instability

degree by −1 if `p is a good line and +1 if `p is a bad line.

3. A generic Hecke modification of E changes the instability degree by −1 unless E has

the minimum possible instability degree −1, in which case all Hecke modifications of E

change the instability degree by +1.

2.6.3 Moduli spaces P totM (X,m, n) and PM(X,m, n)

In Section 2.5.3 we defined a total space of marked parabolic bundles P totM (CP1, n) =

P totM (CP1, 3, n) for rational curves, and we showed that the Seidel-Smith space Y(S2, 2r)

could be reinterpreted as the subspace PM(CP1, 2r) = PM(CP1, 3, 2r) of P totM (CP1, 2r). We

now want to generalize the spaces P totM (CP1, n) and PM(CP1, 2r) to the case of an elliptic

curve X. There are obvious candidates: namely, the spaces P totM (X,m, n) and PM(X,m, n)
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for some value of m, which should be chosen to obtain the correct generalization. One pos-

sibility is to use same value m = 3 that we did for rational curves. But m = 1 is also yields

a reasonable generalization, as can be understood from the following considerations.

In Section 2.2 we define a moduli space M ss(C) of semistable rank 2 vector bundles

over a curve C with trivial determinant bundle, and in Section 2.3 we define a moduli

space M s(C,m) of stable rank 2 parabolic bundles over a curve C with trivial determinant

bundle and m marked points. Recall that for rational curves we chose m = 3 marking

lines because we wanted P totM (CP1,m, n) to be isomorphic to the space of parabolic bundles

P tot(CP1,O ⊕O, n) in which the underlying vector bundle is O ⊕O, and

P totM (CP1, 3, 0) = M s(CP1, 3) = M ss(CP1) = {[O ⊕O]}.

For an elliptic curve X, however, the corresponding spaces M s(X, 3) and M ss(X) are not

isomorphic: the space M s(X, 3) is a complex manifold of dimension 3, whereas M ss(X) is

isomorphic to CP1. Instead we have the following results, which can be viewed as elliptic-

curve analogs to Theorem 2.5.8 and Corollary 2.5.9 for rational curves:

Theorem 2.6.24. The moduli space M s(X, 1) consists of points [E, `q], where `q is a good

line and either E = F2 ⊗ Li or E = L ⊕ L−1 for L a degree 0 line bundle such that

L2 6= O. Given any two parabolic bundles of the form (E, `q) and (E, `′q) representing points

of M s(X, 1), there is a unique (up to rescaling by a constant) automorphism φ ∈ Aut(E)

such that φ(`q) = `′q.

Proof. If [E, `q] ∈ M s(X, 1) then E is semistable, detE = O, and `q is a good line. Since

E is semistable and detE = O, it must be Li ⊕ Li, F2 ⊗ Li, or L ⊕ L−1 for L a degree 0

line bundle such that L2 6= O. But Lemma 2.6.8 states that Li ⊕Li has no good lines, so E

cannot be Li⊕Li. Lemmas 2.6.9 and 2.6.12 show that the remaining two possibilities for E

do have good lines and also prove the statement regarding unique automorphisms.

Corollary 2.6.25. The map M s(X, 1)→M ss(X), [E, `q] 7→ [E] is an isomorphism.

From these results, we see that there are two natural generalizations of P totM (CP1, n) to
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an elliptic curve. The generalization of P totM (CP1, 3, 0) = M ss(CP1) is

P totM (X, 1, 0) = M s(X, 1) = M ss(X),

which would lead us to choose m = 1 marking lines. The generalization of P totM (CP1, 3, 0) =

M s(CP1, 3) is

P totM (X, 3, 0) = M s(X, 3),

which would lead us to choose m = 3 marking lines. We will address the question of which

of these values of m yields the correct generalization of the Seidel-Smith space in Section

2.7.

From Theorem 2.4.20, we have that P totM (X, 1, n) is a (CP1)n-bundle over M s(X, 1) ∼=

CP1. We will show that this bundle is trivial. To prove this result, we will use the

marking line of P totM (X, 1, n) to canonically identify P(Ep) with M ss(X) ∼= CP1 for

[E, `q1 , `p1 , · · · , `pn ] ∈ P totM (X, 1, n):

Lemma 2.6.26. Fix a parabolic bundle (E, `q) such that [E, `q] ∈ M s(X, 1), a point p ∈ X

such that p 6= q, and a point e ∈ X such that p+ q = 2e. There is a canonical isomorphism

P(Ep)→M ss(X) given by

`p 7→ [H(E, `q, `p)⊗O(e)].

Proof. Theorem 2.6.24 implies that `q is a good line and either E = F2⊗Li or E = L⊕L−1

for L a degree 0 line bundle such that L2 6= O. From Theorems 2.6.21 and 2.6.22, it follows

that

H(E, `q) = G2(q)⊗O(−q) = G2(p+ 2(q − e))⊗O(−q) = G2(p)⊗O(−e).

The result now follows from Theorem 2.6.19.

Lemma 2.6.26 can be viewed as the elliptic-curve analog to Lemma 2.5.13 for rational

curves. To perform calculations, it will be useful to explicitly evaluate the map P(Ep) →

M ss(X) for bad lines `p ∈ P(Ep). In general, we prove:
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Lemma 2.6.27. Fix distinct points p, q ∈ X and a point e ∈ X such that p + q = 2e. If `q

is a good line, then

H(L⊕ L−1, `q, Lp)⊗O(e) = M ⊕M−1, where M = L⊗O(p− e) = L⊗O(e− q),

H(L⊕ L−1, `q, (L
−1)p)⊗O(e) = M ⊕M−1, where M = L⊗O(q − e) = L⊗O(e− p),

H(L⊕ L−1, Lq, (L
−1)p)⊗O(e) = M ⊕M−1, where M = L⊗O(q − e) = L⊗O(e− p),

H(F2, `q,Op)⊗O(e) = M ⊕M−1, where M = O(p− e) = O(e− q).

Proof. These results are straightforward calculations using the list of Hecke modifications in

Section 2.6.2. As an example, we will prove the result involving F2. From Theorem 2.6.22

we have that

H(F2,Op) = O ⊕O(−p).

Since `q is a good line, the bundle H(F2,Op, `q) = H(F2, `q,Op) must be semistable, and the

result now follows from Theorem 2.6.17.

Theorem 2.6.28. There is a canonical isomorphism h : P totM (X, 1, n)→ (M ss(X))n+1.

Proof. Define h0 : P totM (X, 1, n)→M ss(X) by

h0([E, `q1 , `p1 , · · · , `pn ]) = [E].

For i = 1, · · · , n, choose a point ei ∈ X such that q1 +pi = 2ei and define hi : P totM (X, 1, n)→

M ss(X) by

hi([E, `q1 , `p1 , · · · , `pn ]) = [H(E, `q1 , `pi)⊗O(ei)].

Then h := (h0, h1, · · · , hn) is an isomorphism by Theorem 2.4.20, Corollary 2.6.25, and

Lemma 2.6.26.

For n = 1, the isomorphism h : P totM (X, 1, n) → (M ss(X))n+1 appears to be closely

related to an isomorphism M ss(X, 2) → (CP1)2 defined in [Var16], and our definition of h

was motivated by this isomorphism.
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2.6.4 Embedding PM(X,m, n)→M s(X,m+ n)

We will now describe a canonical open embedding of the space PM(X,m, n) into the space

of stable parabolic bundles M s(X,m+ n). We first need two Lemmas:

Lemma 2.6.29. Let (E, `p1 , · · · , `pn) be a parabolic bundle over an elliptic curve X such that

E is semistable. If the lines `p1 , · · · , `pn are bad in the same direction then H(E, `p1 , · · · , `pn)

has instability degree n.

Proof. Up to tensoring with a line bundle, the bundle E has one of three forms:

(1) E = O ⊕ O. Since `p1 , · · · , `pn are bad in the same direction, we have that `p1 =

· · · = `pn under a global trivialization of E in which all the fibers are identified with C2. A

sequence of Hecke modifications with `p1 = · · · = `pn is given by

O ⊕O α1←−−
p1
O ⊕O(−p1)

α2←−−
p2
· · · αn←−−

pn
O ⊕O(−p1 − · · · − pn).

HereO⊕O α1←−−
p1
O⊕O(−p1) is a Hecke modification corresponding to `p1 , and for i = 2, · · · , n

we define

αi =

 1 0

0 fi

 ,

where fi is the unique (up to rescaling by a constant) morphism from O(−p1 − · · · − pi) to

O(−p1 − · · · − pi−1). Thus H(O ⊕O, `p1 , · · · , `pn) = O ⊕O(−p1 − · · · − pn) has instability

degree n.

(2) E = F2. Then `pi = Opi for i = 1, · · · , n. A sequence of Hecke modifications with

`pi = Opi for i = 1, · · · , n is given by

F2
α1←−−
p1
O ⊕O(−p1)

α2←−−
p2
· · · αn←−−

pn
O ⊕O(−p1 − · · · − pn),

where F2
α1←−−
p1
O ⊕O(−p1) is a Hecke modification corresponding to `p1 = Op1 and αi is as

above for i = 1, · · · , n. Thus H(F2,Op1 , · · · ,Opn) = O ⊕O(−p1 − · · · − pn) has instability

degree n.
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(3) E = L ⊕ L−1 for a degree 0 line bundle L such that L2 6= O. Then either `pi = Lpi

for i = 1, · · · , n or `pi = (L−1)pi for i = 1, · · · , n. A sequence of Hecke modifications with

`pi = Lpi for i = 1, · · · , n is given by

L⊕ L−1 α1←−−
p1

L⊕ (L−1 ⊗O(−p1))
α2←−−
p2
· · · αn←−−

pn
L⊕ (L−1 ⊗O(−p1 − · · · − pn)),

where

αi =

 1 0

0 1⊗ fi


and fi is as above. Thus H(L ⊕ L−1, Lp1 , · · · , Lpn) = L ⊕ (L−1 ⊗ O(−p1 − · · · − pn)) has

instability degree n. We can write down a similar sequence of Hecke modifications to show

that H(L⊕L−1, (L−1)p1 , · · · , (L−1)pn) = (L⊗O(−p1−· · ·−pn))⊕L−1 has instability degree

n.

Using Lemma 2.6.29 in place of Lemma 2.5.16, the proofs of Lemma 2.5.17 and Theorem

2.5.19 for rational curves carry over to the case of elliptic curves. We thus obtain:

Lemma 2.6.30. Let (E, `p1 , · · · , `pn) be a parabolic bundle over an elliptic curve X such

that E is semistable. If H(E, `p1 , · · · , `pn) is semistable (E, `p1 , · · · , `pn) is semistable.

Theorem 2.6.31. There is a canonical open embedding PM(X,m, n)→M s(X,m+ n).

2.6.5 Examples

Here we compute the space PM(X, 1, n) for n = 0, 1, 2. We first make some definitions:

Definition 2.6.32. The Abel-Jacobi isomorphism X → Jac(X) is given by p 7→ [O(p− e)]

for a choice of basepoint e ∈ X.

Definition 2.6.33. We define a map π : Jac(X)→M ss(X), [L] 7→ [L⊕ L−1].

Note that π is surjective and π(L) = π(L−1), so π : Jac(X) ∼= X → M ss(X) ∼= CP1 is a

2:1 branched cover with four branch points [Li⊕Li] corresponding to the four 2-torsion line

bundles Li.
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Definition 2.6.34. Given a degree 0 divisor D on an elliptic curve X, define the translation

map τD : Jac(X)→ Jac(X), [L] 7→ [L⊗O(D)].

2.6.5.1 Calculate PM(X, 1, 0)

We have that

PM(X, 1, 0) = P totM (X, 1, 0) = M s(X, 1) = M ss(X) = CP1.

Note that the embedding PM(X, 1, 0) → M s(X, 1) defined in Theorem 2.6.31 is an isomor-

phism.

2.6.5.2 Calculate PM(X, 1, 1)

Theorem 2.6.35. The map g : Jac(X) → (M ss(X))2, g = (π, π ◦ τp1−e1) is injective and

has image the complement of h(PM(X, 1, 1)), where h : P totM (X, 1, 1) → (M ss(X))2 is the

isomorphism described in Theorem 2.6.28.

Proof. First we show that g has image the complement of h(PM(X, 1)) in (M ss(X))2 Take

a point [E, `q1 , `p1 ] ∈ P totM (X, 1, 1). From Theorems 2.6.21, 2.6.22, and 2.6.24, it follows that

H(E, `p1) = G2(p1)⊗O(−p1) is stable if `p1 is a good line, and H(E, `p1) is unstable if `p1 is

a bad line. So the complement of PM(X, 1, 1) in P totM (X, 1, 1) consists of isomorphism classes

[E, `q1 , `p1 ] such that `p1 is a bad line, and is thus given by the union of the sets

S1 = {[L⊕ L−1, `q1 , Lp1 ] | [L] ∈ Jac(X), L2 6= O},

S2 = {[L⊕ L−1, `q1 , (L
−1)p1 ] | [L] ∈ Jac(X), L2 6= O},

S3 = {[F2 ⊗ Li, `q1 , (Li)p1 ] | i = 1, 2, 3, 4},

where in each case `q1 is a good line. From Lemma 2.6.27, it follows that the complement of

h(PM(X, 1, 1)) in (M ss(X))2 is given by the union of the sets

h(S1) = {(π([L]), (π ◦ τp1−e1)([L])) | [L] ∈ Jac(X), L2 6= O},

h(S2) = {(π([L]), (π ◦ τe1−p1)([L])) | [L] ∈ Jac(X), L2 6= O},

h(S3) = {(π([Li]), (π ◦ τp1−e1)([Li])) | i = 1, 2, 3, 4}.
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Note that

(π([L]), (π ◦ τe1−p1)([L])) = (π([L−1]), (π ◦ τp1−e1)([L−1])),

so h(S1) = h(S2), and we have that

h(S1) ∪ h(S2) ∪ h(S3) = {(π([L]), (π ◦ τp1−e1)([L])) | [L] ∈ Jac(X)} = im g.

So the image of g is the complement of h(PM(X, 1, 1)) in (M ss(X))2

Next we show that g is injective. If g(L) = g(L′), then projection onto the first factor of

(M ss(X))2 gives π(L) = π(L′), hence either L′ = L or L′ = L−1. Suppose L′ = L−1. Then

projection onto the second factor of (M ss(X))2 gives π(L⊗O(p1−e1)) = π(L−1⊗O(p1−e1)),

hence either L ⊗O(p1 − e1) = L−1 ⊗O(p1 − e1) or L ⊗O(p1 − e1) = L ⊗O(e1 − p1). The

first case implies L = L−1. The second case implies 2p1 = 2e1, but we chose e1 such that

p1 + q1 = 2e1, hence p1 = q1, contradiction. Thus L′ = L, so g is injective.

If we use the Abel-Jacobi isomorphism to identify X and Jac(X), the (canonical) iso-

morphism h : P totM (X, 1, 1) → (M ss(X))2 to identify P totM (X, 1, 1) and (M ss(X))2, and the

(noncanonical) isomorphism M ss(X) ∼= CP1 to identify M ss(X) and CP1, we find that

PM(X, 1, 1) = (CP1)2 − g(X).

Remark 2.6.36. Using results from the proof of Theorem 2.6.35, it is straightforward to

show that

M ss(X, 2) = P totM (X, 1, 1) = (CP1)2, M s(X, 2) = PM(X, 1, 1) = (CP1)2 − g(X).

These calculations reproduce the results of [Var16] for M ss(X, 2) and M s(X, 2).

2.6.5.3 Calculate PM(X, 1, 2)

The same method that we used to prove Theorem 2.6.35 can be used to calculate PM(X, 1, 2):

Theorem 2.6.37. The map f : Jac(X)→ (M ss(X))3, f = (π, π ◦τp1−e1 , π ◦τp2−e2) is injec-

tive and has image the complement of h(PM(X, 1, 2)), where h : P totM (X, 1, 2) → (M ss(X))3

is the isomorphism described in Theorem 2.6.28.
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If we use the Abel-Jacobi isomorphism to identify X and Jac(X), the (canonical) iso-

morphism h : P totM (X, 1, 2) → (M ss(X))3 to identify P totM (X, 1, 2) and (M ss(X))3, and the

(noncanonical) isomorphism M ss(X) ∼= CP1 to identify M ss(X) and CP1, we find that

PM(X, 1, 2) = (CP1)3 − f(X).

2.7 Possible applications to topology

Here we briefly outline some possible applications of our results to topology. We have pro-

posed complex manifolds PM(X, 1, 2r) and PM(X, 3, 2r) as candidates for a space Y(T 2, 2r)

that generalizes the Seidel-Smith space Y(S2, 2r) and that could potentially be used to con-

struct symplectic Khovanov homology for lens spaces. The following tasks remain to be done

to complete the construction:

1. We need to define a suitable symplectic form on PM(X,m, 2r). One possibility is to

pull back the canonical symplectic form on M s(X, 2r +m) using the open embedding

PM(X,m, 2r)→M s(X, 2r +m).

2. We need to find a suitable action of the mapping class group MCG2r(T
2) on

PM(X,m, 2r) that is defined up to Hamiltonian isotopy. Such an action might be

obtained via symplectic monodromy by viewing PM(X,m, 2r) as the fiber of a larger

space that fibers over the moduli space of genus 1 curves with marked points. Such an

approach would be analogous the way Seidel an Smith obtain an action of the braid

group on the Seidel-Smith space via monodromy around loops in the configuration

space [Sei03], and similar methods are used to define mapping class group actions for

constructing Reshetikhin-Turaev-Witten invariants [BK01].

3. We need to define suitable Lagrangians Lr in P(X,m, 2r) corresponding to r unknotted

arcs in a solid torus. For PM(X, 1, 2r) we would expect Lr to be homeomorphic to

S1×(S2)r, and for PM(X, 3, 2r) we would expect Lr to be homeomorphic to S3×(S2)r.

Perhaps such Lagrangians can be constructed in a manner analogous to Seidel-Smith

by viewing PM(X,m, 2r) as the fiber of a larger space that fibers over the configuration
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space Conf2r(X) of 2r unordered points on X and looking for vanishing cycles as points

successively brought together in pairs.

4. We need to prove that the Lagrangian Floer homology of a knot K in a lens space is

Y invariant under different Heegaard splittings of (Y,K) into solid tori.

5. We need to verify that our construction of symplectic Khovanov homology reproduces

ordinary Khovanov homology for the case of knots in S3.

Several of our results appear to be related to a possible connection between Khovanov

homology and symplectic instanton homology. Roughly speaking, symplectic instanton ho-

mology is defined as follows. Given a knot K in a 3-manifold Y , one Heegaard-splits (Y,K)

along a Heegaard surface Σ to obtain handlebodies U1 and U2. Each handlebody Ui contains a

portion of the knot Ai := Ui∩K consisting of r arcs that pairwise connect points p1, · · · , p2r

in Σ. To the marked surface (Σ, p1, · · · , p2r) one associates a character variety R(Σ, 2r),

which has the structure of a symplectic manifold, and to the handlebody pairs (Ui, Ai) one

associates Lagrangians Li ⊂ R(Σ, 2r). The symplectic instanton homology of (Y,K) is then

defined to be the Lagrangian Floer homology of the pair of Lagrangians (L1, L2).

In fact, there are several technical difficulties that must be overcome in order to get a

well-defined homology theory. For example, one needs to introduce a framing in order to

eliminate singularities in the character variety R(Σ, 2r). One way to introduce a framing is

by replacing the knot K with K ∪ Θ, where Θ is the theta graph shown in Figure 2.1(a);

this approach is described in [Hor16]. We Heegaard-split (Y,K ∪ Θ) along a Heegaard

surface Σ that is chosen to transversely intersect each edge ei of the theta graph in a single

point qi. The marked Heegaard surface is now (Σ, q1, q2, q3, p1, · · · , p2r), corresponding to

the character variety R(Σ, 2r + 3), and the handlebody pairs are now (Ui, Ai ∪ εi), where

εi is the epsilon graph shown in Figure 2.1(b). The character variety R(Σ, 2r + 3) has the

structure of a symplectic manifold that is symplectomorphic to the moduli space of stable

parabolic bundles M s(C, 2r + 3), where C is any complex curve homeomorphic to Σ. (The

space M s(C, 2r + 3) has a canonical symplectic form.)
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Figure 2.1: (a) The graph Θ. (b) The graph ε in B3. (c) The graph Dp ⊂ S3 for p = 1. (d)

The graph σ in S1 ×D2.

Symplectic instanton homology can be viewed as a symplectic replacement for singular

instanton homology, a knot homology theory defined using gauge theory, and the two the-

ories are conjectured to be isomorphic. This is an example of an Atiyah-Floer conjecture,

which broadly relates Floer-theoretic invariants defined using gauge theory to correspond-

ing invariants defined using symplectic topology. Kronheimer and Mrowka constructed a

spectral sequence from Khovanov homology to singular instanton homology [KM14], and

the embedding PM(CP1, 2r) → M s(CP1, 2r + 3) described in Theorem 2.5.4 suggests that

it may be possible to construct an analogous spectral sequence from symplectic Khovanov

homology to symplectic instanton homology. (This idea for constructing a spectral sequence

was suggested to the author by Ivan Smith and Chris Woodward.) If so, perhaps the fact

that we have an embedding PM(X, 3, 2r)→M s(X, 2r+3), as described in Theorem 2.6.4, is

evidence that the correct generalization of the Seidel-Smith space is PM(X, 3, 2r). Indeed, a

calculation of the Lagrangian intersection L1 ∩L2 in the traceless character variety R(T 2, 3)

for (S3,Θ) yields a single point, a space whose cohomology is the correct Khovanov homol-

ogy for the empty knot, and calculations of the Lagrangian intersections in the traceless

character variety R(T 2, 5) for (S3, unknot∪Θ) and (S3, trefoil∪Θ) yield S2 and RP3 q S2,

spaces whose cohomology gives the correct Khovanov homology for the unknot and trefoil.

Based on these speculations, we make the following conjectures:

Conjecture 2.7.1. The space PM(C, 3, 2r) is the correct generalization of the Seidel-Smith

space Y(S2, 2r) to a curve C of arbitrary genus.
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Conjecture 2.7.2. Given a curve C of arbitrary genus, there is a canonical open embedding

PM(C,m, n)→M s(C,m+ n).

On the other hand, perhaps the embedding PM(X, 1, 2r) → M s(X, 2r + 1) described

in Theorem 2.6.4 is related to a spectral sequence from a Khovanov-like knot homology

theory to symplectic instanton homology defined with a novel framing. Rather than using

a theta graph, perhaps for the lens space L(p, q) one could introduce a framing specific to

that lens space by using a p-linked dumbbell graph Dp, as shown in Figure 2.1(c) for the

case p = 1. There is a unique edge e1 of the dumbbell graph that connects the two vertices,

and one can choose a Heegaard surface Σ that transversely intersects e1 in a single point

q1. The marked Heegaard surface is now (Σ, q1, p1, · · · , p2r), corresponding to the character

variety R(Σ, 2r+ 1), and the handlebody pairs (Ui, Ai) are now (Ui, Ai ∪ σi), where σi is the

sigma graph shown in Figure 2.1(d). The character variety R(Σ, 2r+1) has the structure of a

symplectic manifold that is symplectomorphic to the moduli space of stable parabolic bundles

M s(X, 2r + 1), which is the codomain of the embedding PM(X, 1, 2r)→M s(X, 2r + 1).
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CHAPTER 3

Singular instanton homology for knots in lens spaces

3.1 Introduction

We describe here a scheme for constructing generating sets for Kronheimer and Mrowka’s

singular instanton knot homology for the case of knots in lens spaces. In outline, our approach

is as follows. We Heegaard-split a lens space Y containing a knot K into two solid tori U1

and U2. The solid torus U1 contains a portion of the knot consisting of an unknotted arc,

together with a specific holonomy perturbation. The solid torus U2 contains the remainder

of the knot. From the Heegaard splitting of Y we obtain a pair of Lagrangians L1 and L2

in the traceless SU(2)-character variety of the twice-punctured torus R(T 2, 2), and in many

cases the points of intersection of L1 and L2 constitute a generating set for the (reduced)

singular instanton homology I\(Y,K).

To explain the details of our scheme, we must first define several character varieties and

explain their relationship to the Chern-Simons functional. Critical points of the unperturbed

Chern-Simons functional are flat connections. Gauge-equivalence classes of flat connections

correspond to conjugacy classes of homomorphisms ρ : π1(Y −K ∪H ∪W )→ SU(2), where

H is a small loop around K and W is an arc connecting K to H, as shown in Figure 3.1,

and the homomorphisms are required to take loops around K and H to traceless matrices

and loops around W to −1. The space of such conjugacy classes form a character variety

that we will denote by R\(Y,K). We will refer to H ∪ W as an earring that has been

added to the knot K. The conditions on ρ involving the earring are imposed in order to

avoid reducible connections; such connections prevent us from obtaining a chain complex for

singular instanton homology, with a differential that squares to zero. It will also be useful to
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Figure 3.1: The knot K, loop H, and arc W .

define a character variety R(Y,K) in which we do not impose these conditions, and which

consists of conjugacy classes of homomorphisms ρ : π1(Y − K) → SU(2) that take loops

around K to traceless matrices.

The character variety R\(Y,K) is typically degenerate, in which case the unperturbed

Chern-Simons functional is not Morse. We can render the Chern-Simons functional Morse

by introducing a suitable holonomy perturbation term that vanishes outside of a small solid

torus obtained by thickening a loop P ⊂ Y . The net effect of the perturbation is to modify the

corresponding character variety: the critical points of the perturbed Chern-Simons functional

correspond to conjugacy classes of homomorphisms ρ : π1(Y −K ∪H ∪W ∪ P ) → SU(2),

where ρ obeys the same conditions as for R\(Y,K) as well as an additional condition involving

the loop P that we will describe in Section 3.3.3. We will denote the character variety

corresponding to the perturbed Chern-Simons functional by R\
π(Y,K).

Example 3.1.1. For the trefoil K in S3, one can show that

R(S3, K) = {2 points}, R\(S3, K) = {1 point} q S1, R\
π(S3, K) = {3 points},

where the perturbation used to define R\
π(S3, K) is as described in Section 3.6.1.

Our goal, then, is to devise an effective means of calculating R\
π(Y,K). We will view

(Y,K) as the result of gluing together two solid tori U1 = S1 × D2 and U2 = S1 × D2.

The solid torus U1 contains an unknotted arc A1, the earring H ∪ W , and the holonomy

perturbation loop P , as shown in Figure 3.6. The solid torus U2 contains a (possibly knotted)
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arc A2. We glue the two tori together via a homeomorphism φ : (∂U1, ∂A1)→ (∂U2, ∂A2) to

obtain (Y,K).

We define character varieties R\
π(U1, A1) and R(U2, A2) in analogy with R\

π(Y,K) and

R(Y,K). The character variety R\
π(U1, A1) consists of conjugacy classes of homomorphisms

ρ : π1(U1 − A1 ∪ H ∪ W ∪ P ) → SU(2) that take loops around A1 and H to traceless

matrices and loops around W to −1, and satisfy an additional requirement involving P as

described in Section 3.3.3. The character variety R(U2, A2) consists of conjugacy classes of

homomorphisms ρ : π1(U2 − A2) → SU(2) that take loops around A2 to traceless matrices.

We define a torus T 2 := ∂U1 containing points {p1, p2} = ∂A1, and we define a corresponding

character variety R(T 2, 2) that consists of conjugacy classes of homomorphisms ρ : π1(T 2 −

{p1, p2})→ SU(2) that take loops around p1 and p2 to traceless matrices.

We define a map R\
π(U1, A1)→ R(T 2, 2) by pulling back along the inclusion (∂U1, ∂A1) ↪→

(U1, A1). We define a map R(U2, A2) → R(T 2, 2) by pulling back along the composition of

φ : (∂U1, ∂A1) → (∂U2, ∂A2) with the inclusion (∂U2, ∂A2) ↪→ (U2, A2). We similarly define

maps R\
π(Y,K) → R\

π(U1, A1) and R\
π(Y,K) → R(U2, A2) by pulling back along inclusions.

We have a commutative diagram:

R\
π(Y,K)

R\
π(U1, A1)×R(T 2,2) R(U2, A2) R(U2, A2)

R\
π(U1, A1) R(T 2, 2).

p

(3.1)

Here p is an induced map from R\
π(Y,K) to the fiber product R\

π(U1, A1)×R(T 2,2) R(U2, A2).

The character variety R(T 2, 2) is a symplectic manifold that generalizes the pillowcase, and

the images of the maps R\
π(U1, A1)→ R(T 2, 2) and R(U2, A2)→ R(T 2, 2) define Lagrangians

L1 and L2 in R(T 2, 2). We want to use diagram (3.1) to describe R\
π(Y,K) in terms of the

intersection points of these Lagrangians. Our first task is to obtain an explicit description

of the character variety R(T 2, 2). We prove:
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Theorem 3.1.2. The character variety R(T 2, 2) is the union of two pieces P4 and P3, where

P4 is homeomorphic to S2×S2−∆̄ and ∆̄ = {(r̂,−r̂)} is the antidiagonal, and P3 deformation

retracts onto the pillowcase. (The spaces P4 and P3 are described in Theorems 3.3.10 and

3.3.13.)

Our next task is to explicitly describe the Lagrangian L1. We prove:

Theorem 3.1.3. The character variety R\
π(U1, A1) is homeomorphic to S2. The map

R\
π(U1, A1) → R(T 2, 2) is an injective immersion away from the points of R\

π(U1, A1) cor-

responding to the north and south pole of S2, which are mapped to the same point. All

representations in the image L1 of the map are nonabelian. (An explicit parameterization of

L1 is given in Theorem 3.3.25.)

Corollary 3.1.4. The map p : R\
π(Y,K) → R\

π(U1, A1)×R(T 2,2) R(U2, A2) in diagram (3.1)

is injective.

Proof. Consider a point ([ρ1], [ρ2]) in R\
π(U1, A1) ×R(T 2,2) R(U2, A2), so ρ1 and ρ2 pull

back to the same homomorphism ρ12 : π1(T 2 − {p1, p2}) → SU(2). One can show (see

[HHK14] Lemma 4.2) that the fiber p−1([ρ1], [ρ2]) is homeomorphic to the double coset space

Stab(ρ1)\ Stab(ρ12)/ Stab(ρ2), where

Stab(ρ) = {g ∈ SU(2) | gρ(x)g−1 = ρ(x) for all x in the domain of ρ}.

The center of SU(2) is Z(SU(2)) = {±1}. By Theorem 3.1.3 we have that Stab(ρ12) =

Z(SU(2)), and Z(SU(2)) ⊆ Stab(ρi) ⊆ Stab(ρ12), so Stab(ρi) = Stab(ρ12) = Z(SU(2)) and

thus the fibers of p are points.

By introducing a suitable holonomy perturbation, we obtain a finite character variety

R\
π(Y,K), each point of which corresponds to a gauge-orbit of connections that are critical

points of the perturbed Chern-Simons functional. In order for R\
π(Y,K) to serve as a gen-

erating set for singular instanton homology, each point in R\
π(Y,K) must be nondegenerate;

that is, at each connection representing a point in R\
π(Y,K) we want the Hessian of the

perturbed Chern-Simons functional to be nondegenerate when restricted to a complement
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of the tangent space to the gauge-orbit of that connection. We show that there is a simple

criterion for determining when a point R\
π(Y,K) is nondegenerate. Recall that we defined

the Lagrangian L2 to be the image of R(U2, A2) → R(T 2, 2). If R(U2, A2) → R(T 2, 2) is

injective and [ρ] ∈ L1 ∩ L2 ⊂ R(T 2, 2) is not the double-point of L1, then by Corollary

3.1.4 the point [ρ] is the image of a unique point [ρ̃] ∈ R\
π(Y,K) under the pullback map

R\
π(Y,K)→ R(T 2, 2). We prove:

Theorem 3.1.5. Suppose R(U2, A2)→ R(T 2, 2) is an injective immersion and [ρ] ∈ L1∩L2

is the image of a regular point of R(U2, A2) and is not the double-point of L1. Then the

unique preimage [ρ̃] of [ρ] under the pullback map R\
π(Y,K)→ R(T 2, 2) is nondegenerate if

and only if the intersection of L1 with L2 at [ρ] is transverse.

Collecting these results, we find if the hypotheses of Theorem 3.1.5 are satisfied for every

point in L1 ∩ L2, then every point in R\
π(Y,K) is nondegenerate and the pullback map

R\
π(Y,K)→ R(T 2, 2) is injective with image L1 ∩ L2. Thus we obtain:

Corollary 3.1.6. If the hypotheses of Theorem 3.1.5 are satisfied for every point in L1∩L2,

then R\
π(Y,K) is a generating set for I\(Y,K) consisting of |L1 ∩ L2| generators.

Our scheme is particularly well-suited for the case of (1, 1)-knots. By definition, a (1, 1)-

knot is a knot K in a lens space Y that has a Heegaard splitting into a pair of solid tori

U1, U2 ⊂ Y such that the components U1 ∩K and U2 ∩K of the knot in each solid torus are

unknotted arcs. It is known that (1, 1)-knots include all torus knots and 2-bridge knots.

We can construct (1, 1)-knots by taking (U2, A2) to be a copy of (U1, A1) without the

earring H ∪W or the perturbation loop P , and we can explicitly describe the corresponding

Lagrangian L2 as follows. We first define a character variety R(U1, A1) that consists of

conjugacy classes of homomorphisms π1(U1 − A1) → SU(2) that take loops around A1

to traceless matrices. We define a map R(U1, A1) → R(T 2, 2) by pulling back along the

inclusion (∂U1, ∂A1) ↪→ (U1, A1). The image of this map defines a Lagrangian Ld in R(T 2, 2).

We can view R(U1, A1) and Ld as “unperturbed” versions of R\
π(U1, A1) and L1. Since

(T 2, {p1, p2}) := (∂U1, ∂A1) and there is a natural identification (∂U2, ∂A2)
∼−→ (T 2, {p1, p2}),
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the gluing map φ : (∂U1, ∂A1) → (∂U2, ∂A2) defines an element [φ] of the mapping class

group MCG2(T 2) of the twice-punctured torus. The group MCG2(T 2) acts on R(T 2, 2) from

the right in a way that we explicitly describe in Section 3.5, and the Lagrangian L2, which

we defined to be the image of the map R(U2, A2)→ R(T 2, 2), is given by L2 = Ld · [φ]. We

prove results that explicitly describe the character variety R(U1, A1) and the Lagrangian Ld:

Theorem 3.1.7. The character variety R(U1, A1) is homeomorphic to the closed disk D2.

The map R(U1, A1)→ R(T 2, 2) is injective and is an immersion on the interior of R(U1, A1).

(An explicit parameterization of the image Ld of the map is given in Theorem 3.3.20.)

Theorem 3.1.8. The character variety R(U1, A1) is regular on its interior.

From Theorems 3.1.7 and 3.1.8, we obtain a Corollary to Theorem 3.1.5 for the special

case of (1, 1)-knots:

Corollary 3.1.9. For a (1, 1)-knot K, if L1 intersects L2 = Ld · [φ] transversely away from

the double-point of L1, then R\
π(Y,K) is a generating set for I\(Y,K) consisting of |L1 ∩L2|

generators.

Since we have explicit descriptions of the character variety R(T 2, 2), the Lagrangians

L1 and Ld, and the action of the mapping class group MCG2(T 2) on R(T 2, 2), Corollary

3.1.9 provides us with a practical scheme for calculating generating sets for I\(Y,K) for any

(1, 1)-knot K in any lens space Y .

3.2 The group SU(2)

Here we briefly review some basic facts about the group SU(2). We define SU(2)-matrices

i, j, and k by

i = −iσx, j = −iσy, k = −iσz,

where σx, σy, and σz are the Pauli spin matrices:

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 .
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The matrices i, j, and k satisfy the quaternion multiplication laws i2 = j2 = k2 = ijk = −1.

Any SU(2)-matrix A can be uniquely expressed as

A = t+ x i + y j + z k,

where (t, x, y, z) ∈ S3 = {(t, x, y, z) ∈ R4 | t2 + x2 + y2 + z2 = 1}, and thus we may identify

SU(2) with the space of unit quaternions. We will refer to t and x i + y j + z k as the

scalar and vector parts of the matrix A, respectively. Note that tr(A) = 2t, so traceless

SU(2)-matrices are precisely those for which the scalar part is zero. It follows that traceless

SU(2)-matrices are parameterized by unit vectors in R3, and we will frequently pass back

and forth between traceless matrices a = ax i + ay j + az k ∈ SU(2) and their corresponding

unit vectors â = (ax, ay, az) ∈ S2.

We can define a surjective group homomorphism SU(2) → SO(3) by g 7→ (v̂ 7→ v̂′),

where the unit vectors v̂ = (vx, vy, vz) and v̂′ = (v′x, v
′
y, v
′
z) are related by

g(vx i + vy j + vz k)g−1 = v′x i + v′y j + v′z k.

In general, conjugating an arbitrary SU(2)-matrix preserves the scalar part of the matrix

and rotates the vector part of the matrix:

g(t+ rx i + ry j + rz k)g−1 = t+ r′x i + r′y j + r′z k,

where (r′x, r
′
y, r
′
z) is given by multiplying (rx, ry, rz) by the SO(3)-matrix corresponding to

g ∈ SU(2). We will thus sometimes describe conjugation in terms of the corresponding

rotation performed on the vector part of an SU(2)-matrix.

3.3 Character varieties

3.3.1 The character variety R(T 2, 2)

Our first task is to understand the structure of R(T 2, 2), the traceless SU(2)-character variety

of the twice-punctured torus. In general, we make the following definition:
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Definition 3.3.1. Given a surface S with n distinct marked points p1, · · · , pn ∈ S, we

define the character variety R(S, n) to be the space of conjugacy classes of homomorphisms

ρ : π1(S − {p1, · · · , pn}) → SU(2) that take loops around the marked points to traceless

SU(2)-matrices.

Before examining the space R(T 2, 2), we first consider the simpler space R(T 2) :=

R(T 2, 0), which is known as the pillowcase. We have the following well-known result:

Theorem 3.3.2. The pillowcase R(T 2) is homeomorphic to S2.

Proof. The fundamental group of T 2 is π1(T 2) = 〈A,B | ABA−1B−1 = 1〉, where A and

B are represented by the two fundamental cycles. A homomorphism ρ : π1(T 2) → SU(2)

is uniquely determined by the pair of matrices (ρ(A), ρ(B)), which for simplicity we will

also denote by (A,B). Since A and B commute, any conjugacy class [ρ] ∈ R(T 2) has a

representative (A,B) of the form

A = cosα + sinαk, B = cos β + sin β k

for some angles α and β. These equations are invariant under the replacements α→ α+ 2π

and β → β + 2π, and we can simultaneously flip the signs of α and β by conjugating by i,

so we obtain the following identifications:

(α, β) ∼ (α + 2π, β), (α, β) ∼ (α, β + 2π), (α, β) ∼ (−α,−β).

We can thus restrict to a fundamental domain in which (α, β) ∈ [0, 2π] × [0, π], with edges

identified as shown in Figure 3.2. From Figure 3.2 it is clear that this space is homeomorphic

to S2.

Definition 3.3.3. We will refer to the four points [A,B] = [±1,±1] ∈ R(T 2) as pillowcase

points.

Remark 3.3.4. One can show that the character variety R(S2, 4) that is used in the work of

Hedden, Herald, and Kirk is also described by a rectangle with edges identified as shown in

Figure 3.2 (see, for example, [HHK14] Section 3.1), so both R(T 2) and R(S2, 4) are referred

to as the pillowcase.
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Figure 3.2: The pillowcase R(T 2). The black dots indicate the four pillowcase points.

We now consider the space R(T 2, 2). The fundamental group of the twice-punctured

torus is

π1(T 2 − {p1, p2}) = 〈A,B, a, b | ABA−1B−1ab = 1〉,

where p1 and p2 denote the puncture points, A and B denote the fundamental cycles of the

torus, and a and b denote loops around the punctures p1 and p2, as shown in Figure 3.3.

As above, we will use the same notation for generators of the fundamental group and their

images under ρ; for example, we denote ρ(A) by A. A homomorphism ρ : π1(T 2−{p1, p2})→

SU(2) is thus specified by SU(2)-matrices (A,B, a, b) such that a and b are traceless and

ABA−1B−1ab = 1, and we will sometimes denote a homomorphism ρ by the corresponding

list of matrices (A,B, a, b).

The structure of R(T 2, 2) can be understood by considering the fibers of the following

map:

Definition 3.3.5. We define a map µ : R(T 2, 2)→ [−1, 1] by

µ([A,B, a, b]) = (1/2) tr(ABA−1B−1) = (1/2) tr((ab)−1).

In particular, it is convenient to decompose R(T 2, 2) into the disjoint union of an open

piece P4 = µ−1([−1, 1)) and a closed piece P3 = µ−1(1). The notation for these pieces is
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Figure 3.3: Cycles corresponding to the generators A, B, a, b of the fundamental group

π1(T 2 − {p1, p2}).

motivated by the fact that, as we will see, the piece P4 is four-dimensional and the piece

P3 is three-dimensional. We will describe the topology of the pieces P3 and P4 and define

coordinate systems on each piece that are useful for performing calculations.

3.3.1.1 The piece P4 ⊂ R(T 2, 2)

We define the piece P4 ⊂ R(T 2, 2) to be the set of conjugacy classes [ρ] ∈ R(T 2, 2) such that

µ([ρ]) ∈ [−1, 1). For any representative (A,B, a, b) of a given conjugacy class [ρ] ∈ P4, the

matrices A and B do not commute. This fact can be used to choose a canonical representative

of each conjugacy class in P4:

Lemma 3.3.6. Any conjugacy class [ρ] ∈ P4 has a unique representative (A,B, a, b) for

which

A = r cosα +
√

1− r2 i + r sinαk, B = cos β + sin β k, (3.2)

where α ∈ [0, 2π], β ∈ (0, π), and r ∈ [0, 1).

Proof. Since [ρ] ∈ P4, for any representative of [ρ] the matrices A and B do not commute.

Given an arbitrary representative, first conjugate so that the coefficients of i and j in B are

zero and the coefficient of k is positive, and then rotate about the z-axis so the coefficient of

j in A is zero and the coefficient of i in A is positive. The restrictions on the ranges of β and
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r follow from the fact that the matrices A and B do not commute. The uniqueness of the

representative follows from the fact that the coefficients of i in A and k in B are nonzero.

We can use the canonical representatives of conjugacy classes in P4 to define the following

maps:

Definition 3.3.7. Define maps q1 : P4 → SU(2)× SU(2) and q2 : P4 → S2 × S2 by

q1([ρ]) = (A,B), q2([ρ]) = (â, b̂),

where (A,B, a, b) is the canonical representative of [ρ], and â = (ax, ay, az) and b̂ = (bx, by, bz)

are the unit vectors corresponding to the traceless matrices a and b:

a = ax i + ay j + az k, b = bx i + by j + bz k.

Note that we cannot extend the maps q1 and q2 to all of R(T 2, 2), since our choice of canonical

representative relies on the fact that the matrices A and B do not commute.

To describe the structure of the piece P4, we will show that the map q2 : P4 → S2 × S2

is injective and identify its image. This requires two Lemmas that describe the image of

q1 : P4 → SU(2)× SU(2) on the fibers of µ : P4 → [−1, 1):

Lemma 3.3.8. The space q1(µ−1(−1)) consists of the single point (i, k).

Proof. Consider a point [ρ] ∈ µ−1(−1). From equation (3.2) for the canonical representative

(A,B, a, b) of [ρ], we find that

µ([ρ]) = −1 = (1/2) tr(ABA−1B−1) = cos 2β + r2(1− cos 2β).

Thus r = 0 and β = π/2. Substituting these values into equation (3.2), we obtain the desired

result.

Lemma 3.3.9. For t ∈ (−1, 1) we can define a map q1(µ−1(t)) → S2, (A,B) 7→ v̂, where

the unit vector v̂ = (vx, vy, vz) is the direction of the vector part of ABA−1B−1:

ABA−1B−1 = t+
√

1− t2 (vx i + vy j + vz k).

This map is a homeomorphism.
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Proof. Consider a point [ρ] ∈ µ−1(t) for t ∈ (−1, 1). From equation (3.2) for the canonical

representative (A,B, a, b) of [ρ], we find that

µ([ρ]) = t = (1/2) tr(ABA−1B−1) = cos 2β + r2(1− cos 2β). (3.3)

We solve equation (3.3) for r to obtain

r =

(
t− cos 2β

1− cos 2β

)1/2

. (3.4)

From equation (3.4), we see that for a fixed value of t ∈ (−1, 1) the parameter β must lie in

the range [β0, π − β0], where we have defined

β0 := (1/2) cos−1 t ∈ (0, π/2). (3.5)

Using equations (3.2), (3.4), and (3.5), we find that the matrices A and B can be expressed

as

A =

(
cos 2β0 − cos 2β

1− cos 2β

)1/2

(cosα + sinαk) +

(
1− cos 2β0

1− cos 2β

)1/2

i, B = cos β + sin β k,

(3.6)

where (α, β) ∈ [0, 2π]× [β0, π − β0]. Define a space

X = {(α, β) ∈ [0, 2π]× [β0, π − β0]}/∼,

where the equivalence relation ∼ is defined such that the bottom edge of the rectangle

[0, 2π]× [β0, π− β0] is collapsed to a point, the top edge is collapsed to a point, and the left

and right edges are identified:

(α, β0) ∼ (0, β0), (α, π − β0) ∼ (0, π − β0), (0, β) ∼ (2π, β).

Define a map X → q1(µ−1(t)), [α, β] 7→ (A,B), where A and B are given by equation (3.6).

From equation (3.6), it is clear that this map is well-defined and is a homeomorphism.

Using equations (3.2) and (3.4), a calculation shows that

ABA−1B−1 = t+
√

1− t2 (vx i + vy j + vz k),
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where the unit vector v̂ = (vx, vy, vz) ∈ S2 is given by

v̂ = (
√

1− z(β)2 sin(α + β),
√

1− z(β)2 cos(α + β), z(β)) (3.7)

and we have defined a diffeomorphism z : [β0, π − β0]→ [−1, 1] by

z(β) = −
√

1− t
1 + t

cot β.

Define a map X → S2, [α, β] 7→ v̂, where v̂ is given by equation (3.7). From equation (3.7),

it is clear that this map is well-defined and is a homeomorphism. Composing the inverse of

the map X → q1(µ−1(t)) with the map X → S2, we obtain the desired result.

We can now describe the topology of the piece P4:

Theorem 3.3.10. The space P4 is homeomorphic to S2 × S2 − ∆̄, where ∆̄ = {(r̂,−r̂)} is

the antidiagonal. All representations in P4 are nonabelian.

Proof. Consider the map q2 : P4 → S2 × S2. Clearly the image of q2 lies in S2 × S2 − ∆̄,

since if q2([ρ]) ∈ ∆̄ then b = a−1, which implies that µ([ρ]) = (1/2) tr((ab)−1) = 1 and

hence [ρ] /∈ P4. We can define an inverse map S2 × S2 − ∆̄ → P4 as follows. Given a point

(â, b̂) ∈ S2 × S2 − ∆̄, define traceless matrices a = ax i + ay j + az k and b = bx i + by j + bz k

corresponding to â = (ax, ay, az) and b̂ = (bx, by, bz). Then

ab = t− vx i− vy j− vz k,

where t := −â · b̂ and ~v = (vx, vy, vz) := −â × b̂. If t = −1 then map (â, b̂) to [i,k, a, b],

otherwise map (â, b̂) to [A,B, a, b], where A and B are determined from t and v̂ := ~v/|~v| ∈ S2

via the homeomorphism q1(µ−1(t)) → S2 defined in Lemma 3.3.9. By Lemmas 3.3.8 and

3.3.9, this inverse map is well-defined. The fact that all representations in P4 are nonabelian

is clear from the definition of the space P4.

Our main application of Theorem 3.3.10 will be to use (â, b̂) as coordinates on the piece

P4.
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Figure 3.4: The space Y , which is homeomorphic to the piece P3, is the region between the

pair of surfaces. The vertical faces are identified as described in Definition 3.3.12.

3.3.1.2 The piece P3 ⊂ R(T 2, 2)

We define the piece P3 ⊂ R(T 2, 2) to be the set of conjugacy classes [ρ] ∈ R(T 2, 2) such

that µ([ρ]) = 1. For any representative (A,B, a, b) of a given conjugacy class [ρ] ∈ P3, the

matrices A and B commute. We can therefore make the following definition:

Definition 3.3.11. We define a map q : P3 → R(T 2), [A,B, a, b] 7→ [A,B].

We will describe the topology of the piece P3 by considering the fibers of the map q. In

particular, we will show that P3 is homeomorphic to the following space:

Definition 3.3.12. We define a space Y by

Y = {(α, β, z) | α ∈ [0, 2π], β ∈ [0, π], |z| ≤ sin2 α + sin2 β}/∼,

where the equivalence relation ∼ is defined such that

(α, 0, z) ∼ (2π − α, 0,−z), (α, π, z) ∼ (2π − α, π,−z), (0, β, z) ∼ (2π, β, z).

The space Y is depicted in Figure 3.4.

Theorem 3.3.13. The space P3 is homeomorphic to Y . Representations on the boundary

of P3 are abelian, and representations on the interior of P3 are nonabelian.
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Proof. We first determine the fibers of the map q : P3 → R(T 2). Given a conjugacy class

[ρ] ∈ P3, we can always choose a representative of the form

A = cosα + sinαk, B = cos β + sin β k, a = cos γ i + sin γ k, b = a−1, (3.8)

where (α, β) ∈ [0, 2π]× [0, π] and γ ∈ [−π/2, π/2]. For (A,B) = (±1,±1), we can conjugate

so as to force γ = 0. From these considerations it follows that the fibers of q are points

(γ = 0) over the four pillowcase points [A,B] = [±1,±1], and intervals (γ ∈ [−π/2, π/2])

over all other points. We can thus define a homeomorphism P3 → Y by

(α, β, γ) 7→ (α, β, (2γ/π)(sin2 α + sin2 β)),

where (α, β) ∈ [0, 2π] × [0, π], and γ ∈ [−π/2, π/2] are chosen such that equations (3.8)

are satisfied. The statement regarding abelian and nonabelian representations is clear from

equation (3.8).

Our main application of Theorem 3.3.13 will be to use (α, β, γ) as coordinates on P3,

subject to the identifications

(α, β, γ) ∼ (α + 2π, β, γ), (α, β, γ) ∼ (α, β + 2π, γ), (α, β, γ) ∼ (−α,−β,−γ),

and if (α, β) ∈ {(0, 0), (0, π), (π, 0), (π, π)}, corresponding to the four pillowcase points of

R(T 2), then (α, β, γ) ∼ (α, β, 0). Note that P3 deformation retracts onto P3∩{γ = 0}, which

may be identified with the pillowcase R(T 2).

Remark 3.3.14. Theorems 3.3.10 and 3.3.13 imply Theorem 3.1.2 from the introduction.

Remark 3.3.15. The character variety R(T 2, 2) is smooth away from the reducible locus

∂P3. We note that ∂P3 is homeomorphic to T 2; a specific homeomorphism T 2 → ∂P3 is

given by (α, β) 7→ [A,B, a, b], where

A = cosα + sinαk, B = cos β + sin β k, a = b−1 = k.

Remark 3.3.16. The character variety R(T 2, 2) is homeomorphic to the moduli space of

semistable parabolic bundles M ss(T 2, 2), which is known to have the structure of an algebraic
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variety isomorphic to CP1 × CP1 (see [Boo18, Var16]). It follows that R(T 2, 2) is homeo-

morphic to S2 × S2, although this does not seem to be easy to show from our description of

this space. We use the character variety R(T 2, 2), rather than the moduli space M ss(T 2, 2),

since it is only for R(T 2, 2) that we can explicitly describe the Lagrangians L1 and Ld, and

the action of the mapping class group MCG2(T 2).

3.3.2 The character variety R(U1, A1) and Lagrangian Ld ⊂ R(T 2, 2)

Our next task is to determine the Lagrangian Ld in R(T 2, 2) that corresponds to a solid

torus U1 = S1×D2 containing an unknotted arc A1 connecting distinct points p1, p2 ∈ ∂U1.

We first define and describe a character variety R(U1, A1) for (U1, A1). The Lagrangian Ld

is then given by the image of a pullback map R(U1, A1)→ R(T 2, 2).

Definition 3.3.17. We define the character variety R(U1, A1) to be the space of conjugacy

classes of homomorphisms ρ : π1(U1 − A1) → SU(2) that map loops around the arc A1 to

traceless matrices.

Theorem 3.3.18. The space R(U1, A1) is homeomorphic to the closed unit disk D2. Repre-

sentations on the boundary of R(U1, A1) are abelian, and and representations on the interior

of R(U1, A1) are nonabelian.

Proof. The fundamental group of U1 − A1 is given by

π1(U1 − A1) = 〈A,B, a, b | B = 1, b = a−1〉,

where A and B are the longitude and meridian of the boundary of the solid torus and a and

b are loops in the boundary encircling the points p1 and p2, respectively.

We now consider homomorphisms ρ : π1(U1−A1)→ SU(2) that satisfy the requirements

described in Definition 3.3.17 for R(U1, A1). As usual, we use the same notation for genera-

tors of the fundamental group and their images under ρ; for example, we denote ρ(A) by A.

Given an arbitrary representative of a conjugacy class [ρ] ∈ R(U1, A1), we will argue that we

can always conjugate so as to obtain a representative of the form

A = cosχ+ sinχk, B = 1, a = b−1 = cosψ i + sinψ k, (3.9)
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where (χ, ψ) ∈ [0, π] × [−π/2, π/2]. We first conjugate so the coefficients of i and j in A

are zero and the coefficient of k is nonnegative, and then rotate about the z-axis so the

coefficient of j in a is zero and the coefficient of i is nonnegative. We have thus obtained a

representative of the form given in equation (3.9). If χ ∈ (0, π), then it is clear from these

equations that the representative is unique. If χ ∈ {0, π} then A = ±1 and we can conjugate

so that a = b−1 = i, so we obtain the identifications (0, ψ) ∼ (0, 0) and (π, ψ) ∼ (π, 0). It

follows that R(U1, A1) is homeomorphic to the square [0, π]× [−π/2, π/2] with the left and

right edges each collapsed to a point, and this space is homeomorphic to the closed disk

D2. The statement regarding abelian and nonabelian representations is clear from equation

(3.9).

Given a representation of π1(U1−A1), we can pull back along the inclusion T 2−{p1, p2} ↪→

U1 − A1 to obtain a representation of π1(T 2 − {p1, p2}). This induces a map R(U1, A1) →

R(T 2, 2).

Definition 3.3.19. We will refer to the image of R(U1, A1) → R(T 2, 2) as the disk La-

grangian Ld, and we will denote the image in R(T 2, 2) of the point in R(U1, A1) with coor-

dinates (χ, ψ) by Ld(χ, ψ).

The following Theorem gives an explicit description of the disk Lagrangian Ld in terms

of the coordinates (χ, ψ) ∈ [0, π]× [−π/2, π/2]:

Theorem 3.3.20. The map R(U1, A1) → R(T 2, 2) is injective and is an immersion on the

interior of R(U1, A1). The image Ld(χ, ψ) = [A,B, a, b] ∈ R(T 2, 2) of the point in R(U1, A1)

with coordinates (χ, ψ) is given by

A = cosχ+ sinχk, B = 1, a = b−1 = cosψ i + sinψ k.

The image Ld of the map lies entirely in the piece P3, and the (α, β, γ) coordinates of Ld(χ, ψ)

are

α(Ld(χ, ψ)) = χ, β(Ld(χ, ψ)) = 0, γ(Ld(χ, ψ)) = ψ.

Representations on the boundary of Ld are abelian, and representations on the interior of Ld

are nonabelian.
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Figure 3.5: (Left) The Lagrangian Ld in the piece P3. (Right) The intersection of the

Lagrangian Ld with the pillowcase P3 ∩ {γ = 0}.

Proof. The representative (A,B, a, b) of Ld(χ, ψ) follows directly from equation (3.9), and

the statement regarding abelian and nonabelian representations is clear from the form of this

representative. The (α, β, γ) coordinates of Ld(χ, ψ) can be read off from equation (3.8). It

is clear from these expressions that the map R(U1, A1) → R(T 2, 2) is injective and is an

immersion on the interior of R(U1, A1).

We plot the Lagrangian Ld in Figure 3.5.

Remark 3.3.21. Theorems 3.3.18 and 3.3.20 imply Theorem 3.1.7 from the introduction.

3.3.3 The character variety R\
π(U1, A1) and Lagrangian L1 ⊂ R(T 2, 2)

We now want to modify the character variety R(U1, A1) in order to address the technical

issues described in the Introduction. Specifically, we want to (1) eliminate reducible connec-

tions, and (2) introduce a suitable holonomy perturbation so as to render the Chern-Simons

functional Morse. These modifications yield a perturbed character variety R\
π(U1, A1). We

define a corresponding perturbed Lagrangian L1 given by the image of a pullback map

R\
π(U1, A1)→ R(T 2, 2).
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Figure 3.6: (Left) Solid torus U1 used to define R\
π(S1 ×D2, A1). Shown are the arc A1, the

loop H and arc W , and the perturbation loop P . (Right) Loops B, a, b, h, and w.

We eliminate reducible connections by adding an earring consisting of a small loop H

around A1 and an arc W connecting A1 to H, as shown in Figure 3.6. We require that

representations take loops around A1 and H to traceless matrices and loops around W to

−1. One can show that representations satisfying these requirements must be nonabelian,

corresponding to irreducible connections.

We render the Chern-Simons functional Morse by adding a holonomy perturbation term

[KM11b, KM11a]. We choose a perturbation that vanishes outside of a small solid torus

obtained by thickening the loop P shown in Figure 3.6. The net effect of the perturbation is

to impose an additional requirement on the representations. Specifically, letting λP = h−1A

and µP = B denote the homotopy classes of the longitude and meridian of the solid torus

obtained by thickening P , we require that if ρ(λP ) has the form

ρ(λP ) = cosφ+ sinφ (rx i + ry j + rz k) (3.10)

for some angle φ and some unit vector r̂ = (rx, ry, rz) ∈ S2, then ρ(µP ) must have the form

ρ(µP ) = cos ν + sin ν (rx i + ry j + rz k), (3.11)

where ν = εf(φ). Here ε > 0 is a small parameter that controls the magnitude of the

perturbation and f : R → R is a function such that f(−x) = −f(x), f is 2π-periodic, and

f(x) is zero if and only if x is a multiple of π. We will usually take f(φ) = sinφ.

We define a character variety R\
π(U1, A1) that includes both of these modifications to

R(U1, A1):
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Definition 3.3.22. We define the character variety R\
π(U1, A1) to be the space of conjugacy

classes of homomorphisms ρ : π1(U1 − A1 ∪ H ∪W ∪ P ) → SU(2) that take loops around

A1 and H to traceless matrices and loops around W to −1, and are such that if ρ(λP ) has

the form given in equation (3.10) then ρ(λP ) must have the form given in equation (3.11).

Theorem 3.3.23. For ε > 0 sufficiently small, the space R\
π(U1, A1) is homeomorphic to

S2. All representations in R\
π(U1, A1) are nonabelian.

Proof. We define homotopy classes of loops A, B, a, b, and h as shown in Figure 3.6, and

read off relations from Figure 3.6 to obtain a presentation of π1(U1 − A1 ∪H ∪W ∪ P ):

π1(U1 − A1 ∪H ∪W ∪ P ) = 〈A,B, a, b, h, w | hwaB = aBh, b = ha−1w−1h−1〉

We now consider homomorphisms ρ : π1(U1 − A1 ∪ H ∪W ∪ P ) → SU(2) that satisfy

the requirements described in Definition 3.3.22 for R\
π(U1, A1). As usual, we use the same

notation for generators of the fundamental group and their images under ρ; for example, we

denote ρ(A) by A. Given an arbitrary representative of a conjugacy class [ρ] ∈ R\
π(U1, A1),

we will argue that we can always conjugate so as to obtain a unique representative of the

form given by

A = h(cosφ+ sinφ (cos θ i + sin θ j)), B = cos ν + sin ν (cos θ i + sin θ j),

a = k, b = −ha−1h−1,

h = (cos2 ν + sin2 ν sin2 θ)−1/2(cos ν i + sin ν sin θ k), w = −1,

where ν = ε sinφ and (φ, θ) ∈ [0, π]× [0, 2π] are spherical-polar coordinates on S2. We first

conjugate so that a = k. Next, we rotate about the z-axis so that the coefficient of j in h is

zero. After these operations have been performed, we can express λP as

λP = cosφ+ sinφ (rx i + ry j + rz k)

for some angle φ and some unit vector r̂ = (rx, ry, rz) ∈ S2. The relationship between λP

and µP described in equations (3.10) and (3.11) then implies that

B = µP = cos ν + sin ν (rx i + ry j + rz k),
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where ν = ε sinφ. We also find that

A = hλP = h(cosφ+ sinφ (rx i + ry j + rz k)).

Since w = −1, the relation b = ha−1w−1h−1 implies that b = −ha−1h−1, and the relation

hwaB = aBh implies that aB and h anticommute. Since a = k, the fact that aB and h

anticommute implies that rz = 0, so r̂ = (cos θ, sin θ, 0) for some angle θ. The fact that aB

and h anticommute, in conjunction with the fact that the coefficient of j in h is zero, further

implies that h must have the form

h = ±(cos2 ν + sin2 ν sin2 θ)−1/2(cos ν i + sin ν sin θ k). (3.12)

In fact, we can assume that the plus sign obtains in equation (3.12), since if not then we can

conjugate by k and redefine θ 7→ θ + π; this operation flips the signs of h and A and leaves

B, a, b, and w invariant. We have thus obtained a representative of the desired form. Since

a = k and the coefficient of i in h is nonzero for ε sufficiently small, this representative is

unique and nonabelian.

We note that the unique representative is invariant under the transformations

(φ, θ) 7→ (φ+ 2π, θ), (φ, θ) 7→ (φ, θ + 2π), (φ, θ) 7→ (−φ, θ + π).

By invariance under the first transformation we can assume that φ ∈ [−π, π], by invariance

under the third transformation we can further assume that φ ∈ [0, π], and by invariance under

the second transformation we can assume that θ ∈ [0, 2π]. From the equations defining

the unique representative, it is clear that the map S2 → R\
π(U1, A1), (φ, θ) 7→ [ρ] is a

homeomorphism, where (φ, θ) are spherical-polar coordinates on S2.

Given a representation of π1(U1−A1 ∪H ∪W ∪P ), we can pull back along the inclusion

U1 −A1 ∪H ∪W ∪ P ↪→ T 2 − {p1, p2} to obtain a representation of π1(T 2 − {p1, p2}). This

induces a map R\
π(U1, A1)→ R(T 2, 2).

Definition 3.3.24. We define the Lagrangian L1 to be the image of R\
π(U1, A1)→ R(T 2, 2),

and we will denote the image in R(T 2, 2) of the point in R\
π(U1, A1) with coordinates (φ, θ)

by L1(φ, θ).
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We can view the Lagrangian L1 as a perturbation of Ld, which we defined to be the

image of R(U1, A1) → R(T 2, 2). The following Theorem gives an explicit description of the

Lagrangian L1 in terms of the spherical-polar coordinates (φ, θ) ∈ [0, π]× [0, 2π]:

Theorem 3.3.25. The map R\
π(U1, A1)→ R(T 2, 2) is an injective immersion except at the

north pole (φ = 0) and south pole (φ = π), both of which get mapped to the same point

(α, β, γ) = (π/2, 0, 0) in the piece P3. The image L1(φ, θ) = [A,B, a, b] ∈ R(T 2, 2) of the

point in R\
π(U1, A1) with coordinates (φ, θ) is given by

A = (cos2 ν + sin2 ν sin2 θ)−1/2(cos ν i + sin ν sin θ k)(cosφ+ sinφ (cos θ i + sin θ j)),

B = cos ν + sin ν (cos θ i + sin θ j),

a = k,

b = (cos2 ν + sin2 ν sin2 θ)−1(sin 2ν sin θ i− (cos2 ν − sin2 ν sin2 θ)k),

where ν = ε sinφ and ε > 0 is a small control parameter that determines the strength of the

perturbation. Points L1(φ, θ) with φ ∈ (0, π), θ /∈ {0, π} lie in the piece P4, and the (â, b̂)

coordinates of such points are

â(L1(φ, θ)) = (sin(φ+ ν), − cos(φ+ ν), 0),

bx(L1(φ, θ)) = −(cos2 ν + sin2 ν sin2 θ)−1(cos2 ν cos2 θ sin(φ+ ν) + sin2 θ sin(φ− ν)),

by(L1(φ, θ)) = (cos2 ν + sin2 ν sin2 θ)−1(cos2 ν cos2 θ cos(φ+ ν) + sin2 θ cos(φ− ν)),

bz(L1(φ, θ)) = (1/2)(cos2 ν + sin2 ν sin2 θ)−1 sin(2ν) sin(2θ)

for θ ∈ (0, π), and

â(L1(φ, θ)) = (− sin(φ+ ν), cos(φ+ ν), 0),

bx(L1(φ, θ)) = (cos2 ν + sin2 ν sin2 θ)−1(cos2 ν cos2 θ sin(φ+ ν) + sin2 θ sin(φ− ν)),

by(L1(φ, θ)) = −(cos2 ν + sin2 ν sin2 θ)−1(cos ν2 cos2 θ cos(φ+ ν) + sin2 θ cos(φ− ν)),

bz(L1(φ, θ)) = (1/2)(cos2 ν + sin2 ν sin2 θ)−1 sin(2ν) sin(2θ)

for θ ∈ (π, 2π). Points L1(φ, θ) with θ ∈ {0, π} lie in the piece P3, and the (α, β, γ) coordi-
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nates of such points are

α(L1(φ, 0)) = φ+ π/2, β(L1(φ, 0)) = ν = ε sinφ, γ(L1(φ, 0)) = 0,

α(L1(φ, π)) = φ− π/2, β(L1(φ, π)) = ν = ε sinφ, γ(L1(φ, π)) = 0.

All representations in L1 are nonabelian.

Proof. The representative (A,B, a, b) of L1(φ, θ) follows directly from the proof of Theorem

3.3.23. The fact that all representations in L1 are nonabelian follows from the fact that

a = k and the coefficient of either i or j in B is nonzero. We find the (â, b̂) coordinates

for points L1(φ, θ) ∈ P4 by conjugating the representative of L1(φ, θ) so that A and B have

the form given in equation (3.2), then reading off â = (ax, ay, az) and b̂ = (bx, by, bz) from

a = ax i + ay j + az k and b = bx i + by j + bz k. We find the (α, β, γ) coordinates for points

L1(φ, θ) ∈ P3 by substituting θ = 0 and θ = π into the representative of L1(φ, θ) and then

conjugating the resulting equations so they have the form given in equation (3.8).

We will prove that R\
π(U1, A1) → R(T 2, 2) is an injective immersion on φ ∈ (0, π),

θ 6= {0, π} by showing that the coordinates (φ, θ) can be recovered from certain functions

defined on R(T 2, 2). Define functions h1 : R(T 2, 2)→ R and h2 : R(T 2, 2)∩{trAa 6= 0} → R

by

h1([A,B, a, b]) = − trAB − (i/2)(trB)(trAa), h2([A,B, a, b]) = − trAb

trAa
.

A calculation shows that

h1(L1(φ, θ)) =
2 cos ν sin(φ+ ν)eiθ√
cos2 ν + sin2 ν sin2 θ

.

We note that if φ ∈ (0, π) then h1(L1(φ, θ)) 6= 0 and Arg(h1(L1(φ, θ))) = θ. A calculation

shows that (trAa)(L1(φ, θ)) 6= 0 for φ ∈ (0, π), θ 6= {0, π}, and for such values of (φ, θ) we

have

h2(L1(φ, θ)) =
sin(φ− ν)

sin(φ+ ν)
=

sin(φ− ε sinφ)

sin(φ+ ε sinφ)
.

Define h̃2(φ) to be the right-hand-side of this equation. It is straightforward to show that

if ε is sufficiently small then h̃′2(φ) > 0 for all φ ∈ (0, π), hence h̃2 : (0, π) → R is a
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Figure 3.7: (Left) The intersection of the Lagrangian L1 with the piece P3. (Right) The

intersection of the Lagrangian L1 with the pillowcase P3 ∩ {γ = 0}.

diffeomorphism onto its image. We conclude that R\
π(U1, A1) → R(T 2, 2) is an injective

immersion on φ ∈ (0, π), θ 6= {0, π}.

We similarly prove that R\
π(U1, A1)→ R(T 2, 2) is an immersion on φ ∈ (0, π), θ ∈ {0, π}

by using the functions h1 : R(T 2, 2) → R and α : P3 → R. The statements regarding

the injectivity of the map for θ ∈ {0, π} are clear from the expressions for the (α, β, γ)

coordinates.

We plot the intersection of the Lagrangian L1 with the piece P3 in Figure 3.7.

Remark 3.3.26. Theorems 3.3.23 and 3.3.25 imply Theorem 3.1.3 from the introduction.

Remark 3.3.27. One can also define a character variety R\(U1, A1) that includes the earring

but not the holonomy perturbation. It is straightforward to show that the space R\(U1, A1)

is homeomorphic to S3 and all representations in R\(U1, A1) are nonabelian. We will not use

the character variety R\(U1, A1) here.
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3.4 Nondegeneracy

In this section, we adapt an argument from [AM17] to obtain a simple criterion for determin-

ing when a point [ρ] ∈ R\
π(Y,K) is nondegenerate; namely, it is nondegenerate if and only

if the Lagrangians L1 and L2 in R(T 2, 2) corresponding to the Heegaard splitting of (Y,K)

intersect transversely at the image of [ρ] under the pullback map R\
π(Y,K)→ R(T 2, 2). The

argument relies on several results involving group cohomology and the regularity of character

varieties, which we discuss first.

3.4.1 Constrained group cohomology

Consider a finitely presented group Γ = 〈S | R〉 with generators S = {s1, · · · , sn} and

relations R = {r1, · · · , rm}. In defining character varieties, we often want to consider a

space X(Γ) ⊆ Hom(Γ, SU(2)) consisting of homomorphisms that satisfy certain constraints;

for example, we may require the homomorphisms to map certain generators to traceless

matrices. Provided the constraints are algebraic, the space X(Γ) has the structure of a real

algebraic variety, and we can define a corresponding scheme X (Γ) whose set of closed points

is X(Γ). The group SU(2) acts on the variety X(Γ) by conjugation, and we define the

character variety R(Γ) and character scheme R(Γ) to be the GIT quotients X(Γ)//SU(2)

and X (Γ)//SU(2). Generalizing a result due to Weil for the unconstrained case [Wei64], we

have that the Zariski tangent space T[ρ]R(Γ) of the character scheme R(Γ) at a closed point

[ρ] can be identified with the constrained group cohomology H1
c (Γ; Ad ρ), which we define

here.

Roughly speaking, the constrained group cohomology H1
c (Γ; Ad ρ) describes deformations

of homomorphisms ρ : Γ → SU(2) that satisfy the relevant constraints, modulo deforma-

tions that can be obtained by the conjugation action of SU(2). The precise definition of

H1
c (Γ; Ad ρ) that we will use is as follows. Define a function Fr : Hom(〈S〉, SU(2)) →

SU(2)m, where 〈S〉 is the free group on S, by

Fr(ρ) = (ρ(r1), · · · , ρ(rm)).

90



Thus Fr(ρ) = (1, · · · , 1) if and only if ρ : 〈S〉 → SU(2) preserves all the relations in R and

thus descends to a homomorphism ρ : Γ → SU(2). Given a homomorphism ρ : Γ → SU(2)

and a function η : S → g, where g is the Lie algebra of SU(2), define a homomorphism

ρt : 〈S〉 → SU(2) such that

ρt(sk) = etη(sk)ρ(sk).

Note that we can view η as a vector in g⊕n. We define a linear map cr : g⊕n → g⊕m by

cr(η) =
d

dt
Fr(ρt)|t=0.

Thus cr(η) = 0 if and only if η describes a deformation of ρ that is a homomorphism

Γ→ SU(2).

Homomorphisms Γ→ SU(2) that represent points in a character variety may be required

to satisfy certain constraints; for example, that they take particular generators to traceless

matrices. Define a function Fc : Hom(〈S〉, SU(2)) → Rq such that Fc(ρ) = 0 if and only

if ρ satisfies these constraints; for example, if we require that ρ take the generator s1 to a

traceless matrix, we would define Fc : Hom(〈S〉, SU(2))→ R by

Fc(ρ) = tr(ρ(s1)).

We define a linear map cc : g⊕n → Rq by

cc(η) =
d

dt
Fc(ρt)|t=0.

Thus cc(η) = 0 if and only if η describes a deformation of ρ that satisfies the constraints.

We now combine the linear maps for the relations and constraints to obtain a linear map

c : g⊕n → g⊕m ⊕ Rq, c(η) = (cr(η), cc(η)). Given a homomorphism ρ : Γ → SU(2) that

satisfies the constraints, we define the space of 1-cocycles to be

Z1
c (Γ; Ad ρ) = ker c,

so a vector η ∈ gn is a 1-cocycle if and only if it describes a deformation of ρ that is a

homomorphism that preserves the constraints. We define the space of 1-coboundaries to be
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deformations of ρ that are obtained via the conjugation action of SU(2):

B1
c (Γ; Ad ρ) =

{η : S → g | there exists u ∈ g such that η(sk) = u− Adρ(sk) u for k = 1, · · · , n}.

Here Adg u := gug−1 for g ∈ SU(2) and u ∈ g. We define the constrained group cohomology

H1
c (Γ; Ad ρ) to be

H1
c (Γ; Ad ρ) = Z1

c (Γ; Ad ρ)/B1
c (Γ; Ad ρ).

3.4.2 Regularity

Definition 3.4.1. We say that a point [ρ] of a character variety R(Γ) is regular if

dim[ρ] R(Γ) = dimH1
c (Γ; Ad ρ).

We define R′(Γ) to be the subspace of regular points of R(Γ). The space R′(Γ) has the

structure of a smooth manifold, and the tangent space of this manifold at a point [ρ] ∈ R′(Γ)

is given by T[ρ]R
′(Γ) = H1

c (Γ; Ad ρ). We will prove theorems that describe the regular points

of the character varieties R(U1, A1), R\
π(U1, A1), and R(T 2, 2):

Theorem 3.4.2. The character variety R(U1, A1) is regular at all points represented by

nonabelian homomorphisms.

Proof. Using results from the proof of Theorem 3.3.18, we find that we can take the set of

generators of the fundamental group Γ to be S = {A, a}, with no relations, and we can take

the constraint function Fc : Hom(〈S〉, SU(2))→ R to be

Fc(ρ) = tr(ρ(a)).

Using the expressions for the homomorphisms ρ : Γ→ SU(2) given in the proof of Theorem

3.3.18, we obtain a linear map c : R6 → R. A straightforward calculation shows that

dimH1
c (Γ; Ad ρ) = dimR(U1, A1) = 2 for all [ρ] ∈ R(U1, A1) such that ρ is nonabelian.

We would next like to determine the regular points of the perturbed character variety

R\
π(U1, A1), but there are two difficulties that must be overcome. The first difficulty involves
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the function f(φ) that defines the perturbation. Recall that points [ρ] ∈ R\
π(U1, A1) are

constrained by the requirement that if ρ(λP ) has the form ρ(λP ) = cosφ + sinφ (rx i +

ry j + rz k), then ρ(µP ) must have the form ρ(µP ) = cos ν + sin ν (rx i + ry j + rz k), where

ν = εf(φ). In order to give R\
π(U1, A1) the structure of a real algebraic variety, and to define

the corresponding character scheme, this constraint must be algebraic. We will therefore

choose f(φ) to be

f(φ) =
1

ε
sin−1(ε sinφ). (3.13)

Then the constraint on ρ becomes

ε tr(ρ(λP )i) = tr(ρ(µP )i), ε tr(ρ(λP )j) = tr(ρ(µP )j), ε tr(ρ(λP )k) = tr(ρ(µP )k). (3.14)

Remark 3.4.3. In fact, the constraint given in equation (3.14) yields a variety with two

connected components, one with ρ(µP ) near 1 and one with ρ(µP ) near -1, and only the first

component corresponds to R\
π(U1, A1). To calculate the constrained group cohomology, how-

ever, we consider only infinitesimal deformations of homomorphisms, hence the extraneous

second component is irrelevant.

A second difficulty in determining the regular points of R\
π(U1, A1) is that a direct calcula-

tion of the constrained group cohomology for R\
π(U1, A1) does not appear to be practical, be-

cause the perturbed representations, as described in Theorem 3.3.23, are rather complicated.

Instead, we will apply the following theorem, which simplifies the necessary calculations by

allowing us to extrapolate from unperturbed representations:

Theorem 3.4.4. Consider a character variety Rε(Γ) in which the homomorphisms are re-

quired to satisfy an algebraic constraint that depends on a control parameter ε ∈ R. Given

a homomorphism ρε : Γ→ SU(2) representing a point [ρε] ∈ Rε(Γ), let cε : g⊕n → g⊕m ⊕Rq

denote the corresponding linear map used to define the constrained group cohomology. Define

c0, c1 : g⊕n → g⊕m ⊕ Rq such that cε = c0 + εc1 + · · · . The following string of inequalities

holds for ε > 0 sufficiently small:

dimZ1
c (Γ; Ad ρε) ≤ dim(ker c0 ∩ ker c1) + dim(c1(ker c0) ∩ im c0) ≤ dimZ1

c (Γ; Ad ρ0).

(3.15)
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Proof. Since the dimension of the Zariski tangent space is upper semi-continuous, for ε > 0

sufficiently small we have that

dim(ker cε) = dimZ1
c (Γ; Ad ρε) ≤ dimZ1

c (Γ; Ad ρ0) = dim(ker c0).

Thus any vector wε ∈ ker cε must have the form wε = w0 + εw1 + · · · , where

cε(wε) = c0(w0) + ε(c0(w1) + c1(w0)) + · · · = 0. (3.16)

The space of vectors w0 ∈ g⊕n that satisfy equation (3.16) up to first order in ε is

V = {w0 ∈ ker c0 | c1(w0) ∈ im c0}.

Since ker cε = Z1
c (Γ; Ad ρε) is the space of vectors that satisfies equation (3.16) to all orders

in ε, it follows that Z1
c (Γ; Ad ρε) ⊆ V ⊆ ker c0 = Z1

c (Γ; Ad ρ0), and we have the string of

inequalities

dimZ1
c (Γ; Ad ρε) ≤ dimV ≤ dimZ1

c (Γ; Ad ρ0).

Equation (3.15) now follows from the fact that

dimV = dim(ker c0 ∩ ker c1) + dim(c1(ker c0) ∩ im c0).

Example 3.4.5. Take Γ = Z, and consider the character varieties Ri
ε(Γ) for i = 1, 2, 3 with

constraint functions F i
c : Hom(Γ, SU(2))→ R given by

F 1
c (ρ) = ε tr ρ(1), F 2

c (ρ) = ε(tr ρ(1))2, F 3
c (ρ) = ε(tr ρ(1))2 + ε2 tr ρ(1).

The character varieties are given by

R1
ε (Γ) = R2

ε (Γ) = R3
ε (Γ) =

 S2 if ε 6= 0,

S3 if ε = 0.

Consider the homomorphism ρε : Z → SU(2), ρε(1) = k. Then dimZ1
c (Γ; Ad ρε) and

dim(ker c0 ∩ ker c1) + dim(c1(ker c0) ∩ im c0) are given by

F 1
c F 2

c F 3
c

dimZ1
c (Γ; Ad ρε) 2 3 2

dim(ker c0 ∩ ker c1) + dim(c1(ker c0) ∩ im c0) 2 3 3
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From the expressions for dimZ1
c (Γ; Ad ρε), we find that for ε 6= 0 the character schemes

R1
ε(Γ) and R3

ε(Γ) are reduced, and the character scheme R2
ε(Γ) is not reduced. We can use

Theorem 3.4.4 to show that R1
ε(Γ) is reduced, but not that R3

ε(Γ) is reduced.

Theorem 3.4.6. The character variety R\
π(U1, A1) is regular everywhere.

Proof. Using results from the proof of Theorem 3.3.23, we find that we can take the set

of generators for the fundamental group Γ to be S = {a,A,B, h}, the relations function

Fr : Hom(〈S〉, SU(2))→ SU(2) to be

Fr(ρ) = −ρ([h, aB]),

and the constraint function Fc : Hom(〈S〉, SU(2))→ R6 to be

Fc(ρ) = (tr(ρ(a)), tr(ρ(ha−1h−1)), tr(ρ(h)), f(ρ, i), f(ρ, j), f(ρ,k)),

where

f(ρ, q) = ε tr(ρ(h−1A)q)− tr(ρ(B)q).

Using the expressions for the homomorphisms ρε : Γ→ SU(2) given in the proof of Theorem

3.3.23, we obtain a linear map cε : R12 → R9. We now apply Theorem 3.4.4. A straightfor-

ward, but rather lengthy, calculation shows that dim(ker c0∩ker c1)+dim(c1(ker c0)∩im c0) =

5 for all homomorphisms representing points in R\
π(U1, A1). Since these homomorphisms

are all nonabelian, we conclude that dimH1
c (Γ; Ad ρ) = dimR\

π(U1, A1) = 2 for all

[ρ] ∈ R\
π(U1, A1), and thus R\

π(U1, A1) is regular everywhere.

Theorem 3.4.7. The character variety R(T 2, 2) is regular on L1.

Proof. Using results from Section 3.3.1, we find that we can take the set of generators for the

fundamental group Γ to be S = {a,A,B}, with no relations, and we can take the constraint

function Fc : Hom(〈S〉, SU(2))→ R2 to be

Fc(ρ) = (tr(ρ(a)), tr(ρ(ABA−1B−1a))).
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Using results from the proof of Theorem 3.3.23, we obtain a linear map cε : R9 → R2 for

homomorphisms representing points in L1. A straightforward, but rather lengthy, calcu-

lation shows that dim(ker c0 ∩ ker c1) + dim(c1(ker c0) ∩ im c0) = 7 for all homomorphisms

representing points in L1. Since these homomorphisms are all nonabelian, we conclude that

dimH1
c (Γ; Ad ρ) = dimR(T 2, 2) = 4 for all [ρ] ∈ R(T 2, 2), and thus R(T 2, 2) is regular on

L1.

Remark 3.4.8. We conjecture that R(T 2, 2) is in fact regular at all points represented by

nonabelian homomorphisms, but Theorem 3.4.7 will suffice for our purposes.

3.4.3 Transversality

We are now ready to prove our key result that relates nondegeneracy to transversality.

Recall that we defined the Lagrangian L2 to be the image of R(U2, A2) → R(T 2, 2). If

R(U2, A2) → R(T 2, 2) is injective, and [ρ] ∈ L1 ∩ L2 ⊂ R(T 2, 2) is not the double-point of

L1, then by Corollary 3.1.4 the point [ρ] is the image of a unique point in R\
π(Y,K) under

the pullback map R\
π(Y,K)→ R(T 2, 2), which for simplicity we will also denote by [ρ]. The

following is a restatement of Theorem 3.1.5 from the introduction:

Theorem 3.4.9. Suppose R(U2, A2)→ R(T 2, 2) is an injective immersion and [ρ] ∈ L1∩L2

is the image of a regular point of R(U2, A2) and is not the double-point of L1. Then the

unique preimage [ρ] ∈ R\
π(Y,K) of [ρ] under the pullback map R\

π(Y,K) → R(T 2, 2) is

nondegenerate if and only if the intersection of L1 with L2 at [ρ] ∈ L1 ∩ L2 is transverse.

Proof. We introduce the notation K ′ = K ∪W ∪H ∪ P , Y ′ = Y −K ′, U ′i = Ui −K ′, and

Σ′ = T 2 − {p1, p2}. We have the following Mayer-Vietoris sequence:

H0
c (Σ′; Ad ρ) H1

c (Y ′; Ad ρ) H1
c (U ′1; Ad ρ)⊕H1

c (U ′2; Ad ρ) H1
c (Σ′; Ad ρ)

Here H0
c (Σ′; Ad ρ) is

H0
c (Σ′; Ad ρ) = {x ∈ g | [ρ(λ), x] = 0 for all λ ∈ π1(Σ′)},
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and H1
c (Y ′; Ad ρ), H1

c (U ′1; Ad ρ), H1
c (U ′2; Ad ρ), H1

c (Σ′; Ad ρ) are the constrained group co-

homology for the character varieties R\
π(Y,K), R\

π(U1, A1), R(U2, A2), and R(T 2, 2), re-

spectively. For notational simplicity, we are using ρ to denote a homomorphism represent-

ing a point in R\
π(Y,K), as well as its pullbacks to homomorphisms representing points in

R\
π(U1, A1), R(U2, A2), and R(T 2, 2). From Theorem 3.3.25 we have that all points in L1 are

represented by nonabelian homomorphisms, thus H0
c (Σ′; Ad ρ) = 0. From Theorems 3.4.6

and 3.4.7, we have the identifications

H1
c (U ′1; Ad ρ) = T[ρ]R

\
π(U1, A1), H1

c (Σ′; Ad ρ) = T[ρ]R(T 2, 2).

Since we have assumed that [ρ] ∈ R(U2, A2) is regular, we have the identification

H1
c (U ′2; Ad ρ) = T[ρ]R(U2, A2).

By Theorem 3.3.25, the map R\
π(U1, A1) → R(T 2, 2) is an immersion (with image L1), and

we have assumed that R(U2, A2) → R(T 2, 2) is an immersion (with image L2), so we can

identify

T[ρ]R
\
π(U1, A1) = T[ρ]L1, T[ρ]R(U2, A2) = T[ρ]L2.

We conclude that the constrained group cohomology H1
c (Y ′; Ad ρ) is given by

H1
c (Y ′; Ad ρ) = T[ρ]R\

π(Y,K) = T[ρ]L1 ∩ T[ρ]L2.

The constrained group cohomology H1
c (Y ′; Ad ρ) is zero if and only if [ρ] is nondegenerate (see

[Don04] Section 2.5.4). Thus [ρ] is nondegenerate if and only if L1 intersects L2 transversely

at [ρ].

Example 3.4.10. Consider the algebraic functions f, g : R→ R, f(x) = x2, g(x) = x3. The

schemes corresponding to the critical loci of f and g are SpecF = {(0)} and SpecG = {(x)},

where

F = R[x]/(f ′(x)) = R, G = R[x]/(g′(x)) = R[x]/(x2).

The fact that 0 is a nondegenerate critical point of f , but a degenerate critical point of g,

is reflected in the fact that F is reduced, but G is nonreduced, which in turn is reflected in

the fact that T(0) SpecF = 0, but T(x) SpecG = R.
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Since nondegeneracy is a stable property, for sufficiently small ε > 0 we can use the

function f(φ) = sinφ to define the perturbation, rather than the function f(φ) given in

equation (3.13).

3.5 The group MCG2(T
2) and its action on R(T 2, 2)

An important property of the character variety R(T 2, 2) is that it admits an action of the

mapping class group MCG2(T 2). Here we describe the group MCG2(T 2) and its action on

R(T 2, 2).

3.5.1 The mapping class group MCG2(T 2)

Definition 3.5.1. Given a surface S and n distinct marked points p1, · · · , pn ∈ S, we define

the mapping class group MCGn(S) to be the group of isotopy classes of orientation-preserving

homeomorphisms of S that fix {p1, · · · , pn} as a set.

Presentations for mapping class groups are described in [CM04, Ger01, LP01]. The

mapping class group MCG2(T 2) for the twice-punctured torus is generated by Dehn twists

Ta, TA, Tb, and TB around the simple closed curves a, A, b, and B shown in Figure 3.8,

together with a π-rotation ω of the square shown in Figure 3.8. The mapping class group

MCG(T 2) := MCG0(T 2) for the unpunctured torus is generated by the Dehn twists Ta and

Tb.

It is useful to relate the mapping class groups MCG2(T 2) and MCG(T 2) to the braid

group B2(T 2), which we define as follows:

Definition 3.5.2. Given a surface S, we define the configuration space for ordered points

Conf ′n(S) to be the space {(p1, · · · , pn) ∈ Sn | pi 6= pj if i 6= j}. We define the configuration

space for unordered points Confn(S) to be the space Conf ′n(S)/Σn, where the fundamental

group on n letters Σn acts on Conf ′n(S) by permutation.

Definition 3.5.3. Given a surface S and n distinct marked points p1, · · · , pn ∈ S, we

define the braid group Bn(S) to be the fundamental group of Confn(S) with base point
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Figure 3.8: Cycles a, A, b, and B corresponding to generators Ta, TA, Tb, and TB of

MCG2(T 2).

Figure 3.9: (Left) Generators α1, α2, β1, and β2 of B2(T 2). (Right) Generator σ of B2(T 2).

[(p1, · · · , pn)].

Presentations for braid groups are described in [Bel04]. The braid group B2(T 2) for the

twice-punctured torus is generated by braids αi and βi for i = 1, 2 that drag marked the

point pi rightward and upward around a cycle, together with a braid σ that interchanges the

marked points p1 and p2 via a counterclockwise π-rotation. These generators are depicted

in Figure 3.9.

The braid group B2(T 2) and the mapping class groups MCG2(T 2) and MCG(T 2) are

related by the Birman exact sequence [Bir69]:

1 π1(Homeo0(T 2)) B2(T 2) MCG2(T 2) MCG(T 2) 1.
p g

Here Homeo0(T 2) is the group of orientation-preserving homeomorphisms of T 2 that are

isotopic to the identity. The group Homeo0(T 2) deformation retracts onto T 2 [Ham65], so
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π1(Homeo0(T 2)) = π1(T 2) = Z2. The two free abelian generators of π1(Homeo0(T 2)) can be

identified with the elements α1α2 and β1β2 of B2(T 2) under the injection π1(Homeo0(T 2))→

B2(T 2). The push homomorphism p : B2(T 2)→ MCG2(T 2) is given by

p(α1) = p(α2)−1 = TaT
−1
A , p(β1) = p(β2)−1 = TbT

−1
B , p(σ) = (TaT

−1
b Ta)

2ω.

The forgetful homomorphism g : MCG2(T 2)→ MCG(T 2) is given by

g(Ta) = g(TA) = Ta, g(Tb) = g(TB) = Tb, g(ω) = (TaT
−1
b Ta)

2.

In what follows we will use the generators of B2(T 2) to also denote their images in MCG2(T 2)

under p : B2(T 2)→ MCG2(T 2).

We will use elements of the group MCG2(T 2) to describe gluing data for constructing

(1, 1)-knots. By definition, a (1, 1)-knot K in a lens space Y can be obtained by gluing

together two copies of a solid torus containing an unknotted arc via a homeomorphism that

represents an element f ∈ MCG2(T 2). The Birman sequence is useful for understanding

the relationship between elements f ∈ MCG2(T 2) and the corresponding pairs (Y,K). The

lens space Y can be recovered from the image of f under g : MCG2(T 2) → MCG(T 2),

so this map can be viewed as forgetting the part of the gluing data used to construct the

knot and preserving the part of the data used to construct the lens space. If we multiply

f by an element in the image of the map p : B2(T 2) → MCG2(T 2), the resulting element

f ′ ∈ MCG2(T 2) yields a pair (Y,K ′) consisting of a potentially different knot K ′ in the same

lens space Y . The braid group B2(T 2) is thus useful for constructing different knots in a

fixed lens space.

3.5.2 The action of MCG2(T 2) on R(T 2, 2)

We will define an action of the group MCG2(T 2) on the character variety R(T 2, 2) via a

homomorphism from MCG2(T 2) to Out(π1(T 2−{p1, p2})), the group of outer automorphisms

of π1(T 2 − {p1, p2}). In general, we define a group homomorphism from MCGn(T 2) to

Out(π1(T 2 − {p1, · · · , pn})), the group of outer automorphisms of π1(T 2 − {p1, · · · , pn}),

as follows. Define X = T 2 − {p1, · · · , pn}. Choose a base point x0 ∈ X and consider
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the fundamental group π1(X, x0). Given an element [φ] ∈ MCGn(X) represented by a

homeomorphism φ : X → X, there is an induced isomorphism φ∗ : π1(X, x0)→ π1(X,φ(x0)),

[α] 7→ [φ ◦ α]. Choose a path γ : I → X from x0 to φ(x0); this induces an isomorphism γ∗ :

π1(X,φ(x0))→ π1(X, x0), [α] 7→ [γαγ̄]. We now define a map MCGn(T 2)→ Out(π1(X, x0))

by [φ] 7→ [γ∗φ∗]. One can show that this map is well-defined and is a homomorphism (see

[FM12] Chapter 8.1).

Remark 3.5.4. A version of the Dehn-Nielsen-Baer theorem states that the homomorphism

MCGn(T 2) → Out(π1(T 2 − {p1, · · · , pn})) is injective (see [FM12] Theorem 8.8), and one

can use this result to obtain the expressions for the homomorphisms p and g in the Birman

sequence.

We define a right action of MCG2(T 2) on the character variety R(T 2, 2) by

[ρ] · f = [ρ ◦ f̃ ],

where [ρ] ∈ R(T 2, 2), f ∈ MCG2(T 2), and f̃ ∈ Aut(π1(T 2 − {p1, p2})) is a representative

of the image of f under the homomorphism MCG2(T 2)→ Out(π1(T 2 − {p1, p2})). We find

that the action of MCG2(T 2) on R(T 2, 2) is given by

[A, B, a, b] · Ta = [A, BA, a, b],

[A, B, a, b] · Tb = [AB, B, a, b],

[A, B, a, b] · TA = [A, aAB, a, Aaba−1A−1],

[A, B, a, b] · TB = [a−1BA, B, a, a−1BbB−1a],

[A, B, a, b] · ω = [A−1, B−1, B−1A−1bAB, A−1B−1aBA].

The action of MCG2(T 2) on R(T 2, 2) fixes the reducible locus ∂P3 of R(T 2, 2) as a set. The

homomorphism p : B2(T 2) → MCG2(T 2) in the Birman sequence induces a right action of

B2(T 2) on R(T 2, 2).
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Figure 3.10: The trefoil in S3 is constructed by gluing together (U1, A1) and (U2, A2) using

the mapping class group element f = sβ1α
−1
1 .

3.6 Examples

We will now compute generating sets for I\(Y,K) for several example (1, 1)-knots K in lens

spaces Y . As described in the Introduction, we Heegaard-split (Y,K) into a pair of handle-

bodies (U1, A1) and (U2, A2). The handlebodies are glued together via a homeomorphism

φ : (∂U1, ∂A1) → (∂U2, ∂A2), which defines an element f = [φ] of the mapping class group

MCG2(T 2). We define a character variety R(T 2, 2) corresponding to the Heegaard surface

(T 2, {p1, p2}) := (∂U1, ∂A1), and we define Lagrangians L1 and L2 = Ld ·f in R(T 2, 2) corre-

sponding to the handlebodies (U1, A1) and (U2, A2). To obtain a generating set for I\(Y,K),

we count the intersection points L1 ∩ L2 and show that the intersection is transverse at

each point. The calculations needed to accomplish this task rely on the parameterizations

L1(φ, θ) and Ld(χ, ψ) of the Lagrangians L1 and Ld given in Theorems 3.3.25 and 3.3.20,

together with the description of the action of MCG2(T 2) on R(T 2, 2) given in Section 3.5.2.

To describe the intersection, we will use the coordinates (â, b̂) that we defined on the piece

P4 ⊂ R(T 2, 2) in Section 3.3.1.1, and the coordinates (α, β, γ) that we defined on the piece

P3 ⊂ R(T 2, 2) in Section 3.3.1.2.

3.6.1 Trefoil in S3

As shown in Figure 3.10, we can construct the trefoil in S3 by gluing the two handlebodies

together using the mapping class group element f = sβ1α
−1
1 ∈ MCG2(T 2), where s :=

TaT
−1
b Ta exchanges the longitude and meridian of T 2. We first prove a Lemma that constrains

the possible intersection points of L1 and L2 = Ld · f :
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Lemma 3.6.1. If L1(φ, θ) = L2(χ, ψ), then χ = π/2 and either θ ∈ {π/2, 3π/2} or φ ∈

{0, π}

Proof. Define functions h1, h2 : R(T 2, 2)→ R by

h1([A,B, a, b]) = trA, h2([A,B, a, b]) = trBa.

We evaluate the functions h1 and h2 at the points L1(φ, θ) and L2(χ, ψ). If we require that

each function give the same value at both points, we obtain the desired result.

Theorem 3.6.2. The rank of I\(S3, K) for the trefoil K in S3 is at most 3.

Proof. From Lemma 3.6.1, we know that if L1(φ, θ) = L2(χ, ψ) then χ = π/2. A calculation

shows that L2(π/2, ψ) = Ld(π/2, ψ) · f = [A,B, a, b], where

A = i, B = sin 3ψ + cos 3ψ k, (3.17)

a = − cos 2ψ i + sin 2ψ j, b = − cos 4ψ i− sin 4ψ j. (3.18)

We will first show that the intersection L1 ∩ L2 takes place entirely in the piece P4.

Suppose L2(π/2, ψ) lies in the piece P3. Then the matrices A and B in equation (3.17) must

commute, so cos 3ψ = 0, corresponding to ψ ∈ {±π/6,±π/2}. From equations (3.17) and

(3.18), we find that

γ(L2(π/2,±π/6)) = −π/6, γ(L2(π/2,±π/2)) = π/2.

But Theorem 3.3.25 states that all of the points in L1 ∩ P3 have γ = 0. It follows that L1

does not intersect L2 in the piece P3.

We now consider the intersection L1 ∩ L2 in the piece P4. Using equations (3.17) and

(3.18), we find that the (â, b̂) coordinates of L2(π/2, ψ) are

â(L2(π/2, ψ)) = (− cos 2ψ, sin 2ψ, 0), b̂(L2(π/2, ψ)) = (− cos 4ψ, − sin 4ψ, 0) (3.19)

for ψ ∈ (−π/6, π/6), and

â(L2(π/2, ψ)) = (− cos 2ψ, − sin 2ψ, 0), b̂(L2(π/2, ψ)) = (− cos 4ψ, sin 4ψ, 0) (3.20)
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for ψ ∈ (−π/2,−π/6)∪(π/6, π/2). From Lemma 3.6.1, we know that either θ ∈ {π/2, 3π/2}

or φ ∈ {0, π}. But φ = 0 and φ = π correspond to the double-point of L2, which lies in

P3, and we have already shown that L1 does not intersect L2 in P3. Thus θ ∈ {π/2, 3π/2}.

Substituting θ = π/2 and θ = 3π/2 into the expressions for the (â, b̂) coordinates of L1(φ, θ)

given in Theorem 3.3.25, we find that

â(L1(φ, π/2)) = (− sin(φ+ ν), − cos(φ+ ν), 0), (3.21)

b̂(L1(φ, π/2)) = (sin(φ− ν), cos(φ− ν), 0), (3.22)

â(L1(φ, 3π/2)) = (sin(φ+ ν), cos(φ+ ν), 0), (3.23)

b̂(L1(φ, 3π/2)) = (− sin(φ− ν), − cos(φ− ν), 0). (3.24)

From equations (3.19)–(3.24), it follows that the intersection L1 ∩ L2 fact takes place in a

torus T 2 − ∆̄ ⊂ S2 × S2 − ∆̄, where ∆̄ ⊂ T 2 is the antidiagonal. In Figure 3.11 we use

equations (3.19)–(3.24) to plot the intersection of L1 and L2 in T 2− ∆̄. We see that L1 and

L2 intersect in three points.

We will now show that the intersection is transverse at each of these three points. A

calculation shows that at each point we have

∂φh1(L1(φ, θ)) = 0, ∂θh1(L1(φ, θ)) 6= 0, ∂χh1(L2(χ, ψ)) = 0, ∂ψh1(L2(χ, ψ)) = 0,

∂φh2(L1(φ, θ)) = 0, ∂θh2(L1(φ, θ)) = 0, ∂χh2(L2(χ, ψ)) 6= 0, ∂ψh2(L2(χ, ψ)) = 0.

These equations, together with Figure 3.11, show that the intersection is transverse at each

intersection point.

For knots K in S3, one can show (see [HHK14], Section 12.1) that

rank I\(S3, K) ≥
∑
i

|ai|,

where ai is the coefficient of ti in the Alexander polynomial ∆K(t) of K:

∆K(t) =
∑
i

ait
i.

This inequality, together with Theorem 3.6.2, gives the singular instanton homology for

the trefoil. This result was already known, since, as shown by Kronheimer and Mrowka,
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Figure 3.11: The trefoil in S3. The space depicted is T 2− ∆̄ ⊂ S2× S2− ∆̄. Shown are the

Lagrangian L1, the Lagrangian L2, and the antidiagonal ∆̄.

the singular instanton homology of an alternating knot in S3 is isomorphic to the reduced

Khovanov homology of its mirror [KM14].

3.6.2 Unknot in L(p, 1) for p not a multiple of 4

We can construct the unknot U in the lens space L(p, 1) by gluing the two handlebodies

together using the mapping class group element f = T pa ∈ MCG2(T 2). The following is a

restatement of Theorem 1.2.1 from the Introduction:

Theorem 3.6.3. If p is not a multiple of 4, then the rank of I\(L(p, 1), U) for the unknot

U in the lens space L(p, 1) is at most p.

Proof. A calculation shows that L2(χ, ψ) = Ld(χ, ψ) · f = [A,B, a, b], where

A = cosχ+ sinχk, B = cos pχ+ sin pχk, a = b−1 = cosψ i + sinψ k. (3.25)

Since A and B commute, the Lagrangian L2 lies in the piece P3. From equation (3.25), it

follows that the (α, β, γ) coordinates of the point L2(χ, ψ) are

α(L2(χ, ψ)) = χ, β(L2(χ, ψ)) = pχ, γ(L2(χ, ψ)) = ψ.

Comparing with the parameterization of L1 in P3 given in Theorem 3.3.25, we find that the

intersection L1 ∩ L2 in fact takes place in the pillowcase P3 ∩ {γ = 0}. In Figure 3.12 we

plot the intersection of L1 with L2 in the pillowcase P3 ∩ {γ = 0} for p = 1, 2, 3. We find
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that if p is not a multiple of 4 then we obtain a generating set with p generators. If p is a

multiple of 4 then L1 ∩ L2 contains the double-point (α, β, γ) = (π/2, 0, 0) of L1, and thus

our scheme for counting generators fails.

We will now show that the intersection is transverse at each intersection point. Define

functions

h1([A,B, a, b]) = trAa, h2([A,B, a, b]) = trBa.

A straightforward calculation shows that at each point of L1 ∩ L2 we have that

∂φh1(L1(φ, θ)) = 0, ∂θh1(L1(φ, θ)) 6= 0, ∂χh1(L2(χ, ψ)) = 0, ∂ψh1(L2(χ, ψ)) 6= 0,

∂φh2(L1(φ, θ)) = 0, ∂θh2(L1(φ, θ)) = 0, ∂χh2(L2(χ, ψ)) = 0, ∂ψh2(L2(χ, ψ)) 6= 0.

These equations, together with Figure 3.12, show that the intersection is transverse at each

point of L1 ∩ L2.

For the case p = 1 we have that L(p, 1) = S3, and our results imply that the unknot

in S3 has a generating set with a single generator. Since there is a single generator, this

amounts to a calculation of the singular instanton homology.

Remark 3.6.4. It is interesting to note that for the unknot U in the lens space Y = L(p, q),

the knot Floer homology ĤFK(Y, U) has rank p (see [Hed11]).

3.6.3 Simple knot in L(p, 1) in homology class 1 ∈ Zp = H1(L(p, 1);Z)

Definition 3.6.5. A knot K in a lens space L(p, q) is said to be simple if the lens space has

a Heegaard splitting into solid tori U1 and U2 with meridian disks D1 and D2 such that D1

intersects D2 in p points and K ∩Ui is an unknotted arc in disk Di for i = 1, 2 (see [Hed11]).

One can show that there is exactly one simple knot in each nonzero homology class of

H1(L(p, q);Z) = Zp [Hed11]. For the case q = 1, we can view the lens space L(p, 1) is a

circle bundle over S2, and a loop that winds n times around a circle fiber is a simple knot

in homology class n ∈ Zp = H1(L(p, 1);Z). For p ≥ 2, we can construct the simple knot
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Figure 3.12: The unknot in L(p, 1) for p = 1, 2, 3. The space depicted is the pillowcase

P3 ∩ {γ = 0}. Shown are the Lagrangians L1 and L2.

K in the lens space L(p, 1) corresponding to the homology class 1 ∈ Zp = H1(L(p, 1);Z) by

gluing the two handlebodies together using the mapping class group element f = α−1
1 T pa ∈

MCG2(T 2). We first prove a result that constrains the possible intersection points of L1 and

L2 = Ld · f :

Lemma 3.6.6. If L1(φ, θ) = L2(χ, ψ) then (χ, ψ) ∈ {(χ0, ψ0), · · · , (χp−1, ψp−1)} and φ =

π/2, where χn := (n+ 1/2)(π/p) and ψn := (−1)n+1(π/2− ε).

Proof. Define a function h1 : R(T 2, 2)∩{trAb 6= 0} → R and functions h2, h3 : R(T 2, 2)→ R

by

h1([A,B, a, b]) = −trAa

trAb
, h2([A,B, a, b]) = trBa, h3([A,B, a, b]) = trB.

Using straightforward calculations, one can show that if h3(L1(φ, θ)) = h3(L2(χ, ψ)) then

(trAb)(L2(χ, ψ)) 6= 0, and thus the function h1 is defined everywhere on L1 ∩ L2. We

evaluate the functions h1, h2, and h3 at the points L1(φ, θ) and L2(χ, φ). If we require that

each function give the same value at both points, we obtain the desired result.

The following is a restatement of Theorem 1.2.2 from the introduction:
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Theorem 3.6.7. If K is the unique simple knot in the lens space L(p, 1) representing the

homology class 1 ∈ Zp = H1(L(p, 1);Z), then the rank of I\(L(p, 1), K) is at most p.

Proof. We will argue that each of the p potential intersection points described by Lemma

3.6.6 is an actual intersection point. A calculation shows that L2(χn, ψn) = Ld(χn, ψn) · f =

[A,B, a, b], where

A = cosχn + sinχn i, B = cos ε+ sin εk, (3.26)

a = (−1)n+1(cos ε i + sin ε j), b = (−1)n cos ε i + sin ε cos ηn j + sin ε sin ηn k, (3.27)

and ηn := (1 + n(p+ 2))(π/p). We note that A and B do not commute, since the coefficient

of i in A and the coefficient of k in B are both nonzero, so the intersection L1∩L2 takes place

entirely in the piece P4. From equations (3.26) and (3.27), we find that the (â, b̂) coordinates

of L2(χn, ψn) are given by

â(L2(χn, ψn)) = (−1)n+1(cos ε, sin ε, 0), (3.28)

b̂(L2(χn, ψn)) = ((−1)n cos ε, sin ε cos ηn, sin ε sin ηn). (3.29)

From Lemma 3.6.6, we know that if L1(φ, θ) = L2(χ, ψ) then φ = π/2. Substituting φ = π/2

into the expressions for the (â, b̂) coordinates of L1(φ, θ) given in Theorem 3.3.25, we find

that

â(L1(π/2, θ)) = (cos ε, sin ε, 0), b̂(L1(π/2, θ)) = (− cos ε, − sin ε cos θ̄, sin ε sin θ̄) (3.30)

for θ ∈ (0, π), and

â(L1(π/2, θ)) = (− cos ε, − sin ε, 0), b̂(L1(π/2, θ)) = (cos ε, sin ε cos θ̄, sin ε sin θ̄) (3.31)

for θ ∈ (π, 2π), where θ̄ is defined such that

cos θ̄ =
cos2 ε cos2 θ − sin2 θ

cos2 ε cos2 θ + sin2 θ
, sin θ̄ =

cos ε sin 2θ

cos2 ε cos2 θ + sin2 θ
.

It is straightforward to verify that for small enough values of ε, the maps (0, π) → (0, 2π),

θ 7→ θ̄ and (π, 2π)→ (0, 2π), θ 7→ θ̄ are diffeomorphisms. Thus we can always solve equations

(3.28)–(3.31) to obtain a unique value of θ such that L1(π/2, θ) = L2(χn, ψn). Specifically,
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if n is even, then θ ∈ (0, π) is given by θ̄(θ) = ηn, and if n is odd then θ ∈ (π, 2π) is given

by θ̄(θ) = π − ηn. We conclude that L1 and L2 intersect in p points.

We will now show that L1 intersects L2 transversely at each of these p points. A straight-

forward calculation shows that at each point of L1 ∩ L2 we have

∂φh1(L1(φ, θ)) 6= 0, ∂θh1(L1(φ, θ)) = 0, ∂χh1(L2(χ, ψ)) = 0, ∂ψh1(L2(χ, ψ)) = 0,

∂φh2(L1(φ, θ)) = 0, ∂θh2(L1(φ, θ)) = 0, ∂χh2(L2(χ, ψ)) 6= 0, ∂ψh2(L2(χ, ψ)) = 0,

∂φh3(L1(φ, θ)) = 0, ∂θh3(L1(φ, θ)) = 0, ∂χh3(L2(χ, ψ)) = 0, ∂ψh3(L2(χ, ψ)) 6= 0.

These equations, together with Theorem 3.3.25, show that the intersection is transverse at

each point.

For the case p = 0, the knot we have constructed is K = S1 × {pt} in S1 × S2, and

our above result implies that this knot has a generating set with zero generators. This

result holds even in the absence of the perturbation, since there are no homomorphisms

ρ : π1(S1 × S2 −K)→ SU(2) that take loops around K to traceless matrices.

For the case p = 1, the knot we have constructed is the unknot in S3, and we have have

reproduced the result of Section 3.6.2 for this knot.

Remark 3.6.8. It is interesting to note that for a simple knot K in the lens space Y =

L(p, q), the knot Floer homology ĤFK(Y,K) has rank p (see [Hed11]).
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