UCLA

UCLA Electronic Theses and Dissertations

Title
Floer Homology Theories for Knots in Lens Spaces

Permalink
https://escholarship.org/uc/item/09h5r3kj

Author
Boozer, Allen David

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/09h5r3kj
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Los Angeles

Floer Homology Theories for Knots in Lens Spaces

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Allen David Boozer

2020



(© Copyright by
Allen David Boozer
2020



ABSTRACT OF THE DISSERTATION
Floer Homology Theories for Knots in Lens Spaces
by

Allen David Boozer
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2020

Professor Ciprian Manolescu, Chair

We describe two projects involving the construction of Floer homology theories for knots in
lens spaces. In the first project, we propose definitions of complex manifolds Py, (X, m,n)
that could potentially be used to construct the symplectic Khovanov homology of n-stranded
knots in lens spaces. The manifolds Py (X, m,n) are defined as moduli spaces of Hecke
modifications of rank 2 parabolic bundles over an elliptic curve X. To characterize these
spaces, we describe all possible Hecke modifications of all possible rank 2 vector bundles
over X, and we use these results to define a canonical open embedding of Py, (X, m,n) into
M?*(X,m + n), the moduli space of stable rank 2 parabolic bundles over X with trivial
determinant bundle and m + n marked points. We explicitly compute Py (X, 1,n) for n =
0,1,2. For comparison, we present analogous results for the case of rational curves, for
which a corresponding complex manifold Py, (CIP*,3,n) is isomorphic for n even to a space
Y(S2,n) defined by Seidel and Smith that can be used to compute the symplectic Khovanov

homology of n-stranded knots in S3.

In the second project, we describe a scheme for constructing generating sets for Kron-
heimer and Mrowka’s singular instanton knot homology for the case of knots in lens spaces.
The scheme involves Heegaard-splitting a lens space containing a knot into two solid tori.
One solid torus contains a portion of the knot consisting of an unknotted arc, as well as
holonomy perturbations of the Chern-Simons functional used to define the homology theory.

The other solid torus contains the remainder of the knot. The Heegaard splitting yields a

i



pair of Lagrangians in the traceless SU(2)-character variety of the twice-punctured torus,
and the intersection points of these Lagrangians comprise the generating set that we seek.
We illustrate the scheme by constructing generating sets for several example knots. Our
scheme is a direct generalization of a scheme introduced by Hedden, Herald, and Kirk for
describing generating sets for knots in S? in terms of Lagrangian intersections in the traceless

SU (2)-character variety for the 2-sphere with four punctures.
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CHAPTER 1

Introduction

Knots and links play a key role in the study of 3-manifolds. Indeed, any 3-manifold can
be obtained by performing Dehn surgery on a suitable link in S®. One can consider knots
in any 3-manifold, but so far most work on knot invariants has focused on knots in S3.
Little is known about invariants of knots in arbitrary 3-manifolds, but, partly because of
the close connection between knots and 3-manifold topology, such results would be of great
interest. If one quantifies the complexity of a 3-manifold by its Heegaard genus, then by this
measure S%, with Heegaard genus zero, is the simplest 3-manifold. The next simplest class
of 3-manifolds are those with Heegaard genus one, i.e., lens spaces. We describe two projects

involving the construction of Floer homology theories for knots in lens spaces.

1.1 Symplectic Khovanov homology for knots in lens spaces

The first project we consider describes an initial step towards the construction of symplectic
Khovanov homology for knots in lens spaces. Khovanov homology is a powerful invariant for
distinguishing links in % [Kho00]. Khovanov homology can be viewed as a categorification
of the Jones polynomial [Jon85]: one can recover the Jones polynomial of a link from its
Khovanov homology, but the Khovanov homology generally contains more information. For
example, Khovanov homology can sometimes distinguish distinct links that have the same
Jones polynomial, and Khovanov homology detects the unknot [KM11a], but it is not known
whether the Jones polynomial has this property. The Khovanov homology of a link can
be obtained in a purely algebraic fashion by computing the homology of a chain complex

constructed from a generic planar projection of the link. The Khovanov homology can also



be obtained in a geometric fashion by Heegaard-splitting S® into two 3-balls in such a way
that the intersection of the link with each 3-ball consists of r unknotted arcs. Each 3-
ball determines a Lagrangian in a symplectic manifold Y(S?,2r) known as the Seidel-Smith
space, and the Lagrangian Floer homology of the pair of Lagrangians yields the Khovanov
homology of the link (modulo grading) [AM17, SS06]. Recently Witten has outlined gauge
theory interpretations of Khovanov homology and the Jones polynomial in which the Seidel-
Smith space is viewed as a moduli space of solutions to the Bogomolny equations [Wit12,

Wit11, Wit16].

We consider here the problem of generalizing symplectic Khovanov homology to knots in
lens spaces. In analogy with the Seidel-Smith approach to Khovanov homology, one could
Heegaard-split a lens space into two solid tori, each containing » unknotted arcs, and compute
the Lagrangian Floer homology of a pair of Lagrangians intersecting in a symplectic manifold
Y(T?,2r) that generalizes the Seidel-Smith space J(S2,2r). To perform the construction,
one first needs to determine a suitable symplectic manifold Y(7?,2r), and we propose two

natural candidates for this space.

In outline, our approach is as follows. First, using a result due to Kamnitzer [Kam11],
we reinterpret the Seidel-Smith space Y(S?, 2r) as a moduli space H(CP*, 2r) of equivalence
classes of sequences of Hecke modifications of rank 2 holomorphic vector bundles over a
rational curve. Roughly speaking, a Hecke modification is a way of locally modifying a
holomorphic vector bundle near a point to obtain a new vector bundle. We show that there
is a close relationship between Hecke modifications and parabolic bundles, and we use this
relationship to reinterpret the Kamnitzer space H(CP',2r) as a moduli space Py (CP?, 2r)
of isomorphism classes of parabolic bundles with marking data. The space Py (CP', 2r) has
two natural generalizations Py (X, 1, 2r) and Py (X, 3, 2r) to the case of an elliptic curve X,

and we propose these spaces as candidates for Y (T2, 2r).



1.2 Singular instanton homology for knots in lens spaces

The second project we consider describes a scheme for constructing generating sets for Kro-
nheimer and Mrowka’s singular instanton homology for the case of knots in lens spaces.
Singular instanton homology was introduced by Kronheimer and Mrowka to describe knots
in 3-manifolds [KM11b, KM11a, KM14]. Singular instanton homology is defined in terms of
gauge theory, but has important implications for Khovanov homology. Specifically, given a
knot K in S3, Kronheimer and Mrowka showed that there is a spectral sequence whose Es
page is the reduced Khovanov homology of the mirror knot K, and that converges to the
singular instanton homology of K. Using this spectral sequence, Kronheimer and Mrowka
proved that Khovanov homology detects the unknot. This result is obtained by proving the
analogous result for singular instanton homology and then using the rank inequality implied

by the spectral sequence.

Calculations of singular instanton homology are generally difficult to carry out, though
some results are known. For example, Kronheimer and Mrowka showed that the singular
instanton homology of an alternating knot in S% is isomorphic to the reduced Khovanov
homology of its mirror (modulo grading), since for such knots the spectral sequence collapses
at the Fy page. In recent work, Hedden, Herald, and Kirk have described a scheme for
producing generating sets for singular instanton homology for a variety of knots in S®, which
can sometimes be used to compute the singular instanton homology itself [HHK14]. Their

scheme works as follows.

Singular instanton homology is defined in terms of the Morse complex of a perturbed
Chern-Simons functional. The unperturbed Chern-Simons functional is typically not Morse,
so to obtain a well-defined homology theory it is necessary to include a small perturbation
term. For the case of knots in S%, Hedden, Herald, and Kirk show how a suitable perturbation
can be constructed. Their scheme involves Heegaard-splitting S3 into a pair of solid 3-balls
By and By. The ball By contains a portion of the knot K consisting of two unknotted
arcs, together with a specific holonomy perturbation of the Chern-Simons functional. The

ball B, contains the remainder of the knot. The Heegaard splitting of S? yields a pair of



Lagrangians L; and Ls in the traceless SU(2)-character variety of the 2-sphere with four
punctures R(S?,4), a symplectic manifold known as the pillowcase that is homeomorphic to
the 2-sphere. Specifically, the Lagrangians Ly and Lo describe conjugacy classes of SU(2)-
representations of the fundamental group of the 2-sphere with four punctures that extend
to By — K and By — K, respectively. In many cases, the points of intersection of L; and
L, constitute a generating set for singular instanton homology. The essential idea of the
scheme is to confine all of the perturbation data to a standard ball B; corresponding to a
Lagrangian L; that can be described explicitly. The problem of constructing a generating set
for a particular knot thus reduces to describing the Lagrangian Lo, a task that is facilitated
by the fact that the Chern-Simons functional is unperturbed on the ball By. In further work,
Hedden, Herald, and Kirk define pillowcase homology to be the Lagrangian Floer homology
of the pair (Ly, Lo) [HHK18]. They conjecture that pillowcase homology is isomorphic to

singular instanton homology and compute some examples that support this conjecture.

We generalize the scheme of Hedden, Herald, and Kirk to the case of knots in lens spaces.
We Heegaard-split a lens space Y containing a knot K into two solid tori U; and Us. The
solid torus U; contains a portion of the knot consisting of an unknotted arc, together with
a specific holonomy perturbation. The solid torus Us; contains the remainder of the knot.
From the Heegaard splitting of Y we obtain a pair of Lagrangians L; and Ly in the traceless
SU (2)-character variety of the twice-punctured torus R(7?,2), and in many cases the points

of intersection of L; and L constitute a generating set for the (reduced) singular instanton

homology I*(Y, K).

Our scheme is particularly well-suited for the case of (1,1)-knots. By definition, a (1,1)-
knot is a knot K in a lens space Y that has a Heegaard splitting into a pair of solid tori
Uy,Uy C Y such that the components U; N K and U N K of the knot in each solid torus
are unknotted arcs. It is known that (1, 1)-knots include all torus knots and 2-bridge knots.
We illustrate our scheme by calculating generating sets for several example (1, 1)-knots. We
first rederive known results for knots in S®: we produce generating sets for the unknot (one
generator) and trefoil (three generators), which allow us to compute the singular instanton

homology for these knots. Next we consider knots in lens spaces L(p,1). We prove:



Theorem 1.2.1. If p is not a multiple of 4, then the rank of I*(L(p,1),U) for the unknot

U in the lens space L(p,1) is at most p.

A knot K in a lens space L(p, q) is said to be simple if the lens space can be Heegaard-
split into solid tori U; and U, with meridian disks D, and D, such that D; intersects Dy in
p points and K N U; is an unknotted arc in disk D; for i = 1,2 (see [Hed11]). Up to isotopy,
there is exactly one simple knot in each nonzero homology class of Hy(L(p,q);Z) = Z,. We

prove:

Theorem 1.2.2. If K is the unique simple knot representing the homology class 1 € Z, =
Hy(L(p,1);Z) of the lens space L(p,1), then the rank of I*(L(p,1), K) is at most p.

To our knowledge, Theorems 1.2.1 and 1.2.2 give the first rank bounds on instanton
homology for knots in 3-manifolds other than S3. For a simple knot K in the lens space
Y = L(p, q), the knot Floer homology }TF?((Y, K) has rank p (see [Hed11]). Thus, Theorem
1.2.2 is consistent with Kronheimer and Mrowka’s conjecture that for a knot K in a 3-

manifold Y, the ranks of I*(Y, K) and ﬁ((Y, K) are the same (see [KM10] Section 7.9).



CHAPTER 2

Symplectic Khovanov homology for knots in lens

spaces

2.1 Introduction

Our goal is to generalize the Seidel-Smith space Y(S?, 2r) to the case of elliptic curves by ex-
ploiting Kamnitzer’s reinterpretation of this space as a moduli space of Hecke modifications
H(CP', 2r). Our approach is as follows. Given a rank 2 holomorphic vector bundle E over a
curve C, we define a set H''(C, E,n) of equivalence classes of sequences of n Hecke modifi-
cations of E. As is well-known, the set H"(C, E, n) has the structure of a complex manifold
that is (noncanonically) isomorphic to (CP')", where each factor of CIP* corresponds to a
single Hecke modification. The Kamnitzer space H(CP',2r) is then defined to be the open
submanifold of H*'(CP', O @ O, 2r) consisting of equivalence classes of sequences of Hecke

modifications for which the terminal vector is semistable.

Example 2.1.1. For r = 1, we have that

HHCP, O ® 0,2) = (CPY)?, H(CPY,2) = (CPY)? — {(a,a) | a € CP'}.

To generalize the Kamnitzer space to curves of higher genus, we want to define moduli
spaces of sequences of Hecke modifications in which the initial vector bundle in the sequence
is allowed to vary. We define such spaces via the use of parabolic bundles. For any curve
C and any natural numbers m and n, we define a moduli space P (C,m,n) of marked

parabolic bundles. We prove:

tot

Theorem 2.1.2. The moduli space P (C,m,n) naturally has the structure of a complex

manifold isomorphic to a (CPY)"-bundle over M*(C,m).
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Here the complex manifold M*(C,m) is the moduli space of stable rank 2 parabolic bun-
dles over a curve C' with trivial determinant bundle and m marked points. Roughly speaking,
the space P (C,m,n) describes isomorphism classes of sequences of n Hecke modifications
in which the initial vector bundle in the sequence is allowed to range over isomorphism classes
that are parameterized by M*(C,m). By imposing a condition analogous to the semistability
condition used to define the Kamnitzer space H(CP!, 2r), we identify an open submanifold
Pur(Cym,n) of Pit(C,m,n). We prove that Pif(CP', n) := P (CP',3,n) is isomorphic
to H(CP!, 0@ O,n) and Py (CP', 2r) := Py (CP, 3,2r) is isomorphic to to H(CP?, 2r).
Thus the Seidel-Smith space Y(S?,2r), the Kamnitzer space H(CP?, 2r), and the space of
marked parabolic bundles P,;(CP',2r) are all isomorphic. However, unlike Y(S?,2r) or

H(CP', 2r), the space Py (CIP', 2r) naturally generalizes to case of elliptic curves.
Although our primary motivation for introducing the spaces Pi%(CP' n) and
Prr(CPY, n) is to facilitate generalization, they are also useful for proving canonical versions

of certain results for CP'. For example, we prove a canonical version of the noncanonical

isomorphism H*(CP', O © O,n) — (CP)" for Pi¢(CP!, n):

Theorem 2.1.3. There is a canonical isomorphism P (CP, n) — (M**(CP', 4))".

Here the complex manifold M**(CP*',4) = CP" is the moduli space of semistable rank 2
parabolic bundles over CIP' with trivial determinant bundle and 4 marked points. We also

prove:
Theorem 2.1.4. There is a canonical open embedding Py (CP' m,n) — M*(CP', m+n).

Corollary 2.1.5. There is a canonical open embedding Py (CP*, 2r) — M*(CP*, 2r + 3).

Here the complex manifold M*(CP', m-+n) is the moduli space of stable rank 2 parabolic
bundles over CP! with trivial determinant bundle and m + n marked points. For r = 1,2
we have verified that the embedding of Py (CP*,2r) into M*(CP',2r + 3) agrees with
a (noncanonical) embedding due to Woodward of the Seidel-Smith space Y(S? 2r) into
M S((D]Pl, 2r + 3), and we conjecture that the agreement holds for all r.



We next proceed to the case of elliptic curves. We show that our reinterpretation
Pur(CP', 2r) of the Seidel-Smith space Y(S5?,2r) has two natural generalizations to the case
of an elliptic curve X, namely Py (X, 1,2r) and Py(X,3,2r). We prove an elliptic-curve
analog to Theorem 2.1.3:

Theorem 2.1.6. There is a canonical isomorphism P X, 1,n) — (M*$(X))" 1,

Here the complex manifold M*(X) = CP' is the moduli space of semistable rank
2 vector bundles over an elliptic curve X with trivial determinant bundle. Compar-
ing Theorems 2.1.3 and 2.1.6, we see that Pif(CP',n) is (noncanonically) isomorphic
to (CPY)", whereas Pi(X,1,n) is (noncanonically) isomorphic to (CP')"*!. The extra
factor of CP' for P4 (X, 1,n) can be understood from Theorem 2.1.2, which states that
Pl(CP!, n) = P(CPY,3,n) is a (CP')"-bundle over M*(CP',3) and P (X, 1,n) is
a (CPY)"-bundle over M*(X,1). But M*(CP!,3) is a single point, whereas M*(X,1) is

isomorphic to CPP*. We use Theorem 2.1.6 to explicitly compute Py (X, 1,n) for n = 0,1, 2:

Theorem 2.1.7. The space Py(X,1,n) forn=0,1,2 is given by
PM(XaLO):(DIPlJ PM(X7171):<®P1)2_9(X>7 PM(X7172>:(CIP1>3_f(X)7

where g : X — (CPY)? and f : X — (CPY)? are holomorphic embeddings defined in Sections
2.6.5.2 and 2.6.5.35.

We also generalize the embedding result of Theorem 2.1.4 to the case of elliptic curves:

Theorem 2.1.8. There is a canonical open embedding Py(X, m,n) — M*(X, m +n).

Here the complex manifold M*(X, m + n) is the moduli space of stable rank 2 parabolic
bundles on X with trivial determinant bundle and m + n marked points. In order to prove
Theorems 2.1.6, 2.1.7, and 2.1.8, we construct a list of all possible Hecke modifications of all

possible rank 2 vector bundles on an elliptic curve X.

In Section 2.7, we discuss possible applications of our results to the problem of generaliz-

ing symplectic Khovanov homology to lens spaces. We observe that the embedding results of



Theorems 2.1.4 and 2.1.8 could be related to a conjectural spectral sequence from symplectic
Khovanov homology to symplectic instanton homology, which would generalize the spectral
sequence due to Kronheimer and Mrowka from Khovanov homology to singular instanton

homology [KM14]. Based on such considerations, we make the following conjectures:

Conjecture 2.1.9. The space Py (C,3,2r) is the correct generalization of the Seidel-Smith

space Y(S2%,2r) to a curve C' of arbitrary genus.

Conjecture 2.1.10. Given a curve C' of arbitrary genus, there is a canonical open embedding

Pu(C,m,n) — M*(C,m+n).

2.2 Vector bundles

Here we briefly review some results on holomorphic vector bundles and their moduli spaces
that we will use throughout the dissertation. Useful references on vector bundles are [Le 97,

Sch15, Big, Tu93].

Definition 2.2.1. The slope of a holomorphic vector bundle F over a curve C'is slope F :=

(deg E)/(rank F) € Q.

Definition 2.2.2. A holomorphic vector bundle E over a curve C' is stable if slope F' <
slope F for any proper subbundle F' C FE, semistable if slope F' < slope E' for any proper
subbundle F' C F, strictly semistable if it is semistable but not stable, and unstable if there

is a proper subbundle F' C F such that slope F' > slope E.

If F is a stable vector bundle, then Aut(FE) = C* consists only of trivial automorphisms

that scale the fibers by a constant factor.

Definition 2.2.3. Given a semistable vector bundle E, a Jordan-Holder filtration of E is a

filtration
F=0CcFkhHCFcC---CF,=F

of £ by subbundles F; C E for i = 0,--- ,n such that the composition factors F;/F;_; are

stable and slope F;/F;,_; =slope E for i =1,--- n.

9



Every semistable vector bundle E admits a Jordan-Holder filtration. The filtration is
not unique, but the composition factors F;/F;_; for i = 1,---  n are independent (up to

permutation) of the choice of filtration.

Definition 2.2.4. Given a semistable holomorphic vector bundle E over a curve C, the

associated graded vector bundle gr F is defined to be

er B =D F/F.
i=1
where [ =0C F} C --- C F,, = E is a Jordan-Holder filtration of £.

The bundle gr E' is independent (up to isomorphism) of the choice of filtration, and
slope(gr E) = slope E.

Definition 2.2.5. Two semistable vector bundles are said to be S-equivalent if their asso-

ciated graded bundles are isomorphic.

Example 2.2.6. In Section 2.6.1 we define a strictly semistable rank 2 vector bundle F;
and a stable rank 2 vector bundle G5(p) over an elliptic curve X. A Jordan-Holder filtration
of F, is O C F3, and the associated graded bundle is gr F5 = O @ O. It follows that F; and
O @O are S-equivalent. A Jordan-Hélder filtration of Go(p) is just Ga(p), and the associated
graded bundle is gr Go(p) = Ga(p).

Isomorphic bundles are S-equivalent. For rational curves, S-equivalent bundles are iso-
morphic, but this is not true in general. For example, on an elliptic curve the bundles F3

and O & O are S-equivalent but not isomorphic.
For many applications we will want to quantify the degree to which a vector bundle is

unstable. To do so, we introduce some terminology specific to this dissertation:

Definition 2.2.7. Given a rank 2 holomorphic vector bundle F over a curve C', we define the
instability degree of E to be deg L — deg E'/L, where L C E' is a line subbundle of maximal

degree.
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The degree of the proper subbundles of a vector bundle E on a curve C' is bounded above
(see for example [Sch15] Lemma 3.21), so the notion of instability degree is well-defined.
The instability degree is positive for unstable bundles, 0 for strictly semistable bundles, and

negative for stable bundles.

Definition 2.2.8. We define M**(C') (respectively M?*(C')) to be the moduli space of
semistable (respectively stable) rank 2 holomorphic vector bundles over curve C' with trivial

determinant bundle, mod S-equivalence. This space is defined in [Ses67]; see also [MO12].

Remark 2.2.9. An alternative way of interpreting M**(C') is as the space of flat SU(2)-
connections on a trivial rank 2 complex vector bundle £ — ', mod gauge transformations.
Yet another way of interpreting the space M*°(C) is as the character variety R(C') of conju-

gacy classes of group homomorphisms 71 (C') — SU(2).

The moduli space M*(C) has the structure of a complex manifold of dimension 3(g — 1),
where g is the genus of the curve C. The space M*(C') carries a canonical symplectic form,
which is obtained by interpreting M*(C') as a Hamiltonian reduction of a space of SU(2)-

connections.

Example 2.2.10. For rational curves, the bundle O & O is the unique semistable rank 2

bundle with trivial determinant bundle, and there are no stable rank 2 bundles, so
M*(CP') = {pt} = {{0 & O}, M*(CP') = 2.

Example 2.2.11. For an elliptic curve X, semistable rank 2 bundles with trivial determinant
bundle have the form L @ L~!, where L is a degree 0 line bundle, or Fy ® L;, where L; for
i =1,---,4 are the four 2-torsion line bundles. The bundles L; & L; and Fy, ® L; are S-
equivalent. The bundles L @ L~! and L~! @ L are isomorphic, hence S-equivalent. There
are no stable rank 2 bundles with trivial determinant bundle. As shown in [Tu93|, we have

that

M*(X)={[L® L™ "|[L] € Jac(X)} = CP?, M (X)=@.
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2.3 Parabolic bundles

Here we briefly review some results on parabolic bundles and their moduli spaces that we will

use throughout the dissertation. Useful references on parabolic bundles are [MS80, Nagl7].

2.3.1 Definition of a parabolic bundle

The concept of a parabolic bundle was introduced in [MS80]:

Definition 2.3.1. A parabolic bundle of rank r on a curve C' consists of following data:

1. A rank r holomorphic vector bundle 7g : E — C.
2. Distinct marked points (py,- -+ ,p,) € C™.

3. For each marked point p;, a flag of vector spaces Egi in the fiber E,, = ﬂgl(pi) over

the point p;:
E)=0CE, CE, C---CEi=E,.
4. For each marked point p;, a strictly decreasing list of weights )\g;i e R:
Ay, > A2 > > N

We refer the data of the marked points, the flags, and the weights as a parabolic structure
on I/. We refer to the data of just the marked points and flags, without the weights,
as a quasi-parabolic structure on E. We define the multiplicity of the weight )\ii to be
m) = dim(E} ) — dim(£/"). The definition of a parabolic bundle given in [MS80] differs
slightly from our definition, in that the marked points are unordered and the weights are

required to lie in the range [0,1).

Definition 2.3.2. Two parabolic bundles with underlying vector bundles E and F' are
1somorphic if the marked points and weights for the two bundles are the same, and there is
a bundle isomorphism « : £ — F' that carries each flag of F to the corresponding flag of F’;

that is, Oé(Egi):ng forj=1,---,s;andi=1,--- ,n.
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Definition 2.3.3. The rank of a parabolic bundle is the rank of its underlying vector bundle.

Definition 2.3.4. The parabolic degree and parabolic slope of a parabolic bundle £ with

underlying vector bundle E are defined to be

pdeg(&) = deg E + Z Z m) N, pslope(€) = (pdeg€)/(rank &) € Q.

=1 j=1

We will not need the full generality of the concept of a parabolic bundle. Rather, we
will consider only parabolic line bundles and rank 2 parabolic bundles of a certain restricted

form.

First we consider parabolic line bundles. For such bundles there is no flag data, so the

parabolic structure is specified by a list of marked points py,--- ,p, and a list of weights
Apst o5 Ay, - We fix a parameter 1 > 0 and restrict to the case A} € {£u} fori=1,---,n

A parabolic line bundle of this form thus consists of the data (L,o,,,--- ,0,,), where 7, :
L — C is a holomorphic line bundle and o, € {£1}. The parabolic degree and parabolic
slope of a parabolic line bundle (L, 0y,,--- ,0,,) are given by
n
pdeg(L,0,,,- - ,0p,) = pslope(L,0,,,- -+ ,0p,) =deg L + “Z Tp;-
i=1
Next we consider rank 2 parabolic bundles. We fix a parameter p > 0 and restrict to
the case s; = 2, m; =m2 =1, and \} = —\2 = pfori=1,--- ,n. A rank 2 parabolic
bundle of this form thus consists of the data (E,¢,,,--- ,¥{,,), where 7 : E — C'is a rank
2 holomorphic vector bundle and ¢,, € P(E,,) is a line in the fiber E, = 7.'(p;) over the
point p; for ¢ = 1,--- ;n. The parabolic slope and parabolic degree of a rank 2 parabolic

bundle (E,£,,,--- ,{,, ) are given by

pdeg(E, by, Lp,) =deg E, pslope(E, £y, , - -+ ,{p,) = slope E.

2.3.2 Stable, semistable, and unstable parabolic bundles

Consider a rank 2 parabolic bundle (E, ¢, ,--- , ¢, ) and a line subbundle L C E. There are

induced parabolic structures on the line bundles L and E/L given by (L,0,,,--- ,0,,) and
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(E/L,—0p,, - ,—0p,), where

+1 if Ly, =0,

Op;, =
-1 i L, # L,

Definition 2.3.5. Given a rank 2 parabolic bundle (E,¢,,,--- ,{,,) and a line subbundle

L C E, we say that the induced parabolic bundle (L, 0y,, - ,0,,) is a parabolic subbundle

of (E, 4y, - ,{,) and the induced parabolic bundle (E/L,—0,,, -+ ,—0,,) is a parabolic

quotient bundle of (E, ly,, -+ ,{p,).

Definition 2.3.6. A rank 2 parabolic bundle (E,/,,,--- ,,,) is said to be decomposable if
there exists a decomposition £ = L @ L’ for line bundles L and L’ such that £,, € {L,,, L, }

for i =1,--- ,n. For a rank 2 decomposable parabolic bundle (E, ¢, ,--- £, ) we write
(E7£p17 e 7€pn) = (L7Up17 U 7O-pn) D (L/’OIIH’ e ’lem)a

where (L, 0y, ,0p,) and (L', 0, ,--- ,0, ) are the induced parabolic structures on L and

L.

Definition 2.3.7. A rank 2 parabolic bundle is stable if its parabolic slope is strictly greater
than the parabolic slope of any of its proper parabolic subbundles, semistable if its parabolic
slope is greater than or equal than the parabolic slope of any of its proper parabolic sub-
bundles, strictly semistable if it is semistable but not stable, and unstable if it has a proper

parabolic subbundle of strictly greater slope.

If £ is a stable parabolic bundle, then Aut(£) = C* consists only of trivial automorphisms

that scale the fibers of the underlying vector bundle by a constant factor.

Theorem 2.3.8. If the rank 2 parabolic bundle (E,{,,,--- ,{,,) is semistable and p < 1/2n,

then E is semistable.

Proof. We will prove the contrapositive, so assume that E is unstable. Then there is a
line subbundle L C E such that slope L > slope E. Consider the parabolic structure
(L,0p,,- -+ ,0p,) induced on L by (E, £y, -, £, ). We have that

pslope(L, oy, - -+ ,0p,) — pslope(E, £y, , -+ ,{,,) = slope L + /LZ oy, —slope E.  (2.1)
i=1
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Since slope L is an integer, slope F is an integer or half-integer, and slope L > slope F, it
follows that slope L —slope E' > 1/2. From equation (2.1) and the assumption that u < 1/2n,
it follows that

pslope(L, 0y, - -+ ,0p,) — pslope(E, £y, , -+ €, ) > 1/2 —np >0,
so (E, 0, ,{,,) is unstable. O

Throughout this dissertation we will always assume p < 1, by which we mean that u is
always chosen to be sufficiently small such that Theorem 2.3.8 holds under whatever circum-

stances we are considering. We now introduce some terminology specific to this dissertation:

Definition 2.3.9. Given a rank 2 vector bundle F over a curve C' and a point p € C, we
say that a line ¢, € P(£),) in the fiber £, over p is bad if there is a line subbundle L C E of

maximal degree such that L, = ¢,, and good otherwise.

Definition 2.3.10. Given a rank 2 vector bundle E over a curve C and points p1,--- ,p, €
C, we say that lines ¢,, € P(E,,) for i =1,--- ,n are bad in the same direction if there is a
line subbundle L C E of maximal degree such that L,, = ¢, fori=1,--- n.

Definition 2.3.11. Given a semistable rank 2 vector bundle E over a curve C' and a point
p € C, we say that a line ¢, € P(E,) is destabilizing if there is a line subbundle L C E such
that deg L > deg E and L, = {,,.

Definition 2.3.12. Given a semistable rank 2 vector bundle E over a curve C' and points
p1,-- -, pn € C, we say that lines ¢,, € P(E,,) for i = 1,--- ,n are destabilizing in the same

direction if there is a line subbundle L C E such that degL > degFE and L,, = ¢, for

i=1,---n.
Example 2.3.13. For the trivial bundle O@® O over CP*, all lines are bad and destabilizing.
Consider a rank 2 vector bundle F over a curve C. If F is unstable, then Theorem 2.3.8

implies that the parabolic bundle (E, ¢y, - - , £, ) is unstable. If E is a semistable, then the

stability of the parabolic bundle (E,/,,,- - ,£,,) can be characterized as follows:
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Theorem 2.3.14. Consider a rank 2 parabolic bundle of the form (E, Ly, ,--- ,{,. ) with
E semistable. Let m be the maximum number of lines that are destabilizing in the same
direction. Such a parabolic bundle is stable if and only if m < n/2, semistable if and only if
m < n/2, and unstable if and only if m > n/2. In particular, if n is odd then stability and

semustability are equivalent.

Example 2.3.15. As a special case of Theorem 2.3.14, consider parabolic bundles
(E 4y, ,L,) over CP' with underlying vector bundle £ = O @ O. We can globally
trivialize F and identify all the fibers with C?. All lines of E are destabilizing, and lines are
destabilizing in the same direction if and only if they are equal under the global trivializa-
tion. Let m denote the maximum number of lines ¢,, equal to any given line in CP'. From
Theorem 2.3.14, we find that (E,¢,,,--- ,{,,) is stable if m < n/2, semistable if m < n/2,
and unstable if m > n/2. For example, (E,,,) is unstable, (E, £, ,(,,) is strictly semistable
if the lines are distinct and unstable otherwise, and (£, £,,, (,,,{,,) is stable if the lines are

distinct and unstable otherwise.

2.3.3 S-equivalent semistable parabolic bundles

There is Jordan-Holder theorem for parabolic bundles, which asserts that any semistable
parabolic bundle of parabolic degree 0 has a filtration in which quotients of successive
parabolic bundles (composition factors) in the filtration are stable with parabolic slope 0
(see [MS80] Remark 1.16). The filtration is not unique, but the composition factors are
unique up to permutation. It follows that one can define an associated graded bundle of a

semistable parabolic bundle of parabolic degree 0 that is unique up to isomorphism.

We will need the concept of an associated graded parabolic bundle only for the case of
semistable rank 2 parabolic bundles. If such a parabolic bundle £ is stable, then its associated
graded parabolic bundle gr £ is just £. Now consider a strictly semistable parabolic bundle
E=(E,l,, - ,l,). Under our standard assumption that u < 1, it follows from Theorem

2.3.8 that E is semistable. The associated graded parabolic bundle gr £ is given by

gr(E>€p1v"' >€pn) = (L70p17"' 70pn) D (E/L’ —Opyy ’_Jpn)7
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where L C FE is a line subbundle such that slope L = slope E, and (L,0y,, - ,0,,) and
(E/L,—0p,, - ,—0p,) are the induced parabolic structures on L and E/L. Note that

pSlOpe(gr(Ea EPU T agpn)) = pSlOpe(Ea éplv e 7€pn) = Slope E.

Definition 2.3.16. We say that two semistable rank 2 parabolic bundles are S-equivalent

if their associated graded bundles are isomorphic.

Isomorphic parabolic bundles are S-equivalent. Here we give an example to show that

the converse does not always hold:

Example 2.3.17. Consider parabolic bundles over CIP* with underlying vector bundle £ =
O ® O. We can globally trivialize E and identify all the fibers with C2. Let A, B, and C be

distinct lines in CPP', and consider the two parabolic bundles

E=(E l,,=A1l,=A(,, =B, {,=0C),

g :=(El, =B =C =A/( =A).

7 Tp1 ? P2 ’ 7p3 ’ P4

Let L = O be the line subbundle of E such that L, = A for any point p € CP!. The bundles
E and &' are not isomorphic but are S-equivalent, since the associated graded bundles of

both bundles are isomorphic to

<L7 Op;, = 17 Opy = 17 Ops = _17 Opy = _1) D (E/L7 Op;y = _17 Opy, = _17 Ops = 17 Opy = 1)

2.3.4 Moduli spaces of rank 2 parabolic bundles

Definition 2.3.18. We define M*°(C,n) (respectively M*(C,n)), to be the moduli space
of semistable (respectively stable) rank 2 parabolic bundles of the form (£, £, - ,¢,,)
such that F has trivial determinant bundle, mod S-equivalence. In particular, M**(C,0) =
M#*(C) and M*(C,0) = M*(C). As always, we assume that u < 1. This space is defined

in [MS80]; see also [Bho89].

Remark 2.3.19. An alternative way of interpreting M**(C, n) is as the space of flat SU(2)-

connections on a trivial rank 2 complex vector bundle £ — C — {py,--- ,p,}, where the
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holonomy around each puncture point p; is conjugate to diag(e?™*, e=2"#) mod SU(2) gauge
transformations. Yet another way of interpreting the space M**(C,n) is as the character
variety R(C,n) of conjugacy classes of group homomorphisms 7 (C' —{p1, -+ ,p,}) = SU(2)
that take loops around the marked points to matrices conjugate to diag(e?™, e~2™*). Note

that p = 1/4 corresponds to the traceless character variety.

For rational u, the moduli space M?*(C,n) has the structure of a complex manifold of
dimension 3(¢g — 1) + n, where g is the genus of the curve C, and M*(C,n) is compact
for n odd. The space M*(C,n) carries a canonical symplectic form, which is obtained by
viewing M*(C,n) as a Hamiltonian reduction of a space of SU(2)-connections with prescribed

singularities.

Example 2.3.20. Let C = CP' be a rational curve. If we fix n < 3, then all rank 2
parabolic bundles of the form (O & O,¢,,,--- ,{,,) for which all the lines are distinct are

isomorphic. From this fact, together with the results of Example 2.3.15, we find that

M*(CP*,0) = {pt}, M*(CP'1)=@, M*(CP',2)={pt}, M*(CP3)={pt},

M*(CP,0) = 2, M:*(CP' 1) =92, M*CP!2)=g, M*(CP',3) = {pt}.

Using the cross-ratio and considerations of S-equivalence as described in Example 2.3.17,

one can show
M*(CP', 4) = CP, M*(CP',4) = CP" — {3 points}.

Example 2.3.21. Let X be an elliptic curve. From Corollary 2.6.25, Example 2.2.11, and
Theorem 2.3.14, we have that

M*(X,0)=CP', MX,00=2, M*(X,1)=CP',  M%X,1)=CP.
In [Varl6] it is shown that
MSS(X7 2) = (@P1)27 MS<X7 2) = ((DIPI)Q - g(X)v

where g : X — (CP")? is a holomorphic embedding. We also derive this result in Section

2.6.5.2.
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Remark 2.3.22. Throughout this dissertation we assume p < 1, but for some applications
one wants to take g = 1/4 in order to interpret M**(C,n) as a traceless character variety, as
described in Remark 2.3.19. In general M**(C,n) depends on yu; for example, for 0 <n <4
the space M**(CP*, n) is the same for u < 1/4 and pu = 1/4, but, as shown in [Sei03], for

n = 5 we have
CP? 4C_]P’2 for p < 1,
M*(CP',5) = i ., g
CP?*#5CP for p=1/4.

The dependence of M*(C,n) on u is discussed in [BH95].

2.4 Hecke modifications

2.4.1 Hecke modifications at a single point

A fundamental concept for us is the notion of a Hecke modification of a rank 2 holomorphic
vector bundle. This notion is described in [Kam11l, KW07]. Here we consider the case of a

single Hecke modification.

Definition 2.4.1. Let g : E — C' be a rank 2 holomorphic vector bundle over a curve
C. A Hecke modification E % F of E at a point p € C' is a rank 2 holomorphic vector
bundle 7 : F — C together with a bundle map a : F — E that satisfies the following two

conditions:

1. The induced maps on fibers o, : F, — E, are isomorphisms for all points ¢ € C' such

that ¢ # p.

2. We also impose a condition on the behavior of o near p. We require that there is an
open neighborhood U C C of p, local coordinates £ : U — V for V' C C such that
£(p) = 0, and local trivializations ¢ : 75" (U) — U x C? and ¢p : 75" (U) — U x C?
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of F and F over U such that the following diagram commutes:

mg (U) «—— 75" (V)

%lﬂﬁE %ltbF

UxC?+—Ux (C?,

where the bottom horizontal arrow is

(Vg o aop')(g,v) = (g, a(é(q))v)

and a: V — M(2,C) has the form

It follows directly from Definition 2.4.1 that det F = (det F) ® O(—p) and deg F' =

deg F — 1. There is a natural notion of equivalence of Hecke modifications:

Definition 2.4.2. We say that two Hecke modifications F % F and FE %— F' of £ at a

point p € C' are equivalent if there is an isomorphism ¢ : F' — F’ such that a = o/ o ¢.

Definition 2.4.3. We define the total space of Hecke modifications H' (C, E;p) to be the
set of equivalence classes of Hecke modifications of a rank 2 vector bundle 7 : E — C' at a

point p € C.

As is well-known, the set H''(C, E; p) naturally has the structure of a complex manifold

that is (noncanonically) isomorphic to CP'. A canonical version of this statement is:
Theorem 2.4.4. There is a canonical isomorphism H''(C, E;p) — P(E,), |E % F| —

im(oy, : F, = E,).

It is also useful to think about Hecke modifications in terms of sheaves of sections.
Consider a rank 2 vector bundle E and a line ¢, € P(E,). Let £ be the sheaf of sections of

E, and define a subsheaf F of £ whose set of sections over an open set U C C' is given by
FU)={se&U)|peU = s(p) €,}.
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Define F' to be the vector bundle whose sheaf of sections is F, and define a : I — FE to
be the bundle map corresponding to the inclusion of sheaves F — £. Then [EF % F| e
H!"(C, E; p) corresponds to £, € P(E,) under the isomorphism described in Theorem 2.4.4.

We have an exact sequence of sheaves

0 > F X > Cp > 0,

where C, is a skyscraper sheaf supported at the point p. It is important to note, however,
that the usual notion of equivalence of extensions differs from the notion of equivalence of

Hecke modifications given in Definition 2.4.2.

2.4.2 Sequences of Hecke modifications

We would now like to generalize the notion of a Hecke modification of a vector bundle at

a single point p € C' to the notion of a sequence of Hecke modifications at distinct points

(pla e 7pn) eCn.

Definition 2.4.5. Let g : F — C be a rank 2 holomorphic vector bundle over a curve

C. A sequence of Hecke modifications E \;11 Ey < zj . z" E, of E at distinct points
(p1,p2,"++ ,pn) € C™ is a collection of rank 2 holomorphic vector bundles 7g, : F; — C and
Hecke modifications E; <2— E;fori=1,2,--- ,n, where Ey := E.
Definition 2.4.6. Two sequences of Hecke modifications F <;11 E, (;j <z" E, and
E < le E < Zz e 4 :” E! are equivalent if there are isomorphisms ¢; : E; — E! such that
the following diagram commutes:

E+ B+ E+2— .. ¢ F,

l %lcbl %l@ %Lﬁn

E¢® g% g% % g

Definition 2.4.7. We define the total space of Hecke modifications H''(C, E; p1,- -+ ,pn) to
be the set of equivalence classes of sequences of Hecke modifications of the rank 2 vector
bundle 7g : E — C at points (p1, - ,p,) € C™. For simplicity, we will often suppress the

dependence on py, - - ,p, and denote this space as H'!(C, E,n).
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Definition 2.4.8. We say that an isomorphism of vector bundles ¢ : £ — E’ is an isomor-

phism of equivalence classes of sequences of Hecke modifications ¢ : [E <p1 Ey <p2 e <p"
1 2 n
o ot o
E,) = [B' +— E, +% ...+~ FE']if
n] [ “; 1% py " pn "]
B1 ) Qn ;A Y o /
E E R E,|=|F ¢ . E
[ T " pn n =1 pr 1 po Pn nl:

where (1 := ¢ o ay, or equivalently, if there are isomorphisms ¢; : E; — E! such that the

following diagram commutes:

E+2 E+2 F, % o™ F
%Lﬁ %lqﬁl %J/@ %’lti?n
o4 o o o,
E' E! E, e E.

In what follows, it will be useful to reinterpret equivalence classes of sequences of Hecke
modifications in terms of parabolic bundles. The relevant background material on parabolic
bundles is discussed in Section 2.3. For our purposes here, a rank 2 parabolic bundle over
a curve C' consists of a rank 2 holomorphic vector bundle ng : E — C', a parameter pu > 0,
called the weight, and a choice of line £, € P(E,,) in the fiber E, = 7'(p;) over the
point p; € C for a finite number of distinct points (py,--- ,pn) € C™. The data of just the
marked points and lines, without the weight, is referred to as a quasi-parabolic structure on
E. The additional data of the weight allows us to define the notions of stable, semistable,

and unstable parabolic bundles.

Definition 2.4.9. We define P (C, E;py,- -+ ,p,) = P(E,,) X --- xP(E,,) to be the set of
all quasi-parabolic structures with marked points (py,- -+ ,p,) € C™ on a rank 2 holomorphic
vector bundle 7 : E — (. For simplicity, we will often suppress the dependence on

p1,- -+, pn and denote this space as P (C, E, n).

Since P(E,,) is (noncanonically) isomorphic to CP', the set P**(C, E;p;,- - ,p,) natu-
rally has the structure of a complex manifold that is (noncanonically) isomorphic to (CP")™.
We have the following generalization of Theorem 2.4.4, which allows us to reinterpret Hecke

modifications in terms of parabolic bundles:
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Theorem 2.4.10. There is a canonical isomorphism H'(C,E;p1, -+ ,pn) —

PtOt(C7 E;ph e 7pn) given by

(B By e o Byl (B, Ly,

P2 Pn

where £, :=1im((a1 0 -+ 0 )y, : (Ei)p — Ep,)-

Under our reinterpretation of Hecke modifications in terms of parabolic bundles, an
isomorphism of equivalence classes of sequences of Hecke modifications corresponds to an

isomorphism of parabolic bundles:

Definition 2.4.11. We say that an isomorphism of vector bundles ¢ : £ — E’ is an
isomorphism of parabolic bundles ¢ : (E, €y, €p,) — (E', 0, -+ 0, ) if ¢(Ly,) = £, for
i=1,--.n.

Theorem 2.4.12. Two equivalence classes of sequences of Hecke modifications are isomor-

phic if and only if their corresponding parabolic bundles are isomorphic.

Proof. This is a direct consequence of Theorem 2.4.10 and Definitions 2.4.8 and 2.4.11. [

For many applications, given an equivalence class [E < le E, <:22 cee 4 z" E,] of
sequences of Hecke modifications we will be interested only in the isomorphism class of the
terminal vector bundle F,,, and it is useful to have a means of extracting this information

from the corresponding parabolic bundle (E, ¢, ,--- ., ):

Definition 2.4.13. Let (E,£,,,---,{,, ) be a parabolic bundle over a curve C. We define
the Hecke transform H(E,{p,,--- ,{,,) of E to be the vector bundle F' that is constructed as
follows. Let £ be the sheaf of sections of E. Define a subsheaf F of £ whose set of sections

over an open set U C C'is given by
FU)={se€&U)|peclU = s(pi) €y, fori=1,--- ,n}.
Now define F' to be the vector bundle whose sheaf of sections is F.

In particular, H(E,{,,,--- ,{,,) is isomorphic to E,. We will often want to pick out an

open subset of P!(C, E/, n) by using the Hecke transform to impose a semistability condition:
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Definition 2.4.14. Given a rank 2 holomorphic vector bundle E over a curve C and distinct
points (p1,-- -, pn) € C™, we define P(C, E,n) to be the subset of P (C, E,n) consisting of
parabolic bundles (E,¢,,, -+ ,{,,) such that H(E, {y,,--- ,{, ) is semistable:

P(C,E,n)={(E,ly, - ,L,,) € P(C,E,n) | HE,{,, - ,{,) is semistable}.
For simplicity, we are suppressing the dependence of P(C, m,n) on py, -+ , p, in the notation.

Theorem 2.4.15. The set P(C, E,n) is an open submanifold of P*'(C, E, n).
Proof. This follows from the fact that semistability is an open condition. O

We have generalized the notion of a Hecke modification to the case of multiple points
p1,- -+ ,Pn by considering sequences of Hecke modifications, for which the points must be
ordered. For most of our purposes we could equally well use an alternative generalization,
described in [Kaml1], for which the the points need not be ordered. Though we will not
use it here, we briefly describe this alternative generalization and show how it relates to

parabolic bundles:

Definition 2.4.16. Let 7 : E — C be a rank 2 holomorphic vector bundle over a curve
C. A simultaneous Hecke modification E ﬁ F of E at a set of distinct points
{p1,p2, -+ ,pn} C C is a rank 2 holomorphic vector bundle 7p : FF — C and a bundle

map « : F' — E that satisfies the following two conditions:

1. The induced map on fibers o, : E;, — F, is an isomorphism for all points ¢ ¢

{ph e Jpn}

2. Condition (2) of Definition 2.4.1, which constrains the local behavior of o near a Hecke-

modification point, holds at each of the points py,--- , p,.

Definition 2.4.17. Two simultaneous Hecke modifications F ﬁ F and FE <{p+./p}

F' are equivalent if there is an isomorphism ¢ : ' — F” such that a = o’ o ¢.

Definition 2.4.18. We define the total space of simultaneous Hecke modifications
HCH O, E, {p1, -+ ,pa}) to be the set of equivalence classes of simultaneous Hecke modi-

fications of the rank 2 vector bundle 7g : E — C at the set of points {p;,--- ,p,} C C. For
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simplicity, we will often suppress the dependence on {p1,---,p,} and denote this space as

HNC, E,n).

We can define a set of parabolic bundles P™(C, E,n) for which the marked points are
unordered. We can define an isomorphism H"!(C, E,n) — P (C, E,n) by

[E(m F] — (E7£p1>"' 7£pn)>
where ¢,, = im(«,, : F,, — E,,). Since the Hecke transform does not depend on the

ordering of the points, it is well-defined on parabolic bundles in P(C, E,n), and we have

that H(E, £y, - ,{p,) is isomorphic to F.

2.4.3 Moduli spaces of marked parabolic bundles

So far we have considered spaces of isomorphism classes of sequences of Hecke modifications
in which the initial vector bundle in the sequence is held fixed. But in what follows we
will want to generalize these spaces so the initial vector bundle is allowed to range over the
isomorphism classes in a moduli space of vector bundles. Translating into the language of
parabolic bundles, such spaces are equivalent to spaces of isomorphism classes of parabolic
bundles in which the underlying vector bundles are allowed to range over the isomorphism
classes in a moduli space of vector bundles. However, there is a problem with defining such

spaces arising from the fact that vector bundles often have nontrivial automorphisms.

To illustrate the problem, consider the space P (CP!, O @ O;p;), which is (noncanon-
ically) isomorphic to CIP*. We might want to reinterpret this space as a moduli space of
isomorphism classes of parabolic bundles of the form (E,¢,,) for [E] € M*(CP"'), where
M**(CP"), the moduli space of semistable rank 2 vector bundles over CPP' with trivial de-
terminant bundle, consists of the single point [O @ O]. But Aut(O & O) = GL(2,C), and
for any pair of parabolic bundles (O @© O, £,,) and (O @ O, (; ) there is an automorphism
¢ € Aut(O @© O) such that ¢(f,,) = £, . Tt follows that all parabolic bundles of the form

(O@® O, 1,,) are isomorphic and our proposed moduli space collapses to a point, when what

we wanted was CP!.
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To remedy the problem, we will add marking data to eliminate the nontrivial automor-
phisms. In particular, since stable parabolic bundles have no nontrivial automorphisms, we

make the following definition:

Definition 2.4.19. Given a curve C' and distinct points (g1, , Gm,P1," - ,Pn) € C™™,
we define the total space of marked parabolic bundles P (C,m,n) to be the set of isomor-
phism of classes of parabolic bundles of the form (E, ¢y, -, €4, Lp, - ,{p,) such that

y Cqm
[E by ] € M*(C,m):

,P;/\?t(cvmﬂl) = {[E7€thv"' 7€qm7€p17"' >€pn] | [Eagmf” 7£Qm] € MS<C7m)}

For simplicity, we are suppressing the dependence of P (C,m,n) on g1, -+ ,Gm, D1, ,Pn

in the notation.

Here the complex manifold M?*(C,m) is the moduli space of stable rank 2 parabolic
bundles over C' with trivial determinant bundle and m marked points. We will refer to the
lines €4, ,- -+ ,4,,, as marking lines, since their purpose is to add additional structure to £
so as to eliminate nontrivial automorphisms. We will refer to the lines ¢, ,--- , ¢, as Hecke
lines, since their purpose is to parameterize Hecke modifications at the points py, -, p,.
Because we have defined P15 (C,m,n) in terms of stable parabolic bundles, which have no

nontrivial automorphisms, the collapsing phenomenon described above does not occur, and

we have the following result:

Theorem 2.4.20. The set Pi(C,m,n) naturally has the structure of a complex manifold

isomorphic to a (CP)"-bundle over M*(C,m).

The base manifold M*(C,m) constitutes the moduli space over which the isomorphism
classes of vector bundles with marking data range, and the (CPP")" fibers correspond to a
space of Hecke modifications CP! for each of the points pi,-- - ,pn. We will prove Theorem

tot

2.4.20 by constructing P (C,m,n) from a universal CP'-bundle, which we first describe

for the case m = 0:
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Lemma 2.4.21. There is a universal CP'-bundle P — C x M?*(C), which has the the
property that for any complex manifold S and any CP'-bundle Q — C x S, the bundle Q is
isomorphic to the pullback of P along 1¢ X fo for a unique map fgo : S — M*(C).

Lemma 2.4.21 is proven in [BBN09]. One way to understand this result is as follows. Let
M 4(C) denote the moduli space of stable vector bundles of rank r and degree d on a curve
C. As discussed in [Hof07], one can define a corresponding moduli stack Bun; ,(C) and a
Gp-gerbe 7 : Bun; ;,(C) — Hom(—, M} ,(C)); this is a morphism of stacks for which all the
fibers are isomorphic to BG,,. The stack Hom(—, C') x Bun; 4(C) carries a universal rank 2
vector bundle €. One can show (see [Heil0] Corollary 3.12) that if ged(r, d) = 1 then M ,(C)
is a fine moduli space and & descends to a universal vector bundle £ — C' x M; ,(C'), which
can be viewed as a generalization of the Poincaré line bundle L — C x Jac(C) for the case
r=1,d = 0. By projectivizing E, we also get a universal CP'-bundle P(E) — C'x M ,(C).
If ged(r,d) # 1, then M;,(C) is not a fine moduli space and C' x M;,(C) does not carry
a universal vector bundle. It is still possible, however, to use £ to construct a universal
CP'-bundle P — C x M;,(C), only now this CP'-bundle is not the projectivization of a
universal vector bundle. One way to make this result plausible is to note that whereas a
stable vector bundle has automorphism group C*, consisting of automorphisms that scale
the fibers by a constant factor, the projectivization of a stable vector bundle has trivial

automorphism group, consisting of just the identity automorphism.

Similar results hold for moduli spaces of stable vector bundles for which the determinant
bundle is a fixed line bundle. In particular, the space M*(C') of stable rank 2 vector bundles
with trivial determinant bundle is not a fine moduli space and C' x M?*(C') does not carry a
universal vector bundle; nonetheless, it does carry a universal CP'-bundle P — C x M*(C).

We will use this universal CIP'-bundle to construct P (C,m,n) for the case m = 0:

Proof of Theorem 2.4.20. First consider the case m = 0, and note that M*(C,0) = M*(C).
Given a point p € C, let P(p) — M*(C) denote the pullback of the universal CP'-bundle
P — C x M?*(C) described in Lemma 2.4.21 along the inclusion i, : M*(C) — C x M*(C),
[E] — (p,[E]). Given distinct points (pi,---,pn) € O, we can pull back the (CP')"-

27



bundle P(p;) x -+ x P(p,) — (M?*(C))" along the diagonal map M*(C) — (M*(C))",
[E] — ([E],---,[E]) to obtain P (C,0,n).

The proof for m > 0 is the same. One can define a moduli stack corresponding to
M?*(C,m) that carries a universal rank 2 parabolic bundle [Hof07]. Using a numerical con-
dition analogous to the condition ged(r,d) = 1 for vector bundles (see [Hof07] Example 5.7
and [BH95] Proposition 3.2), one can show that M*(C,m) is a fine moduli space for m > 0
and the universal parabolic bundle on the moduli stack descends to a universal parabolic
bundle on C' x M*(C,m). We can projectivize this latter bundle and use it to construct

PLH(C,m,n) in the same manner as for the m = 0 case. O

We will often want to pick out an open subset of Pi%*(C, m,n) by imposing a semistability

condition:

Definition 2.4.22. Given a curve C' and distinct points (¢, ,G@m,P1, " ;Pn) €
C™t we define Py (C,m,n) to be the subset of P (C,m,n) consisting of points

B lyyy - g lpyy -+ Uy, | such that H(E,{,,,--- ,{,,) is semistable:

)y Yqm

Pu(Cym,n) =
{[E by s by 1 lp] € PRF(Cymun) | H(E, £y, -+, £,) is semistable}.

For simplicity, we are suppressing the dependence of Py (C,m,n) on ¢, ,¢m,P1,"** ,Pn

in the notation.

Theorem 2.4.23. The set Py (C,m,n) is an open submanifold of P (C,m,n).
Proof. This follows from the fact that semistability is an open condition. O

We can interpret marked parabolic bundles in terms of Hecke modifications as follows:

Definition 2.4.24. We define a sequence of Hecke modifications of a parabolic bundle
(E, Ly, -+ ,L,,) to be a sequence of Hecke modifications of the underlying vector bundle

E.
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Definition 2.4.25. We say that two sequences of Hecke modifications

/ ! !
51 QX2 [

aq a2 Qn / ! ! n /
<E>€q17"'>€qm)‘p1 El\p2 n Em (E7€q17...7£qm) ” 1, D En
are equivalent if there are isomorphisms ¢; : E; — E! for i = 0,--- ,n such that the following

diagram commutes:

<E7£q1a"‘ 7£qm) = FE; @ FEs A3 L. O E,
%l@) %ltbl %lqsz gl .
(E,’a]l’”' ’£;m> @1 Ei Qg Eé ag e o, E;L

tot

The space P37 (C,m,n) can then be interpreted as a moduli space of equivalence classes

of sequences of Hecke modifications of parabolic bundles, and the space Py (C, m,n) can be
interpreted as the subspace P9 (C,m,n) consisting of equivalence classes of sequences for
which the terminal vector bundles are semistable. We will not use these interpretations here,

since it is simpler to work directly with the marked parabolic bundles.

2.5 Rational curves

2.5.1 Vector bundles on rational curves

Grothendieck showed that all rank 2 holomorphic vector bundles on (smooth projective)
rational curves are decomposable [Gro57|; that is, they have the form O(n) & O(m) for
integers n and m. The instability degree of O(n)®O(m) is [n—m/, so the bundle O(n)&O(m)
is strictly semistable if n = m and unstable otherwise. There are no stable rank 2 vector

bundles on rational curves.

2.5.2 List of all possible single Hecke modifications

Here we present a list of all possible Hecke modifications at a point p € CPP! of all possible
rank 2 vector bundles on CIP'. We will parameterize Hecke modifications of a vector bundle

E at a point p in terms of lines ¢, € P(E,), as described in Theorem 2.4.4. Since we are
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always free to tensor a Hecke modification with a line bundle, it suffices to consider vector

bundles of nonnegative degree.

Theorem 2.5.1. Consider the vector bundle O(n)®O forn > 1 (unstable, instability degree
n). The possible Hecke modifications are

O(n)® O(-1)  ifl,=0(n), (a bad line),

On-1)a0 otherwise (a good line).

On) & O +

Proof. (1) The case ¢, = O(n),. A Hecke modification a : O(n) ® O — O(n) & O(-1)
corresponding to £, is

1 0

0 f
where f: O(—1) — O is the unique (up to rescaling by a constant) nonzero morphism such

that f, = 0 on the fibers over p.

(2) The case ¢, # O(n),. Since n > 1, we can choose a section ¢t of O(n) such that
t(p) # 0. Choose a section s = (at,b) of O(n) @ O for a,b € C such that s(p) # 0 and s € £,
A Hecke modification oo : O(n) @ O — O(n — 1) @ O corresponding to £, is

f at
0 b

where f: O(n —1) — O(n) is the unique (up to rescaling by a constant) nonzero morphism

such that f, = 0 on the fibers over p. O

Theorem 2.5.2. Consider the vector bundle O @ O (strictly semistable, instability degree
0). The possible Hecke modifications are

OO0+ 0d0(-1) for all ¢, (all lines are bad).

Proof. Define a section s = (a,b) of O & O for a,b € C such that s(p) # 0 and s(p) € ¢,. If
b =0, then a Hecke modification a : O @ O(—1) = O & O corresponding to ¢, is

a 0

0 f
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and if b # 0, then a Hecke modification oo : O & O(—1) — O @& O corresponding to £, is

a f
b 0

where f: O(—1) — O is the unique (up to rescaling by a constant) nonzero morphism such

that f, = 0 on the fibers over p. O

2.5.2.1 Observations

From this list, we make the following observations:

Lemma 2.5.3. The following results hold for Hecke modifications of a rank 2 vector bundle

E over CP!:

1. A Hecke modification of E changes the instability degree by £1.

2. Hecke modification of E corresponding to a line {, € P(E,) changes the instability
degree by —1 if £, is a good line and +1 if £, is a bad line.

3. A generic Hecke modification of E changes the instability degree by —1 unless E has
the minimum possible instability degree 0, in which case all Hecke modifications of E

change the instability degree by +1.

2.5.3 Moduli spaces Pi'(CP',m,n) and Py (CP*, m,n)
Our goal is to define a moduli space of Hecke modifications that is isomorphic to the Seidel-
Smith space Y(S?,2r). Kamnitzer showed that such a space can be defined as follows:

Definition 2.5.4 (Kamnitzer [Kam11]). Given distinct points (py,- - ,pa,) € (CPH)?", de-
fine the Kamnitzer space H(CP!,2r) to be the subset of H!*(CP', O @ O,2r) consisting

. . . o (6% (0%
of equivalence classes of sequences of Hecke modifications O @ O < pl By« p2 e \p” by,
1 2 2r

such that Fs, is semistable.

In particular, the condition that Es. must be semistable implies that Es. = O(—7) &
O(—r).
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Theorem 2.5.5 (Kamnitzer [Kam11]). The Kamnitzer space H(CP*,2r) has the structure

of a complex manifold isomorphic to the Seidel-Smith space Y(S?,2r).

We will describe the Seidel-Smith space Y(S5?,2r) and Kamnitzer’s isomorphism in Sec-
tion 2.5.6. We can use the results of Section 2.4.2 to reinterpret the Kamnitzer space

H(CP',2r) in terms of parabolic bundles:

Definition 2.5.6. Define P (CP',n) = PP (CP', O @& O,n) and P(CP',2r) =
P(CP', 0@ 0O,2r).

Theorem 2.5.7. There is a canonical isomorphism H(CP',2r) — P(CP*,2r).

Proof. This follows from restricting the domain and range of the canonical isomorphism

HHCP, O @ O,2r) — PYCP, O @ O, 2r) described in Theorem 2.4.10. O

We can also reinterpret the spaces P (CP', n) and P(CP',2r) in terms of the moduli
spaces of marked parabolic bundles that we defined in Section 2.4.3. In what follows, we will
choose a global trivialization O @O — CP' x C? and identify all the fibers of O@® O with C2.
We can then identify lines ¢, € P(E,) with points in CIP! and speak of lines in different fibers
as being equal or unequal. In Section 2.2 we define a moduli space M**(CP"') of semistable
rank 2 vector bundles with trivial determinant bundle, and in Section 2.3 we define a moduli
space M S((D]Pl, m) of stable rank 2 parabolic bundles with trivial determinant bundle and
m marked points. From the fact that M**(CP') = {[O @ O]} and Aut(O © O) = GL(2,C),

we obtain the following results:

Theorem 2.5.8. The moduli space M?*(CP',3) consists of the single point [O @
O,y Ly, Uy, where Ly, Ly, , Ly, are any three distinct lines. Given any two stable parabolic

bundles of the form (O @ O,y ,ly,, L) and (O & O, L 0 ), there is a unique (up to

’77q17 7q2? Tqs3

rescaling by a constant) automorphism ¢ € Aut(O @ O) such that ¢({,,) = £, fori=1,2,3.

Corollary 2.5.9. There is an isomorphism M*(CP',3) — M**(CP"), [ODO, Ly, Ly, lys] —
O & 0]
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These results motivate the following definitions of “marked” versions of P**(CP!, n) and

P(CP', 2r):
Definition 2.5.10. Define P (CP',n) := P(CP,3,n) and Py(CP'n) =

Pu(CP, 3, n).

The marked and unmarked versions of these spaces are easily seen to be isomorphic:

Theorem 2.5.11. The spaces P (CP', n) and P (CP n) are (noncanonically) isomor-

phic.

Proof. Choose three distinct lines £,,, £4,, {4, and define an isomorphism P!(CP',n) —

Pi7 (CP',n) by
O@ O, Ly, | = [0OB O, Ly, Ly by, Upy s+ ]
The isomorphism is not canonical, since it depends on the choice of lines ¢, , £4,, {4, n

Theorem 2.5.12. The spaces Py (CP',n) and P(CP',n) are (noncanonically) isomorphic

Proof. This follows from restricting the domain and range of the isomorphism

Ptot(CP!, n) — P (CP', n) described in Theorem 2.5.11 O

Our primary motivation for defining Pi*(CIP',n) is to draw a parallel with the case

of elliptic curves, which we consider in Section 2.6. But the space Pi(CP', n) also has
an advantage over P'*(CIP' n) in that we can use the marking lines to render certain

constructions canonical. For example, we can define a canonical version of the noncanonical

isomorphism P (CP', n) = P(CP', O @ O,n) — (CP)™

Lemma 2.5.13. Fix distinct points qi, g2, q3,p € CP' and a parabolic bundle (E, ly,, ly,, ;)
such that [E, 0y, 0y, L] € M*(CP',3). There is a canonical isomorphism P(E,) —
M*(CP',4) = CP" given by

gp = [E7 ng ? ng ? qu’ gp]
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Proof. This follows from the fact that (E, ¢, {,,, () is stable, so the lines ¢,,, {,,, {,, are all

distinct under the global trivialization of E. O]

Theorem 2.5.14. There is a canonical isomorphism h : Pi(CP' n) — (M**(CP*, 4))".

Proof. Define maps h; : Pi%(CP',n) — M*(CP',4) fori=1,--- ,n by
Ri([B, Loy s Cags Loy oy 3 o)) = (B oy Ly Loy, L)

Then h := (hy,--- , hy) is an isomorphism by Theorem 2.4.20 and Lemma 2.5.13. ]

Remark 2.5.15. Definition 2.4.22 for Py(C,m,n) implies that Py (CP',m,n) = @ for
odd n, since there are no semistable rank 2 vector bundles of odd degree on CP'. We could
alternatively define Py, (CP',m,n) by requiring that H(E, £, ,--- £, ) have the minimal
possible instability degree, which is 0 for n even and 1 for n odd. This condition is equivalent

to semistability for n even, but is a distinct condition for n odd, and gives a nonempty space.

2.5.4 Embedding Py (CP*, m,n) — M*(CP*,m + n)

We will now describe a canonical open embedding of the space Py (CIP*, m, n) into the space

of stable parabolic bundles M*(CP', m + n). We first need two Lemmas:

Lemma 2.5.16. Given a parabolic bundle (OD O, Ly, ,--- ,L,.) over CP* if b, .-+ L, are
bad in the same direction then H(O & O, 0,,,--- ,{,,) = O & O(—n).

Proof. Since ¢, ,--- ,{,, are bad in the same direction, we have that ¢, = --- = ¢, under
a global trivialization of @ @ O in which all the fibers are identified with C?. An explicit

sequence of Hecke modifications with ¢, =--- =/, is given by
O@O% O O(-1) % % O @ O(—n),

where O © O % O & O(—1) is a Hecke modification corresponding to the line ¢,, and for

1=2,---,n we define
10

a; = 9

0 fi
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where f; : O(—i—1) — O(—1i) is the unique (up to rescaling by a constant) nonzero morphism

such that (f;),, = 0 on the fibers over p;. O

Lemma 2.5.17. Given a parabolic bundle (O @ O,l,,,--- 4, ) over CP', if H(O @
O, 0, L) is semistable then (O ® O, Ly, ,--- L, ) is semistable.

) ¥Pn

Proof. We will prove the contrapositive, so assume that (O & O, ¢,,,--- ,{,,) is unstable. It
follows that more n/2 of the lines are bad in the same direction. Let s denote the number of
such lines, and choose a permutation o € ¥,, such that the first s points of (o(p1),- -+, 0(pn))
correspond to these lines. By Lemma 2.5.16 we have that H(O© O, Ly, 1 lo(p,)) = O®
O(—s), which has instability degree s. Lemma 2.5.3 states that a single Hecke modification
changes the instability degree by £1, so H({O®O, lopyys -+ s lop,)) = HODO, by, -+ p,)

has instability degree at least s — (n — s) = 2s —n > 0, and is thus unstable. O

Remark 2.5.18. The converse to Lemma 2.5.17 is does not always hold; for example,
consider the semistable parabolic bundle (O & O, ¢,,,¢,,,{p,, {p,) for points p; = [1 : ;] €
CP!, where

by = [1:0], by =1[0:1], Ly =[1:1], by, = [(ps — pun) (pa — o) = (s — p2) (pta — pa)].
One can show that H(O @& O,0,,, Ly, lps, lp,) = O(—3) & O(—1), which is unstable.

Theorem 2.5.19. There is a canonical open embedding Py (CP, m,n) — M*(CP*, m+n).

Proof. Take [E €y, g Loy 5 lp,] € Pu(CP',m,n); note that £ = O @ O. Since
(E, 4y, -+ ,4,,) is stable, fewer than m/2 of the lines ¢, ,--- ¢, are equal under the
global trivialization of E. Since H(E,{p,,---,{,,) is semistable, it follows from Lemma
2.5.17 that (E,{,,,--- ,{,,) is semistable, so at most n/2 of the lines ¢,,,--- , ¢, are equal.
It follows that fewer than (m + n)/2 of the lines ¢y, -, Ly, -+, ¢y, are equal, so
(B lys-+ Ly by 5 €p.) is stable.  So Py(CP',m,n) is a subset of M*(CP',m +
n). Specifically, the set Py (CP',m,n) consists of points [E, €y, Lo lpys s lp,] €

y Yqm

M?*(CP',m + n) such that (E,{,,, - £, ) is stable and H(E,{,,,--- £, ) is semistable.

Since stability and semistability are open conditions, we have that Py (CIP', m, n) is an open

subset of M*(CP', m + n). O
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2.5.5 Examples

We can generalize the Kamnitzer space H(C]Pl,n) to allow for both even and odd n, in

analogy with the generalization described in Remark 2.5.15:

Definition 2.5.20. Given distinct points (p1,--- ,p,) € (CP')", define the Kamnitzer space
H(CP',n) to be the subset of H*'(CP', O @ O,n) consisting of equivalence classes of se-
quences of Hecke modifications O @ O +—— E, +—= ... <>* [, such that E, has the

p1 p2 Pn

minimum possible instability degree (0 for n even, 1 for n odd.)

Here we compute Kamnitzer space H(CP', n) for n =0, 1,2, 3.

2.5.5.1 Calculate H(CP*',0)

We have

H(CP',0) = H(CP',0) = {0 @ O}.

2.5.5.2 Calculate H(CP', 1)

All Hecke modifications of O & O give O & O(—1), which has instability degree 1, so

H(CTP', 1) = H'(CP', 1) = CP.

2.5.5.3 Calculate H(CP',2)

A sequence of two Hecke modifications of O ¢ O must have one of two forms:
OO % O 0(-1) % O(-1)a0(-1), OO0 % Od0(-1) % O 0O(-2).

In the first case the terminal bundle O(—1)®O(—1) is semistable, whereas in the second case
the terminal bundle O ® O(—2) is unstable. So H(CP',2) is the complement in H*(CP', 2)
of sequences of Hecke modifications of the second form. As we showed in the proof of Lemma

2.5.16, the resulting space is

H(CPY,2) = (CPY)? — {(a,a) | a € CP'}.
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2.5.5.4 Calculate H(CP',3)

Now consider a sequence of three Hecke modifications of O & O. The only sequences for

which the terminal bundle does not have instability degree 1 are of the form
(’)@O% O 0(-1) % O 0(-2) %O@O(—?)).

So H(CP*, 3) is the complement in H!(CP', 3) of sequences of Hecke modifications of this

form. As we showed in the proof of Lemma 2.5.16, the resulting space is

H(CP',3) = (CP')? — {(a,a,a) | a € CP'}.

2.5.6 The Seidel-Smith space Y(5?,2r)

Here we compare the embedding of Py (CP',2r) into M*(CP",2r + 3) that we defined in
Theorem 2.5.19 with an embedding of the Seidel-Smith space Y(S?, 2r) into M*(CP', 2r +3)
due to Woodward. We begin by defining the Seidel-Smith space Y(S?, 2r).

Definition 2.5.21. We define the Slodowy slice Ss, to be the subspace of gl(2r, C) consisting
of matrices with 2 x 2 identity matrices I on the superdiagonal, arbitrary 2 x 2 matrices in

the left column, and zeros everywhere else.

Example 2.5.22. Elements of Sg have the form
Yi I 0
Yo 0 I |,
Y; 0 0
where Y7, Ys, and Y3 are arbitrary 2 x 2 complex matrices.
Definition 2.5.23. Define a map x : Sy, — C?" /3, that sends a matrix to the multiset of
the roots of its characteristic polynomial, where a root of multiplicity m occurs m times in

the multiset.

Definition 2.5.24. Given distinct points (1, - , fa,) € C*", define the Seidel-Smith space
Y(S2,2r) to be the fiber x *({p1, - , 2, }). For simplicity, we are suppressing the depen-
dence of Y(S?,2r) on puy, -+ , pta, in the notation. This space was introduced in [SS06], which
denotes Y(S%,2r) by V..
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The Seidel-Smith space Y(S?,2r) naturally has the structure of a complex manifold,
in fact a smooth complex affine variety. In what follows, it will be useful to define local
coordinates ¢ : U — V on CP', where U = {[1 : 2] | z € C} ¢ CP', V = C, and
£([1: 2]) = 2. We define points p; := £~ *(y;) € CP* corresponding to p; for i = 1,--- , 2r.

2.5.6.1 Kamnitzer isomorphism H(CP',2r) — V(52 2r)

Here we describe an isomorphism due to Kamnitzer from the space of Hecke modifications

H(CP,2r) to the Seidel-Smith space Y(S2,2r).

Define global meromorphic sections s,, of O(n) such that divs, = n - [0o]. For each rank

2 vector bundle F = O(n) @ O(m), define standard meromorphic sections
e = (sn,0), e = (0,5m),
and define a standard local trivialization ¢ : 7' (U) — U x C? of E over U by
ep(p) = (p.(1,0)), ep(p) = (p.(0,1)).

Consider an element of H(CP', 2r):

[E() < (;11 FE; \zz SR ((;22: Egr], (22)
where Fy = O@® O. Define rank 2 free C|[z]-modules L; for i = 0,--- | 2r as spaces of sections

of E; over U:
L =T(U, B) = C[2] - {ep,, ek, }.

The sequence of Hecke modifications (2.2) then yields a sequence of C[z]-module morphisms

(67

Ly,.

We can also view &; as a holomorphic map &; : V. — M(2, C), defined as in Definition 2.4.1

such that
(Vg 0 i o) (g, v) = (g, a@(E(q))v).
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Define an 2r-dimensional complex vector space V' by
V = coker(@y oago---o0dag.) = Lo/(@g0dg0---0dm)(Ls).

One can show that an ordered basis for V' is given by

1.1 _r—1.2 1 2 1 2
(2" Ceg,, 2 €y, s 2€E,, 2€T,, €hy, Chy)-

Note that z acts C-linearly on V', and thus defines a 2r x 2r complex matrix A relative to

this basis.

Theorem 2.5.25 (Kamnitzer [Kam11]). We have an isomorphism H(CP', 2r) — V(S2,2r)

given by

[EO\le El\a2 e EQT]'—)A.

p2 p2r

To perform calculations, it is useful to have explicit expressions for the maps ;. For
each vector bundle E and point p = [1 : u| € U, we use the standard trivialization
Yp 7Y E) = U x C? to identify P(E,) with CP'. For each line ¢, € P(E,) = CP', we
give a holomorphic map @ : V' — M (2, C) that describes a Hecke modification o : F' — E

corresponding to £,

Hecke modifications of O(n) & O for n > 1:

1 0
l,=1:0]: O(n) ® 0 <~ O(n) ® O(-1), a(z) = :
P 0 z—p
o z—p A
l,=1X:1]: O(n)@@TO(n—l)@(’), a(z) =
0 1
Hecke modifications of O & O:
o 1 0
l,=1[1:0]: OO0+ 0 0O(-1), a(z) = ,
P 0 z—pu
e} )\ Z—H
l,=1A:1]: O@OTO@O(—D, a(z) =
1 0
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2.5.6.2 Woodward embedding )(S?,2r) — M*(CP*,2r + 3)

Here we describe an embedding due to Woodward [Woo] of the Seidel-Smith space Y(S5?, 2r)
into the space of stable rank 2 parabolic bundles M*(CP',2r + 3). We first make the

following definition:

Definition 2.5.26. Given distinct points (pi,---,p,) € (CPY)", define a subspace
P(CP',n) of PP (CP', O @ O,n) consisting of semistable parabolic bundles (O @
O>€P1"" 76}%)'

In particular, P**(CP*,n) consists of parabolic bundles (O @ O, ¢, ,{,,) for which
at most n/2 of the lines are equal to any given line under a global trivialization of O & O.
Given distinct points (g1, g2, g3, 1, -+ ,Pn) € (CP1)"3 and distinct lines ¢, £,,, 4, € CP,
we can define an embedding P**(CP!, n) — M**(CP', n + 3),

(O@O,gpl,"' vgm) = [O@O’Eqnngng’népu'” 7€pn]'

We will define an embedding Y(S2,2r) — P**(CP",2r). Composing with P**(CP',2r) —
M?*(CP',2r + 3) will then yield the Woodward embedding. We first define some vectors.

Define vectors z,y € C? by

r = (1,0) € C?, y=(0,1) € C*
Define vectors 1, -+ , @, Y1, -+ ,yr € C*" by
= (2,0,---,0)€C¥”, 2=(0,2,0,---,0€C¥, -, 2,=(0,---,0, ) € C*,
ylz(yaoa"'70)662r7 y2:<0ay707“'70)€®2ra Ty yr:(oa"'aoay)e@2r'

Define vectors x(u), y(p) € C* by

I(:u) = (MT—1I7 NT_2x7 T, BT JI) - /LT_IIl + /LT_2I2 + -+ HTr—1 + 1z, € @2T7

y(p) = Wy, Wy, iy y) =0 g A 1y e ey € C

We use the vectors to define a subspace W (s, t) of C?", and we calculate its dimension:

40



Definition 2.5.27. Given (s,t) € C?, define a subspace W (s, t) = C-{sz(u)+ty(p) | p € C}
of C?.

Lemma 2.5.28. For (s,t) € C? — {0}, we have that dim W (s,t) = r.
Proof. Define a vector w(s,t, ) € C*" by
w(s,t, 1) = se(p) +ty(p) = p" sz +tyr) + -+ p(szy +tye_1) + (sz +ty,). (2.3)

Let S C C* denote the span of the linearly independent vectors {sz; + tyy, - -+ , sz, + ty,}.
Clearly W (s,t) € S. Form an rxr matrix V whose i-th row vector consists of the components
of w(s,t,1) relative to the ordered basis (sx; +tyy, - -+, sz, +ty,) of S. From equation (2.3),
it follows that the (i, 7) matrix element of V' is given by

Vig = (@)™
So V is a Vandermonde matrix corresponding to the distinct integers (1,2,--- ,7), and thus
has nonzero determinant. It follows that the vectors {w(s,t,1), -+ ,w(s,t,r)} are linearly
independent, hence W (s,t) =S and dim W (s,t) = dim S = r. O

We are now ready to define the Woodward embedding. Take a matrix A € )(S?,2r).

Let v(p) € C* be a left-eigenvector of A with eigenvalue pu:
v(p)A = po(p).
Given the form of A, it follows that

v(p) = X(p)z(u) + Y (1)y(p)

for some X (p),Y (1) € C. Since A € Y(S?,2r), the eigenvalues of A are yuy, -+ , o, € C.
Define lines ¢, € CP! fori=1,---,2r by

Cp, = [X (i) 0 Y (1))

Theorem 2.5.29 (Woodward [Wool). We have an embedding Y(S?,2r) — P**(CP*,2r),
A (0@0761017"' >€P2r)'
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Proof. A priori the codomain of the map is P**(CP", 2r), so we need to show that the image
is in fact contained in P**(CP', 2r). Note that if £,, = [s : t] then v(u;) € W(s,t). Since the
eigenvalues pq, - - , o, are distinct, the eigenvectors {v(p1),- -+ ,v(uo,)} are linearly inde-
pendent, so the maximum number of eigenvectors that can live in W (s, t) is dim W (s,t) = r
by Lemma 2.5.28. So at most r of the lines ¢,,, - - - , £, can be equal to any given line [s : ]

in CP', and thus (O @ O,4,,,- -+ ,{,, ) is semistable. O

Lemma 2.5.17 states that we have an embedding P(CP*,2r) — P**(CP*,2r). We can
precompose this embedding with the canonical isomorphism H(CP',2r) — P(CP!,2r)
described in Theorem 2.5.7 to obtain an embedding H(CP',2r) — P*(CP',2r), and we

obtain a commutative diagram

H(CP!, 2r) ——— P*(CP', 2r)

| |

Pr(CPY, 2r) ——— M*5(CPY, 2r + 3),

where the bottom horizontal arrow is the embedding described in Theorem 2.5.19. It
is interesting to compare the embedding H(CP',2r) — P*(CP',2r) to the embedding
V(S2,2r) — P**(CP*,2r) from Theorem 2.5.29. We make the following conjecture:

Conjecture 2.5.30. There is a commutative diagram

H(CP, 2r) — P*(CP*, 2r)

F F

V(S2,2r) ——— P*(CP*, 2r),

where the left downward arrow is the Kamnitzer isomorphism and the right downward arrow

is the map on parabolic bundles induced by ¢ € Aut(O ® O) = GL(2,C), where

Theorem 2.5.31. Conjecture 2.5.30 holds for r =1 and r = 2.

Proof. This can be shown by a direct calculation. O
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2.6 Elliptic curves

2.6.1 Vector bundles on elliptic curves

Vector bundles on elliptic curves have been classified by Atiyah [Ati57]:

Definition 2.6.1. Define £(r,d) to be the set of isomorphism classes of indecomposable

vector bundles of rank r and degree d on an elliptic curve X.

The set £(r,d) naturally has the structure of a complex manifold, and we have the

following result:

Theorem 2.6.2 (Atiyah [Ati57]). There are isomorphisms Jac(X) — E(r,d) for all r and
d.

In particular, £(1,d) is the set of isomorphism classes of line bundles of degree d, and
the isomorphism Jac(X) — £(1,d) is given by [L] — [L ® O(d - e)] for a choice of basepoint
e € X. Here we summarize the facts we will need regarding line bundles and rank 2 vector
bundles on elliptic curves. Results that are well-known will be stated without proof; full

proofs can be found in [Ati57, Tenl1, Big].

Definition 2.6.3. We say that a degree 0 line bundle L is 2-torsion if L? = O.

There are four 2-torsion line bundles on an elliptic curve. We will denote the 2-torsion

line bundles by L; for ¢« = 1,2, 3,4, with the convention that L; = O.

Definition 2.6.4. Given line bundles L and M on an elliptic curve, an extension of L by

M is an exact sequence

where F is a rank 2 vector bundle.

Lemma 2.6.5. Given line bundles L and M on an elliptic curve, equivalence classes of

extensions of L by M are classified by Ext*(L, M) = H*(L ® M~1).
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Lemma 2.6.6 (Teixidor [Big], Lemma 4.5). If [E] € £(2,d), then h°(E) =0 if d < 0 and
R (E) =d if d > 0, where h°(E) := dim H°(E).

We will now list the rank 2 vector bundles on an elliptic curve X. Up to tensoring with

a line bundle, we have the following vector bundles:

2.6.1.1 Rank 2 decomposable vector bundles

Decomposable bundles have the form L; ¢ L, where L; and L, are line bundles. The
instability degree of Ly @ Lo is | deg Ly — deg Ly|, so Ly @ Ly is strictly semistable if deg L; =

deg L, and unstable otherwise. The proof of the following result is straightforward:

Lemma 2.6.7. Let E = Li® Lo, where Ly and Ly are line bundles such that deg Ly > deg Ls.
At a point p € X the line (L), is bad, and all other lines in P(E,) are good.

A semistable decomposable bundle must have even degree, so after tensoring with a
suitable line bundle it has the form L & L~!, where L is a degree 0 line bundle. There
are two subclasses of such bundles: the four bundles L; @ L;, and bundles L & L~! such
that L? # O. These two subclasses of semistable decomposable bundles have very different

properties:
Lemma 2.6.8. The bundle L; ® L; has no good lines, and Aut(L; ® L;) = GL(2,C).

Lemma 2.6.9. Let E = L@ L™, where L is a degree 0 line bundle such that L? # O. The

automorphism group Aut(E) is the subgroup of GL(2,C) matrices of the form

A 0
0 D

At a point p € X the lines L, and (L™1), are bad, and all other lines in P(E,) are good.
Given a pair of good lines €y, (;, € P(E,), there is a unique (up to rescaling by a constant)

automorphism ¢ € Aut(E) such that ¢({;) = H(£;).

The proofs of Lemmas 2.6.8 and 2.6.9 are straightforward and have been omitted.
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2.6.1.2 Rank 2 degree 0 indecomposable bundles

There is a unique indecomposable bundle F, that can be obtained via an extension of O by

O:

0 yO—2 1250 ) 0. (2.4)

The bundle F; is strictly semistable, and hence has instability degree 0. The map Jac(X) —
£(2,0), [L] = [F»,® L] is an isomorphism, so in particular F» ® L = F; if and only if L = O.

Lemma 2.6.10. If L is a degree 0 line bundle, then

C- -« if L =0, C-p if L =20,
Hom(L, Fy) = Hom(F3, L) =
0 otherwise. 0 otherwise.

Proof. Apply Hom(L, —) to the short exact sequence (2.4) to obtain

0 —— Hom(L, ©) —— Hom(L, F5) —>— Hom(L,0) —— Ext'(L,0).  (2.5)

If L # O, then Hom(L, O) = 0 and the long exact sequence (2.5) implies that Hom(L, F) =
0. So assume L = O. Then Hom(L,O) = C - 1p. To prove that Hom(L, F,) = C - a, it
suffices to show that d(1p) # 0. Assume for contradiction that this is not the case. Then
the long exact sequence (2.5) implies that there is a morphism f € Hom(L, F3) such that

B«(f) =P o f=1p. It follows that the short exact sequence (2.4) splits, contradiction.

The claim regarding Hom(F,, L) can be proven in a similar manner by applying

Hom(—, L) to the short exact sequence (2.4). O

Lemma 2.6.11. Given a point ¢ € X, there are nonzero sections to and t; of Fo @ O(q)
such that

1. HY(F, ® O(q)) = C - {to, 1},
2. dino =0 and dinl =4dq,

3. ti(p) € O(q)y for all p € X, where O(q) — Fy ® O(q) is the unique degree 1 line
subbundle of Fy ® O(q),
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4. {to(p),t1(p)} are linearly independent for all p € X such that p # q.

Proof. Tensoring o : O — F, with O(gq) and precomposing with the unique (up to rescaling
by a constant) nonzero morphism O — O(q), we obtain a section t; of F, ® O(q) such that
divt; = q and t;(p) € O(q), for all p € X. By Lemma 2.6.6 we have that h°(F, @ O(q)) = 2,

so we can choose a section ty of Fy ® O(q) linearly independent from t;.

We claim that divtg = 0. Assume for contradiction that this is not the case. We obtain a
subbundle O(div tg) — F»® O(q), and by semistability of F,® O(q) it follows that divty = p
for some p € X. We thus obtain a subbundle O(p) — F» ® O(q), hence a subbundle
O(p — q) — F,. But this contradicts Lemma 2.6.10 unless p = ¢, in which case t, and t; are

linearly dependent.

We claim ty(p) and ¢;(p) are linearly independent at all points p € X such that p # g.
Assume for contradiction that they are linearly dependent at some point p distinct from gq.
Then we can choose a nonzero section s = ato+bt; of F,&0O(q) for a,b € C such that s(p) = 0.
We thus obtain a subbundle O(divs) — F, ® O(q). We have that p € div s, so semistability
of F» ® O(q) implies that divs = p. We thus obtain a subbundle O(p) — F» ® O(q), hence
a subbundle O(p — q) — F»>. But this contradicts Lemma 2.6.10. O

Lemma 2.6.12. The automorphism group Aut(Fy) is the subgroup of GL(2,C) matrices of
the form

A B

0 A
At a point p € X the line O, is bad, where O — Fy is the unique degree 0 subbundle of F,
and all other lines in P((F),) are good. Given a pair of good lines £y, (;, € P((F),), there is
a unique (up to rescaling by a constant) automorphism ¢ € Aut(E) such that ¢({;) = ().

Proof. Apply Hom(—, F}) to the short exact sequence (2.4) to obtain
0 — Hom(O, i) —>— Hom(Fy, F) —<— Hom(O, F). (2.6)

Note that a*(1g,) = «, so Lemma 2.6.10 implies that o* is surjective and thus the sequence

(2.6) is in fact short exact. It follows that Hom(F, I5) = C - {1g,, 1}, where n := f*(«a) =
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a o . Note that non = 0, so we can define an injective group homomorphism Aut(F») —

GL(2,C) by

A B
0 A

The fact that O, is the unique bad line of (£3), follows from Lemma 2.6.10. Given good
lines £, £;, € P((Fy),), choose nonzero vectors v,v',w € (F3), such that v € £,, v € {},, and
w € O,. Since £, # O,, it follows that {v,w} is a basis for (F3),. Define a,b € C such
that v' = av + bw; note that since £, # O, we have that a # 0. Define ¢ € C such that
n,(v) = cw; note that since 7,(w) = 0 and n, # 0, we have that ¢ # 0. Then v' = ¢,(v),
where ¢ = alp+(b/c)n € Aut(Fy). Hence ¢(¢,) = £,, and ¢ is clearly unique up to rescaling

by a constant. O]

2.6.1.3 Rank 2 degree 1 indecomposable bundles

Given a point p € X, there is a unique degree 1 indecomposable bundle G(p) that can be

obtained via an extension of O(p) by O:

0 > O Ga(p) —— O(p) —— 0.

The bundle G5(p) is stable, with instability degree —1. The map £(1,1) — £(2,1), [O(p)] —
[G2(p)] is an isomorphism, with inverse isomorphism given by det : £(2,1) — £(1,1), [E] —
[det E]. It follows that for any degree 0 divisor D on X we have that

Ga(p +2D) = Ga(p) ® O(D),
and in particular G5(p) ® L = Go(p) if and only if L? = O.
Lemma 2.6.13. We have that Aut(Gsy(p)) = C* consists only of trivial automorphisms that
scale the fibers by a constant factor.
Proof. This follows from the fact that Gy(p) is stable. O

Lemma 2.6.14. Any degree 0 line bundle L is a subbundle of Go(p) via a unique (up to

rescaling by a constant) inclusion map L — Go(p).
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Proof. Let L be a degree 0 line bundle. By Lemma 2.6.6 we have that h%(Go(p) ® L) =
1, hence Go(p) ® L™ has a nonzero section s. We thus obtain a subbundle O(divs) —
Gy(p) ® L™, By stability of Go(p) ® L™, we must have divs = 0. Tensoring with L, we
obtain a subbundle L — G5(p). The claim regarding uniqueness follows from the fact that

hO(Gg(p) ® L_l) =1. ]
Corollary 2.6.15. All lines of Go(p) are bad.

Proof. This is shown in Theorem 2.6.19. [

2.6.2 List of all possible single Hecke modifications

Here we present a list of all possible Hecke modifications at a point p € X of all possible
rank 2 vector bundles on X, up to tensoring with a line bundle. We will parameterize Hecke
modifications of a vector bundle E at a point p in terms of lines ¢, € P(E),), as described in
Theorem 2.4.4. Since we are always free to tensor a Hecke modification with a line bundle,

it suffices to consider vector bundles of nonnegative degree.

To construct the list, we will often use the following strategy. By tensoring F with a
line bundle of sufficiently high degree if necessary, we can assume without loss of generality
that E is generated by global sections. Consider a Hecke modification o : F¥ — E of E at
p corresponding to a line ¢, := ima, € P(E,). Since we have assumed E is generated by
global sections, there is a section s of E such that s(p) # 0 and s(p) € ¢,. We then get a

subbundle O(divs) — E and a commutative diagram

0 —— O(divs) > » L® O(—p) —— 0
N
0 —— O(div s) > B L 0,

where f is the unique (up to rescaling by a constant) nonzero morphism L ® O(—p) — L.
Thus F' is an extension of L ® O(—p) by O(div s), and we can often use this information to

determine F'.
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2.6.2.1 Rank 2 bundles of degree greater than 1

Theorem 2.6.16. Consider a bundle of the form L@® O for L a line bundle of degree greater

than 1 (unstable, instability degree deg L). The possible Hecke modifications are

L& O(—p) if t, = L, (a bad line),
(L@ O(—p)) ® O  otherwise (a good line).

L O«

Proof. (1) The case ¢, = L,. A Hecke modification o : L & O(—p) — L & O corresponding

to £, is
1 0
0 f
where f is the unique (up to rescaling by a constant) nonzero morphism O(—p) — O.

(2) The case £, # L,. Since deg L > 1, we can choose a nonzero section ¢ of L such that
t(p) # 0. Since ¢ is nonvanishing at p, we can choose a section s = (at,b) of L& O for a,b € C
such that s(p) # 0 and s(p) € ¢,. A Hecke modification a : (L ® O(—p)) @O — L& O

corresponding to ¢, is

f at
0 b

where f is the unique (up to rescaling by a constant) nonzero morphism L& O(—p) — L. O

2.6.2.2 Rank 2 bundles of degree 1

Theorem 2.6.17. Consider the bundle O(q) ® O with q # p (unstable, instability degree 1).

The possible Hecke modifications are

O(g) ®O(=p)  ifl, = O(q)yp (a bad line),
Olq—p @0 otherwise (a good line).

O(q) ® O «+

Proof. One can prove this result by using the fact that O(q) has a section ¢ such that ¢(p) # 0

and writing down explicit Hecke modifications, as in the proof of Theorem 2.6.16. O]
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Theorem 2.6.18. Consider the bundle O(p)®O (unstable, instability degree 1). The possible
Hecke modifications are
O(p) ©O(=p) ity =Op)y (a bad line),
Op) @0+ 080 if £, = O, (a good line),
Fy otherwise (a good line).
Proof. (1) The case ¢, = O(p),. A Hecke modification o : O(p) ® O(—p) = O(p) & O is
given by
1 0
0 f
where f is the unique (up to rescaling by a constant) nonzero morphism O(—p) — O.

(2) The case £, = O,. A Hecke modification a: O & O — O(p) @ O is given by

where ¢ is the unique (up to rescaling by a constant) nonzero morphism O — O(p).

(3) The case ¢, # O(p), and ¢, # O,. Pick a point ¢ € X such that ¢ # p. Choose a
nonzero section ¢y of O(p + q) such that ty(¢q) # 0 and to(p) # 0. Choose a nonzero section
t; of O(q). Note that divt; = ¢. Since to(p) # 0 and ¢1(p) # 0, we can define a section
s = (aty,bt1) of O(p+ q) ® O(q) for a,b € C such that s(p) # 0 and s(p) € ¢,. Since
l, # O(p), and £, # O,, it follows that a # 0 and b # 0, thus divs = 0 and we obtain a
subbundle O(divs) = O — O(p+q) ® O(q), 1 — s. Thus we have a commutative diagram

0 19 II O(2q) — 0,
0 (@) O(p+q)®0Oq) —— O(2q+p) —— 0.

The bundle F' cannot split, since there are no nonzero morphisms O(2q) — O(p+q) ® O(q),
hence F' is indecomposable. Since det I’ = O(2q) it follows that F' = F, ® O(q) ® L for a
2-torsion line bundle L. We can compose « with projection onto the second summand of
O(p+ q) ® O(q) to obtain a nonzero morphism F — O(q), so Lemma 2.6.10 implies L = O
and F' = F, ® O(q). O
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Theorem 2.6.19. Consider the bundle Go(p) (stable, instability degree —1). There is a

canonical isomorphism P(Gy(p),) — M*>*(X) = CP' given by
by = [H(Gs(p), b))
All lines of Gia(p) are bad.

Proof. By Lemma 2.6.14, any degree 0 line bundle L is a subbundle of G3(p) via a unique
(up to rescaling by a constant) inclusion map L — Ga(p). Thus we have a commutative

diagram

0 L y F Lt ——0,

l

0 L Gy(p) —— L' @ O(p) —— 0.

Note that Ext'(L™!, L) = H°(L72). If L? # O then H°(L=2) = 0, so F splits, thus F =
Lo L™t

Now suppose L? = 0. We claim that F is indecomposable; assume for contradiction that
this is not the case. Then F = L@ L, so o : F — Ga(p) gives a map OB O — G1(p)® L that
is an isomorphism away from p, so we obtain two linearly independent sections of G3(p) ® L.
But by Lemma 2.6.6 we have that h°(G2(p) ® L) = 1, contradiction. It follows that F is
indecomposable. Since det F' = O, it follows that F' = F», ® M for a 2-torsion line bundle
M. Since we have a nonzero morphism L — F, Lemma 2.6.10 implies that M = L and
F=F,®L.

Our results show that we have a surjection Jac(X) — M*(X), [L] — [F]. The vector
bundle F is isomorphic to H(G(p), {,), where ¢, € P(G2(p),) is the line corresponding to
(G2(p), % F] € H""(X,G5(p); p) under the canonical isomorphism described in Theorem

2.4.4, and we have a commutative diagram

Jac(X) ——— M*(X)

|

P(G, (p>p)'
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Here Jac(X) — P(Ga(p),) is given by [L] — L, and P(Ga(p),) — M**(X) is given by ¢, —
[H(G2(p), t,)]. Since Jac(X) — M*5(X) is surjective, we have that Jac(X) — P(Ga(p),)
is surjective and P(Ga(p),) — M**(X) is an isomorphism. The surjectivity of Jac(X) —
P(Ga(p),) implies that all lines of P(G2(p),) are bad. Since Ga(p) = G2(q) ® M for a suitable
degree 0 line bundle M, all lines of G5(p) are bad. ]

2.6.2.3 Rank 2 bundles of degree 0

Theorem 2.6.20. Consider the bundle O @O (strictly semistable, instability degree 0). The

possible Hecke modifications are
O30+ 0a0(—p) for all ¢, (all lines are bad).

Proof. We can choose a section s of O @ O such that s(p) # 0 and s = £,. We thus obtain

a subbundle O — O ¢ O, 1 — s and a commutative diagram

0 (@) > F > O(—p) —— 0,
0 O Oe0 O 0.

Since Ext'(O(—p),0) = H°(O(—p)) = 0, we have that F splits, thus F = O & O(—p).
Alternatively, one can write down explicit Hecke modifications, as in the proof of Theorem

2.6.16. [l

Theorem 2.6.21. Consider a bundle of the form L @® L™, where L is a degree 0 line bundle
such that L? # O (strictly semistable, instability degree 0). The possible Hecke modifications

are

L (L '®0O(-p) ifl,=L, (abad line),
LOL '« (LoO(=p) @ L™t ift,= (L"), (a bad line),
Ga(p) ® O(—p) otherwise (a good line).

Proof. For £, = L, or {, = (L™'),, we can write down explicit Hecke modifications, as in

the proof of Theorem 2.6.16. So assume ¢, # L, and ¢, # (L™'),. Choose a point e € X
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such that (L& L™) ® O(e) = O(q1) ® O(gs) for points q,q € X distinct from p. Since
L? # O, it follows that ¢, # ¢o. Note that ¢; + ¢ = 2e. Let t; be the unique (up to rescaling
by a constant) nonzero section of O(q); note that divt, = g,. We can define a section
s = (aty, btz) of O(q1) ® O(qz) for a,b € C such that s(p) # 0 and s(p) € ¢,. Since ¢, # L,
and £, # (L™'),, it follows that a # 0 and b # 0, thus div s = 0. We thus obtain a subbundle
O(divs) =0 — O(q1) ® O(q2), 1 — s and a commutative diagram

0 @ a Ol +q —p) —— 0,
0 @ » O(q1) © O(qe) ——— O(q1 + @) —— 0.

There are no nonzero morphisms O(q; + ¢ — p) — O(q1) ® O(gq2), so F cannot split.
Since det F' = O(q1 + g2 — p), we have that F' = Go(q1 + g2 — p) = Ga2(2(e — p) +p) =
Ga(p) ® O(e — p). O

Theorem 2.6.22. Consider the bundle Fy (strictly semistable, instability degree 0). The
possible Hecke modifications are

O & O(—p) if £, = O, (a bad line),
Ga(p) @ O(—p)  otherwise (a good line),

Fy

where O — F; is the unique degree 0 line subbundle of F5.

Proof. (1) The case {, = O,. We have a commutative diagram

0 (@] > F > O(—p) —— 0,
0 O F, O 0.

Since Ext'(O(—p), 0) = H°(O(—p)) = 0, we have that F splits, thus F = O @ O(—p).

(2) The case ¢, # O,. Pick a point ¢ € X such that ¢ # p. Choose sections t, and ¢; of
F,®0O(q) as in Lemma 2.6.11. We can define a section s = ato+ bty of F» ® O(q) for a,b € C
such that s(p) # 0 and s(p) € ¢,. Since ¢, # O, it follows that a # 0, thus divs = 0. We
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thus obtain a subbundle O(divs) = O — F, ® O(q), 1 — s and a commutative diagram

FE

0 O y Iy ® O(q) ——— O(29) —— 0.

We claim that F' cannot split. Assume for contradiction that F' splits, thus F' = OGO (2g—p).
Then we can precompose « with the inclusion O(2g—p) — O®O(2q—p) to obtain a nonzero
morphism O(2q — p) — F>» ® O(q), contradicting Lemma 2.6.10. Since F' does not split and
det F' = O(2q —p), we have that F' = G2(2¢g—p) = G2(2(¢—p) +p) = Ga(p) O(¢—p). O

2.6.2.4 Observations

From this list, we make the following observations:

Lemma 2.6.23. The following results hold for Hecke modifications of a rank 2 vector bundle

E on an elliptic curve:

1. A Hecke modification of E changes the instability degree by +1.

2. Hecke modification of E corresponding to a line £, € P(E,) changes the instability
degree by —1 if ¢, is a good line and +1 if £, is a bad line.

3. A generic Hecke modification of E changes the instability degree by —1 unless E has
the minimum possible instability degree —1, in which case all Hecke modifications of E

change the instability degree by +1.

2.6.3 Moduli spaces P (X, m,n) and Py (X, m,n)

In Section 2.5.3 we defined a total space of marked parabolic bundles P (CP! n) =
Piet(CP!,3,n) for rational curves, and we showed that the Seidel-Smith space Y(S?,2r)
could be reinterpreted as the subspace Py (CP, 2r) = Py (CP!, 3, 2r) of P (CP, 2r). We
now want to generalize the spaces P (CP', n) and Py (CPY,2r) to the case of an elliptic

curve X. There are obvious candidates: namely, the spaces Py (X, m,n) and Py (X, m,n)
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for some value of m, which should be chosen to obtain the correct generalization. One pos-
sibility is to use same value m = 3 that we did for rational curves. But m =1 is also yields

a reasonable generalization, as can be understood from the following considerations.

In Section 2.2 we define a moduli space M**(C) of semistable rank 2 vector bundles
over a curve C' with trivial determinant bundle, and in Section 2.3 we define a moduli
space M?*(C,m) of stable rank 2 parabolic bundles over a curve C' with trivial determinant
bundle and m marked points. Recall that for rational curves we chose m = 3 marking
lines because we wanted P (CP!, m,n) to be isomorphic to the space of parabolic bundles

P (CP', O @ O,n) in which the underlying vector bundle is O @ O, and
Plt(CP!,3,0) = M*(CP!,3) = M*(CP'") = {[0 @ O]}.

For an elliptic curve X, however, the corresponding spaces M*(X,3) and M**(X) are not
isomorphic: the space M*(X,3) is a complex manifold of dimension 3, whereas M**(X) is
isomorphic to CP'. Instead we have the following results, which can be viewed as elliptic-

curve analogs to Theorem 2.5.8 and Corollary 2.5.9 for rational curves:

Theorem 2.6.24. The moduli space M*(X,1) consists of points [E,{,], where {; is a good
line and either E = F, ® L, or E = L & L™ for L a degree 0 line bundle such that
L* # O. Given any two parabolic bundles of the form (E,{,) and (E, {,) representing points
of M*(X,1), there is a unique (up to rescaling by a constant) automorphism ¢ € Aut(F)
such that ¢({,) = €.

Proof. If [E,{,] € M*(X,1) then E is semistable, det E = O, and ¢, is a good line. Since
E is semistable and det E = O, it must be L; ® L;, F> ® L;, or L & L~ for L a degree 0
line bundle such that L? # O. But Lemma 2.6.8 states that L; ® L; has no good lines, so E
cannot be L; ® L;. Lemmas 2.6.9 and 2.6.12 show that the remaining two possibilities for £

do have good lines and also prove the statement regarding unique automorphisms. O]

Corollary 2.6.25. The map M*(X,1) — M*(X), [E,{,] — [E] is an isomorphism.
From these results, we see that there are two natural generalizations of P (CP! n) to
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an elliptic curve. The generalization of Pif(CP!,3,0) = M**(CP") is
P (X,1,0) = M*(X, 1) = M*(X),

which would lead us to choose m = 1 marking lines. The generalization of P (CP!,3,0) =

M?*(CP,3) is
Pi(X,3,0) = M*(X, 3),

which would lead us to choose m = 3 marking lines. We will address the question of which
of these values of m yields the correct generalization of the Seidel-Smith space in Section

2.7.

From Theorem 2.4.20, we have that Pi(X,1,n) is a (CP')"-bundle over M*(X,1) =
CP'. We will show that this bundle is trivial. To prove this result, we will use the
marking line of Pi(X,1,n) to canonmically identify P(E,) with M*(X) = CP' for
[Eylyyy lpyy - 3 Ly ] € PRE(X,1,n):

Lemma 2.6.26. Fiz a parabolic bundle (E,{,) such that [E,(,] € M*(X,1), a point p € X
such that p # q, and a point e € X such that p+ q = 2e. There is a canonical isomorphism
P(E,) — M*(X) given by

by = [H(E, Ly, £,) ® O(e)].

Proof. Theorem 2.6.24 implies that ¢, is a good line and either £ = Fo,® L, or E = L ® Lt
for L a degree 0 line bundle such that L? # O. From Theorems 2.6.21 and 2.6.22, it follows
that

H(E, l;) = Ga(q) @ O(—q) = Ga(p +2(q — ¢)) ® O(—q) = Ga2(p) ® O(—e).
The result now follows from Theorem 2.6.19. O

Lemma 2.6.26 can be viewed as the elliptic-curve analog to Lemma 2.5.13 for rational
curves. To perform calculations, it will be useful to explicitly evaluate the map P(E,) —

M#(X) for bad lines ¢, € P(E,). In general, we prove:
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Lemma 2.6.27. Fiz distinct points p,q € X and a point e € X such that p+q = 2e. If (,

15 a good line, then

HL®L ' {4, L,)®0()=M®M ™' where M =L®O(p—e)=L®0(e—q),
HLoL ', (L™),)@0)=M&M ' where M = L®O(q—¢)=L®O(e —p),
HL®L 'L, (L™),)®0()=M®M " where M =L ®0O(q—¢) =L®0O(e—p),

H(Fy,0,,0,)®0(e) = M & M, where M = O(p —e) = O(e — q).

Proof. These results are straightforward calculations using the list of Hecke modifications in
Section 2.6.2. As an example, we will prove the result involving F5. From Theorem 2.6.22

we have that
H(F5,0,) =0 & O(—p).

Since /, is a good line, the bundle H (F,, O,,{,) = H(F3,{,, O,) must be semistable, and the

result now follows from Theorem 2.6.17. ]
Theorem 2.6.28. There is a canonical isomorphism h : Pi9(X,1,n) — (M**(X))"+1.
Proof. Define hqy : Pi¢(X,1,n) — M*(X) by

hO([Eagquépu T 7€pn]> - [E]

Fori=1,--- ,n, choose a point ¢; € X such that ¢; +p; = 2¢; and define h; : P7(X,1,n) —
M= (X) by

hi([Evgqugpu T 7€pn]) = [H(Eﬁgqnepi) ® 0(62)]

Then h := (hg,h1,--- ,h,) is an isomorphism by Theorem 2.4.20, Corollary 2.6.25, and
Lemma 2.6.26. O

For n = 1, the isomorphism h : P (X,1,n) — (M*(X))"*! appears to be closely
related to an isomorphism M**(X,2) — (CP')? defined in [Varl6], and our definition of h

was motivated by this isomorphism.
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2.6.4 Embedding Py (X, m,n) - M*(X,m+n)

We will now describe a canonical open embedding of the space Py (X, m,n) into the space

of stable parabolic bundles M*(X, m + n). We first need two Lemmas:

Lemma 2.6.29. Let (E,{,,,--- ,{,,) be a parabolic bundle over an elliptic curve X such that
E is semistable. If the lines £y, ,- -+ , L, are bad in the same direction then H(E, €, ,--- ()

has instability degree n.

Proof. Up to tensoring with a line bundle, the bundle E has one of three forms:

(1) E=0&0. Since {,,,--- L, are bad in the same direction, we have that ¢, =

-++ ={, under a global trivialization of £ in which all the fibers are identified with C?. A

sequence of Hecke modifications with ¢, =---=1¢, is given by
O@O%O@O(—pl)% ~~<;‘—:(’)@O(—p1—--~—pn).

Here OO % Oa0O(—py) is a Hecke modification corresponding to ¢,,, and fori = 2,--- | n

we define
1 0
a; = )
0 f;
where f; is the unique (up to rescaling by a constant) morphism from O(—p; — -+ — p;) to
O(—p1 — -+ —pi—1). Thus HO @& O, 4y, -+ ,{,,) = O & O(—p; — --- — p,,) has instability
degree n.

(2) E = F,. Then ¢,, = O,, for i =1,--- ,n. A sequence of Hecke modifications with

by, = Op, for i =1,--- nis given by
Fy = 0@ 0(—py) = = OB O(—p1 = = pa),

where F, % O & O(—p1) is a Hecke modification corresponding to ¢,, = O,, and «; is as
above for i = 1,--- ,n. Thus H(F3,Op,,---,0,,) = O & O(—p1 — --- — p,) has instability

degree n.
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(3) E =L@ L™! for a degree 0 line bundle L such that L? # O. Then either £,, = L,
fori =1,--- ,norf, = (L"), fori=1,--- n. A sequence of Hecke modifications with

ly, =L, fori=1,--- nis given by

Lol <=L (L @0(-p) = Le (L @O0(—p1 — - —py)),

where

1 0

a; =

0 1® f;
and f; is as above. Thus H(L & L™, L,,,---,L,) = L& (L' ® O(—p; — -+ — p,)) has
instability degree n. We can write down a similar sequence of Hecke modifications to show
that H(L& L™, (L), -+, (L)) = (LRO(=p1 —- - —p,)) @ L~ has instability degree
n. 0

Using Lemma 2.6.29 in place of Lemma 2.5.16, the proofs of Lemma 2.5.17 and Theorem

2.5.19 for rational curves carry over to the case of elliptic curves. We thus obtain:

Lemma 2.6.30. Let (E,{,,,---.{,,) be a parabolic bundle over an elliptic curve X such
that E is semistable. If H(E, Ly, ,--- ,{p,) is semistable (E, ly,,--- £, ) is semistable.

Theorem 2.6.31. There is a canonical open embedding Py (X, m,n) — M*(X, m + n).

2.6.5 Examples

Here we compute the space Py (X, 1,n) for n =0, 1,2. We first make some definitions:

Definition 2.6.32. The Abel-Jacobi isomorphism X — Jac(X) is given by p — [O(p — e)]

for a choice of basepoint e € X.

Definition 2.6.33. We define a map = : Jac(X) — M*(X), [L] — [L & LY.

Note that 7 is surjective and m(L) = 7(L™1), so 7 : Jac(X) = X — M*(X) = CP'is a
2:1 branched cover with four branch points [L; & L;| corresponding to the four 2-torsion line

bundles L;.
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Definition 2.6.34. Given a degree 0 divisor D on an elliptic curve X, define the translation

map 7p : Jac(X) — Jac(X), [L] — [L @ O(D)].

2.6.5.1 Calculate Py (X, 1,0)

We have that
Pu(X,1,0) = PH(X,1,0) = M5(X,1) = M*(X) = CP".

Note that the embedding Py (X, 1,0) — M?*(X,1) defined in Theorem 2.6.31 is an isomor-

phism.

2.6.5.2 Calculate Py (X,1,1)

Theorem 2.6.35. The map g : Jac(X) — (M**(X))?, g = (m, T 0 Tp,_,) is injective and
has image the complement of h(Puy(X,1,1)), where h : PH(X,1,1) — (M*(X))? is the

1somorphism described in Theorem 2.6.28.

Proof. First we show that g has image the complement of h(Py(X, 1)) in (M**(X))? Take
a point [E, ly,, £y, ] € Pi(X,1,1). From Theorems 2.6.21, 2.6.22, and 2.6.24, it follows that
H(E, () = Ga(p1) ® O(—p) is stable if £,, is a good line, and H(E, ¢,,) is unstable if £,, is
a bad line. So the complement of Py, (X, 1,1) in P17 (X, 1,1) consists of isomorphism classes

[E, y,,C,,] such that £, is a bad line, and is thus given by the union of the sets
Sy ={[L& L " {,,L,]|[L] € Jac(X), L* # O},
Sy={[L® L " Ly, (L7"),] | [L] € Jac(X), L? # O},
Sy =A{[F2® Li, gy, (Li)p,] | i =1,2,3,4},
where in each case /,, is a good line. From Lemma 2.6.27, it follows that the complement of
h(Pu(X,1,1)) in (M*5(X))? is given by the union of the sets
{(m([L]), (7 o 7p—e)([L]) | [L] € Jac(X), L* # O},
h(S2) = {(m([L]), (7 0 e, )([L])) | [L] € Jac(X), L* # O},
{

(m([Lil), (momp e )([Li])) [ # = 1,2,3,4}.
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Note that

(m([L]), (7 0 7o, )([L]) = (7 ([L7]), (7 © Tpy—es )([LTT])),
so h(S7) = h(Ss), and we have that
h(51) Uh(S2) Uh(Ss) = {(n([L]), (7 © Tp—e) )([L])) | [L] € Jac(X)} = im g.

So the image of ¢ is the complement of h(Py;(X,1,1)) in (M*¥(X))?

Next we show that g is injective. If g(L) = g(L’), then projection onto the first factor of
(M*3(X))? gives w(L) = w(L'), hence either L' = L or L' = L™, Suppose L' = L~!. Then
projection onto the second factor of (M**(X))? gives 1(LRO(p1—e1)) = (L0 (p1 —e1)),
hence either L® O(p; —e;) = L' @ O(py —e1) or L& O(p1 —e1) = L ® O(e; — py). The
first case implies L = L~!. The second case implies 2p; = 2e;, but we chose e; such that

p1 + q1 = 2eq, hence p; = ¢, contradiction. Thus L' = L, so ¢ is injective. O

If we use the Abel-Jacobi isomorphism to identify X and Jac(X), the (canonical) iso-
morphism A : Pi(X,1,1) — (M*(X))? to identify Py (X,1,1) and (M*(X))?, and the
(noncanonical) isomorphism M**(X) =2 CP' to identify M**(X) and CP', we find that

Pu(X,1,1) = (CPY)? — ¢g(X).

Remark 2.6.36. Using results from the proof of Theorem 2.6.35, it is straightforward to
show that

M*(X,2) = Pi9(X,1,1) = (CP")?,  M*%(X,2) =Py(X,1,1) = (CP"? — g(X).

These calculations reproduce the results of [Varl6] for M**(X,2) and M*(X,2).

2.6.5.3 Calculate Py (X, 1,2)

The same method that we used to prove Theorem 2.6.35 can be used to calculate Py, (X, 1,2):

Theorem 2.6.37. The map f : Jac(X) — (M*(X))3, f = (7, T0Ty, ey, TOTpy—e,) 18 injec-
tive and has image the complement of h(Py(X,1,2)), where h : P9(X,1,2) — (M*(X))3

1s the isomorphism described in Theorem 2.6.28.
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If we use the Abel-Jacobi isomorphism to identify X and Jac(X), the (canonical) iso-
morphism A : Pi%(X,1,2) — (M*(X))? to identify Pi5(X,1,2) and (M*(X))?, and the
(noncanonical) isomorphism M**(X) = CP' to identify M**(X) and CP', we find that

Pu(X,1,2) = (CPY)? — f(X).

2.7 Possible applications to topology

Here we briefly outline some possible applications of our results to topology. We have pro-
posed complex manifolds Py (X, 1,2r) and Py (X, 3,2r) as candidates for a space Y(T?, 2r)
that generalizes the Seidel-Smith space J(S?,2r) and that could potentially be used to con-
struct symplectic Khovanov homology for lens spaces. The following tasks remain to be done

to complete the construction:

1. We need to define a suitable symplectic form on Py (X, m,2r). One possibility is to
pull back the canonical symplectic form on M#*(X,2r + m) using the open embedding
Pu(X,m,2r) — M*(X,2r +m).

2. We need to find a suitable action of the mapping class group MCGy,.(T?) on
Pr (X, m,2r) that is defined up to Hamiltonian isotopy. Such an action might be
obtained via symplectic monodromy by viewing Py (X, m,2r) as the fiber of a larger
space that fibers over the moduli space of genus 1 curves with marked points. Such an
approach would be analogous the way Seidel an Smith obtain an action of the braid
group on the Seidel-Smith space via monodromy around loops in the configuration
space [Sei03], and similar methods are used to define mapping class group actions for

constructing Reshetikhin-Turaev-Witten invariants [BKO01].

3. We need to define suitable Lagrangians L, in P(X, m, 2r) corresponding to r unknotted
arcs in a solid torus. For Py (X, 1,2r) we would expect L, to be homeomorphic to
S1x (S?)", and for Py(X,3,2r) we would expect L, to be homeomorphic to S x (52)".
Perhaps such Lagrangians can be constructed in a manner analogous to Seidel-Smith

by viewing Py (X, m, 2r) as the fiber of a larger space that fibers over the configuration
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space Confs,.(X) of 2rr unordered points on X and looking for vanishing cycles as points

successively brought together in pairs.

4. We need to prove that the Lagrangian Floer homology of a knot K in a lens space is

Y invariant under different Heegaard splittings of (Y, K) into solid tori.

5. We need to verify that our construction of symplectic Khovanov homology reproduces

ordinary Khovanov homology for the case of knots in S®.

Several of our results appear to be related to a possible connection between Khovanov
homology and symplectic instanton homology. Roughly speaking, symplectic instanton ho-
mology is defined as follows. Given a knot K in a 3-manifold Y, one Heegaard-splits (Y, K)
along a Heegaard surface ¥ to obtain handlebodies U; and U,. Each handlebody U; contains a
portion of the knot A; := U; N K consisting of r arcs that pairwise connect points py, - - - , pa,
in 3. To the marked surface (X,py,---,po.) one associates a character variety R(X,2r),
which has the structure of a symplectic manifold, and to the handlebody pairs (U;, A;) one
associates Lagrangians L; C R(X,2r). The symplectic instanton homology of (Y, K) is then
defined to be the Lagrangian Floer homology of the pair of Lagrangians (Ly, Lo).

In fact, there are several technical difficulties that must be overcome in order to get a
well-defined homology theory. For example, one needs to introduce a framing in order to
eliminate singularities in the character variety R(X,2r). One way to introduce a framing is
by replacing the knot K with K U ©, where O is the theta graph shown in Figure 2.1(a);
this approach is described in [Horl6]. We Heegaard-split (Y, K U O) along a Heegaard
surface X that is chosen to transversely intersect each edge e; of the theta graph in a single
point ¢;. The marked Heegaard surface is now (X, q1, q2,q3,p1,: -, Por), corresponding to
the character variety R(X,2r + 3), and the handlebody pairs are now (U;, A; U ¢;), where
¢; is the epsilon graph shown in Figure 2.1(b). The character variety R(X,2r + 3) has the
structure of a symplectic manifold that is symplectomorphic to the moduli space of stable
parabolic bundles M*(C,2r + 3), where C' is any complex curve homeomorphic to 3. (The

space M*(C,2r + 3) has a canonical symplectic form.)
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Figure 2.1: (a) The graph ©. (b) The graph € in B®. (¢) The graph D, C S* for p = 1. (d)
The graph o in S* x D2,

Symplectic instanton homology can be viewed as a symplectic replacement for singular
instanton homology, a knot homology theory defined using gauge theory, and the two the-
ories are conjectured to be isomorphic. This is an example of an Atiyah-Floer conjecture,
which broadly relates Floer-theoretic invariants defined using gauge theory to correspond-
ing invariants defined using symplectic topology. Kronheimer and Mrowka constructed a
spectral sequence from Khovanov homology to singular instanton homology [KM14], and
the embedding Py, (CP',2r) — M*(CP"',2r + 3) described in Theorem 2.5.4 suggests that
it may be possible to construct an analogous spectral sequence from symplectic Khovanov
homology to symplectic instanton homology. (This idea for constructing a spectral sequence
was suggested to the author by Ivan Smith and Chris Woodward.) If so, perhaps the fact
that we have an embedding Py, (X, 3,2r) — M*(X,2r+3), as described in Theorem 2.6.4, is
evidence that the correct generalization of the Seidel-Smith space is P/ (X, 3, 2r). Indeed, a
calculation of the Lagrangian intersection L; N Ly in the traceless character variety R(T%,3)
for (53,0) yields a single point, a space whose cohomology is the correct Khovanov homol-
ogy for the empty knot, and calculations of the Lagrangian intersections in the traceless
character variety R(T?,5) for (S3 unknot U ©) and (S3, trefoil U ©) yield S? and RP? I S?,
spaces whose cohomology gives the correct Khovanov homology for the unknot and trefoil.

Based on these speculations, we make the following conjectures:

Conjecture 2.7.1. The space Py (C,3,2r) is the correct generalization of the Seidel-Smith

space Y(S?,2r) to a curve C of arbitrary genus.
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Conjecture 2.7.2. Given a curve C' of arbitrary genus, there is a canonical open embedding

Pu(C,m,n) — M*(C,m+n).

On the other hand, perhaps the embedding Py (X, 1,2r) — M*(X,2r + 1) described
in Theorem 2.6.4 is related to a spectral sequence from a Khovanov-like knot homology
theory to symplectic instanton homology defined with a novel framing. Rather than using
a theta graph, perhaps for the lens space L(p,q) one could introduce a framing specific to
that lens space by using a p-linked dumbbell graph D,, as shown in Figure 2.1(c) for the
case p = 1. There is a unique edge e; of the dumbbell graph that connects the two vertices,
and one can choose a Heegaard surface > that transversely intersects e; in a single point
¢1- The marked Heegaard surface is now (X, g, p1,- -, por), corresponding to the character
variety R(X,2r + 1), and the handlebody pairs (U;, A;) are now (U;, A; U ;), where o; is the
sigma graph shown in Figure 2.1(d). The character variety R(3, 2r+1) has the structure of a
symplectic manifold that is symplectomorphic to the moduli space of stable parabolic bundles

M*(X,2r + 1), which is the codomain of the embedding Py, (X, 1,2r) — M*5(X,2r + 1).
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CHAPTER 3

Singular instanton homology for knots in lens spaces

3.1 Introduction

We describe here a scheme for constructing generating sets for Kronheimer and Mrowka’s
singular instanton knot homology for the case of knots in lens spaces. In outline, our approach
is as follows. We Heegaard-split a lens space Y containing a knot K into two solid tori U
and Us;. The solid torus U; contains a portion of the knot consisting of an unknotted arc,
together with a specific holonomy perturbation. The solid torus U, contains the remainder
of the knot. From the Heegaard splitting of Y we obtain a pair of Lagrangians L, and L,
in the traceless SU(2)-character variety of the twice-punctured torus R(7%,2), and in many
cases the points of intersection of L; and L constitute a generating set for the (reduced)

singular instanton homology I%(Y, K).

To explain the details of our scheme, we must first define several character varieties and
explain their relationship to the Chern-Simons functional. Critical points of the unperturbed
Chern-Simons functional are flat connections. Gauge-equivalence classes of flat connections
correspond to conjugacy classes of homomorphisms p : m (Y — KUHUW) — SU(2), where
H is a small loop around K and W is an arc connecting K to H, as shown in Figure 3.1,
and the homomorphisms are required to take loops around K and H to traceless matrices
and loops around W to —1. The space of such conjugacy classes form a character variety
that we will denote by R*(Y,K). We will refer to H U W as an earring that has been
added to the knot K. The conditions on p involving the earring are imposed in order to
avoid reducible connections; such connections prevent us from obtaining a chain complex for

singular instanton homology, with a differential that squares to zero. It will also be useful to
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Figure 3.1: The knot K, loop H, and arc W.

define a character variety R(Y, K) in which we do not impose these conditions, and which
consists of conjugacy classes of homomorphisms p : m (Y — K) — SU(2) that take loops

around K to traceless matrices.

The character variety R*(Y, K) is typically degenerate, in which case the unperturbed
Chern-Simons functional is not Morse. We can render the Chern-Simons functional Morse
by introducing a suitable holonomy perturbation term that vanishes outside of a small solid
torus obtained by thickening a loop P C Y. The net effect of the perturbation is to modify the
corresponding character variety: the critical points of the perturbed Chern-Simons functional
correspond to conjugacy classes of homomorphisms p : 7 (Y — KUH UW U P) — SU(2),
where p obeys the same conditions as for R*(Y, K) as well as an additional condition involving
the loop P that we will describe in Section 3.3.3. We will denote the character variety

corresponding to the perturbed Chern-Simons functional by R% (Y, K).

Example 3.1.1. For the trefoil K in S3, one can show that
R(S%, K) = {2 points}, RYS® K)= {1 point}IIS*, R1(S% K) = {3 points},
where the perturbation used to define R?(S?%, K) is as described in Section 3.6.1.

Our goal, then, is to devise an effective means of calculating R% (Y, K). We will view
(Y, K) as the result of gluing together two solid tori U; = S' x D? and U, = S' x D2
The solid torus U; contains an unknotted arc Ay, the earring H U W, and the holonomy

perturbation loop P, as shown in Figure 3.6. The solid torus Us contains a (possibly knotted)
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arc As. We glue the two tori together via a homeomorphism ¢ : (0U;, 0A;) — (0Usz, 0A3) to
obtain (Y, K).

We define character varieties R (Up, A;) and R(Us, Ay) in analogy with R% (Y, K) and
R(Y, K). The character variety R% (U, A;) consists of conjugacy classes of homomorphisms
p:mU — A UHUWUP) — SU(2) that take loops around A; and H to traceless
matrices and loops around W to —1, and satisfy an additional requirement involving P as
described in Section 3.3.3. The character variety R(Us, As) consists of conjugacy classes of
homomorphisms p : m (Uy — Ay) — SU(2) that take loops around A, to traceless matrices.
We define a torus T? := 9U, containing points {p;, po} = OA;, and we define a corresponding
character variety R(7?,2) that consists of conjugacy classes of homomorphisms p : 7 (7% —

{p1,p2}) — SU(2) that take loops around p; and ps to traceless matrices.

We define amap R% (Uy, A;) — R(T?,2) by pulling back along the inclusion (9U;, dA;) <
(Uy, Ay). We define a map R(Us, As) — R(T?,2) by pulling back along the composition of
¢ : (0Uy,0A:) — (0Us, 0As) with the inclusion (0Usy, 0As) < (Us, A3). We similarly define
maps RL(Y, K) — Ri(Up, Ay) and Ri(Y, K) — R(U,, Ay) by pulling back along inclusions.

We have a commutative diagram:

RL(Y,K)
\
REr(Ulv Al) XR(TQ,Q) R(UQ, Ag) — R(UQ,AQ) (31)
Ri(Uy, Ay) R(T?,2).

Here p is an induced map from R% (Y, K) to the fiber product R (U, A;) X p(r2,2) R(Us, Ag).
The character variety R(T?,2) is a symplectic manifold that generalizes the pillowcase, and
the images of the maps R% (U, A1) — R(T?,2) and R(Us, Ay) — R(T?,2) define Lagrangians
Ly and Ly in R(T?,2). We want to use diagram (3.1) to describe Ri(Y, K) in terms of the
intersection points of these Lagrangians. Our first task is to obtain an explicit description

of the character variety R(T?,2). We prove:
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Theorem 3.1.2. The character variety R(T?,2) is the union of two pieces Py and Ps, where
Py is homeomorphic to S?x S*—A and A = {(#, —7)} is the antidiagonal, and P3 deformation
retracts onto the pillowcase. (The spaces Py and Py are described in Theorems 3.3.10 and

3.3.13.)

Our next task is to explicitly describe the Lagrangian L,. We prove:

Theorem 3.1.3. The character variety Ri(Uy, Ay) is homeomorphic to S*. The map
RE(Uy, Ay) — R(T?,2) is an injective immersion away from the points of Ri(Uy, Ay) cor-
responding to the north and south pole of S%, which are mapped to the same point. All
representations in the image Ly of the map are nonabelian. (An explicit parameterization of

Ly is given in Theorem 3.8.25.)

Corollary 3.1.4. The map p : RL(Y,K) = Ri(Uy, A1) X gr22) R(Us, As) in diagram (3.1)

18 1njective.

Proof. Consider a point ([p1],[pa]) in RL(Us, A1) Xpere9y R(Uz, As), so p1 and py pull
back to the same homomorphism piy : 7 (7% — {p1,p2}) — SU(2). One can show (see
[HHK14] Lemma 4.2) that the fiber p~*([p1], [p2]) is homeomorphic to the double coset space
Stab(py)\ Stab(p12)/ Stab(ps), where

Stab(p) = {g € SU(2) | gp(z)g~" = p(x) for all x in the domain of p}.

The center of SU(2) is Z(SU(2)) = {£1}. By Theorem 3.1.3 we have that Stab(pi2) =
Z(SU(2)), and Z(SU(2)) C Stab(p;) C Stab(p12), so Stab(p;) = Stab(pi2) = Z(SU(2)) and

thus the fibers of p are points. m

By introducing a suitable holonomy perturbation, we obtain a finite character variety
Ri(Y, K), each point of which corresponds to a gauge-orbit of connections that are critical
points of the perturbed Chern-Simons functional. In order for R (Y, K) to serve as a gen-
erating set for singular instanton homology, each point in R%(Y, K) must be nondegenerate;
that is, at each connection representing a point in R% (Y, K) we want the Hessian of the

perturbed Chern-Simons functional to be nondegenerate when restricted to a complement
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of the tangent space to the gauge-orbit of that connection. We show that there is a simple
criterion for determining when a point R%(Y, K) is nondegenerate. Recall that we defined
the Lagrangian L, to be the image of R(Us, Ay) — R(T?,2). If R(Us,, Ay) — R(T?,2) is
injective and [p] € L1 N Ly C R(T?,2) is not the double-point of L;, then by Corollary
3.1.4 the point [p] is the image of a unique point [p] € R:(Y, K) under the pullback map
Ri(Y,K) — R(T?,2). We prove:

Theorem 3.1.5. Suppose R(Us, Ay) — R(T?,2) is an injective immersion and [p] € LN Ly
is the image of a reqular point of R(Us, As) and is not the double-point of Li. Then the
unique preimage [p] of [p] under the pullback map Ri(Y, K) — R(T?,2) is nondegenerate if

and only if the intersection of Ly with Lo at [p] is transverse.

Collecting these results, we find if the hypotheses of Theorem 3.1.5 are satisfied for every
point in L; N Ly, then every point in R (Y, K) is nondegenerate and the pullback map
Ri(Y,K) — R(T?,2) is injective with image L; N Ly. Thus we obtain:

Corollary 3.1.6. If the hypotheses of Theorem 3.1.5 are satisfied for every point in Ly N Lo,
then R:(Y, K) is a generating set for I*(Y, K) consisting of |L1 N La| generators.

Our scheme is particularly well-suited for the case of (1,1)-knots. By definition, a (1, 1)-
knot is a knot K in a lens space Y that has a Heegaard splitting into a pair of solid tori
Ui,U; C Y such that the components U; N K and U, N K of the knot in each solid torus are

unknotted arcs. It is known that (1, 1)-knots include all torus knots and 2-bridge knots.

We can construct (1,1)-knots by taking (U, A2) to be a copy of (U, A;) without the
earring H UW or the perturbation loop P, and we can explicitly describe the corresponding
Lagrangian Ly as follows. We first define a character variety R(Uj, A;) that consists of
conjugacy classes of homomorphisms 7 (U; — A;) — SU(2) that take loops around A
to traceless matrices. We define a map R(Uy, A1) — R(T?,2) by pulling back along the
inclusion (90U, 0A;) < (Ui, A1). The image of this map defines a Lagrangian Ly in R(T?,2).
We can view R(U;, A;) and Ly as “unperturbed” versions of R%(U;, A;) and L;. Since
(T2, {p1, p2}) := (OU1, 0A;) and there is a natural identification (OUs, DA3) = (T2, {p1,p2}),
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the gluing map ¢ : (0Uy,0A4;) — (0Usz,0As) defines an element [¢] of the mapping class
group MCGy(T?) of the twice-punctured torus. The group MCGy(T?) acts on R(T%,2) from
the right in a way that we explicitly describe in Section 3.5, and the Lagrangian Ls, which
we defined to be the image of the map R(Us, As) — R(T?,2), is given by Ly = Ly - [¢]. We

prove results that explicitly describe the character variety R(U;, A1) and the Lagrangian Ly:

Theorem 3.1.7. The character variety R(Uy, Ay) is homeomorphic to the closed disk D?.
The map R(Uy, Ay) — R(T?,2) is injective and is an immersion on the interior of R(Uy, Ay).

(An explicit parameterization of the image Lq of the map is given in Theorem 3.3.20.)

Theorem 3.1.8. The character variety R(Uy, Ay) is regular on its interior.

From Theorems 3.1.7 and 3.1.8, we obtain a Corollary to Theorem 3.1.5 for the special

case of (1,1)-knots:

Corollary 3.1.9. For a (1,1)-knot K, if Ly intersects Ly = Lg - [¢] transversely away from
the double-point of Ly, then R%(Y, K) is a generating set for I*(Y, K) consisting of | Ly N Ly|

generators.

Since we have explicit descriptions of the character variety R(T?,2), the Lagrangians
Ly and Ly, and the action of the mapping class group MCGy(T?) on R(T?,2), Corollary
3.1.9 provides us with a practical scheme for calculating generating sets for I*(Y, K) for any

(1,1)-knot K in any lens space Y.

3.2 The group SU(2)

Here we briefly review some basic facts about the group SU(2). We define SU(2)-matrices
i, j, and k by

i=—io,, J = —ioy, k =—io,,
where o,, 0y, and o, are the Pauli spin matrices:

01 0 — 1 0
O’xz ; O-y: P O-Z:

10 v 0 0 -1



The matrices i, j, and k satisfy the quaternion multiplication laws i? = j? = k? = ijk = —1.

Any SU(2)-matrix A can be uniquely expressed as
A=t+zi+yj+zk,

where (t,z,y,2) € 83 ={(t,z,y,2) € R* | t* + 2% + y? + 2% = 1}, and thus we may identify
SU(2) with the space of unit quaternions. We will refer to t and =i+ yj + zk as the
scalar and wvector parts of the matrix A, respectively. Note that tr(A) = 2t, so traceless
SU (2)-matrices are precisely those for which the scalar part is zero. It follows that traceless
SU (2)-matrices are parameterized by unit vectors in R3, and we will frequently pass back
and forth between traceless matrices a = a, i+ a,j+ a, k € SU(2) and their corresponding

- ~ 2
unit vectors a = (ay, ay,a,) € S*.

We can define a surjective group homomorphism SU(2) — SO(3) by g — (0 — ¥'),

where the unit vectors © = (v,,vy,v.) and 9" = (v}, v, v.) are related by

g i+uvj+u.k)g ' =vi+uj+o.k

In general, conjugating an arbitrary SU(2)-matrix preserves the scalar part of the matrix

and rotates the vector part of the matrix:
gt +rpitryj+r.k)g  =t+rit+r,j+rlk,

where (), 1) is given by multiplying (r,,r,,r,) by the SO(3)-matrix corresponding to

) Tyr 'z

g € SU(2). We will thus sometimes describe conjugation in terms of the corresponding

rotation performed on the vector part of an SU(2)-matrix.

3.3 Character varieties

3.3.1 The character variety R(T?2)

Our first task is to understand the structure of R(T?,2), the traceless SU(2)-character variety

of the twice-punctured torus. In general, we make the following definition:
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Definition 3.3.1. Given a surface S with n distinct marked points py,--- ,p, € S, we
define the character variety R(S,n) to be the space of conjugacy classes of homomorphisms
p:m(S —A{p1, - ,pn}) = SU(2) that take loops around the marked points to traceless
SU (2)-matrices.

Before examining the space R(T?,2), we first consider the simpler space R(T?) :=

R(T?,0), which is known as the pillowcase. We have the following well-known result:

Theorem 3.3.2. The pillowcase R(T?) is homeomorphic to S.

Proof. The fundamental group of T?% is m(T?) = (A,B | ABA™'B~! = 1), where A and
B are represented by the two fundamental cycles. A homomorphism p : m(T?) — SU(2)
is uniquely determined by the pair of matrices (p(A), p(B)), which for simplicity we will
also denote by (A, B). Since A and B commute, any conjugacy class [p] € R(T?) has a

representative (A, B) of the form
A =cosa+sinak, B =cosf+sinfk

for some angles o and 3. These equations are invariant under the replacements a — o + 27
and 8 — 0+ 27, and we can simultaneously flip the signs of @ and 8 by conjugating by i,

so we obtain the following identifications:

(@, B) ~ (a +2m, ), (@, B) ~ (a, f + 2m), (@, B) ~ (=, =)

We can thus restrict to a fundamental domain in which (a, 8) € [0, 27] x [0, 7|, with edges
identified as shown in Figure 3.2. From Figure 3.2 it is clear that this space is homeomorphic

to S2. O

Definition 3.3.3. We will refer to the four points [A, B] = [+1,+1] € R(T?) as pillowcase

points.

Remark 3.3.4. One can show that the character variety R(S?,4) that is used in the work of
Hedden, Herald, and Kirk is also described by a rectangle with edges identified as shown in
Figure 3.2 (see, for example, [HHK14] Section 3.1), so both R(T?) and R(S?,4) are referred

to as the pillowcase.
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Y

B
Figure 3.2: The pillowcase R(T?). The black dots indicate the four pillowcase points.

We now consider the space R(T?,2). The fundamental group of the twice-punctured

torus is
1 (T?* — {p1,p2}) = (A, B,a,b | ABA™*B 'ab = 1),

where p; and py denote the puncture points, A and B denote the fundamental cycles of the
torus, and a and b denote loops around the punctures p; and po, as shown in Figure 3.3.
As above, we will use the same notation for generators of the fundamental group and their
images under p; for example, we denote p(A) by A. A homomorphism p : 71 (T%—{p1,p2}) —
SU(2) is thus specified by SU(2)-matrices (A, B, a,b) such that a and b are traceless and
ABA™'B7tab = 1, and we will sometimes denote a homomorphism p by the corresponding

list of matrices (A, B, a,b).

The structure of R(7?,2) can be understood by considering the fibers of the following

map:
Definition 3.3.5. We define a map p : R(T?,2) — [—1,1] by

u([A, B, a,b)) = (1/2) tr(ABA™'B™Y) = (1/2) tr((ab)™").

In particular, it is convenient to decompose R(T?,2) into the disjoint union of an open

piece Py = pu~'([-1,1)) and a closed piece P; = p~*(1). The notation for these pieces is
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A

Figure 3.3: Cycles corresponding to the generators A, B, a, b of the fundamental group

71'1(T2 - {p1,p2})-

motivated by the fact that, as we will see, the piece P, is four-dimensional and the piece
Pj is three-dimensional. We will describe the topology of the pieces P3 and P, and define

coordinate systems on each piece that are useful for performing calculations.

3.3.1.1 The piece P, C R(T7,2)

We define the piece Py C R(T?,2) to be the set of conjugacy classes [p] € R(T?,2) such that
w([p]) € [=1,1). For any representative (A, B, a,b) of a given conjugacy class [p] € Py, the
matrices A and B do not commute. This fact can be used to choose a canonical representative

of each conjugacy class in Pj:

Lemma 3.3.6. Any conjugacy class [p| € Py has a unique representative (A, B,a,b) for
which

A=rcosa+v1—r?i+rsinak, B = cos B +sin Sk, (3.2)
where a € [0,27], B € (0,7), and r € [0, 1).

Proof. Since [p] € Py, for any representative of [p] the matrices A and B do not commute.
Given an arbitrary representative, first conjugate so that the coefficients of i and j in B are
zero and the coefficient of k is positive, and then rotate about the z-axis so the coefficient of

jin A is zero and the coefficient of i in A is positive. The restrictions on the ranges of § and
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r follow from the fact that the matrices A and B do not commute. The uniqueness of the

representative follows from the fact that the coefficients of i in A and k in B are nonzero. [

We can use the canonical representatives of conjugacy classes in Py to define the following

maps:
Definition 3.3.7. Define maps ¢; : Py — SU(2) x SU(2) and ¢y : Py — 5% x S? by

0 ([p]) = (A, B), a:([p]) = (a,),

where (A, B, a, b) is the canonical representative of [p], and & = (a, ay, a.) and b = (by, by, b.)

are the unit vectors corresponding to the traceless matrices a and b:
a=azi+ayj+a.k, b="b,i+0b,j+0b. k.

Note that we cannot extend the maps ¢; and go to all of R(T?,2), since our choice of canonical

representative relies on the fact that the matrices A and B do not commute.

To describe the structure of the piece P;, we will show that the map ¢ : Py — S? x S?
is injective and identify its image. This requires two Lemmas that describe the image of

¢ : Py — SU(2) x SU(2) on the fibers of p: Py — [—1,1):

Lemma 3.3.8. The space q,(u~'(—1)) consists of the single point (i, k).

Proof. Consider a point [p] € p~'(—1). From equation (3.2) for the canonical representative

(A, B,a,b) of [p], we find that
w(lp)) = —1 = (1/2) tr(ABA'B™') = cos 28 + r*(1 — cos 2/3).

Thus r = 0 and § = 7/2. Substituting these values into equation (3.2), we obtain the desired
result. O

Lemma 3.3.9. Fort € (—1,1) we can define a map q:(p='(t)) — S?%, (A, B) — 0, where

the unit vector O = (v, vy,v,) is the direction of the vector part of ABA™'B~':
ABAT'B ' =t 4+ V1 -2 (v,i+ vy j+u. k).
This map is a homeomorphism.
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Proof. Consider a point [p] € p~!(t) for t € (—1,1). From equation (3.2) for the canonical
representative (A, B, a,b) of [p], we find that

w(lp]) =t = (1/2)tr(ABA™'B™") = cos 23 + r*(1 — cos 23). (3.3)
We solve equation (3.3) for r to obtain
t —cos2f 1/2
=| — . 3.4
" (1 — CoS 25) (3:4)
From equation (3.4), we see that for a fixed value of t € (—1, 1) the parameter § must lie in

the range [By, 7 — fo], where we have defined
By :=(1/2)cos™t € (0,7/2). (3.5)

Using equations (3.2), (3.4), and (3.5), we find that the matrices A and B can be expressed

as

1 — cos2p,
1 —cos2p

Ao (cos 283y — cos 23

1/2
1~ cos28 ) i, B =cosf +sinfk,

1/2
) (cosa+sinak) + <
(3.6)
where (o, 8) € [0,27] X [y, ™ — Bo]. Define a space

X = {(o, 8) €]0,27] x [Bo, 7 — Bo]}/~,

where the equivalence relation ~ is defined such that the bottom edge of the rectangle
[0, 27] % [Bo, ™ — Bo] is collapsed to a point, the top edge is collapsed to a point, and the left
and right edges are identified:

(Oz, 50) ~ (07 50)7 (Oz, = 50) ~ (07 ™= 50>7 (07 5) ~ (27Ta /6)

Define a map X — q;(p'(t)), [o, 8] — (A, B), where A and B are given by equation (3.6).

From equation (3.6), it is clear that this map is well-defined and is a homeomorphism.

Using equations (3.2) and (3.4), a calculation shows that
ABAT'B' =t + V1 -2 (v,i+v,j+v. k),
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where the unit vector o = (vy,v,,v,) € S? is given by

6= (VI=2(B) sin(a + ), v/I— 2(B) cos(a + B), =(8)) (3.7)

and we have defined a diffeomorphism z : |8y, 7 — Bo] — [—1,1] by

Define a map X — S?, [, 8] = ©, where 0 is given by equation (3.7). From equation (3.7),
it is clear that this map is well-defined and is a homeomorphism. Composing the inverse of

the map X — ¢;(p~1(¢)) with the map X — S?, we obtain the desired result. O

We can now describe the topology of the piece Py:

Theorem 3.3.10. The space P, is homeomorphic to S? x S? — A, where A = {(#, —7)} is

the antidiagonal. All representations in P, are nonabelian.

Proof. Consider the map ¢o : Py — S? x S2. Clearly the image of ¢, lies in S? x S? — A,
since if ¢2([p]) € A then b = a~!, which implies that u([p]) = (1/2)tr((ab)~!) = 1 and
hence [p] ¢ P,. We can define an inverse map S? x S? — A — P; as follows. Given a point
(a,b) € 52 x S? — A, define traceless matrices a = a, i+ a,j+ a,k and b= b, i+ b,j+b. k

corresponding to & = (a, ay, a,) and b= (by, by, b,). Then
ab=t—v,1i—v,j—v.Kk,

where t := —a - b and T = (Vg, Uy, ;) 1= —a X b. If t = —1 then map (a, l;) to [i,k,a,bl,
otherwise map (@, b) to [A, B, a,b], where A and B are determined from ¢ and ¢ := #/|] € 52
via the homeomorphism ¢; (1 7'(t)) — S? defined in Lemma 3.3.9. By Lemmas 3.3.8 and
3.3.9, this inverse map is well-defined. The fact that all representations in P, are nonabelian

is clear from the definition of the space Pj. n

Our main application of Theorem 3.3.10 will be to use (a, ZA)) as coordinates on the piece

Py.
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Figure 3.4: The space Y, which is homeomorphic to the piece Pj, is the region between the

pair of surfaces. The vertical faces are identified as described in Definition 3.3.12.

3.3.1.2 The piece P; C R(T7,2)

We define the piece P3 C R(T?,2) to be the set of conjugacy classes [p] € R(T?,2) such
that u([p]) = 1. For any representative (A, B, a,b) of a given conjugacy class [p] € Pj, the

matrices A and B commute. We can therefore make the following definition:

Definition 3.3.11. We define a map ¢ : P3 — R(T?), [A, B,a,b] — [A, B].

We will describe the topology of the piece P by considering the fibers of the map ¢. In

particular, we will show that P3 is homeomorphic to the following space:

Definition 3.3.12. We define a space Y by
Y ={(a,8,2) |a€l0,2n], B € 0,7, |2] <sin’a +sin® B} /~,
where the equivalence relation ~ is defined such that
(,0,2) ~ (21 — 0, 0, —2), (o, m,2) ~ (2T — a, m, —2), 0,8,z) ~ (2w, B, 2).

The space Y is depicted in Figure 3.4.

Theorem 3.3.13. The space P3 is homeomorphic to Y. Representations on the boundary

of P3 are abelian, and representations on the interior of Ps are nonabelian.
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Proof. We first determine the fibers of the map ¢ : P — R(T?). Given a conjugacy class

[p] € P35, we can always choose a representative of the form
A=cosa+sinak, B=cosf+sinfk, a=cosyi+sinyk, b=al, (3.8

where (a, 8) € [0,27] x [0, 7] and v € [-7/2,7/2]. For (A, B) = (£1,+1), we can conjugate
so as to force v = 0. From these considerations it follows that the fibers of ¢ are points
(v = 0) over the four pillowcase points [A, B] = [+1, £1], and intervals (y € [—7/2,7/2])

over all other points. We can thus define a homeomorphism P; — Y by

(a, B, 7) = (@, B, (29/)(sin® a + sin® B)),

where (a, ) € [0,2n] x [0,7], and v € [—7/2,7/2] are chosen such that equations (3.8)
are satisfied. The statement regarding abelian and nonabelian representations is clear from

equation (3.8). O

Our main application of Theorem 3.3.13 will be to use (o, 3,7) as coordinates on Pj,

subject to the identifications

(CM,B,’}/)N(OK—{—QTF,/@,’)/), (a7ﬁaf}/)N(aa6+27(a7)? (CV?Ba’y)N(_av_ﬂa_’}/)?

and if (a, B) € {(0,0), (0,7), (7,0), (m,m)}, corresponding to the four pillowcase points of
R(T?), then («, 8,7) ~ (, 8,0). Note that P; deformation retracts onto PsN{vy = 0}, which
may be identified with the pillowcase R(T?).

Remark 3.3.14. Theorems 3.3.10 and 3.3.13 imply Theorem 3.1.2 from the introduction.

Remark 3.3.15. The character variety R(7?,2) is smooth away from the reducible locus
OP;. We note that OP; is homeomorphic to T?; a specific homeomorphism 72 — 0P is
given by («, ) — [A, B, a, b, where

A = cosa + sinak, B = cos § +sin Bk, a=b"1=k

Remark 3.3.16. The character variety R(T?,2) is homeomorphic to the moduli space of

semistable parabolic bundles M**(T?,2), which is known to have the structure of an algebraic
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variety isomorphic to CP* x CP' (see [Bool8, Varl6]). It follows that R(7?,2) is homeo-
morphic to S% x S2, although this does not seem to be easy to show from our description of
this space. We use the character variety R(T?,2), rather than the moduli space M**(T?,2),
since it is only for R(T?,2) that we can explicitly describe the Lagrangians L; and L4, and
the action of the mapping class group MCGy(T?).

3.3.2 The character variety R(U;, A;) and Lagrangian L, C R(T?,2)

Our next task is to determine the Lagrangian Ly in R(7T?,2) that corresponds to a solid
torus U; = St x D? containing an unknotted arc A; connecting distinct points py, py € OU;.
We first define and describe a character variety R(Uy, A1) for (U1, A;). The Lagrangian Ly
is then given by the image of a pullback map R(Uy, A;) — R(T?,2).

Definition 3.3.17. We define the character variety R(U;, A;) to be the space of conjugacy
classes of homomorphisms p : 7 (U; — A1) — SU(2) that map loops around the arc A; to

traceless matrices.

Theorem 3.3.18. The space R(Uy, A1) is homeomorphic to the closed unit disk D*. Repre-
sentations on the boundary of R(Uy, A1) are abelian, and and representations on the interior

of R(Uy, Ay) are nonabelian.

Proof. The fundamental group of U; — Ay is given by

7T1(U1 - Al) = (A,B,a,b | B = ]., b= (l_1>7
where A and B are the longitude and meridian of the boundary of the solid torus and a and
b are loops in the boundary encircling the points p; and p,, respectively.

We now consider homomorphisms p : m(Uy — A1) — SU(2) that satisfy the requirements
described in Definition 3.3.17 for R(Uy, A;). As usual, we use the same notation for genera-
tors of the fundamental group and their images under p; for example, we denote p(A) by A.
Given an arbitrary representative of a conjugacy class [p] € R(Uy, A;), we will argue that we

can always conjugate so as to obtain a representative of the form

A = cos x + sin x k, B=1, a=0b"1=cosyi+sinyk, (3.9)
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where (x,v) € [0,7] x [—7/2,7/2]. We first conjugate so the coefficients of i and j in A
are zero and the coefficient of k is nonnegative, and then rotate about the z-axis so the
coefficient of j in a is zero and the coefficient of i is nonnegative. We have thus obtained a
representative of the form given in equation (3.9). If x € (0,7), then it is clear from these
equations that the representative is unique. If y € {0, 7} then A = £1 and we can conjugate
so that @ = b~! = i, so we obtain the identifications (0,%) ~ (0,0) and (7,%) ~ (7,0). Tt
follows that R(U;, Ay) is homeomorphic to the square [0, 7] x [—7/2,7/2] with the left and
right edges each collapsed to a point, and this space is homeomorphic to the closed disk
D?. The statement regarding abelian and nonabelian representations is clear from equation

(3.9). 0

Given a representation of 7y (U; — A ), we can pull back along the inclusion T%2—{p;, ps} —
U, — A; to obtain a representation of mi (7% — {p,p2}). This induces a map R(Uy, A;) —
R(T2,2).

Definition 3.3.19. We will refer to the image of R(U;, A;) — R(T?,2) as the disk La-

grangian Ly, and we will denote the image in R(T?,2) of the point in R(U;, A1) with coor-
dinates (x, %) by La(x, ).

The following Theorem gives an explicit description of the disk Lagrangian L, in terms

of the coordinates (x,v) € [0, 7] x [—7/2,7/2]:

Theorem 3.3.20. The map R(Uy, Ay) — R(T?,2) is injective and is an immersion on the
interior of R(Uy, Ay). The image Lq(x,v) = [4A, B,a,b] € R(T?,2) of the point in R(Uy, A;)
with coordinates (x, ) is given by

A = cos x +sin x k, B=1, a=b"1=cosyi+sinyk.

The image Ly of the map lies entirely in the piece Py, and the (o, B,7y) coordinates of Lq(x, 1)

are

a(La(x,¥)) = X, B(La(x, 1)) =0, Y(La(x, ¥)) = ¥.

Representations on the boundary of Ly are abelian, and representations on the interior of Ly

are nonabelian.
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Figure 3.5: (Left) The Lagrangian L, in the piece P;. (Right) The intersection of the

Lagrangian L, with the pillowcase P3N {y = 0}.

Proof. The representative (A, B,a,b) of Ly(x,) follows directly from equation (3.9), and
the statement regarding abelian and nonabelian representations is clear from the form of this
representative. The (a, 5,7) coordinates of Lg(x,1) can be read off from equation (3.8). It
is clear from these expressions that the map R(U;, A;) — R(T?,2) is injective and is an

immersion on the interior of R(Uy, A;). O

We plot the Lagrangian Ly in Figure 3.5.

Remark 3.3.21. Theorems 3.3.18 and 3.3.20 imply Theorem 3.1.7 from the introduction.

3.3.3 The character variety R (U, A;) and Lagrangian L, C R(T?,2)

We now want to modify the character variety R(U;, A;) in order to address the technical
issues described in the Introduction. Specifically, we want to (1) eliminate reducible connec-
tions, and (2) introduce a suitable holonomy perturbation so as to render the Chern-Simons
functional Morse. These modifications yield a perturbed character variety R%(U;, A;). We
define a corresponding perturbed Lagrangian L; given by the image of a pullback map

REr(Ul, Al) — R(TQ, 2)
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Figure 3.6: (Left) Solid torus U; used to define R%(S x D% A;). Shown are the arc A;, the
loop H and arc W, and the perturbation loop P. (Right) Loops B, a, b, h, and w.

We eliminate reducible connections by adding an earring consisting of a small loop H
around A; and an arc W connecting A; to H, as shown in Figure 3.6. We require that
representations take loops around A; and H to traceless matrices and loops around W to
—1. One can show that representations satisfying these requirements must be nonabelian,

corresponding to irreducible connections.

We render the Chern-Simons functional Morse by adding a holonomy perturbation term
[KM11b, KM11a]. We choose a perturbation that vanishes outside of a small solid torus
obtained by thickening the loop P shown in Figure 3.6. The net effect of the perturbation is
to impose an additional requirement on the representations. Specifically, letting A\p = h=1A
and pup = B denote the homotopy classes of the longitude and meridian of the solid torus

obtained by thickening P, we require that if p(Ap) has the form
p(Ap) =cos¢ +sing (r,i+r,j+r.k) (3.10)
for some angle ¢ and some unit vector 7 = (r,,r,,7,) € S?, then p(up) must have the form
p(pp) =cosv +sinv (ryi+r,j+r. k), (3.11)

where v = €f(¢). Here ¢ > 0 is a small parameter that controls the magnitude of the
perturbation and f : R — R is a function such that f(—z) = —f(x), f is 2m-periodic, and

f(z) is zero if and only if = is a multiple of 7. We will usually take f(¢) = sin ¢.

We define a character variety RZ (U, A;) that includes both of these modifications to
R(Uy, Ay):
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Definition 3.3.22. We define the character variety R%(U;, A1) to be the space of conjugacy
classes of homomorphisms p : m(U; — Ay UH UW U P) — SU(2) that take loops around
A; and H to traceless matrices and loops around W to —1, and are such that if p(Ap) has

the form given in equation (3.10) then p(Ap) must have the form given in equation (3.11).

Theorem 3.3.23. For e > 0 sufficiently small, the space R%(Uy, Ay) is homeomorphic to

S2. All representations in R%(Uy, Ay) are nonabelian.

Proof. We define homotopy classes of loops A, B, a, b, and h as shown in Figure 3.6, and

read off relations from Figure 3.6 to obtain a presentation of m (U3 — Ay U H U W U P):

m(Uy — AL UHUWUP) = (A B,a,bh,w | hwaB = aBh, b= ha 'w 'h™)

We now consider homomorphisms p : m(U; — Ay UH UW U P) — SU(2) that satisfy
the requirements described in Definition 3.3.22 for R% (U, A;). As usual, we use the same
notation for generators of the fundamental group and their images under p; for example, we
denote p(A) by A. Given an arbitrary representative of a conjugacy class [p] € Ri(Uy, A;),
we will argue that we can always conjugate so as to obtain a unique representative of the

form given by

A = h(cos ¢+ sin ¢ (cosfi+sinbj)), B = cosv +sinv (cosfi+sindj),
a:k, b:_ha—lh—l7
h = (cos? v + sin? vsin® 0) /% (cos vi + sinvsin k), w= —1,

where v = esin ¢ and (¢, 0) € [0, 7] x [0, 27] are spherical-polar coordinates on S?. We first
conjugate so that a = k. Next, we rotate about the z-axis so that the coefficient of j in A is

zero. After these operations have been performed, we can express A\p as
Ap=cos¢+sing (ryi+ry,j+r.k)

for some angle ¢ and some unit vector # = (r,,7,,7r,) € S%. The relationship between \p

and pp described in equations (3.10) and (3.11) then implies that

B =pup=cosv+sinv(ryi+r,j+r. k),
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where v = esin ¢. We also find that
A=h\p=nh(cosp+sing(ryi+r,j+r.k)).

Since w = —1, the relation b = ha 'w=th~! implies that b = —ha"'h~!, and the relation
hwaB = aBh implies that aB and h anticommute. Since a = k, the fact that aB and h
anticommute implies that r, = 0, so # = (cosf,sin 6, 0) for some angle §. The fact that aB
and h anticommute, in conjunction with the fact that the coefficient of j in h is zero, further

implies that A must have the form
h = +(cos? v + sin? vsin? ) ~/?(cos vi + sinvsin 0 k). (3.12)

In fact, we can assume that the plus sign obtains in equation (3.12), since if not then we can
conjugate by k and redefine 6 — 6 + m; this operation flips the signs of A and A and leaves
B, a, b, and w invariant. We have thus obtained a representative of the desired form. Since
a = k and the coefficient of i in A is nonzero for e sufficiently small, this representative is

unique and nonabelian.

We note that the unique representative is invariant under the transformations

(¢,0) = (¢ +2m,0), (¢,0) — (¢,0 + 2m), (0,0) = (—¢,0 + ).

By invariance under the first transformation we can assume that ¢ € [—m, 7], by invariance
under the third transformation we can further assume that ¢ € [0, 7], and by invariance under
the second transformation we can assume that 6 € [0,27]. From the equations defining
the unique representative, it is clear that the map S? — RL(U;, A1), (6,0) — [p] is a

homeomorphism, where (¢, ) are spherical-polar coordinates on S2. O

Given a representation of m (U — A; UH UW U P), we can pull back along the inclusion
U — A UHUWUP < T? — {py,p2} to obtain a representation of 71 (T? — {py, p2}). This
induces a map R (Uy, Ay) — R(T?,2).

Definition 3.3.24. We define the Lagrangian L; to be the image of R (Uy, 4;) — R(T?,2),
and we will denote the image in R(T?,2) of the point in R%(U;, A;) with coordinates (¢, 6)

by Li(¢,0).
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We can view the Lagrangian L, as a perturbation of L,;, which we defined to be the
image of R(Uy, A1) — R(T?,2). The following Theorem gives an explicit description of the

Lagrangian L; in terms of the spherical-polar coordinates (¢, 0) € [0, 7] x [0, 27]:

Theorem 3.3.25. The map R%(Uy, Ay) — R(T?,2) is an injective immersion except at the
north pole (¢ = 0) and south pole (¢ = ), both of which get mapped to the same point
(o, B,7) = (7/2,0,0) in the piece Ps. The image L,(¢,0) = [A, B,a,b] € R(T?,2) of the
point in R:(Uy, A1) with coordinates (¢, 0) is given by

A = (cos® v+ sin? vsin? 6) "V2(cos v i + sin v sin H k) (cos ¢ + sin ¢ (cos 01 + sin 6)),
B = cosv +sinv (cosfi+sinbj),
a=Xk,
b = (cos® v +sin® vsin® §) "' (sin 2vsin fi — (cos® v — sin® v sin® 0)k),
where v = esin ¢ and € > 0 is a small control parameter that determines the strength of the

perturbation. Points Li(¢,0) with ¢ € (0,7), 0 ¢ {0,7} lie in the piece Py, and the (a,b)

coordinates of such points are

A(L1(6,0)) = (sin(6 + v), —cos(6 + ), 0),

by (L1(¢,0)) = —(cos® v + sin® v sin® §) ~*(cos® v cos? § sin(¢ + v) + sin® fsin(¢ — v)),

by(L1(¢,0)) = (cos® v + sin® v sin® §) "' (cos® v cos® § cos(¢ + ) + sin® § cos(¢ — 1)),
(L1(9,0))

( ) = (=sin(¢ +v), cos(¢ +v), 0),
( )) = (cos? v + sin® v sin? 0) ~*(cos® v cos? O sin(¢ + v) + sin? fsin(¢ — v)),
by(Li(¢,0)) = —(cos® v + sin® vsin® §) ™' (cos v* cos® § cos(¢ + v) + sin® § cos(¢ — 1)),
( )

= (1/2)(cos® v + sin® v sin? §) ! sin(2v) sin(26)

for 0 € (m,2m). Points Li(¢,0) with 0 € {0, 7} lie in the piece Ps, and the («, 3,7) coordi-
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nates of such points are

a(L1(¢a O)) = ¢ + 7T/27 B(Ll(gbvo)) =V = esian), ’V(Ll(qb? 0)) = 07
a(Li(¢,m)) = ¢ —7/2, B(Li(¢,m)) = v = esing, V(Li(¢, 7)) =

All representations in Ly are nonabelian.

Proof. The representative (A, B, a,b) of Li(¢,0) follows directly from the proof of Theorem
3.3.23. The fact that all representations in L; are nonabelian follows from the fact that
a = k and the coefficient of either i or j in B is nonzero. We find the (a,b) coordinates
for points Lq(¢,0) € P, by conjugating the representative of Li(¢, ) so that A and B have
the form given in equation (3.2), then reading off @ = (s, ay,a.) and b = (b, b, b.) from
a=azi+a,j+akand b=>b,i+b,j+ b, k. We find the (a,3,7v) coordinates for points
Li(¢,0) € P3 by substituting @ = 0 and 6 = 7 into the representative of L;(¢,6) and then
conjugating the resulting equations so they have the form given in equation (3.8).

We will prove that R (U;, A;) — R(T?2) is an injective immersion on ¢ € (0, ),
6 # {0,7} by showing that the coordinates (¢, ) can be recovered from certain functions
defined on R(T?,2). Define functions hy : R(T?2) — R and hy : R(T?,2)N{tr Aa #0} - R
by

tr Ab

hi([A, B,a,b]) = —tr AB — (i/2)(tr B)(tr Aa), hao([A, B, a, b)) = e

A calculation shows that
2 cos vsin(¢ + v)e'?
hi(Li(¢,0)) = :
1(4a(9.6) Vcos? v + sin? vsin? 0
We note that if ¢ € (0,7) then hy(L1(¢,0)) # 0 and Arg(hi(Li(4,0))) = 6. A calculation
shows that (tr Aa)(Ly(¢,0)) # 0 for ¢ € (0,7), 6 # {0, 7}, and for such values of (¢, ) we

have

B sin(¢ — v) B sin(¢ — esin ¢)
hQ(Ll (Qba 0)) - sin(gb + ]/) - sin(gb + €sin ¢) .

Define hy(¢) to be the right-hand-side of this equation. It is straightforward to show that
if € is sufficiently small then hy(¢) > 0 for all ¢ € (0,7), hence hy : (0,7) — R is a
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Figure 3.7: (Left) The intersection of the Lagrangian L; with the piece P;. (Right) The

intersection of the Lagrangian L, with the pillowcase P3N {y = 0}.

diffeomorphism onto its image. We conclude that RY (U, A;) — R(T?,2) is an injective
immersion on ¢ € (0,7), 6 # {0, 7}.

We similarly prove that R (U, A;) — R(T?,2) is an immersion on ¢ € (0,7), 6§ € {0,7}
by using the functions h; : R(7%,2) — R and « : Py — R. The statements regarding
the injectivity of the map for § € {0,7} are clear from the expressions for the (a, 3,7)

coordinates. O

We plot the intersection of the Lagrangian L, with the piece P3 in Figure 3.7.
Remark 3.3.26. Theorems 3.3.23 and 3.3.25 imply Theorem 3.1.3 from the introduction.

Remark 3.3.27. One can also define a character variety R’ (Uy, Ay) that includes the earring
but not the holonomy perturbation. It is straightforward to show that the space R*(Uy, A;)
is homeomorphic to S® and all representations in R%(U;, A;) are nonabelian. We will not use

the character variety R*(Uy, A;) here.
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3.4 Nondegeneracy

In this section, we adapt an argument from [AM17] to obtain a simple criterion for determin-
ing when a point [p] € Ri(Y, K) is nondegenerate; namely, it is nondegenerate if and only
if the Lagrangians L; and Ly in R(T?,2) corresponding to the Heegaard splitting of (Y, K)
intersect transversely at the image of [p] under the pullback map Ri(Y, K) — R(T?,2). The
argument relies on several results involving group cohomology and the regularity of character

varieties, which we discuss first.

3.4.1 Constrained group cohomology

Consider a finitely presented group I' = (S | R) with generators S = {s1,---,s,} and
relations R = {ry, - ,7n}. In defining character varieties, we often want to consider a
space X (I') € Hom(I", SU(2)) consisting of homomorphisms that satisfy certain constraints;
for example, we may require the homomorphisms to map certain generators to traceless
matrices. Provided the constraints are algebraic, the space X (I') has the structure of a real
algebraic variety, and we can define a corresponding scheme X (I') whose set of closed points
is X(I'). The group SU(2) acts on the variety X (I') by conjugation, and we define the
character variety R(I') and character scheme R(I") to be the GIT quotients X (I')//SU(2)
and X (I")//SU(2). Generalizing a result due to Weil for the unconstrained case [Wei64], we
have that the Zariski tangent space T,/ R(I") of the character scheme R(I') at a closed point
[p] can be identified with the constrained group cohomology H!(T'; Ad p), which we define

here.

Roughly speaking, the constrained group cohomology H!(T'; Ad p) describes deformations
of homomorphisms p : I' — SU(2) that satisfy the relevant constraints, modulo deforma-
tions that can be obtained by the conjugation action of SU(2). The precise definition of
H}(T'; Ad p) that we will use is as follows. Define a function F, : Hom((S),SU(2)) —
SU(2)™, where (S) is the free group on S, by

F.(p) = (p(r1), -+, p(rm)).
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Thus F,.(p) = (1,---,1) if and only if p : (S) — SU(2) preserves all the relations in R and
thus descends to a homomorphism p : I' — SU(2). Given a homomorphism p : I' — SU(2)
and a function n : S — g, where g is the Lie algebra of SU(2), define a homomorphism
pt : (S) = SU(2) such that

pi(s) = €7 p(sy,).

Note that we can view 1 as a vector in g%". We define a linear map ¢, : g®" — g®™ by

d

cr(n) = EFT(Pt)’t:O-

Thus ¢.(n) = 0 if and only if n describes a deformation of p that is a homomorphism
I' = SU(2).

Homomorphisms I' — SU(2) that represent points in a character variety may be required
to satisfy certain constraints; for example, that they take particular generators to traceless
matrices. Define a function F,. : Hom((S), SU(2)) — R? such that F.(p) = 0 if and only
if p satisfies these constraints; for example, if we require that p take the generator s; to a

traceless matrix, we would define F, : Hom((S), SU(2)) — R by

Fe(p) = tr(p(s1)).

We define a linear map ¢, : g%" — R? by

d

coln) = G Fo(p1) o

Thus c.(n) = 0 if and only if  describes a deformation of p that satisfies the constraints.

We now combine the linear maps for the relations and constraints to obtain a linear map
c: g% = g"" @ RY c(n) = (¢r(n),c(n)). Given a homomorphism p : I' — SU(2) that

satisfies the constraints, we define the space of 1-cocycles to be
ZNT;Adp) = kerc,

so a vector n € g" is a l-cocycle if and only if it describes a deformation of p that is a

homomorphism that preserves the constraints. We define the space of 1-coboundaries to be
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deformations of p that are obtained via the conjugation action of SU(2):

BY(T;Adp) =
{n:S — g | there exists u € g such that n(s;) = u — Ad,,)u for k=1,--- n}.
Here Ad, u := gug™! for g € SU(2) and u € g. We define the constrained group cohomology

H!(T;Ad p) to be

H,(T;Adp) = Z,(T; Ad p)/ B, (T; Ad p).

3.4.2 Regularity

Definition 3.4.1. We say that a point [p] of a character variety R(I") is regular if
dimp, R(T") = dim H,(T'; Ad p).

We define R'(T") to be the subspace of regular points of R(I'). The space R/'(I') has the
structure of a smooth manifold, and the tangent space of this manifold at a point [p] € R'(T)
is given by Tj,R'(I') = H}(I"; Ad p). We will prove theorems that describe the regular points
of the character varieties R(U;, A1), R%(Uy, Ay), and R(T?,2):

Theorem 3.4.2. The character variety R(Uy, A1) is reqular at all points represented by

nonabelian homomorphisms.

Proof. Using results from the proof of Theorem 3.3.18, we find that we can take the set of
generators of the fundamental group I" to be S = {A, a}, with no relations, and we can take

the constraint function F, : Hom((S), SU(2)) = R to be

Fe(p) = tr(p(a)).

Using the expressions for the homomorphisms p : I' — SU(2) given in the proof of Theorem
3.3.18, we obtain a linear map ¢ : R® — R. A straightforward calculation shows that

dim H!(T; Ad p) = dim R(Uy, A;) = 2 for all [p] € R(Uy, Ay) such that p is nonabelian. [

We would next like to determine the regular points of the perturbed character variety

REr(Ul, Aq), but there are two difficulties that must be overcome. The first difficulty involves
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the function f(¢) that defines the perturbation. Recall that points [p] € RL(U;, A;) are
constrained by the requirement that if p(Ap) has the form p(Ap) = cos¢ + sin¢ (r,.i +
ryj + r.k), then p(up) must have the form p(up) = cosv +sinv (r,i+ r,j + r. k), where
v =ef(¢). In order to give R% (U, A1) the structure of a real algebraic variety, and to define
the corresponding character scheme, this constraint must be algebraic. We will therefore

choose f(¢) to be

f(o) = 1sin_l(e sin ¢). (3.13)

€

Then the constraint on p becomes

etr(p(Ap)i) = tr(p(pp)i), etr(p(Ap)j) = tr(p(up)i), etr(p(Ap)k) = tr(p(up)k). (3.14)

Remark 3.4.3. In fact, the constraint given in equation (3.14) yields a variety with two
connected components, one with p(up) near 1 and one with p(up) near -1, and only the first
component corresponds to R (U, Ap). To calculate the constrained group cohomology, how-
ever, we consider only infinitesimal deformations of homomorphisms, hence the extraneous

second component is irrelevant.

A second difficulty in determining the regular points of R% (U, A;) is that a direct calcula-
tion of the constrained group cohomology for R% (U, A;) does not appear to be practical, be-
cause the perturbed representations, as described in Theorem 3.3.23, are rather complicated.
Instead, we will apply the following theorem, which simplifies the necessary calculations by

allowing us to extrapolate from unperturbed representations:

Theorem 3.4.4. Consider a character variety R.(I') in which the homomorphisms are re-
quired to satisfy an algebraic constraint that depends on a control parameter ¢ € R. Given
a homomorphism p. : T — SU(2) representing a point [pe] € R.(T'), let c. : g®" — g™ @& R4
denote the corresponding linear map used to define the constrained group cohomology. Define
co,c1 2 9P — g¥™ @ R such that ¢ = co + ecy + ---. The following string of inequalities

holds for e > 0 sufficiently small:

dim Z}(T; Ad p.) < dim(ker co Nker ¢;) + dim(c; (ker ¢p) Nim ¢p) < dim Z}(T'; Ad po).
(3.15)
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Proof. Since the dimension of the Zariski tangent space is upper semi-continuous, for € > 0

sufficiently small we have that
dim(ker c.) = dim Z}(I'; Ad p.) < dim Z}(I'; Ad py) = dim(ker cy).

Thus any vector w, € ker ¢, must have the form w, = wy + ew; + - - -, where

ce(we) = co(wp) + €(co(wr) + e1(wp)) +--- = 0. (3.16)
The space of vectors wy € g®" that satisfy equation (3.16) up to first order in € is

V ={wy € kercy | ¢1(wp) € imcp}.

Since ker ¢ = Z(T'; Ad p) is the space of vectors that satisfies equation (3.16) to all orders
in e, it follows that Z}(T;Adp.) C V C kercy = Z}(T'; Adpy), and we have the string of
inequalities

dim Z}(T'; Ad p.) < dim V' < dim Z}(T'; Ad py).
Equation (3.15) now follows from the fact that

dim V' = dim(ker ¢g Nker ¢;) + dim(c; (ker ¢g) Nim ¢o).
O

Example 3.4.5. Take I' = 7Z, and consider the character varieties R'(T') for i = 1,2, 3 with

constraint functions F? : Hom(T', SU(2)) — R given by

Fi(p)=ctrp(l),  Fi(p)=eltrp(l))®,  F(p)=e(trp(1))* + € trp(1).
The character varieties are given by
S? if € #£ 0,
RT) = R(D) = B(r) = i
S3 if e =0.
Consider the homomorphism p. : Z — SU(2), p.(1) = k. Then dim Z}(T'; Ad p.) and
dim(ker co Nker¢y) + dim(c; (ker cg) Nim¢y) are given by
F!' F? F3
dim Z}(T; Ad p.) 2 3 2
dim(ker cog Nkercy) + dim(cy(kercg) Nimey) 2 3 3
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From the expressions for dim Z}(T'; Ad p.), we find that for ¢ # 0 the character schemes
RYT) and R3(T) are reduced, and the character scheme R?(T") is not reduced. We can use
Theorem 3.4.4 to show that R(T) is reduced, but not that R3(T") is reduced.

Theorem 3.4.6. The character variety R%(Uy, Ay) is regular everywhere.

Proof. Using results from the proof of Theorem 3.3.23, we find that we can take the set
of generators for the fundamental group I' to be S = {a, A, B, h}, the relations function
F, : Hom((S), SU(2)) — SU(2) to be

F.(p) = —p([h,aB]),

and the constraint function F, : Hom((S), SU(2)) — R® to be

Fi(p) = (tx(p(a)), tr(p(ha™"h™1)), tr(p(h), f(p,1), f(p.d), f(p.K)),

where

flp,q) = etr(p(h™ A)q) — tr(p(B)q).

Using the expressions for the homomorphisms p, : I' — SU(2) given in the proof of Theorem
3.3.23, we obtain a linear map ¢, : R'?2 — R”. We now apply Theorem 3.4.4. A straightfor-
ward, but rather lengthy, calculation shows that dim(ker cyNker ¢1)+dim(c; (ker ¢p)Nim ¢p) =
5 for all homomorphisms representing points in R%(U;, A;). Since these homomorphisms
are all nonabelian, we conclude that dim H}(I';Adp) = dim Ri(U;, 4;) = 2 for all
[p] € RZ(Uy, Ay), and thus R (Uy, A;) is regular everywhere. O

Theorem 3.4.7. The character variety R(T?,2) is reqular on L.

Proof. Using results from Section 3.3.1, we find that we can take the set of generators for the
fundamental group I' to be S = {a, A, B}, with no relations, and we can take the constraint

function F, : Hom((S), SU(2)) — R? to be

F(p) = (tr(p(a)), tr(p(ABAT' B~ a))).

95



Using results from the proof of Theorem 3.3.23, we obtain a linear map ¢, : R? — R? for
homomorphisms representing points in L;. A straightforward, but rather lengthy, calcu-
lation shows that dim(kerco Nkerecy) + dim(e(kercg) Nimey) = 7 for all homomorphisms
representing points in L;. Since these homomorphisms are all nonabelian, we conclude that
dim H}(T; Ad p) = dim R(T?,2) = 4 for all [p] € R(T?2), and thus R(T?,2) is regular on
L. O

Remark 3.4.8. We conjecture that R(T?,2) is in fact regular at all points represented by

nonabelian homomorphisms, but Theorem 3.4.7 will suffice for our purposes.

3.4.3 Transversality

We are now ready to prove our key result that relates nondegeneracy to transversality.
Recall that we defined the Lagrangian L, to be the image of R(Us,, Ay) — R(T?,2). If
R(Usy, Ay) — R(T?,2) is injective, and [p] € L1 N Ly C R(T?,2) is not the double-point of
Ly, then by Corollary 3.1.4 the point [p] is the image of a unique point in R%(Y, K) under
the pullback map R (Y, K) — R(T?,2), which for simplicity we will also denote by [p]. The

following is a restatement of Theorem 3.1.5 from the introduction:

Theorem 3.4.9. Suppose R(Us, Ay) — R(T?,2) is an injective immersion and [p] € LN Ly

is the image of a reqular point of R(Us, As) and is not the double-point of Ly. Then the
unique preimage [p] € Ri(Y,K) of [p] under the pullback map Ri(Y,K) — R(T?2) is

nondegenerate if and only if the intersection of Ly with Ly at [p] € L1 N Ly is transverse.

Proof. We introduce the notation XK' = KUWUHUP,Y' =Y — K' U = U; — K, and

Y =T? — {p1,p2}. We have the following Mayer-Vietoris sequence:
H)(XAdp) — HIU(Y'; Adp) — H(Uj; Adp) ® H, (Uy; Ad p) — H(¥'; Ad p)
Here H?(X; Adp) is

HY(X;Adp) = {z € g|[p(A),z] =0 for all A € 7 (%)},
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and H!(Y'; Adp), H{(U]; Ad p), H(UL; Adp), H(X'; Ad p) are the constrained group co-
homology for the character varieties R (Y, K), Ri(Uy, A;), R(Us, As), and R(T?,2), re-
spectively. For notational simplicity, we are using p to denote a homomorphism represent-
ing a point in Ri(Y, K), as well as its pullbacks to homomorphisms representing points in
RE(Uy, Ay), R(Uy, Ay), and R(T?,2). From Theorem 3.3.25 we have that all points in L; are
represented by nonabelian homomorphisms, thus H?(X'; Adp) = 0. From Theorems 3.4.6

and 3.4.7, we have the identifications

HA(U}: Ad ) = T, RE(Uy, Ay, HA(T; Adp) = T, R(T%,2)
Since we have assumed that [p] € R(Us, As) is regular, we have the identification

H, (Uy; Ad p) = Tj R(Us, As).
By Theorem 3.3.25, the map R:(Uy, A;) — R(T?,2) is an immersion (with image L;), and
we have assumed that R(Us, Ay) — R(T?,2) is an immersion (with image L), so we can
identify
T[ﬂ]REr(Uh Ar) = Tip) L, T[p]R<U2v Ap) = Tip) Lo
We conclude that the constrained group cohomology H!(Y’; Ad p) is given by
H;(Y'; Adp) = T[,,}RET(Y, K) = Ty Lo N Tip Loy,

The constrained group cohomology H}(Y’; Ad p) is zero if and only if [p] is nondegenerate (see
[Don04] Section 2.5.4). Thus [p] is nondegenerate if and only if L; intersects Lo transversely
at [p]. O

Example 3.4.10. Consider the algebraic functions f,g : R — R, f(z) = 22, g(x) = 23. The
schemes corresponding to the critical loci of f and g are Spec F' = {(0)} and Spec G = {(z)},

where

F=R[z]/(f'(z)) =R, G =R[z]/(¢'(x)) = Rlz]/(=?).

The fact that 0 is a nondegenerate critical point of f, but a degenerate critical point of g,
is reflected in the fact that F' is reduced, but G is nonreduced, which in turn is reflected in

the fact that Tig) Spec F' = 0, but T{,) Spec G' = RR.
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Since nondegeneracy is a stable property, for sufficiently small ¢ > 0 we can use the
function f(¢) = sin¢ to define the perturbation, rather than the function f(¢) given in

equation (3.13).

3.5 The group MCGy(7?) and its action on R(T?2)

An important property of the character variety R(T?,2) is that it admits an action of the
mapping class group MCGy(T?). Here we describe the group MCGy(7T?) and its action on
R(T?,2).

3.5.1 The mapping class group MCG,(T?)

Definition 3.5.1. Given a surface S and n distinct marked points py,--- ,p, € S, we define
the mapping class group MCG,,(S) to be the group of isotopy classes of orientation-preserving

homeomorphisms of S that fix {p1,--- ,p,} as a set.

Presentations for mapping class groups are described in [CM04, Ger01, LP01]. The
mapping class group MCGy(7T?) for the twice-punctured torus is generated by Dehn twists
T,, Ta, Ty, and Tp around the simple closed curves a, A, b, and B shown in Figure 3.8,
together with a m-rotation w of the square shown in Figure 3.8. The mapping class group
MCG(T?) := MCGq(T?) for the unpunctured torus is generated by the Dehn twists 7, and
T.

It is useful to relate the mapping class groups MCGy(T?) and MCG(T?) to the braid

group By(T?), which we define as follows:

Definition 3.5.2. Given a surface S, we define the configuration space for ordered points
Conf], (S) to be the space {(p1,- - ,pn) € S™ | p;i # p; if i # j}. We define the configuration
space for unordered points Conf,(S) to be the space Conf (S)/%,, where the fundamental

group on n letters ¥, acts on Conf] (S) by permutation.

Definition 3.5.3. Given a surface S and n distinct marked points py,--- ,p, € S, we

define the braid group B,(S) to be the fundamental group of Conf, (S) with base point
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b1

Figure 3.8: Cycles a, A, b, and B corresponding to generators T,, T, Ty, and T of
MCG,(T?).

(e%)) P2 b2

Y
o

Ba

[(e%] b1 b1
© g
fa

Figure 3.9: (Left) Generators ay, as, 81, and By of By(T?). (Right) Generator o of By(T?).

[(p1, -+, pn)].

Presentations for braid groups are described in [Bel04]. The braid group Bo(T?) for the
twice-punctured torus is generated by braids «; and S; for ¢ = 1,2 that drag marked the
point p; rightward and upward around a cycle, together with a braid ¢ that interchanges the
marked points p; and py via a counterclockwise m-rotation. These generators are depicted
in Figure 3.9.

The braid group By(T?) and the mapping class groups MCGy(7?) and MCG(T?) are

related by the Birman exact sequence [Bir69]:
1 —— m(Homeog(T?)) —— By(T?) —2— MCGy(T?) —L— MCG(T?) —— 1.

Here Homeog(7T?) is the group of orientation-preserving homeomorphisms of 72 that are

isotopic to the identity. The group Homeoy(7?) deformation retracts onto 7% [Ham65], so
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71 (Homeoo(T?)) = w1 (T?) = Z2. The two free abelian generators of m;(Homeog(7?)) can be
identified with the elements ajay and 13 of By(T?) under the injection 7 (Homeog(7?)) —
By(T?). The push homomorphism p : By(T?) — MCGy(T?) is given by

plar) =pla) ' =TT p(B) =p(B2) " =TT, plo) = (T.T, ' To)w.

The forgetful homomorphism g : MCGy(T?) — MCG(T?) is given by
9(Ta) = 9(Ta) = To, 9(Ty) = 9(Tg) = T, g(w) = (T.T,'T.)".

In what follows we will use the generators of By(T?) to also denote their images in MCGy(T?)
under p : By(T?) — MCGo(T?).

We will use elements of the group MCGy(T?) to describe gluing data for constructing
(1,1)-knots. By definition, a (1,1)-knot K in a lens space Y can be obtained by gluing
together two copies of a solid torus containing an unknotted arc via a homeomorphism that
represents an element f € MCGy(T?). The Birman sequence is useful for understanding
the relationship between elements f € MCGy(7T?) and the corresponding pairs (Y, K). The
lens space Y can be recovered from the image of f under g : MCGy(T?) — MCG(T?),
so this map can be viewed as forgetting the part of the gluing data used to construct the
knot and preserving the part of the data used to construct the lens space. If we multiply
f by an element in the image of the map p : By(T?) — MCGy(T?), the resulting element
[ € MCG»(T?) yields a pair (Y, K’) consisting of a potentially different knot K’ in the same
lens space Y. The braid group Bo(T?) is thus useful for constructing different knots in a

fixed lens space.

3.5.2 The action of MCGy(T?) on R(T?,2)

We will define an action of the group MCGy(T?) on the character variety R(T?,2) via a
homomorphism from MCGs(T?) to Out(m (T*—{p1,p2})), the group of outer automorphisms
of m(T? — {p1,p2}). In general, we define a group homomorphism from MCG,(T?) to
Out(m(T% — {p1, - ,pn})), the group of outer automorphisms of m(T% — {p1, - ,pn}),
as follows. Define X = T? — {p;, -+ ,pn}. Choose a base point z5 € X and consider
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the fundamental group (X, z¢). Given an element [¢] € MCG,(X) represented by a
homeomorphism ¢ : X — X, there is an induced isomorphism ¢, : 71 (X, zg) — 71 (X, ¢(x0)),
[a] = [¢ o al]. Choose a path v : I — X from z to ¢(xo); this induces an isomorphism -, :
(X, p(10)) = (X, 20), [a] = [yay]. We now define a map MCG,,(T?) — Out(m (X, z))
by [¢] — [V«¢+]. One can show that this map is well-defined and is a homomorphism (see

[FM12] Chapter 8.1).

Remark 3.5.4. A version of the Dehn-Nielsen-Baer theorem states that the homomorphism
MCG,(T?) — Out(m(T? — {p1,--- ,pn})) is injective (see [FM12] Theorem 8.8), and one
can use this result to obtain the expressions for the homomorphisms p and g in the Birman

sequemnce.

We define a right action of MCGy(7?) on the character variety R(77?,2) by

[l - f=1lpofl,

where [p] € R(T?,2), f € MCGy(T?), and f € Aut(m(T? — {p1,p;})) is a representative
of the image of f under the homomorphism MCGy(T?) — Out(m(T? — {p1, p2})). We find
that the action of MCGy(T?) on R(T?,2) is given by

[A, B, a, b]- T, = [A, BA, a, b],

[A, B, a,b)- T, = [AB, B, a, b],

[A, B, a,b)-Ty = [A, aAB, a, Aaba™*A™1],
[A, B,a,b)-Tg = [a *BA, B, a, a *BbB*a,

[A, B, a,b]-w=[A"", B7', B'A"WAB, A"'B~'aBA].

The action of MCGy(T?) on R(T?,2) fixes the reducible locus OP3 of R(T?,2) as a set. The
homomorphism p : By(T?) — MCGy(7?) in the Birman sequence induces a right action of

By(T?) on R(T?,2).
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Figure 3.10: The trefoil in S? is constructed by gluing together (Uy, A1) and (U, Ay) using

the mapping class group element f = sfja; .

3.6 Examples

We will now compute generating sets for I*(Y, K) for several example (1, 1)-knots K in lens
spaces Y. As described in the Introduction, we Heegaard-split (Y, K) into a pair of handle-
bodies (U, A1) and (U, Ag). The handlebodies are glued together via a homeomorphism
¢ : (0Uy,0A1) — (0Usy,0As), which defines an element f = [¢] of the mapping class group
MCGy(T?). We define a character variety R(7?,2) corresponding to the Heegaard surface
(T?%, {p1,p2}) := (0U,0A;), and we define Lagrangians L; and Ly = Lg- f in R(T?,2) corre-
sponding to the handlebodies (Uy, A;) and (Us, A3). To obtain a generating set for I*(Y, K),
we count the intersection points L; N L, and show that the intersection is transverse at
each point. The calculations needed to accomplish this task rely on the parameterizations
Li(¢,0) and Ly(x,v) of the Lagrangians L; and Ly given in Theorems 3.3.25 and 3.3.20,
together with the description of the action of MCGy(T?) on R(T?,2) given in Section 3.5.2.
To describe the intersection, we will use the coordinates (a, l;) that we defined on the piece
Py C R(T? 2) in Section 3.3.1.1, and the coordinates (a, 3,~) that we defined on the piece
Py C R(T?2) in Section 3.3.1.2.

3.6.1 Trefoil in S

As shown in Figure 3.10, we can construct the trefoil in S?® by gluing the two handlebodies
together using the mapping class group element f = sfa;' € MCGy(T?), where s :=
T aTb’lT » exchanges the longitude and meridian of 72. We first prove a Lemma that constrains

the possible intersection points of Ly and Ly = Ly - f:
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Lemma 3.6.1. If Li(¢,0) = La(x, ), then x = w/2 and either 0 € {r/2,37/2} or ¢ €
{0, 7}

Proof. Define functions hy, hy : R(T?2) — R by
hi([A, B,a,b]) =tr A, hao([A, B, a,b]) = tr Ba.

We evaluate the functions h; and hs at the points Ly (¢, 0) and La(x, ). If we require that

each function give the same value at both points, we obtain the desired result. O

Theorem 3.6.2. The rank of I°(S®, K) for the trefoil K in S® is at most 3.

Proof. From Lemma 3.6.1, we know that if Li(¢,0) = La(x, %) then x = 7/2. A calculation
shows that Lo(7/2,v) = Ly(n/2,¢) - f = [A, B, a, b], where

A =i, B = sin 31 + cos 3y k, (3.17)

a = —cos 2y i+ sin2yj, b= —cosdi— sindyj. (3.18)

We will first show that the intersection L; N L, takes place entirely in the piece Pj.
Suppose La(7/2,1) lies in the piece Ps. Then the matrices A and B in equation (3.17) must
commute, so cos 31 = 0, corresponding to ¢ € {+7/6,+xr/2}. From equations (3.17) and
(3.18), we find that

ALl /2, £7/6)) = ~7/6, WLa(r /2, £7/2)) = /2.

But Theorem 3.3.25 states that all of the points in L; N P; have v = 0. It follows that L,

does not intersect Lo in the piece Ps.

We now consider the intersection L; N Ly in the piece P;. Using equations (3.17) and

(3.18), we find that the (@, b) coordinates of Ly(w/2, 1) are

a(La(m/2,4)) = (= cos 20, sin 20, 0),  b(La(m/2,1)) = (— cos 4y, —sindy, 0)  (3.19)
for ¢ € (—m/6,7/6), and

a(La(m/2,1)) = (= cos 20, —sin24h, 0),  b(La(m/2,4)) = (— cos 4y, sindy, 0)  (3.20)
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for ¢ € (—m/2,—7/6)U(7/6,7/2). From Lemma 3.6.1, we know that either 6 € {r/2,37/2}
or ¢ € {0,7}. But ¢ = 0 and ¢ = 7 correspond to the double-point of Ly, which lies in
P3, and we have already shown that L; does not intersect Ly in P3. Thus 0 € {n/2,37r/2}.
Substituting § = 7/2 and 6 = 37 /2 into the expressions for the (@, b) coordinates of Ly (¢, 0)
given in Theorem 3.3.25, we find that

a(Li(¢p,m/2)) = (—sin(¢p + v), — cos(¢p + v), 0), (3.21)
b(Ly(¢,7/2)) = (sin(¢ — v), cos(¢ — v), 0), (3.22)
a(Ly(¢,3m/2)) = (sin(¢ + v), cos(¢p + v), 0), (3.23)

(3.24)

b(Ly(¢,37/2)) = (—sin(¢ — v), — cos(¢ — v), 0). 3.24

From equations (3.19)—(3.24), it follows that the intersection L; N Lo fact takes place in a
torus T2 — A C S? x §2 — A, where A C T? is the antidiagonal. In Figure 3.11 we use
equations (3.19)—(3.24) to plot the intersection of L; and Lo in T? — A. We see that L; and

L intersect in three points.

We will now show that the intersection is transverse at each of these three points. A

calculation shows that at each point we have

o1 (L1(,0)) =0, Oph1(L1(,0)) #0,  Ohi(La(x, %)) =0,  Oyhi(L2(x,¢)) =0,
8¢h2(L1(¢, 9)) =0, 5’9h2(L1(¢,9)) =0, axhz(Lz(Xaw)) # 0, awh2(L2(Xaw)) =0.

These equations, together with Figure 3.11, show that the intersection is transverse at each

intersection point. [

For knots K in S3, one can show (see [HHK14], Section 12.1) that

rank I*(S%, K) > Z\al
where a; is the coefficient of ¢' in the Alexander polynomial Ag(t) of K:

Ag(t) = ait"

This inequality, together with Theorem 3.6.2, gives the singular instanton homology for

the trefoil. This result was already known, since, as shown by Kronheimer and Mrowka,
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Figure 3.11: The trefoil in S®. The space depicted is T2 — A C S? x S?2 — A. Shown are the

Lagrangian L, the Lagrangian Lo, and the antidiagonal A.

the singular instanton homology of an alternating knot in S is isomorphic to the reduced

Khovanov homology of its mirror [KM14].

3.6.2 Unknot in L(p,1) for p not a multiple of 4

We can construct the unknot U in the lens space L(p,1) by gluing the two handlebodies
together using the mapping class group element f = TP € MCGy(T?). The following is a

restatement of Theorem 1.2.1 from the Introduction:

Theorem 3.6.3. If p is not a multiple of 4, then the rank of I*(L(p,1),U) for the unknot

U in the lens space L(p,1) is at most p.
Proof. A calculation shows that Ls(x,v) = La(x,¥) - f = [A, B, a,b], where
A = cos x + sin x k, B = cospx + sinpy k, a=0b"1=cosyi+sinyk. (3.25)

Since A and B commute, the Lagrangian Lo lies in the piece P;. From equation (3.25), it

follows that the («, 8,7) coordinates of the point Ls(x, ) are

a(La(x, %)) = X, B(La(x,v)) = px, Y(La(x,¥)) = 9.

Comparing with the parameterization of L; in P3 given in Theorem 3.3.25, we find that the
intersection Ly N Ly in fact takes place in the pillowcase Py N {y = 0}. In Figure 3.12 we
plot the intersection of L; with Lo in the pillowcase P3N {y = 0} for p = 1,2,3. We find

105



that if p is not a multiple of 4 then we obtain a generating set with p generators. If p is a
multiple of 4 then L; N Ly contains the double-point (o, 8,7) = (7/2,0,0) of Ly, and thus

our scheme for counting generators fails.

We will now show that the intersection is transverse at each intersection point. Define

functions
hi([A, B, a,b]) = tr Aa, hao([A, B, a, b)) = tr Ba.
A straightforward calculation shows that at each point of L; N Ly we have that

a¢h1<L1(¢7 9)) = Oa aehl(Ll((ba 6)) 7£ 07 axhl(LZ(Xvw)) = 07 all)hl([Q(Xa w» 7é 07
Opha(L1(¢,0)) =0, 9pha(L1(0,0)) =0, Oyha(La(x,¥)) =0, Opha(La(x,v)) # 0.

These equations, together with Figure 3.12, show that the intersection is transverse at each

point of Ly N Ls. ]

For the case p = 1 we have that L(p,1) = S3, and our results imply that the unknot
in S3 has a generating set with a single generator. Since there is a single generator, this

amounts to a calculation of the singular instanton homology.

Remark 3.6.4. It is interesting to note that for the unknot U in the lens space Y = L(p, q),
the knot Floer homology ]TF?((Y, U) has rank p (see [Hed11]).

3.6.3 Simple knot in L(p,1) in homology class 1 € Z, = H,(L(p,1); Z)

Definition 3.6.5. A knot K in a lens space L(p, q) is said to be simple if the lens space has
a Heegaard splitting into solid tori U; and U, with meridian disks D; and D, such that D,
intersects Dy in p points and K NU; is an unknotted arc in disk D; for i = 1,2 (see [Hed11]).

One can show that there is exactly one simple knot in each nonzero homology class of
Hy(L(p,q); Z) = 7Z, [Hed1l1]. For the case ¢ = 1, we can view the lens space L(p,1) is a
circle bundle over S?, and a loop that winds n times around a circle fiber is a simple knot

in homology class n € Z, = Hy(L(p,1);Z). For p > 2, we can construct the simple knot
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B g B

Figure 3.12: The unknot in L(p,1) for p = 1,2,3. The space depicted is the pillowcase
P3N {y =0}. Shown are the Lagrangians L; and Ls.

K in the lens space L(p, 1) corresponding to the homology class 1 € Z, = H;(L(p, 1); Z) by
gluing the two handlebodies together using the mapping class group element f = o 'TP €

a

MCGy(T?). We first prove a result that constrains the possible intersection points of L; and

Lemma 3.6.6. If Ly(6,6) = L(x, ) then () € {(x0. Yo} (tp1, Y1)} and & =
7/2, where X, = (n+1/2)(7/p) and v, := (=1)"T (7w /2 — ¢).

Proof. Define a function hy : R(T?,2)N{tr Ab # 0} — R and functions hy, h3 : R(T?2) = R
by

tr Aa

hl([A,B,a, b]) = —m,

hao([A, B, a, b)) = tr Ba, hs([A, B,a,b]) = tr B.

Using straightforward calculations, one can show that if hg(Li(¢,0)) = hs(La(x,1)) then
(tr Ab)(La(x, %)) # 0, and thus the function hy is defined everywhere on L; N L. We
evaluate the functions hq, ho, and hs at the points Li(¢,0) and Ls(x, ¢). If we require that

each function give the same value at both points, we obtain the desired result. O

The following is a restatement of Theorem 1.2.2 from the introduction:
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Theorem 3.6.7. If K is the unique simple knot in the lens space L(p,1) representing the
homology class 1 € Z,, = H,(L(p,1); Z), then the rank of I*(L(p,1), K) is at most p.

Proof. We will argue that each of the p potential intersection points described by Lemma
3.6.6 is an actual intersection point. A calculation shows that La(Xn, ¥n) = La(Xn, ¥n) - [ =
[A, B, a,b], where

A = cos xp, + sin x, 1, B = cose +sinek, (3.26)

a=(—1)""(cosei+ sinej), b= (—1)"cosei+sinecosn,j+sinesinn, k,  (3.27)

and 7, := (1 +n(p+2))(7/p). We note that A and B do not commute, since the coefficient
of i in A and the coefficient of k in B are both nonzero, so the intersection L; N Ly takes place
entirely in the piece P;. From equations (3.26) and (3.27), we find that the (@, b) coordinates

of La(xn,¥n) are given by

a(Lay(Xn, ¥n)) = (—=1)"(cose, sine, 0), (3.28)

~

b(La(Xn,¥n)) = ((—1)" cose, sin € cosny,, sinesinn,). (3.29)

From Lemma 3.6.6, we know that if L1(¢,0) = Lao(x, %) then ¢ = /2. Substituting ¢ = /2
into the expressions for the (a,b) coordinates of L (¢, ) given in Theorem 3.3.25, we find

that
a(L1(m/2,0)) = (cose, sine, 0), b(Ly(n/2,0)) = (—cose, —sinecosh, sinesind) (3.30)
for 6 € (0,7), and
a(Ly(m/2,0)) = (—cose, —sine, 0), b(Li(7/2,0)) = (cose, sinecosd, sinesind) (3.31)
for § € (m,27), where @ is defined such that
~ cos?ecos?f — sin? 0 cos € sin 20

cosf = 5 5 —5 sinf = 5 5 —5
cos? e cos? 0 + sin“ 0 cos? ecos? 0 + sin® 6

It is straightforward to verify that for small enough values of €, the maps (0,7) — (0, 27),
0 — 0 and (7,2m) — (0,27), 0 — 0 are diffeomorphisms. Thus we can always solve equations

(3.28)—(3.31) to obtain a unique value of # such that Li(w/2,0) = Lo(xn,n). Specifically,
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if n is even, then 6 € (0,7) is given by 0(0) = 71,,, and if n is odd then § € (7,27) is given
by 6(0) = © — n,. We conclude that L; and L, intersect in p points.

We will now show that L; intersects Lo transversely at each of these p points. A straight-

forward calculation shows that at each point of Ly N Ly we have

8¢h1(L1(q§, 9)) #0, 39h1(L1(¢; 9)) =0, axhl(LQ(X7 ¢)) =0, a¢h1(L2<X7 1/’)) =0,
8¢h2(L1(¢7 0)) =0, 0Opha(Li(9,0)) =0, 0xh2(L2(Xa¢)) # 0, @phz(Lz(X, Y)) =0,
Oshs(L1(,0)) =0, Oph3(L1(4,0)) =0, Oxhs(La(x,¥)) =0,  Iphs(La(x,v)) # 0.

These equations, together with Theorem 3.3.25, show that the intersection is transverse at

each point. O

For the case p = 0, the knot we have constructed is K = S' x {pt} in S' x 52 and
our above result implies that this knot has a generating set with zero generators. This
result holds even in the absence of the perturbation, since there are no homomorphisms

p:m (St x 5% — K) — SU(2) that take loops around K to traceless matrices.

For the case p = 1, the knot we have constructed is the unknot in S%, and we have have

reproduced the result of Section 3.6.2 for this knot.

Remark 3.6.8. It is interesting to note that for a simple knot K in the lens space Y =
L(p, q), the knot Floer homology ﬁ((Y, K) has rank p (see [Hed11]).
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