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EPIGRAPH

The Road goes ever on and on,

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feat,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.

—John Ronald Reuel Tolkien
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ABSTRACT OF THE THESIS

Selection of Representative Days in Microgrid Planning

by
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Optimization tools require prohibitive computational time to model energy systems with

annual hourly input data, and input is typically reduced into representative periods to increase

solver speed. Data reduction in microgrid optimizations impacts the objective function accuracy.

Methods preserving demand data fluctuations through reduction into representative days show

improved accuracy with increases in number of representative periods. This work presents a

method of data reduction that aggregates annual hourly demand data into typical weekdays and

weekends, while explicitly preserving demand peaks in distinct representative profiles. The

proposed method is tested in an energy system optimization using historical 15-minute resolution

annual demand data from a gymnasium in La Jolla, California, and the system is optimized in

xiii



terms of total annual costs. Results are in good agreement with a full-resolution optimization of

the energy system, establishing the validity of the proposed technique. Additionally, a comparison

of method performance demonstrates a significant improvement in accuracy with the inclusion of

peak demand profiles.
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Chapter 1

Introduction

1.1 General Background

The tradeoff between accuracy and computational speed is an important research question

as optimization tools are increasingly used for the planning and design of least cost, maximum

CO2 reduction microgrids. Effective planning can reduce investment costs, and operational

costs can be minimized with smart dispatch of distributed energy resources (DER) to reduce

demand charges, engage in price arbitrage opportunities, and generate revenue through providing

services to the utility. Optimization tools are advantageous in their ability to determine a system

configuration that efficiently and economically utilizes the available technologies.

Optimization tools using annual hourly granularity for time series data can take multiple

days to complete a single run[SSF+18], [GGMM18], yet the influence of seasonally varying

location-dependent variables (such as demand and solar insolation) on system design and operation

requires optimization tools to represent these variables with a high level of granularity. These

variables play a particularly important role for systems subject to time-of-use (TOU) rates and

demand charges, as the interaction between fluctuating electricity prices and technology dispatch

significantly impacts sizing decisions. Reducing the computational complexity required to solve
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optimization problems while capturing key features of input data variability presents a challenge

to the widespread use of optimization tools for microgrid planning.

A commonly used technique to increase the computation speed of energy systems opti-

mization tools is the reduction of high resolution time series input data to sets of representative

periods. Researchers have used 3-6 representative days with 1, 2, or 4-hour resolution to capture

seasonal trends, such as in [YHI02], [ZLZC17], [MGRM17], [CPR09], and [MDFG08]. Aggre-

gating time series data into 12 monthly representative days with 1-hour resolution is another

approach seen in [MDFG08], [LRS10], [SSH+17], and [MSMP13]. One commonality between

all of these methods is that they do not apply any methodology to preserve the peak demand.

The following papers account for peak demand in their selection of representative days.

[WY14], [WY15], and [WKY16] also use three typical seasonal days, as well as two additional

days to capture seasonal winter and summer peak behavior. [LRCS09] uses two representative

1-hour resolution days for each month: one to represent typical working days, and one to represent

festive-weekend days. Both [FBM+14] and [DMCLCAGS11] account for extreme behavior by

adding peak days as insulated clusters, noting this step as necessary for properly sizing the system.

[BKS+17] adds peak days to aggregated input data to account for thermal extremes. [MDFG08]

reduces load data to seasonal profiles, preserving the maximum load value of all months within a

season.

The focus of the previously mentioned works has been on the development of the opti-

mization model. Several other works have actively tested the impact of a preferred data reduction

technique on computation time and error. The performance quality of a k-means method inte-

grated with a parametric ε-constraints optimization technique is evaluated in [FBM+14]. Both

[GGMM18] and [GFMM19] evaluate the performance of a k-means method that selects and

integrates peak days. In [DMCLCAGS11] and [STSM], the use of k-medoids clustering methods

to reduce demand data is tested.

Recently, researchers have begun to directly compare the performance of multiple methods
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of data reduction, seeking to identify whether there is one technique or group of techniques that

stands out in minimizing error across a range of models for power systems and microgrids.

Teichgraeber and Brandt [TB19] compare k-means, k-medoids, and hierarchical clustering

methods, as well as two shape-based clustering methods. Clustering methods are applied to

hourly electricity prices and tested using two MILP formulations. Green et al.[GSV14] applied

a k-means algorithm to cluster electricity demand and wind output data for Great Britain, and

from within each cluster, tested 15 methods of selecting representative days. Pfenninger [Pfe17]

presents a systematic analysis of downsampling, clustering, and heuristic techniques, with a focus

on large power systems with high shares of renewable generation.

Schutz [SSF+18] compares the performance of six different representative day selection

techniques, testing four clustering methods (k-means, k-medoids, k-centers, k-medians) and two

aggregation methods (monthly and seasonal). No methods for representing extreme behavior

days are tested. Electricity and heat demand and solar irradiation are clustered, and an apartment

building and a single-family house with generation and storage technologies are modeled. Schutz

evaluates the deviation of the objective function value, comparing representative day solutions to

a recalculation of the same energy system using annual hourly resolution input data. Schutz finds

that as few as 4 days selected using k-medoids most closely and reliably approximate demand

related costs, but all methods determine energy systems close to the optimal system chosen by

the reference model.

Kotzur et al.[KMRS18] tested the performance of four different techniques: averaging,

k-means, and two medoid based methods, a k-medoid clustering algorithm and a hierarchical

algorithm. They applied the methods to two residential systems and a larger islanded system and

use the objective function as a performance metric. They found that medoid-based methods tended

to perform better than centroid-based or aggregation methods without inclusion of peak periods.

However, a significant increase in objective function error is observed when moving from the

residential cases to the islanded case. This is attributed to the reliance on storage in the islanded
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system, as the optimizations using representative periods do not model inter-day storage. Although

the objective function error and discrepancy of system design both improve with increased period

length and increased number of representative periods, Kotzur et al.[KMRS18] conclude that

representative periods are inadequate for modeling systems reliant on long-term storage, and that

data reduction method suitability primarily depends on the system being modeled.

Common findings and methodologies are as follows: Pfenninger [Pfe17] found that

heuristic methods of selection showed promise in handling inter-annual variations. Both Kotzur et

al.[KMRS18] and Schutz [SSF+18] found that k-medoids performed better than other clustering

methods when applied to demand profiles with greater fluctuations. Schutz [SSF+18] represents

electricity prices as a single flat rate, and Kotzur et al.[KMRS18] does not specify whether

flat or varying rates are used. This misses a key interaction between variations in building

demand, the utility, and technology for demand charge reduction and price arbitrage. Pfenninger,

Schutz, Gabrielli, and Kotzur each compare results of optimizing energy systems with storage

using uncoupled representative periods against reference metrics calculated using annual hourly

resolution optimizations. As a result, they introduce discrepancies caused by both data reduction

and by storage operation within uncoupled representative periods, and do not directly assess how

much of the objective function error is caused by one or the other. None of the researchers that

directly compare data reduction techniques found a significant enough difference in performance

to recommend an overall technique.

1.2 Contribution of Paper

The primary contribution of this paper is testing the integration of peak demand profiles

through a comparison of demand data reduction techniques. A method for constructing represen-

tative weekday and weekend profiles while explicitly preserving demand peaks is introduced, and

hereafter referred to as Monthly Peak Preservation (MPP). Nine different demand data reduction
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approaches are compared, varying the method and the number of constructed peak days used in

MPP. The testing methodology directly isolates the impact of the demand data reduction methods,

avoiding additional discrepancies caused by storage dispatch between uncoupled days, and by

data reduction of separate input time series.

The major contributions of this paper are:

• Introduction of demand data reduction method which explicitly captures demand peaks

(Monthly Peak Preservation)

• Comparison of two classes of demand data reduction methods

• Demonstration of the importance of capturing demand peaks

• Isolate the impact that different input sources have on objective function error

1.3 Layout of Paper

The layout of the paper is as follows: Section 2.1 introduces the data reduction methods

that will be tested. The MILP formulations used are introduced in Section 3.1, followed by an

explanation of the testing procedure in Section 3.2. I identify the performance metrics that will

be used to assess data reduction method performance in Section 3.2.2. Case studies and energy

systems modeled are described in Section 3.3. Results are then discussed in Section 4.
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Chapter 2

Data Aggregation Methodology

2.1 Demand Data Reduction Methods

2.1.1 Overview

In this paper, demand data is reduced into representative days using two classes of demand

data reduction methods: a k-means clustering method, and the Monthly Peak Preservation method

(MPP) introduced here. For both classes, the reduced demand data represents weekdays and

weekends. MPP also includes representative profiles for peak days. These representative days

RDm,DT are 24-hour, hourly resolution profiles for each month, and are constructed from annual

hourly demand data that has been separated into weekday and weekend data sets. This ensures

that the level of granularity of the reduced demand data matches or exceeds that of typical

monthly and hourly variations in TOU rates and demand charges. (Holidays are disregarded, as

the infrequency of holiday billing periods is not expected to significantly influence results.)

Similarly to the approach in [SGCM14], sizing and operation are optimized for 2-6

days per month, and variables such as annual consumption for these representative periods are

projected out to obtain monthly and annual characteristics of the energy system. The scaling

factors used in this projection are equal to the modeled number of days each optimized demand
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profile represents within a month, and are referred to as nm,DT . Multiple approaches within each

class are considered, and all methods are introduced and formulated in the following sections.

2.1.2 Clustering: K-means

K-means is a commonly used approach in the manipulation of large data sets to create

representative, but smaller subsets of the data [Jai10]. It is formulated as a greedy optimization

algorithm which assigns points among clusters by calculating cluster centroids which minimize

the sum of the within-cluster sums of point-to-centroid distance (the distance measure d(xi,µk)).

The distance measure used is the squared Euclidean distances between the points xi within a

cluster and the cluster centroid µ. The distance minimization is shown in Eq. (2.1). K-means

iterates to reassign points and recalculate cluster centroids, decreasing the total sum of distances

and the number of reassignments until the algorithm reaches a minimum. The number of clusters

are defined a priori. Final centroids are the empirical means of their clusters, rather than selected

members of the clusters.

min[
Nk

∑
k=1

Ni

∑
i=1

d(xi,µk)× zi,k] (2.1)

d(xi,µk) =
Ng

∑
g=1

(xg,i−µg,k)
2

In the formulation above, i is the index for the candidates considered for typical period k,

and g is the time step index within a period. zi,k is a binary variable equal to 1 if candidate i is

assigned to cluster k.

In this paper, the k-means clustering is applied to the annual hourly energy demand

data. Total annual demand is conserved by summing all cluster centroids multiplied by the

corresponding number of cluster members. However, variations are smoothed out and demand
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peaks are not preserved. The candidates xg,i are the demand data, as shown in (2.2). The weekday

demand and the weekend demand of every month are each grouped into c clusters. The cluster

centroids are used as the representative 24-hour, hourly resolution profiles RDm,DT,c. Three sets

of representative profiles are constructed, using one cluster (c = 1), two clusters (c = 2), or three

clusters (c = 3), and are referred to as K1, K2, K3, respectively. An example of the clustering

approach is shown in Fig 2.1. The built-in MATLAB k-means function is used for testing.

xg,i = Lg,w,m, g ∈ (1 : 24), w ∈ (weekday,weekend), m ∈ (1 : 12) (2.2)

Figure 2.1: The cluster centroids selected by k-means are used to construct the representative
demand profiles for a typical March weekday demand profile. From left to right are shown the
centroids chosen for sets K1, K2, and K3.

2.1.3 Monthly Peak Preservation

An averaging method is specifically formulated for this paper to preserve total annual

energy demand and diurnal demand peak behavior. Similarly to the application of k-means,

representative weekday and weekend demand profiles are constructed by reducing the annual

hourly weekday and weekend demand. However, unlike k-means, MPP explicitly preserves

monthly demand peaks in a third type of representative profile, called the peak day. The annual

hourly demand is separated into weekday and weekend demand for each month, and monthly

demand peaks are subtracted. The remaining data is averaged to construct representative weekday

and weekend demand profiles for month m and hour h, and the demand peaks populate the peak

8



day. The impact of demand data reduction on energy systems under tariffs that include demand

charges is seen by including these peak days.

Peak Demand Profile Twelve representative hourly resolution days are created to preserve

peak demand values for each month. I construct profiles representing maximum monthly demand

at every hour, RDm,pk,h. To create these peak day profiles, the maximum demand for month m

and hour h over all days in the month is selected as the value for the peak demand profile. An

example is shown in Fig 2.2.

RDm,pk,h = maxd(Lm,h,d) (2.3)

Figure 2.2: The representative energy demand profile for demand peaks in March is constructed
by selecting the maximum demand of each hour across all days.

Weekday and Weekend Demand Profiles To construct the weekday and weekend demand

profiles, I first separate the total annual hourly demand data into weekday demand and weekend

demand for each month. I then use RDm,pk,h to modify the weekday and weekend data sets prior

to averaging them into the representative demand profiles RDm,wd,h and RDm,we,h. Demand peak

values at hour h are removed from the demand data sets, based on the occurrence of the peak on

a weekday or a weekend, as well as on the number of peak days represented in the month. For

example, if 3 peak days are represented for month m, and the monthly peak at hour h fell on a

9



weekday, then 3×RDm,wd,h is subtracted from the total demand summed over all weekdays for

month m at hour h. This ensures that the addition of the third daytype to represent peak behavior

avoids overestimating the annual energy demand, as calculated in Eq. (2.4).

12

∑
m=1

∑
DT

24

∑
h=1

nm,DT RDm,DT,h ∀DT ∈ (peak,weekday,weekend) (2.4)

Figure 2.3: The dashed line represents the sum of either the weekday or weekend demand,
depending on the occurrence of the peak. Each shaded area represents the demand peak at each
hour, RDm,pk,h. The demand peaks are stacked until a multiple of the demand first intersects the
sum of the demand. The upper bound on the number of demand peaks that fit underneath the
sum of the demand is marked by the solid line.

In this paper, I test the impact of varying the number of peak days by applying the load

data reduction method as I iterate through a range of values for nm,pk. I set an upper bound for

how many peak days can be represented in each month by calculating the total load to peak ratio,

σm. Fig 2.3 illustrates how I determine σm, ie, the number of peak days that can be subtracted

when calculating the weekday and weekend load profiles. The shaded segments each represent

the peak demand at each hour, and are stacked in multiples. For instance, at hour 5, the peak

occurred on a weekend, so the value of the marker is the sum of the load across all weekends in

March at hour 5. The solid line indicates the boundary before the stacked areas first intersect the

marker line. The number of stacked areas under the boundary is the upper bound on the number

10



of peaks that can be subtracted across all hours for this month, and I therefore set σm equal to the

upper bound.

Algorithm 1 Construct sets of representative weekday and weekend profiles
for iterator m ∈ (1,12) do

Construct peak profile RDm,pk,h
Track peak occurrence
Calculate total load to peak ratio σm
for iterator p ∈ (0,maxm(σm)) do

if σm < p then
σ

p
m = σm

else
σ

p
m = p

end if
Subtract σ

p
mRDm,pk from demand data

Average remaining demand data to construct RDp
m,wd , RDp

m,we

Calculate np
m,wd and np

m,we
end for

end for

We modify nm,wd and nm,we as I test values for nm,pk, as shown in Eq. (2.5). The actual

number of weekdays and weekends in a month (NWDm and NWEm) is reduced by the number

of peak days tested, weighted by ηm, the ratio of maximum demand values that occurred on a

weekday. This maintains the equivalence of Eq. (2.4) with the total annual energy demand, and

the sum of nm,wd , nm,we, and nm,pk is equal to the actual number of days in month m.

nm,DT =


σm, DT = Peak.

NWDm−ηmσm, DT =Weekday.

NWEm− (1−ηm)σm, DT =Weekend.

(2.5)

ηm =
∑

24
h=1 PIm,h

24
, ∀PIm,h =


1, Demand peak occurred on a weekday.

0, Else.
(2.6)
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Varying Number of Peaks An iteration described by Algorithm 1 imposes an additional limit

on the number of peak days, ranging the upper limit from 0 peaks to maxm(σm). I obtain

maxm(σm) + 1 sets of 3 representative demand profiles for each month, 36 in total, and all

corresponding values of nm,DT . The calculation of RDp
m,wd and RDp

m,we, as well as np
m,DT , is

subject to the restriction on σm as I vary p. I refer to the sets of demand profiles as M0 for the set

constructed using p = 0, M1 for the set constructed using p = 1, etc.

2.2 PV Data Reduction Method

Figure 2.4: Representative PV system profiles constructed using Eqs (2.7) and (2.8). Also
shown are the daily PV system performance data profiles used in constructing the representative
profiles.

We create twelve representative hourly days to characterize the average monthly PV

system performance. The representative profiles RPV avg
m are created by averaging the daily solar

irradiance PVm,d , as shown in Eq. (2.7).

RPV avg
m,h =

1
NDm

NDm

∑
d=1

PVm,d,h, NDm = Number of Calendar Days in m (2.7)

Additionally, I create a set of representative profiles to characterize the minimimum

monthly PV system performance, RPV min
m , and a set of representative profiles to characterize
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the maximum monthly PV system performance, RPV max
m . They are constructed by taking the

minimum and the maximum values of the daily solar irradiance, as shown in Eq. (2.8). An

example of the average, minimum, and maximum representative PV profiles is shown in Fig 2.4.

RPV min
m,h = mind(PVm,d,h) RPV max

m,h = maxd(PVm,d,h) (2.8)
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Chapter 3

Testing Methodology

3.1 Optimization Schemes

3.1.1 8760-Timestep Optimization

A 8760-timestep optimization is developed for this paper to provide reference results

for data reduction method performance. The 8760-timestep optimization is a mixed-integer

linear program (MILP) based on DER-CAM [SGCM14], and minimizes the total annual costs of

providing energy services to a system by optimizing the technology portfolio and operation of an

energy system. The input for the MILP characterizes the system with annual hourly time series

data, including building demand and solar irradiance profiles.

Decision variables are optimized for each timestep t ∈ (1,8760). The optimization

considers all costs associated with meeting system energy demand, including (but not limited to)

monthly fixed utility purchases, volumetric electricity purchases, demand charges, annualized

technology investment costs, and operational costs. Cost-related decision variables are summed

and minimized in the objective function, shown in simplified form in Eq. (3.1). The optimization

is subject to operational constraints and an energy balance constraint.

14



minC = ∑
t

cutility +∑cinvest +∑
t

cO&M (3.1)

s.t.

Lt = ut +∑
j

g j,t

3.1.2 Representative Days Optimization

For testing the demand data reduction methods, I alter the MILP formulation (3.1) by

replacing timestep t with m ∈ (1,12), d ∈ (1,NDm), and h ∈ (1,24). The resulting optimization

takes demand data input in the form of representative load profiles RDm,DT,h and the corresponding

number of days nm,DT , as well as the monthly average PV system performance profile described in

Eq. (2.7). The MILP formulation optimizes selection and intra-day operation without connecting

the representative days, which is a focus of future work. The variables characterizing monthly

and annual quantities are determined by projecting out the daily variables using nm,DT .

minC = ∑
m,d,h

cutility +∑cinvest + ∑
m,d,h

cO&M (3.2)

s.t.

Lm,d,h = um,d,h +∑
j

g j,m,d,h
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Figure 3.1: A is a segment of ActL, the actual demand data. B shows the representative
demand profiles for March, constructed using a chosen method from those described in 2.1. C
is the repeating annual hourly demand profile, reconstructed from the representative profile as
described in 3.2.1. Both A and C are over the same time interval, March 4th through March
10th, as an example.

3.2 Testing Framework

3.2.1 Testing

We test the performance of the data reduction methods by comparing the results of the

representative daytype formulation against reference results obtained from the 8760-timestep

formulation. Prior to running optimizations, I prepare the input data needed for all testing. Using

the actual data for system energy demand (ActL) and PV system performance (ActP), which

are unmodified annual hourly time series, I construct sets of representative demand and PV

profiles by applying the data reduction methods described in sections 2.1 and 2.2. Further, I

create annual hourly demand and PV data time series with intra-daily variations identical to the

representative demand profiles created from them, as well as total monthly consumption/solar

insolation identical to that calculated by projecting out the representative profiles using nm,DT . I

do this by populating each day of the year with their representative profiles RDm,DT and RPV avg
m ,
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respectively. These reconstructed annual hourly time series are referred to as RepL and RepP. A

visual representation is shown in Fig 3.1 and 3.2, where the top plot shows a week-long segment

of the data used to construct the reduced representative profiles, which are shown in the middle

plot. The bottom plot shows the representative profiles populated across the days through the

same time interval as the top plot.

Figure 3.2: A is a segment of ActP, the actual PV system performance data. B is the repre-
sentative average 24-hour PV profile for March, constructed according to Eq. (2.7). C is the
repeating annual hourly PV profile, reconstructed from the representative profile as described in
3.2.1. Both A and C are over the same time interval, March 4th through March 10th.

Following input data preparation, testing proceeds as follows: An 8760-timestep optimiza-

tion and a representative days optimization are run for the same energy system, with identical

technology parameters. Existing system characteristics are defined by a demand profile and a

PV profile chosen from the pre-prepared set of input data. The sizing and operation are each

determined by the 8760-timestep and the representative days optimizations. The results of each

energy system designed by the 8760-timestep and the representative days optimizations are

compared using the performance metrics described in 3.2.2. Fig 3.3 provides a visualization of

the overall testing procedure.
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Figure 3.3: An overview of each step of the testing procedure for assessing data reduction
method quality. The particular input data chosen for each optimization depends on the reduction
method being tested.

To test the effects of demand data reduction, I use an 8760-timestep optimization with

RepP and ActL as a reference. The purpose of using RepP is to isolate the impact of the demand

data reduction on results, as seen in the comparison between the two energy systems designed

by the 8760-timestep optimization and the representative days optimization. As noted earlier,

the magnitude and hourly variation of RepP is identical to that of the annual PV profile that is

projected out from RPV avg
m , and all input data representing the energy system are completely

identical between the two models, apart from the demand data input. Therefore, I can identify all

discrepancies in performance metrics as being caused by the demand data reduction.

We additionally examine the impact of PV data reduction by applying a similar approach. I

run the representative day optimization once, using RDm,DT and nm,DT created by a single demand

data reduction method. The results of the representative day optimization are compared against

those of the 8760-timestep optimization using RepL constructed from the chosen RDm,DT and

ActP. The impact of the data reduction method being tested is again isolated: Total consumption

and intra-daily variations are perfectly identical between the projection of the representative days

RDm,DT and the annual hourly demand profile RepL. All discrepancies in performance metrics

18



Table 3.1: Performance metrics used in assessing data reduction method quality, using results
from reference cases solved with the 8760-timestep MILP formulation.

Performance Metric Information Gained

Objective Function Evaluate quality of data reduction method
Technology Sizing Impact on use as sizing tool

Demand Charges Evaluate method of handling peak behavior
Energy Charges Evaluate solver differences in minimizing cost

between the reference results and the representative days optimization results can be therefore

attributed to the PV data reduction.

We include additional combinations of reconstructed annual hourly demand and PV

system performance profiles to gain insight as to how combinations of data reduction influence

the performance metrics described in 3.2.2. Each of these demand data and PV data annual hourly

input data is used to run the 8760-timestep optimization, and the results are compared against

both the representative days optimization and the reference results.

3.2.2 Performance Metrics

Data reduction methods performance will be evaluated based on objective function,

capacity, demand charges, and energy charges, shown in Table 3.1. The primary metric for

data reduction method quality is the objective function. The discrepancies in demand charges,

energy charges, and sizing for the representative day optimization results and the 8760-timestep

optimization results will be useful in understanding solver differences. The discrepancy between

the representative day optimization results and the 8760-timestep optimization results will be

reported.
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3.3 Energy System and Case Study Description

A building on the UCSD campus in La Jolla, California is chosen for testing. The building

is a gym that is open through all days of the week, and is subject to closures during holidays and

school breaks. The demand data is historical 15-minute resolution real power data from the gym.

Only electricity demand is modeled, and a snapshot of actual demand data recorded at the gym is

shown in Fig 3.4, as well as the load duration curve for the annual demand. The annual hourly

PV system performance data is the AC power output per kW of system capacity, calculated based

on location, the choice of module and array type, and the tilt, among other parameters.

Figure 3.4: The load duration curve for Main Gym in 2018 (left) and raw historical real power
data recorded for Main Gym in March 2018 (right). The building experiences frequent variations
in demand, with extreme fluctuations during vacations and periods of high use.

The building is in the San Diego Gas and Electric service area. The tariff structure selected

is Schedule AL-TOU Secondary, which applies to non-residential customers with a monthly

demand exceeding 20 kW. The tariff includes summer and winter energy charges and demand

charges for on-peak, semi-peak, and off-peak periods. The demand charge is applied to the

maximum demand hourly demand for a given month. The on-peak period is from 4 pm to 9 pm

for all days of the year.

In Case 1, the choice for generation technology is a photovoltaic (PV) system. In Case 2,
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the choice includes both PV and a natural gas generator. The optimizer selects and sizes the PV

capacity on a continuous basis, and selects and sizes the number of generator units on a discrete

basis. The PV system modeled is a fixed ground-mounted array with an approximate nominal

efficiency of 19%. PV system installation cost is set to $1700 per kW of capacity, and operation

and maintenance costs are set to $1.4167 per kW of capacity per month. The natural gas generator

modeled is based on the Generac SG100, and has a power rating of 100 kW. Installation costs are

set at $200,000 per generator, with variable operation and maintenance costs of $0.02 per kWh of

output energy. Lifetime of both technologies is set to 30 years.

21



Chapter 4

Results

4.1 Total Annual Demand

The first set of results I look at is the error in calculating the total annual consumption.

Shown in Fig 4.1 is the percent error of the calculated annual demand against the actual annual

demand, ∑
8760
t=1 Lt . All methods estimate the total annual demand to within 0.7% accuracy. K1,

K2, K3, and M0 simply calculate mean representative demand profiles without including any

peak days, and therefore show zero error in total annual consumption.

Figure 4.1: The percent error for total annual demand as calculated by projecting out RDm,DT

with np
m,DT , as described in Eq. (2.4).
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The error in total consumption in M1 through M5 is a consequence of the demand data

reduction method. Demand peaks are subtracted from weekend and weekday data sets and used

to construct peak profiles on an hour-by-hour basis, but daily profiles are projected out on a daily

basis by a single value per profile in the optimization. As I begin to increase the number of

peak days represented in each month, the calculated annual demand is first overestimated, then

changes to underestimated when I increase p from 3 to 4. The error increases with the number

of peak days represented, as it increases the demand that is subtracted from the weekend and

weekday demand data prior to constructing RDm,wd and RDm,we and more significantly reduces

the representative weekday and weekend consumption.

4.2 Influence of Demand Data Reduction

4.2.1 Case 1

The objective function error of the optimizations using reduced demand data is shown

in Fig 4.2. The data reduction methods that perform the best in terms of objective function

error are M1 through M5, which are the methods that include at least one peak day profile for

each month. These methods all reach an objective function value that deviates from the actual

objective function by no more than 0.3%. The demand data reduction methods that do not

consider representative profiles for demand peaks show much more significant objective function

errors.

The inclusion of an artificially constructed peak demand profile plays a much greater

role in accurately representing the system demand than the number of separate profiles used to

represent typical weekdays and weekends. The error is greatest for K1 and M0, which only use

two representative demand profiles for each month, one weekday profile and one weekend profile.

Adding more representative profiles for each month, four in K2 and six in K3, captures more

variation in demand, and therefore, reaches a more accurate objective function. However, without
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demand peaks captured in a peak day profile, three typical weekday and three typical weekend

profiles per month can only reduce the objective function error to 4.485%.

In contrast, the addition of at least one peak demand profile per month is sufficient to drop

the objective function error to 0.2213%. The degree to which the objective function error varies

as the number of peak days changes is minimal.

Figure 4.2: Case 1: The objective function error and the total annual demand charge discrepancy
are shown for all demand data reduction methods. A clear correlation exists between objective
function error and demand charge discrepancy.

The significant impact that the inclusion of a peak profile has on the results is seen by

examining the annual demand charge discrepancy for each of the demand data reduction methods.

The variation of the demand charge discrepancy from method to method is nearly identical to

the variation in objective function error. This correlation between objective function error and

demand charge discrepancy over various demand data reduction methods leads us to conclude

that the demand charge discrepancy significantly contributes to the objective function error. The

methods that have the greatest discrepancy in demand charge are the ones that do not have peak

day profiles. The degree to which monthly demand peaks are captured accurately drives the

degree to which the objective function deviates from the actual objective function. The significant

contribution of demand charges to the total annual cost is caused by the timing of the monthly

demand peaks, the timing of the on-peak TOU period, and the absence of dispatchable generation.
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The times at which peak demand occurs does not coincide with significant PV production hours,

so there is no opportunity for demand charge reduction, and therefore total annual costs are

underestimated to the same degree by which maximum monthly demand, and therefore total

annual utility demand charges, are underestimated by a given demand data reduction method. This

highlights the value of using a peak demand profile in accurately capturing total annual costs. The

impact of the way and the extent to which extremes in demand are captured is most immediately

seen in the demand charge discrepancy, which highlights the need to test data reduction methods

in the context of TOU tariffs that include demand charges.

Figure 4.3: Tradeoff between reducing annualized investment costs of installing additional PV
vs reducing utility purchases.

The discrepancy in PV sizing and energy charges, shown in Fig 4.3, provides insight

into how the solver minimizes the total annual cost for this energy system. The sizing deviates

significantly from the capacity chosen by the 8760-timestep optimization using ActL and RepP.

Each of the reduced representative profile optimizations oversize the PV system. The significant

variations in sizing do not correspond to the variations seen in the objective function error. The

M1-M5 methods recommend between 20.91% to 37.27% additional PV compared to the reference

case. These methods had an objective function error of less than 0.3%, and 0% discrepancy in

annual demand charges, and by examining the degree to which the annual energy charges are
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underestimated for each case, and how the underestimation varies from method to method, I can

see that the solver is choosing to minimize cost by investing in more PV and reducing energy

charges for the daytypes optimizations, whereas for the 8760-timestep optimization, it is choosing

to minimize cost by selecting less PV capacity and reducing annualized investment costs rather

than reducing energy charges.

Additionally, I can surmise that the averaging process increases the overlap between the

demand profile and the averaged PV system performance profile, and that there is therefore

additional benefit to investing in more PV for a system in the representative days optimizations,

which have smoothed, more consistent demand profiles. The overlap increases opportunities

for energy charge reduction via PV power output. The sizing variations are unsurprising in the

context of this system, which has no dispatchable generation. The second case tested includes a

dispatchable technology, and therefore addresses the sizing fluctuations.

4.2.2 Case 2

As in Case 1, the demand data reduction methods that consider peak days easily outper-

form those that do not, and the inclusion of an artificially constructed peak demand profile more

significantly reduces objective function error than increasing the number of representative profiles

or increasing p. The objective function error and the demand charge discrepancy of the demand

data reduction methods tested are both plotted in Fig 4.4. The same trends for both the objective

function error and the demand charge discrepancy observed in the results for Case 1 are seen in

the results for Case 2, and methods M1-M5 again have the smallest objective function error.

We again see that fewer representative profiles are necessary to reduce the objective

function error simply by ensuring that the reduction preserves demand peaks. Adding more

representative profiles in K2 and K3 reduces the objective function error as more demand

variation is captured as c increases. However, K3 uses six representative profiles per month

for typical weekdays and weekends, yet has a greater error than M1, which only uses three

26



representative profiles per month. K3 has an objective function error of 1.83%. Increasing the

value of p from 1 to 4 does improve the objective function error, but these improvements are

minimal compared to the improvement seen when adding a peak profile, as shown by going from

M0 to M1. Similar patterns are seen in the demand charge discrepancy results, although the

correlation between the objective function error and the demand charge discrepancy is not as

strong here as in Case 1. This is due to the presence of a dispatchable technology, which allows

the solver to find more solutions to minimize cost than in Case 1.

Figure 4.4: Case 2: The objective function error and the total annual demand charge discrepancy
are shown for all demand data reduction methods. Demand charge discrepancy is correlated
with objective function error.

We continue to observe a significant impact of including a peak demand profile RDm,pk

by examining the sizing results for Case 2, shown in Fig 4.5. Again, there is a clear distinction

between the demand data reduction methods that include a peak demand profile and the methods

that do not. M1 through M5 select the same number of generators as the reference case, whereas

K1, K2, K3, and M0 all select one less generator. The PV sizing discrepancy is smoothed out

by the additional of dispatchable generation, particularly for M1 through M5, which have a PV

sizing discrepancy of no more than 2.273%.

The results for generator sizing are a direct consequence of the demand peaks represented

in the energy system when modeling a choice of dispatchable energy as a means to reduce
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demand charges during evening peaks. By failing to capture the maximum demand values,

the representative days optimizations using either k-means or M0 underestimate the value of

demand charge reduction that would be provided by a second generator. This further highlights

the significance of evaluating demand data reduction methods in the context of energy systems

subject to varying TOU rates and demand charges.

Figure 4.5: Case 2: PV and generator capacity selected for all demand data reduction methods.
Also shown are the PV and generator capacity selected for the reference results.

4.3 Influence of PV Data Reduction

Fig. 4.6 shows the results of testing three different methods of PV system performance

data reduction testing, applied to Case 2. The impact of PV system performance data reduction is

isolated by using (RepL,ActP) as a reference case to compare the results of the representative

profile optimization. M3 was chosen as the representative profile set for constructing RepL.

We first assess the isolated impact of PV system performance data reduction methods
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by examining the objective function results for M3 and (RepL,ActP). Of the three methods

tested, averaging the PV system performance data (RPV avg
m ) has the best performance, with an

objective function error of 0.85042%, compared to a more significant underestimation of total

annual cost by 6.0821% using maximized PV system performance data (RPV max
m ). These cost

underestimations are accompanied by overestimations in PV sizing. The minimization PV data

reduction method causes costs to be overestimated by 3.9196%, and no PV is selected in the

solution.

Figure 4.6: Objective function error and PV capacity discrepancy of the tested PV system
performance data reduction methods, with respect to each of the 8760-timestep optimizations
run with different data combinations. No PV was selected using RPV min

m .

For Case 2, reducing PV system performance data has a greater impact on both the

objective function and the sizing results than reducing demand data. As seen by examining

the impact of reducing both demand and PV system performance data, the objective function

error increases over the comparisons that only test either demand data reduction or PV system

performance data reduction, but is still under 2% for the averaged PV system performance data

reduction.
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4.4 Run times

Using representative demand profiles reduces the run time by over 90%. There is no

meaningful, consistent difference that would motivate a choice of one of the tested methods solely

on the basis of computational speed. Therefore, I again identify M1 through M5 as the methods

with best performance, losing less than 1% accuracy in exchange for a significant gain in run time

savings.

Figure 4.7: The run time savings of each demand data reduction method, normalized by the run
time of the 8760-timestep optimization, plotted against the objective function error for Case 1
(left figure) and Case 2 (right figure).
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Chapter 5

Conclusion

This paper assesses the quality of various demand and PV system performance data

reduction methods for use in an energy system design optimization problem. An in-house

approach to averaging demand data while preserving demand peaks is presented and compared

against existing clustering techniques. The testing methodology is designed to isolate the effects

of reducing time series data, providing new insight into the impact of using representative demand

profiles and the comparative effects of implementing various data reduction methods. Data

reduction method performance is evaluated on the basis of objective function error from reference

results, as well as discrepancies in demand charges, technology sizing, and energy charges.

Results indicate that methods which include a peak demand profile outperform those that

do not, thereby demonstrating the importance of accounting for extreme demand behavior and

validating the presented method of preserving peak demand values. The method introduced in

this paper reduces annual hourly demand data to 36 representative 24-hour demand profiles, using

one profile per month to preserve peak demand, and two profiles per month to capture average

weekday and weekend demand. For the case of a grid-connected building subject to TOU rates

and demand charges, this method has less than 1% objective function error for the energy system

modeled. Comparatively, methods which use 48 or 72 representative profiles to capture weekday
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and weekend demand without preserving demand peaks show an error between 1.83% and 5.7%.

The number of peak days per month tested also had relatively little effect on the objective function

error, compared to the effect of including vs removing peak demand profiles entirely.

Objective function error shows strong correlation with demand charge discrepancy in the

cases studied, further demonstrating the effect of including peak demand profiles in demand data

reduction. DER sizing discrepancy is also clearly correlated with objective function error for

the case that includes options for dispatchable generation. Methods that did not preserve peak

demand values consistently undersized both generator and PV capacity, which is unsurprising,

given that systems subject to TOU rates and demand charges especially benefit from demand

charge reduction through DER deployment, and therefore, accurately modeling energy systems

for such systems especially benefit from the inclusion of peak demand profiles.

Further work is necessary to continue to develop understanding on how data reduction

influences energy system design. Recent works have modeled systems with both electrical and

thermal loads as well as a wide selection of generation and storage options. However, research

on data reduction methods in the application of energy system optimization has thus far focused

on the impact of data reduction as a whole, without identifying the error contributions of each

time series reduction. I clearly show that isolating different inputs has specific effects, and I

recommend that future research apply a similar approach in analyzing individual aspects of

using representative profile MILP formulations. Additionally, the MILP formulation does not

model storage dispatch across representative days, which may have significant consequences for

scenarios in which that is important. A follow-up paper will address this challenge and present

an evaluation of the impact of modeling uncoupled representative days on storage dispatch and

sizing.
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Appendix A

Final notes

A.1 Additional Equations for Monthly Peak Preservation Method

Total Load to Peak Ratio:

MPSFm = min(floor(
PIm,h ∑

NWDm
d=1 WDLm,h(d)+(1−PIm,h)∑

NWEm
d=1 WELm,h(d)

PLm,h
)) (A.1)

Explicit Formula for Representative Weekday Profile Calculation

WDPm,h =
∑

NWDm
d=1 WDLm,h(d)−PSFmPLm,hPIm,h

NWDm−PSFmPIm,h
(A.2)

Explicit Formula for Representative Weekend Profile Calculation

WEPm,h =
∑

NWEm
d=1 WELm,h(d)−PSFmPLm,h(1−PIm,h)

NWEm−PSFm(1−PIm,h)
(A.3)
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