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ABSTRACT 

The product of this research is a dynamic simultaneous equations model of car 

ownership and modal travel distances as a function of income. The data are from the 

Dutch National Mobility Panel (1984-1987); and four modes are encompassed: car 

driver, car passenger, train, and bus-tram-subway. A novel feature of the simultaneous 

equation system is the consistent treatment of the measurement scales of the variables: 

ordered probit functions for income and car ownership and tobit functions for distances. 

The dynamics are expressed in terms of pooled panel survey measurements of the 

variables at two points in time one year apart. This allows the identification of lagged 

responses and serial correlations over a one-year time-horizon. Results indicate that 

increased car ownership and car kilometers at time T2 is influenced by heavy usage of 

other modes at time T1 • This indicates there are significant non-instantaneous 

adjustments of car ownership and usage that represent modal substitutions. 
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1. OBJECTIVES AND SCOPE 

This research is aimed at developing a dynamic simultaneous equation model of 

car ownership and travel distances by mode as a function of income. The dynamics 

involve a one-year time horizon, and travel distances represent car kilometers and 

passenger kilometers for one-week periods. If successful, such a model can provide a 

better understanding of the mutual interdependencies among these variables, providing 

insight into questions such as: 

1. To what extent do changes in car ownership cause shifts in travel among modes? 

2. Which modes are positive functions of income, and which are negative, both 
contemporaneously and with time lags? 

3. Is car ownership a function of previous demand levels for either car travel, or 
competing modes, or both? 

4. What are the relative strengths of the causal influences on car ownership of income 
and built-up travel demand, contemporaneously and with time lags? 

5. Which modes are complements and which are supplements, contemporaneously 
and with time lags? 

A purported strength of the simultaneous equation model formulated to address 

these and other questions is that its specification is consistent with the scales of the 

endogenous variables: car ownership and income (in four categories) are treated as 

ordinal variables estimated using ordered-response probit functions; and distances by 

mode are treated as continuous variables censored at zero estimated using tobit 

transformations. Each variable is treated the same in every equation in the system, 
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regardless of whether it is dependent or independent in a given equation. This allows a 

great deal of flexibility in testing alternative hypotheses of cause and effect. 

The modeling approach also has several weaknesses: First, the number of 

exogenous variables is extremely limited at present; the effects on car ownership and 

travel demand of factors such as the employment status of household members, 

household structure, location, etc., are outside the scope of the model. The focus is on 

causal interactions among the endogenous variables, rather than explanation in terms of 

exogenous factors. Second, there is no accounting for individual-specific disturbances, 

as is possible with panel data. Third, dynamic effects are limited to those of one-year 

duration. Finally, there is no accounting for biases due to repeated measurement or 

sample attrition, and there is compensation for only certain serially correlated errors. 

2. THE STRUCTURAL EQUATIONS METHODOLOGY 

The model is based on an extension of linear structural equations to categorical 

and censored variables. (Categorical and censored variables are often, as a class, 

referred to as non-normal variables, to express the fact that they are not normally­

distributed continuous variables.) The model equation system can be expressed in terms 

of two subsystems: (1) the linear structural equations, and (2) the nonlinear 

transformation of non-normal dependent variables. 
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The structural equations model defines a set of p dependent variables, organized 

in a vector y*, in terms of each other and in terms of a set of m exogenous x variables: 

y* = B y* + rx + r (1) 

where B is a (p x p) parameter matrix of the structural coefficients among the y* 

variables, r is a (p x m) parameter matrix of structural coefficients relating the dependent 

and exogenous variables, and r is a (p x 1) vector of disturbances. The variance­

covariance matrix of the r disturbance terms is defined as 

(2) 

where w is a (p x p) matrix. 

Each element (i,j) in the B and r matrices represents the direct effect of variable j 

on variable i. (The main diagonal of Bis specified to contain only zeros.) Consequently, 

there is a one-to-one correspondence between equation system (1) and a flow diagram 

in which there is a unidirectional arrow between each variable pair with nonzero elements 

in the B and r matrices. 

Under multivariate normality assumptions, it is sufficient to consider only the first 

two moments of y*, conditional on any exogenous variables x. These moments are 

given by 

E (y* I x) = (I - B) ·1 r x (3) 

and 

E (y* I x) = (I - B) w (I - B) ·1 
• (4) 
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3. PROBIT AND TOBIT TRANSFORMATIONS 

The second submode! converts categorical and otherwise non-normally distributed 

observed dependent variables to the required multivariate normal forms. There are two 

types of non-normal variables handled this way in the present research: ordered 

polytomous (ordinal) variables, and continuous variables censored from below at zero. 

The first type includes household income, measured in four categories, and number of 

cars owned by a household; the second type includes distances traveled per household 

per week by four motorized modes: car driver, car passenger, train, and bus-tram­

subway. 

The transformation from an ordered polytomous observed dependent variable y 

with c categories (y = 0, 1,2, ... ,c-1) to an unobserved (latent) continuous variable y* is 

given in terms of an unknown set of thresholds k11 k2, ... , k0 _1 (Muthen, 1984; Golob, 

1988): 

c-1 if kc-1 <y* 
c-2 if k c-2 <y* < kc-1 

y = 
1 if k1 k2 

(5) 
<y* < 

0 if y* < k1 

In the special case of a dichotomous y variable (c=2), there is only a single threshold k1 

to be determined. 

For the second type of non-normal variable, continuous variables censored from 

below at the bound d, the transformation to the unlimited continuous latent variable y* is 

given by 
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y = 
if y* - k < d 

if y* - k > d 
(6) 

Transformation (5) corresponds to the conventional ordered probit model (or, 

ordered-response probit model) (Maddala, 1983), or the conventional binomial probit 

model in the special case of c = 2 categories. Equation (6) corresponds directly to 

conventional tobit estimation of limited dependent observed variables (Tobin, 1958 and 

Amemiya, 1973). 

4. THE ESTIMATION PROCEDURE 

The complete model is specified by equations (1) through (6). Equation (5) holds 

for the categorical income and car ownership variables; equation (6) holds for the 

censored travel distance variables for four modes; and equations (1) through (4) capture 

all variable relationships. The model parameters are the elements selected to be free in 

any or all of the three parameter matrices: B, r, and w. 

Estimation proceeds in two stages. In the first stage the sample statistics are 

estimated. It is useful to summarize these sample statistics in three parts: a 

mean/threshold/reduced-form regression intercept part, a reduced-form regression slope 

part, and a covariance/ correlation part. 

In the LISCOMP estimation procedure (Muthen, 1987) used in the present study, 

the unknown thresholds in (5) and (6) and regression coefficients in (3) are determined 

by maximizing the probabilities that the latent variables are normally distributed 
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conditional on any exogenous x variables in the structural equation system. For an 

ordered polytomous observed variable (5), the estimation parameters are expressed in 

- -= <I> [ (k1+1 - 1r x) - (k1 - 1r x) ] (7) 

where x is an (m x 1) vector of exogenous variables, 1r is a vector of reduced form 

regression coefficients (intercepts and slopes), 

E (y* Ix) = 1T' X, (8) 

and <1> denotes the standard normal distribution function. 

Equation (8) is the reduced form regression equation, and the first two parts of the 

vector of sample statistics can be estimated consistently using univariate probit/tobit 

regressions. Part three of the sample statistics, the covariance-correlation structure, can 

be solved conditionally on the parts one and two estimates. However, when multiple 

categorical variables are involved, the full information approach using maximum likelihood 

leads to heavy computations. Therefore, different approaches have been attempted, 

and in the LISCOMP approach, Muthen (1981) uses a limited information technique: For 

p endogenous variables, p(p-1)/2 correlation coefficients among they* variables (called 

"tetrachoric" correlations) are estimated using only bivariate sample information. 

The sample statistics are consistent estimates of the corresponding population 

vector a. The elements in a can be expressed in terms of the structural model 
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parameters B, r, and w following equations (3) and (4). The second estimation stage 

involves finding optimal values of the free parameters in B, r, and w that replicate the 

sample statistics s as closely as possible. In the LISCOMP approach, a weighted least­

squares fitting function is used with a general, full-weight matrix W: 

F = 1 /2 (s - a) T W ·1 (s - a) (9) 

If Wis the (asymptotic) covariance matrix of the sample statistics s, then the generalized 

least-squares (GLS) estimator is obtained. It has been shown that the GLS estimator for 

this problem is asymptotically distribution free and thus appropriate for non-normal 

observed variables (Browne, 1982, 1984; Bentler, 1983a, 1983b; Muthen, 1983, 1984). 

Objective function (9) is minimized using a modified Fletcher-Power algorithm. 

The statistic nF is chi-square distributed (n denoting the sample size) (Brown, 1974) 

with degrees-of-freedom equal to the number of elements in s (a) minus the number of 

free parameters in B, r, and w. This statistic provides a means of evaluating model 

goodness-of-fit by testing whether or not the model-replicated statistics are an accurate 

representation of the sample statistics (generally variance-covariances), but this test is 

subject to the usual sample-size problems associated with all chi-square tests (Bentler 

and Bonett, 1980). Another important use of the statistic, however, is in hypothesis 

testing: For nested or hierarchical models in which one model is a specialization (more 

restrictive) than another, the difference in model chi-square statistics is itself chi-square 

distributed with degrees-of-freedom equal to the difference in the number of free 

parameters in the two models. Such hypothesis testing is used frequently in the present 

research. 
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5. RELATED MODELS 

Structural equation modeling with latent variables has been extensively applied in 

the fields of sociology and psychology, and more recently in marketing research 

(overviews being provided by Bentler, 1980; Fornell and Larcker, 1981; Hayduk, 1987; 

and Joreskog and Wold, 1982). Until recent developments in estimation methods for non­

normal variables (Bentler, 1983a, 1983b; Browne, 1984; Maddala, 1983; Muthen, 1979, 

1983, 1984; Winship and Mare, 1983), applications were generally based on assumptions 

of continuous dependent variables with multivariate normal distributions, and extensive 

use was made of two-stage and three-stage least-square estimations and normal-theory 

maximum likelihood estimation, the latter method being implemented in the LISREL 

program (Joreskog and Sorbom, 1984, 1987). Early applications of structural equation 

models, including the special case of path analysis models, are provided in the field of 

travel demand modeling by Tardiff (1977), Dobson, et al. (1978), den Boon (1980) and 

Golob and Zondag (1983). 

The present research attempts to model both longitudinal and cross-sectional 

relationships among travel demand variables using panel data. It has been shown in 

other fields that structural equation models are particularly effective in capturing causal 

relationships when applied to panel data (Joreskog and Sorbom, 1977; Joreskog, 1979; 

Bentler, 1984; Arminger, 1987). This success is due partially to the ability to incorporate 

and test alternative cross-lagged effects: Does y1 at t= 1 influence Yi at t=2, or does Yi at 

t = 1 influence y1 at t = 2? 
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In the field of travel demand analysis, Lyon (1981, 1984) developed a structural 

attitude-behavior model using panel data; the model accounted for non-normality in a 

single discrete choice variable through the use of instrumental variables and a serially­

correlated error structure in a recursive estimation technique of the type reviewed in 

Maddala (1983, chapter 5). Golob and Meurs (1987, 1988) developed structural equation 

models of temporal changes in demand for five different models, using panel data with 

three waves six months apart, but applied only continuous-variable normal theory in 

estimating models for both trip rates and travel time expenditures. Golob (1988a) 

explored the uses of structural equation modeling with multiple non-normal variables in 

models of travel choice behavior but stopped short of producing a comprehensive model. 

In an application relevant to the present research, Kitamura (1987, 1988) applied a path 

model incorporating a probit response variable in analyzing the dynamic causal 

relationships between car ownership and overall mobility, measured in terms of total trips. 

As an alternative to structural equation models with probit specifications of non­

normal variables, it is also possible to estimate imposed causal relationships among 

multiple categorical endogenous variables using log-linear models applied to contingency 

tables (Goodman, 1972, 1973; Fienberg, 1980; Maddala, 1983). Such models represent 

systems of legit equations because log-linear and legit model specifications can be shown 

to be equivalent (Fienberg, 1980). Generally, these models are limited to recursive rather 

than simultaneous estimation (Maddala, 1983), and it is pointed out in Rosenthal (1980) 

and Winship and Mare (1983) that an inconsistency occurs in such models when a 

discrete variable appears as a legit transform of a probability in its dependent state and 

as a dummy variable in its independent state in the same system of equations. One of 
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the basic problems is that there is no multivariate logistic distribution with logistic marginal 

distributions that have unconstrained correlation coefficients (Gumbel, 1961). Further 

limitations of log-linear /logit models with multiple endogenous variables involve difficulties 

in incorporating continuous variables (Fienberg, 1975) and problems with distinguishing 

structural association from purely statistical association through lack of free parameters 

(Heckman, 1978; van Wissen and Golob, 1988). 

6.DATA 

The data are from an ongoing national panel in the Netherlands instituted in 1984 

with the goal of supporting studies of changes in the mobility of the Dutch population over 

time. The sample of approximately 1,800 households is stratified by life-cycle group, 

income, and community type, and is clustered in about twenty communities spread 

throughout the Netherlands. The survey structure and the general use of its data are 

described in J. Golob, et al. (1985), and Meurs and van Wissen (1987). 

The present study uses data from four waves of the Dutch panel conducted in the 

spring of each of the years 1984, 1985, 1986, and 1987. Each wave involved a 

household questionnaire and separate questionnaires and seven-day travel diaries for all 

household members over eleven years of age. (However, for the present study, the 

sample was restricted to persons eighteen years or older who are eligible to drive.) Total 

distances traveled during the seven diary days were calculated for each person for each 

of four modes: car driver, car passenger, train and bus-tram-metro (subway). 
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A pooled wave-pair sample is used in the present study. The six variables are 

defined at each of two points in time for all persons in an adjacent pair of panel waves 

one year apart, and the wave pairs were pooled to form a sample of 7,238 person-wave 

pairs. This assumes that the same causal phenomena operate in each pair of adjacent 

waves. The pooled sample was then randomly divided into half to provide subsamples 

for estimation and testing. 

The twelve variables, six state variables at each of the two points in time one year 

apart, are defined in Table 1. 

7. MODEL SPECIFICATION 

All of the twelve variables described in Table 1 were defined to be endogenous, 

reducing equation system (1) to 

y* = By + r (10) 

where p = 12, so that y is a (12 x 1) vector, B is a (12 x 12) matrix of structural 

parameters (with zeros on the main diagonal), and r is a (12 x 1) vector of disturbance 

terms with a variance-covariance matrix w = r r ·. Because the twelve endogenous y* 

variables represent six variables measured at two points in time, the y* vector in (10) can 

be partitioned in half, the two halves being denoted y 1
1 and y 1

2 (i = 1, ... ,6), and the B 

matrix can be correspondingly partitioned according to the scheme introduced in Golob 

and Meurs (1988): 

B = [8
11 

8
12

] 
821 822 

(11) 
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AT 
VARIABLE TIME 

Income T1 

Car ownership T1 

Distance by T1 
car driver 

Distance by T1 
train 

Distance by T1 
bus-tram-
subway 

Distance by car T1 
passenger 

-----------

Income T2 

Car ownership T2 

Distance by T2 
car driver 

Distance by T2 
train 

Distance by T2 
bus-tram 
subway 

Distance by car T2 
passenger 

TABLE 1 

VARIABLE DEFINITIONS 

VARIABLE TYPE DESCRIPTION 

Ordinal - 4 categories Household income 
in four categories at Time 1 

Ordinal - 3 categories Number of cars owned 
(O, 1, 2+) at Time 1 

Continuous, censored at O Distance traveled by car driver 
in 7 days at Time 1 

Continuous, censored at O Distance traveled by train 
in 7 days at Time 1 

Continuous, censored at O Distance traveled by bus-tram-subway 
in 7 days at Time 1 

Continuous, censored at O Distance traveled by car passenger 
in 7 days at Time 1 

----------

Ordinal - 4 categories Household income 
in four categories at Time 2 

Ordinal - 3 categories Number of cars owned 
(O, 1, 2+) at Time 2 

Continuous, censored at O Distance traveled by car driver 
in 7 days at Time 2 

Continuous, censored at O Distance traveled by train 
in 7 days at Time 2 

Continuous, censored at O Distance traveled by bus-tram-subway 
in 7 days at Time 2 

Continuous, censored at O Distance traveled by car passenger 
in 7 days at Time 2 
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where 

B 11 = ~o~temporane9us (sy~chronous) relationships among they 1
1 variables 

(I - 1, ... ,6) at time r1 1 

B 21 = diachronic (lagged) relationships between variables y at time T 1 and variables 
y 1

2 at time T2 , one year later; 

B 12 = reverse diachronic (leading) relationships between variables y 1
2 at time T2 

and variables y / at time T1 , generally a null submatrix; and 

B 22 = contemporaneous relationships among the y 1
2 variables at time T2 • 

It is postulated that the contemporaneous relationships expressed in the B 11 and 

B 22 matrices be identical in terms of zero and nonzero effects (elements) at the two 

points in time. The consistent contemporaneous effects were determined from previous 

results from dynamic structural equation models of trip generation by mode (Golob and 

Meurs, 1987, 1988) and from cross-sectional models of the influences of income and car 

ownership on (household) trip generation by mode (Golob, 1988b; Kitamura, 1987, 1988). 

The postulated nonzero contemporaneous effects, together with the expected signs of 

the parameters, are depicted in the flow diagram of Figure 1. 

There are thirty possible direct effects in each of the two submatrices B 11 and 

B 22 (all ordered pairs among the six variables at each time point, excluding the main­

diagonal elements representing a variable's effect on itself). It is postulated that only ten 

of these are nonzero, as shown by the ten arrows in Figure 1, which can be interpreted 

as follows: 

1. Income is contemporaneously exogenous. 

2. Car ownership is a direct (+)function of income only. 
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3. Distance traveled by the car driver mode is a ( +) direct function of car ownership 
only; it is an ( +) indirect function of income through the intermediate car ownership 
variable. 

4. Distance traveled by train is a (+)direct function of income and a(-) direct function 
of both car ownership and car-driver distance; it is consequently a (-) indirect 
function of income through the intermediate car ownership and car-driver distance 
variables. (The sign of the overall total effect of income on train distance depends 
on the relative magnitudes of the direct effects.) 

5. Distance traveled by bus-tram-subway is a ( +) direct function of train distance, but 
(-) direct functions of car ownership and car-driver distance; it is thus indirectly 
affected by income through various paths. 

6. Finally, distance traveled by the car-passenger mode is a (+)direct function of car 
ownership but a (-) direct function of car-driver distance; it is thus an indirect 
function of income (the sign of which is determined by the relative magnitudes of 
the effects) and it is contemporaneously independent of train distance and bus­
tram-subway distance. 

These postulated contemporaneous relationships are based on the concept that 

both ownership and use of cars influences demands for other (non-driver) modes. They 

are also based on the common belief that train and bus-tram-subway are complementary 

modes, but, of the pair, only train use is a positive function of income, controlling for car 

ownership and use. 

It is further postulated that the diachronic relationships in the B 21 submatrix be 

restricted in the base model to the inertial relationships for each variable: y / toy 1
2 

, for 

all i = 1, ... , 6. These six relationships, expected to be relatively strong and positive, 

cover the variable autocorrelations and account for certain serially correlated errors as 

well. 

The base model thus is specified with twenty-six parameters: ten identical 

synchronous effects at each of two points in time, and six inertial longitudinal effects. It 
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TRAIN 
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-► DISTANCE BY ◄ 

BUS-TRAM-SUBW. 

- + 
► DISTANCE BY ◄ 

CAR PASSENGER 

FIGURE 1 

POSTULATED SYNCHRONOUS RELATIONSHIPS 
AMONG THE SIX ENDOGENOUS VARIABLES 

AT EACH POINT IN TIME 
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is expected that several cross-lagged effects, representing non-instantaneous shifts in 

travel behavior, will be necessary to model fit if there are time lags in the causal 

relationships among income, car ownership, and distance generation by mode. If such 

behavior is nonstationary (Kitamura, 1986), as argued by Goodwin (1987) and Golob 

(1988b), either cross-lagged effects will be required, or the cross-sectional structure will 

be different at the two points in time, or both lagged effects and restructuring of the 

synchronous effects will be needed. The need to add effects or modify the postulated 

structure was determined on the basis of hypothesis tests of nested models. 

8. PARAMETER ESTIMATES 

The final model involves thirty-seven parameters, eleven more than the twenty-six 

in the postulated base model. The synchronous and inertial structure of the base model 

is unchanged in the final model. The x 2 value for the final model, determined as n 

(sample size) times the objective function (9), is 46.761 with 29 degrees of freedom 

(where degrees of freedom is given by the difference between 66 free elements in the 

covariance matrix of the 12 endogenous variables and the 37 free parameters in the 

model). This corresponds to a probability value of p = .0197, indicating that the model 

cannot be rejected at the 99 percent confidence level. The root-mean-square residual fit 

between the sample and model covariance matrices (Golob and Meurs, 1988) is 0.027, 

indicating a good fit of the model-replicated and sample statistics. 

All thirty-seven model parameters are significant at the 99 percent confidence level. 

The parameter estimates for the synchronous relationships at time T 1 (the B 11 
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parameters) are listed in Table 2, and the estimates for the same synchronous 

relationships at time T 2 (the B 22 parameters) are listed in Table 3. The two sets of 

synchronous parameters are different because of initial conditions (Heckman, 1981), the 

T 2 parameters being conditional on the simultaneously-estimated diachronal relationships. 

The model is estimated using the correlation matrix form of the general variance­

covariance structure, the variances of the ordinal dependent variables being standardized 

to one (Maddala, 1983), so the parameter estimates are standardized, allowing direct 

comparisons among them. The strongest of the T 2 relationships (Table 3) is the 

(positive) effect of train use on bus-tram-subway use, the (negative) effect of car driver 

use on bus-tram-subway use, the (positive) effect of car ownership on car use, and the 

(negative) effect of car ownership on train use. 

The parameter estimates for the inertial relationships for each of the six variables 

across time are listed in Table 4. Overall, this is the strongest set of relationships on the 

structural equations, indicating a relatively high degree of temporal stability, particularly 

in the income variable. Train and car driver demand also exhibit considerable stability. 

The least stable variable is distance by car passenger, confirming the results of the 

dynamic analyses of modal trip rates reported in Golob and Meurs (1987). 

Finally, the parameter estimates for the cross-lagged relationships are listed in Table 

5. These relationships can be interpreted as follows. 
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TABLE 2 

PARAMETER ESTIMATES FOR THE SYNCHRONOUS RELATIONSHIPS 
AT TIME T 1 (ELEMENTS OF THE B 11 SUBMATRIX) 

LINK FROM: LINK TO: PARAMETER 

At At 
Variable Time Variable Time Value Z-Statistic 

Income Tl Car ownership Tl 0.407 21.107 

Income Tl Distance by train Tl 0.202 6.099 

Car ownership Tl Distance by car driver Tl 0.394 36.540 

Car ownership Tl Distance by train Tl -.362 -13.509 

Car ownership Tl Distance by bus-tram-subway Tl -.092 -5.297 

Car ownership Tl Distance by car passenger Tl 0.141 7.183 

Distance by car driver Tl Distance by train Tl - .151 -5.584 

Distance by car driver Tl Distance by bus-tram-subway Tl -.275 -16.328 

Distance by car driver Tl Distance by car passenger Tl -.197 -12.395 

Distance by train Tl Distance by bus-tram-subway Tl 0.249 10.247 
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TABLE 3 

PARAMETER ESTIMATES FOR THE SYNCHRONOUS RELATIONSHIPS 
AT TIME T 2 (ELEMENTS OF THE 8 22 SUBMATRIX) 

LINK FROM: LINK TO: PARAMETER 

At At 
Variable Time Variable Time Value Z-Statistic 

Income T2 Car ownership T2 0.082 9.408 

Income T2 Distance by train T2 0.047 3.004 

Car ownership T2 Distance by car driver T2 0.130 15.952 

Car ownership T2 Distance by train T2 -.110 -6.400 

Car ownership T2 Distance by bus-tram-subway T2 -.038 -3.879 

Car ownership T2 Distance by car passenger T2 0.045 3.228 

Distance by car driver T2 Distance by train T2 -.051 -2.492 

Distance by car driver T2 Distance by bus-tram-subway T2 -.145 -10.996 

Distance by car driver T2 Distance by car passenger T2 -.085 -7.126 

Distance by train T2 Distance by bus-tram-subway T2 0.174 9.555 
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LINK FROM: 

TABLE 4 

PARAMETER ESTIMATES FOR THE INERTIAL RELATIONSHIPS 
(DIAGONAL ELEMENTS OF THE 8 21 SUBMATRIX) 

LINK TO: PARAMETER 

Variable 
At 
Time Variable 

At 
Time Value Z-Statistic 

Income Tl Income T2 0.810 122.411 

Car ownership Tl Car ownership T2 0.409 21. 071 

Distance by car driver Tl Distance by car driver T2 0.542 52.950 

Distance by train Tl Distance by train T2 0.551 24.876 

Distance by Tl Distance by 
bus-tram-subway bus-tram-subway T2 0.426 29.663 

Distance by Tl Distance by 
car passenger car passenger T2 0.296 23.792 
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TABLE 5 

PARAMETER ESTIMATES FOR THE CROSS-LAGGED RELATIONSHIPS 
(OFF-DIAGONAL ELEMENTS OF THE 8 12 AND 8 21 SUBMATRIX) 

LINK FROM: LINK TO: PARAMETER 

At At 
Variable Time Variable Time Value Z-Statistic 

Income Tl Car ownership T2 0.141 7.196 

Income T2 Car ownership Tl 0.083 7.574 

Car ownership Tl Distance by car driver T2 0.074 9.002 

Car ownership Tl Distance by 
bus-tram-subway T2 -.058 -3.649 

Distance by car driver Tl Car ownership T2 0.178 15.638 

Distance by car driver Tl Distance by car passenger T2 -.076 -4.891 

Distance by train Tl Car ownership T2 - .109 -5.215 

Distance by train Tl Distance by car driver T2 0.090 4.241 

Distance by 
bus-tram-subway Tl Car ownership T2 -.040 -3.030 

Distance by 
bus-tram-subway Tl Distance by car driver T2 -.039 -3 .118 

Distance by 
car passenger Tl Car ownership T2 0.062 4.476 
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1. Income has a positive causal effect on future car ownership (i.e., car ownership one 
time period later). 

2. Future income has a positive causal effect on present car ownership. The logical 
explanation for this is that present car ownership decisions are based partially on 
anticipated future income. 

3. Car ownership has a positive causal effect on future car vehicle kilometers, and a 
negative causal effect on future bus-tram-subway passenger kilometers. There are 
lagged effects from car ownership on both car use and use of the competing bus­
tram-subway mode. 

4. Car usage (distance by both the car driver and car passenger modes) has a lagged 
positive effect on car ownership. 

5. However, present car driver demand implies reduced future car passenger demand. 

6. Present train passenger kilometers has a negative causal effect on future car 
ownership, but a positive effect on future car kilometers, implying train users adjust 
car ownership downward, but increase car mobility relative to that adjustment. 

7. Finally, present bus-tram-subway passenger kilometers has a negative effect on 
both future car ownership and future car kilometers. 

9. DIRECT EFFECTS 

Each of the parameters in the structural equations model represents the direct effect 

of one variable on another. The results of Tables 2 through 5 can thus be interpreted by 

investigating each endogenous variable in terms of the direct effects to it from all other 

variables. As each effect corresponds to a unidirectional arrow in a flow diagram, it is 

instructional to visualize such direct effects in terms of the portions of a flow diagram that 

represent inputs to the variable in question. The focus here is limited to variables at the 

second point in time, T 2 • 
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Income at time T 2 is a direct function only of income at T 1 , and the magnitude of 

the effect is relatively strong, with a standardized beta parameter value of 0.810. (The 

corresponding flow diagram is not shown, as it consists of only a single arrow.) 

In contrast to income, there are seven direct effects on car ownership at time 

T 2 , the most for any endogenous variable, and these are shown in Figure 2. Only one 

of these effects is from a contemporaneous variable, income; one represents inertia from 

car ownership in the previous period; and the remaining five are cross-lagged effects, one 

from each of the other variables in the previous period. The conclusion is that car 

ownership is relatively stable over time, is sensitive to past, present, and future income, 

and is sensitive to previous, but not contemporaneous, demand for four motorized 

modes. Demands for car driver and car passenger travel increase the probability of 

higher levels of car ownership, with car driver demand being relatively more important. 

Alternatively, demands for train and bus-tram-subway decrease the probability of higher 

car ownership levels, with train demand being more important. Of the two pairs of direct 

effects, the lagged effects of car usage are more important than the lagged effects of 

public transport usage. 

The direct effects on demand for the car driver mode at time T 2 are depicted in 

Figure 3. In this case, there are three lagged effects in addition to the inertial effect and 

one contemporaneous car-ownership influence. The lagged effects are from previous car 

ownership, train usage, and bus-tram-subway usage. The positive causal effect from 

previous train demand is unexpected and indicates complementary mobility in terms of 

these modes. 
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In contrast to car ownership and car kilometers traveled, there are no cross-lagged 

direct effects on distance traveled by train (Figure 4). In addition to the inertial effect, 

there are only contemporaneous direct influences on train demand from income (positive), 

car ownership, and car kilometers traveled (both negative). Adjustments in train demand 

are channeled through adjustments in car ownership and car driver demand. 

There are five direct effects on the fifth variable, distance traveled by bus-tram­

subway (Figure 5). Three of these effects are contemporaneous, being from car 

ownership (negative), car kilometers (negative), and train passenger kilometers (positive). 

In addition there is a lagged effect from previous car ownership. 

Finally, there are four direct effects on distance traveled by car passenger (Figure 

6). In addition to the relatively weak inertial effect, there is a contemporaneous positive 

effect from car ownership and both contemporaneous and lagged negative effects from 

car driver demand. 

10. TOTAL EFFECTS 

The total effect of one variable on another variable is the sum total of any direct 

effect and all the indirect effects represented by paths through intermediate variables. For 

the structural equations system of (11), the matrix of total effects of every endogenous 

variable on every other endogenous variable is given by 
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A = (I - B) ·1 
- I (12) 

where A (Alpha) is a (p x p) matrix with elements a, 1 measuring the total effect of variable 

y 1 on variable y, . These are the coefficients of the reduced-form equations. 

The Alpha matrix of total effects for the present model is reproduced in Table 6, 

where only nonzero a, 1 effects are listed. The following interpretations can be made of 

the effects on the variables at the second point in time, given by the entries in the bottom 

six rows of the matrix of Table 6. 

1. Income at time T 2 is effected only by previous income (the total effect being equal 
to the direct effect). Income is relatively stable over yearly measurement intervals. 

2. Car ownership at time T 2 is a function of all six of the endogenous variables at time 
T 1 plus income at time T 2 • In addition to the expected strong effects from income 
and previous car ownership, there are substantial lagged causal influences on car 
ownership from demand for (positive) car driver travel and (negative) train demand. 
There are also weaker lagged total effects from (positive) car passenger demand 
and (negative) bus-tram-subway demand. These important lagged causal 
influences on car ownership indicate that car ownership decisions are made in 
response to demand for car travel and in opposite (and weaker) response to public 
transport demand; and there is a time lag in these responses. 

3. Car driver demand at time T 2 is primarily a function of prior and current car 
ownership and prior income, in addition to its own inertia (temporal stability). 
However, it is also a positive function of lagged train demand, indicating a lagged 
substitution effect: Train users tend to become drivers to some degree. 

4. Train demand at time T 2 , which has a temporal stability similar to car driver 
demand, is primarily a (negative) function of prior and contemporaneous car 
ownership and prior and contemporaneous car driver demand. It is approximately 
independent of income due to compensatory (positive) direct and (negative) indirect 
income effects. 

5. Bus-tram-subway demand, which is less stable than car driver and train demand, 
is a moderately strong negative function of all variables with the exception of prior 
and contemporaneous train demand, of which it is a moderately strong positive 
function, and car passenger demand, of which it is approximately independent. 
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TABLE 6 

TOTAL EFFECTS OF MATRIX A, 
WHERE a 11 = TOTAL EFFECT OF VARIABLE j ON VARIABLE i 

(NONZERO ELEMENTS ONLY) 

TIME T1 TIME T2 

I Distance 
I 

I Distance 
I 

I Car by by Bus- by Car I Car by by Bus-
I Owner- Car by Tram- Pass- I Owner- Car by Tram-
I Income ship Driver Train Subway enger I Income ship Driver Train Subway 

Income 

Car 
Ownership 0.474 0.083 

Distance 
by Car 0.187 0.394 0.033 
Driver 

Distance 
by Train 0.002 -.421 -.151 -.035 

Distance 
by Bus-
Tram- -.094 -.305 -.315 0.249 -.025 
Subway 

Distance 
by Car 0.030 0.063 -.197 0.005 
Passenger 

Income 0.810 

Car 
Ownership 0.440 0.541 0.195 -.119 -.040 0.062 0.127 

Distance 
by Car 0.197 0.332 0.556 0.065 -.044 0.008 0.038 0.130 
Driver 

Distance 
by Train -.019 -.309 -.133 0.561 0.007 -.007 0.012 -.117 -.051 

Distance 
by Bus-
Tram- -.116 -.310 -.246 0.199 0.435 -.005 -.024 -.077 -.154 0.174 
Subway 

Distance 
by Car -.002 -.015 -.174 -.011 0.002 0.298 0.002 0.034 -.085 
Passenger 
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6. Finally, car passenger demand exhibits the lowest level of temporal stability and is 
moderately well explained in terms of only two variables: prior and 
contemporaneous car driver demand, which influence car passenger demand 
negatively. 

11. HYPOTHESIS TESTING 

The base model, restricted to only synchronous and inertial effects, and the final 

model, with the same synchronous and lagged effects and eleven additional cross-lagged 

effects, are nested models. The hypothesis that the final model represents a statistically 

significant improvement over the base model can be tested in terms of the difference in 

model x 2 values with eleven degrees of freedom. The x 2 values for the base model and 

the final model are 688.048 and 46. 761, respectively, and the difference of 641.287 

indicates that the final model is a highly significant improvement over the base model. 

The level of significance of the improvement in model fit associated with each of the 

eleven cross-lagged effects that were added to the base model in creating the final model 

can be assessed by applying the test of nested models to the final model and a less 

restrictive model in which one of the links is deleted. This was done for all eleven cross­

lagged effects, with the results shown in Table 7. A x 2 difference of 6.637 or greater 

indicates that the parameter leads to a significant improvement in model fit (at the p = 

.01 level), and all parameters pass this test. 
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TABLE 7 

NESTED-MODEL x 2 TESTS OF SIGNIFICANCE 
OF EACH CROSS-LAGGED EFFECT 

(* = PARAMETER SIGNIFICANT AT P = .01 LEVEL) 

EFFECT DELETED 

LINK FROM: LINK TO: TEST STATISTIC 

At At x2 x2 
Variable Time Variable Time Difference 

Income Tl Car ownership T2 106.157 59.396* 

Income T2 Car ownership Tl 103.798 57.037* 

Car ownership Tl Distance by car driver T2 140.093 93.332* 

Car ownership Tl Distance by 
bus-tram-subway T2 59.988 13.227* 

Distance by car driver Tl Car ownership T2 262.154 215.393* 

Distance by car driver Tl Distance by 
car passenger T2 83.619 36.858* 

Distance by train Tl Car ownership T2 74.094 27.333* 

Distance by train Tl Distance by car driver T2 64.913 18 .152* 

Distance by 
bus-tram-subway Tl Car ownership T2 55.85D 9.089* 

Distance by 
bus-tram-subway Tl Distance by car driver T2 56.484 9.723* 

Distance by 
car passenger Tl Car ownership T2 66.822 20.061* 
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The x 2 difference values in Table 7 also provide a relative indicator of the 

importance of each of the parameters to overall model fit. Measured in this way, the link 

from distance traveled by car driver in time T 1 to car ownership in time T 2 is the most 

important of the eleven cross-lagged effects, followed by the effects on car ownership of 

lagged and anticipated income. The least important effects are from distance by bus­

tram-subway in time T 1 to car ownership and car driver distance in T 2 • However, even 

if the least important effect is deleted, the model fit declines to the point where it can be 

rejected at the p = .01 level (x 2 = 55.850 with 30 degrees of freedom, which 

corresponds to a probability value of p = .0028); all of the cross-lagged effects are 

required for model fit. 

12. CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH 

It can be concluded that the dynamic interrelationships among income, car 

ownership level, and demand for four motorized modes, measured in terms of distances 

traveled per week, can be successfully modeled using a simultaneous equation structure. 

The dynamics are expressed in terms of panel survey measurements of the six variables 

at two points in time one year apart. Incomes and car ownership levels at the two time 

periods are measured in terms of ordered categories and treated in the structural 

equations as ordered probit response variables; the four modal distance variables are 

treated in terms of censored continuous variables (censored at zero) subject to tobit 

transformations. 
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Results indicate that the synchronous relationships among the variables are similar 

at the two points in time, but there are significant causal effects that have a one-year time 

lag. Notable among these lagged effects are the causal influences on car ownership and 

car kilometers at time T 2 of demand for other modes at time T 1 ; there appears to be 

substantial non-instantaneous adjustment of car ownership and use that represents modal 

substitutions. Also detected was an intriguing effect of (anticipated) future income on 

present car ownership. These results indicate that cross-sectional models are 

approximations of decision processes with time lags. 

Further research is envisioned along three directions: First, additional explanatory 

variables can be added to the model structure in the form of exogenous variables (whose 

effects are captured in the r matrix in equation system (1)). Such variables might include 

life cycle family structure, employment status, and age--many of which would be dummy 

variables. 

Second, the model (with or without additional exogenous variables) can be 

estimated for separate population segments, and statistical tests can be conducted of the 

equivalences of model parameters among the segments. Such group estimation and 

testing is a feature of most available computer programs for structural equation modeling. 

Third, and finally, group analyses can be conducted for each pair of years of the 

Dutch National Mobility Panel (1984-1985, 1985-1986, 1986-1987, and 1987-1988) to 

determine whether or not the modeled travel behavior is systematically changing over the 

1984-1988 period in the Netherlands. This can be useful for policy planning and 

evaluation. 
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15. NOTATION 

I = the identify matrix 

m = number of exogenous variables 

n = sample size 

p = number of endogenous variables 

S = the (p x p variance-covariance matrix of the y* endogenous variables 

x = an (m x 1) column vector of x I exogenous variables 

y = a (p x 1) column vector of (categorical or censored) y I endogenous 
variables 

y* = a (p x 1) column vector of y 1 * latent variables transformed from the y 1 

variables 

A = a (p x p) matrix of total effects a 11 of variable y 1 * on variable y 1 * 

B = a (p x p) parameter matrix of structural coefficients 13 11 among they* latent 
variables 

r = a (p x m) parameter matrix of regression coefficients 1 11 of the y 1 * latent 
constructs on the exogenous x I variables 

r = a (p x 1) vector of disturbances r I in the model specifications of the y 1 * 
variables 

<P = the cumulative normal distribution function 

E = the (p x p) variance-covariance matrix a 11 of the endogenous y 1 * variables 
generated by the model 

w = the (m x m) variance-covariance matrix of the r disturbance terms of the 
estimations of the y 1 * variables 
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