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Detecting tandem repeat variants
in coding regions using code-adVNTR

Jonghun Park,1,5 Mehrdad Bakhtiari,1 Bernt Popp,2,3 Michael Wiesener,4 and Vineet Bafna1,*

SUMMARY

The human genome contains more than one million tandem repeats (TRs), DNA
sequences containing multiple approximate copies of a motif repeated contigu-
ously. TRs account for significant genetic variation, with 50 + diseases attributed
to changes in motif number. A few diseases have been to be caused by small in-
dels in variable number tandem repeats (VNTRs) including poly-cystic kidney dis-
ease type 1 (MCKD1) and monogenic type 1 diabetes. However, small indels in
VNTRs are largely unexplored mainly due to the long and complex structure of
VNTRs with multiple motifs. We developed amethod, code-adVNTR, that utilizes
multi-motif hidden Markov models to detect both, motif count variation and
small indels, within VNTRs. In simulated data, code-adVNTR outperformed
GATK-HaplotypeCaller in calling small indels within large VNTRs. We used
code-adVNTR to characterize coding VNTRs in the 1000 genomes data identi-
fying many population-specific variants, and to reliably call MUC1 mutations for
MCKD1.

INTRODUCTION

Tandem repeats (TRs) are characterized by DNA sequences containing multiple approximate copies of a

motif repeated contiguously. Depending on the length of the motif, TRs are identified as ‘‘short’’ (STRs,

motif length < 6bp), or variable number tandem repeats (VNTRs, motif length R 6bp).

More than 50 diseases are known to be caused by repeat expansions (Hannan, 2021). Multiple computational

tools have been devised to identify expansions, including methods based on sequence coverage (Mukamel

et al., 2021; Dolzhenko et al., 2019), including through alignments to a pan-genome graph (Lu et al., 2021).

Smaller changes in motif lengths cannot be detected solely by coverage, but are either detected directly

through alignments as structural variants (Beyter et al., 2021) or can be explicitly detected by modeling the

repeat structure as hidden Markov models (HMMs) (Bakhtiari et al., 2021). These smaller changes in VNTR

motif counts often lie in non-coding regions and play a regulatory role mediating the expression of proximal

genes (Bakhtiari et al., 2021). Even smaller indels and mutations within a VNTR are harder to genotype and

available methods are limited (Mousavi et al., 2019; Bakhtiari et al., 2018; Dolzhenko et al., 2019, 2020).

Interestingly, an analysis using Tandem Repeats Finder (TRF) (Benson, 1999) suggests thatR 6,573 VNTRs

lie within the coding region of a gene. Not surprisingly, most of these VNTRs are conserved in humans, and

even small changes are likely to be correlated with a phenotype. However, the impact of coding VNTR vari-

ation on phenotypes has not been extensively studied, often because of the technical difficulties of geno-

typing. In a few cases, frameshift mutations in VNTRs have been found to be causal for monogenic diseases

(Kirby et al., 2013; Ræder et al., 2006; Brookes, 2013). For example, autosomal dominant tubulointerstitial

kidney disease (ADTKD) is known to be caused by a frameshift 1 bp insertion in the VNTR in MUC1 gene,

but this causal variant was not discovered until 2013 mainly due to the complex structure of the VNTR (Kirby

et al., 2013). Specifically,MUC1 has very long motifs (60 bp motifs, 20–125 copies) and is GC-rich making it

difficult to obtain high coverage.

Long-read sequencing methods are now being utilized to identify mutations (Edge and Bansal, 2019), and

also to genotype VNTRs using Nanopore (Beyter et al., 2021) and SMRT sequencing (Wenzel et al., 2018).

However, the bulk of clinical pipelines and large population cohorts still utilize short-read sequencing to

identify mutations due to cost and labor involved. Therefore, we focus on short-read identification of cod-

ing VNTR mutations. Two processes are at work in conferring VNTR variability. First, polymerase slippage
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may lead to changes in the total motif count; second, point mutations might scar and modify existing

motifs. Therefore, many VNTRs are often composed of multiple distinct motifs (Course et al., 2021) (Fig-

ure 1A), each only approximately similar to the other. The VNTRs themselves can be denoted as ‘‘short’’

if they can be completely encompassed by short reads, and ‘‘long’’ otherwise. Small mutations in short

VNTRs (but not entire motif count changes (Bakhtiari et al., 2018)) are well handled by existing mutation

callers (McKenna et al., 2010).

Bakhtiari et al. developed adVNTR (Bakhtiari et al., 2018), which used hidden Markov models to parse a

VNTR sequence into its constituent motifs. The HMM structure was also tolerant to small point mutations,

including indels, allowing for accurate motif counts for short VNTRs with multiple motifs. However, adVNTR

is not as successful for detecting indels within the motif, which is particularly relevant to coding VNTRs.

Informally, one can consider the HMM procedure as creating a multiple alignment of the multiple repeat

motifs. However, the genomic location of any repeat motif remains hidden andmutational changes relative

to the reference cannot be registered (Figure S1).

To address these challenges, we present code-adVNTR, which focuses on (a) identifying entire motif

insertions and deletions in short, coding VNTRs and, more importantly, (b) identifying small frameshifts

and mutations in long, coding VNTRs.

RESULTS

Coding VNTRs in the human genome

We focused on two sets of target VNTRs on the human genome: 2,254 short coding VNTRs (length %

140 bp), where code-adVNTR was able to estimate the motif counts with short reads, and 364 long cod-

ing VNTRs (R 300 bp) where code-adVNTR could not detect motif counts reliably but could detect

small indels that could not be easily identified by other mapping-based short-read variant callers.

A B

C D E

Figure 1. Small variant detection within VNTRs using code-adVNTR

(A) An example of tandem repeats with single and multiple distinct motifs. The index of motif indicates distinct motifs, which are very similar but have

variations in sequence composition.

(B) The multi-motif HMM architecture of code-adVNTR. All HMMs are profile HMMs having insertion, deletion, and match states. The transition from Start

node to all ‘‘match’’ nodes and ‘‘match’’ nodes to End node are allowed but not depicted for simplicity.

(C) Three reads aligned to a VNTR region and the search space of Viterbi algorithm. In the search space, the white cells indicate the cells that were not

explored during the process because there was no path to reach to the cell satisfying the score cut-off.

(D) Distribution of run time as a function of the total lengths of distinct motifs with or without the banding algorithm. Note that the total lengths of distinct

motifs are proportional to the number of states in HMMs.

(E) Run time comparison of with or without the banding algorithm. Boxplots display the 25th, median, and 75th percentiles.
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Overview of code-adVNTR

Code-adVNTR analyzes an input of short-read sequence data in two ways: it detects and reports

(a) changes in motif count in a target list of short coding VNTRs and (b) small nucleotide variants within

a target list of long coding VNTRs. Both analyses start by recruiting reads for each target VNTR, followed

by variant identification using a customprofile HMM for the VNTR. For objective (a), code-adVNTR adopted

adVNTR codebase (Bakhtiari et al., 2018, 2021). Very briefly, the profile HMM models the repeating motif

and all of its variants (Figure S2). The read is parsed through the HMM while maintaining the motif count

(the number of transitions through a special end-state). A subsequent Bayesian analysis calls the most likely

diploid genotype as a pair of motif counts.

Code-adVNTR uses new algorithmic ideas to resolve objective (b): specifically, the new method can parse

multiple profile-HMM motifs; second, it utilizes a novel algorithm to map reads to the HMM to restrict the

search space and achieve orders of magnitude speed-up; and third, it utilizes a motif order alignment

method to improve the accuracy of the HMM. These steps are outlined below, with additional detail in

the methods section.

Designing and parsing a multiple motif HMM

For detecting changes in motif counts for short coding, it is sufficient to parse using a single profile

HMM (Figure S2). For long coding VNTRs, where the goal is to identify point mutations within

VNTRs, code-adVNTR starts by running a single motif HMM on a reference VNTR sequence and parses

and identifies all distinct (non-identical) motifs. It builds a separate profile HMM for each motif and for

the flanking regions (prefix and suffix HMMs), and combines all HMMs into a single multi-motif HMM

(Figure 1B).

Restricting search space in Viterbi algorithm

Noting that multi-motif structure is also an HMM (though not a profile HMM), the Viterbi algorithm can be

used unchanged to parse the read. However, a naive modeling of a VNTR with u motifs instead of a single

motif causes a u2 slow-down. To speed up computations, we use a ‘‘banding’’ idea to prevent excursion

into states where the score is already too low (Figure 1C and Method details). Specifically, we utilize the

fact that score worsens as we move away from Match state transitions. Once the score passes a

threshold t, that path will be guaranteed to lead to a non-optimal solution, and is prevented from further

exploration. The score threshold t is empirically and automatically computed based on the HMM and a

user-defined parameter d defined as the maximum number of indel transitions allowed in recruited reads

(default d = half of the motif length). We also note that the only way to complete a cycle in the state space

graph is by transitioning from ‘‘Motif-End’’ to ‘‘Motif-Start’’. We disallow degenerate cycles (that revisit a

state without emitting any symbol) by topologically ordering the states and ignoring specific transitions

(Method Details).

Guidance from the reference sequence motif order

When a mutation in a motif makes it identical to another motif in the multi-motif HMM, it is matched to the

second and would not be detected as a mutation. To differentiate true mutations from such internal

sequence variations, we utilized reference sequences as follows: Each of the u motifs in a VNTR was given

a distinct label i ranging from 1 to u. We built a look-up table of all possible motif-label orders based on the

read length. For example, if the length of the motif was 30 bp, a read of 150 bp could span a maximum of

five motifs, providing a sequence of five or fewer labels. Each read was parsed into its motif labels, and the

look-up table was used along with a Smith-Waterman style local alignment algorithm to positionally align

the read, allowing for up to one motif label mismatch. Thus, the read 1; 2; 2; 1; 3 is allowed to align to a

longer reference label sequence 2; 1; 2; 2; 4; 3; 1; 2. The alignment indicates that a mutation transformed

motif 4 into motif 1. These alignments were used to re-assign substrings to individual motifs, while main-

taining the overall output as collection of Viterbi paths for each motif.

Variant detection within coding VNTRs

Code-adVNTR first recruits reads using various filtering steps (Bakhtiari et al., 2021) and maps the recruited

reads to motifs using the profile HMMs. By decoding the most likely path (a series of states) using Viterbi

algorithm, code-adVNTR counts the number of reads mapped to indel states for each motif. Given the

number of indel transition, code-adVNTR calculates the likelihood of mutation as follows. Consider a
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read matching a motif M that occurs u times in the reference VNTR. For a heterozygous mutation, we

expect to see 1=2u of the matched motifs to carry that mutation. For example, if u = 1, then half of

motifs aligning to motif M would carry the mutation in expectation. At a specific state covered by d reads,

suppose i indel transitions were observed. Then, the likelihood of the observed mutation is given by

Binomial
�
d; i; 1

2u

�
In contrast, the likelihood of seeing i indel transitions due to sequencing error is

Binomialðd; i; εÞ, where ε is the probability of erroneous indel transition set to 0.01, a stringent per-

nucleotide indel error rate based on the sequencing error rate in homopolymer regions of Illumina reads

(Laehnemann et al., 2016). The log likelihood ratio

� 2ln

0
BB@

Binomialðd; i; εÞ
Binomial

�
d; i; 1

2u

�

1
CCA; (Equation 1)

is used for a statistical test, which follows a c2 distribution. Code-adVNTR reports the mutation if the nom-

inal p value is lower than 0.001.

Benchmarking code-adVNTR

We tested the reduction in search space with code-adVNTR using simulated reads at 303 coverage from

364 long coding VNTRs (Method Details). Notably, code-adVNTR explored only � 20% of the original

search space on average. The run time was improved by 19-fold on average (3–191-fold). The median

run time was 25 s with our ‘‘banding’’ algorithm. (Figure 1D). We also tested the run time in high-coverage

(303) 1000 Genomes Project (1KGP) data (1000 Genomes Project Consortium et al., 2015). On whole

genome sequencing data, we used the adVNTR codebase (Bakhtiari et al., 2018) to assign each read to

a specific VNTR location (or discard it), and genotyped each set of reads assigned to each VNTR. Code-

adVNTR genotyped 2,237 VNTRs in 179 min per sample on a single core of Dual Intel Xeon Skylake 6132

2.60GHz CPU. For long coding VNTRs, code-adVNTR took 7.35 h per sample to scan all 364 VNTRs using

Algorithm 1 and reference label alignments.

Code-adVNTR outperforms GATK in VNTR indel detection

The accuracy of calling motif count changes in short VNTRs using adVNTR has previously been docu-

mented (Bakhtiari et al., 2018, 2021), and we mimic the procedure for short coding VNTRs. Therefore,

we focused here on testing code-adVNTR’s accuracy in calling indels within 364 long coding VNTRs (Fig-

ure 2A) using simulated reads and compared accuracy against GATK-HaplotypeCaller (GATK-HC)

(McKenna et al., 2010). For each target VNTR locus, we modified the reference sequence by inserting or

deleting a random number
�
< lengthðmotifÞ

2

�
of nucleotides at a random position within the VNTR and simu-

lated reads from the mutation. We repeated the experiment 10 times.

Algorithm 1. Banding in code-adVNTR

Input: {S;T ;V ;e;t}

Output: Score of the best parse

Q0.enQueue(start-state)

for 0% j%m do

while Qjsfg do

p)Qj .de-Queue()

if j <m then

for non-silent q s:t: T ½p;q�> 0 do

tmp)V ½p; j�+ logT ½p;q�+ logeq½rj + 1�
if tmp Rmaxft;V ½q; j + 1�g then

V ½q; j + 1�)tmp

Qj+ 1.enQueue(q)

for silent q s:t: T ½p;q�> 0 do

tmp)V ½p; j�+ logT ½p;q�
if tmp Rmaxft;V ½q; j�g then

V ½q; j�)tmp

Qj .enQueue(q)

if V ½end-stateÞ;m�> t then return V ½end-stateÞ;m�
else return ‘‘no alignment’’
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We measured accuracy for each experiment using the fraction of indels called correctly. Code-adVNTR

correctly identified most of the cases (accuracy of 99.70%), in contrast with GATK-HC which showed an ac-

curacy of 97.16% on average (Figure 2B). As code-adVNTR is built on top of adVNTR, we also tested

adVNTR (Bakhtiari et al., 2018) on the same data. AdVNTR is not designed for mutation detection and

only achieved an accuracy of 71.46%, suggesting that the use of multiple motifs is critical. To evaluate

the contribution of the label alignment procedure to accuracy, we also tested code-adVNTR without the

guidance of motif order (Method Details). Without the label alignment, code-adVNTR missed three addi-

tional cases out of 3,640.

As the difficulty of identifying mutation is related to the difficulty of aligning/mapping repetitive se-

quences, the position of the mutation is crucial. If a mutation is located near flanking unique regions, de-

tecting such mutations becomes as easy as other mutations in non-repeat regions as reads can be mapped

unambiguously. Figure 2C shows the accuracy stratified by the distance between the simulated indel and

the unique region. The accuracy of GATK-HC was dropped when the indel is far from the flanking regions

due to the ambiguous mappings (Figure 2D).

We additionally investigated performance on VNTRs where mutations have previously been found to be

causal for phenotypes. These includeMUC1, where a frameshift is causal for autosomal dominant tubulointer-

stitial kidney disease (ADTKD) (Kirby et al., 2013);CEL, where deletion mutations in the VNTR have been impli-

cated in mature onset diabetes and other pancreatic disorders (Torsvik et al., 2010; Gravdal et al., 2021); and

PER3, where VNTR length has been associated with diurnal preference and sleep homeostasis, and also with

A B C

D

Figure 2. Performance comparison of variant detection in long VNTRs using simulated data

(A) The length distribution of 364 long coding VNTRs (R 300 bp).

(B) Average accuracy distributions of random indel detection for 364 coding VNTR in 10 simulations. Boxplots display the 25th, median, and 75th percentiles.

(C) Accuracy comparison of the indel detection in 364 coding VNTRs as a function of distance from indel to unique region. The bar plot (left Y axis) shows the

accuracy, and the line plot (right Y axis) shows the number of unique tandem repeats in certain range of distance.

(D) Ambiguous mapping of short reads in a long coding VNTR within CEL gene. Note that the reads containing the simulated insertion (purple vertical bars)

are mapped to multiple positions with low mapping scores (light gray).
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age of onset of bipolar disorder type I (Benedetti et al., 2008). We tested for prediction accuracy using simu-

lations with randomly insertedmutations. The detection accuracy of GATK-HCwas relatively low for PER3 (80%

accuracy), MUC1 (80%), and CEL (50%), while code-adVNTR achieved 100% accuracy on these VNTRs.

Long-read validation

To validate code-adVNTR’s calls using long reads, we tested code-adVNTR on the genomic sample

NA12878 for which both short and long reads are available. We applied code-adVNTR to the 364 long cod-

ing VNTRs using only short-read data. Code-adVNTR identified three single base deletions in two VNTR

loci in ZNF662 (motif length 84, total VNTR length 588) and ZNF717 (motif length 84, total VNTR length

1,845) genes. We confirmed the three deletions by reviewing the alignment of long reads, and all three

showed up as heterozygous deletions confirming that code-adVNTR can detect heterozygous indels accu-

rately (Figure S3). Code-adVNTR tolerates up to four mismatches per motif by default. In hyper-variable

regions that contain more than four SNPs within a single motif, code-adVNTR will not make an indel call.

Indeed, the hyper-variable VNTR region in ZNF717 contained more than four common SNPs in the motif,

and code-adVNTR specifically missed three indels. We next checked systematically for such hyper-variable

regions using dbSNP data, and found that 27 coding VNTRs out of 364 contain motifs with four or more

SNPs. The motifs span 0.97% of the target VNTR regions. Detecting mutations in these regions could be

challenging for code-adVNTR if an individual has the non-reference allele in more than four SNPs in a moif.

Variants within coding VNTRs in 1000 Genomes Project Datasets

We investigated variants in two sets of coding VNTRs: 2,254 short coding VNTRs (% 140 bp), where code-

adVNTR is able to estimate the repeat counts with short reads, and 364 longer coding VNTRs (R 300 bp) for

small indel variants. Consistent with the strong conservation of coding sequence, 1,989 (88.2%) of the 2,254

short coding TRs did not show any variation in 2,504 individuals.

Before analyzing the short coding VNTRs that showed polymorphisms, we filtered out 126 VNTRs that failed

the Hardy–Weinberg equilibrium (HWE) test with p value cutoff of 0.05. Significant violation of HWE could be

attributed largely to two reasons—long VNTRs and ambiguous boundaries. Rejected VNTRs had significantly

longer lengths (median length of 75 bp) compared to the VNTRs that passed HWE test (median length of 54)

(Figure S4A). We also observed that VNTRs that failed HWE test had higher similarity with the flanking regions

(Figure S4B) making it challenging to distinguish between a motif and the flanking regions.

After the filtering using HWE test, 265 polymorphic VNTRs remained. For these VNTRs, we checked if the

consensus motif lengths were multiples of three (zero-mod3 motifs) because changes in motif count may

result in frameshifts in coding regions. Notably, when we look at all TRs reported by TRF (Benson, 1999),

only 36.36% were zero modulo 3 (Figure 3A). In contrast, 79.09% of the 2,254 short coding TRs (Figure 3B),

and 87.54% of the polymorphic VNTRs were zero modulo 3 (Figure 3C), implying the motif count changes

were primarily in-frame variants.

We asked if the polymorphisms in coding VNTR were sub-population specific. A principal component anal-

ysis on all individuals using their allelic values (Method Details), separated out the African samples using

PC1 (AFR in Figure 3D). The other populations were not separated except for a weak separation of East

Asians along PC2. We additionally measured the entropy of the allelic distribution of each VNTR in each

population and found once again (Figure 3E), that a subset of VNTRs showed high entropy in AFR relative

to other populations, while other high-entropy VNTRs were uniformly distributed among all populations.

Together, our results suggest generally low levels of VNTR allelic diversity (high conservation) as expected

in coding VNTRs and also a reduction of allelic diversity once humans moved out of Africa.

In the 364 long coding VNTRs, code-adVNTR identified 380 small indel variants in 180 VNTRs. Of those, 313

were deletions and 67 were insertions (Figure 3F). For both insertions and deletions, single base pair variant

were the most frequent (Figure 3G). Interestingly, only 161 of 380 indels (42.37%) were multiples of three

indicating that a large fraction of these mutations changed the coding frame. We compared the indels

with the variant calls generated by Centers for Common Disease Genomics (Byrska-Bishop et al., 2021)

(STAR Methods), which used straight mapping-based methods to call variants. 349 of the 380 variants

had been reported earlier, but 31 indels called by code-adVNTR were novel. Most of these variants are

rare (Table S4), but 8 (2 insertions, six deletions) were found in R 10 individuals each, and many of these

include genes with known Mendelian phenotypes.
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A B C

D

F

E

G

Figure 3. Coding VNTR variants in 1000 Genomes Project data

(A and C) Motif length distribution of (A) VNTRs detected by Tandem Repeat Finder, (B) VNTRs in coding regions, and (C) polymorphic VNTRs in coding

regions.

(D) Principal component analysis (PCA) of polymorphic VNTRs. PC1 separated African super population from others. East Asian population (EAS) was weakly

separated from others along with PC1 and PC2.

(E) Clustered heatmap of normalized entropy matrix of polymorphic VNTR alleles. For each VNTR, normalized entropy was calculated by considering each

allele (motif count). A Cluster map shows that the African super-population is distant from other super populations, which is consistent with the PCA analysis.

(F) Small variant type (insertion or deletion) and the count detected in 364 coding VNTRs in 1000 Genomes Project Data.

(G) The distribution of base pair changes of 380 indels detected by code-adVNTR.
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As one example, we found a 13 bp deletion in exon four of the neurofilament heavy (NEFH) gene in 143

individuals (Figure S5A). The NEFH gene has been implicated in amyotrophic lateral sclerosis (ALS), a pro-

gressive motor neuron degeneration that leads to paralysis and death (Al-Chalabi et al., 1999). The report

suggests that deletions in a repeating protein motif (XKSPYK), where X and Y are variable amino acids are

associated with ALS. The motif corresponded exactly to the VNTR.

In 13 individuals, we found a 9 bp deletion in a VNTR located in exon five of the formin 2 (FMN2) gene (Fig-

ure S5B), belonging to a family of actin cytoskeleton genes. Heterozygous deletions of the distal exons

(Almuqbil et al., 2013) as well as truncating mutations (Law et al., 2014) in the gene have been associated

with autosomal-recessive intellectual disability.

Mutations in Keratin-9 have been associated with epidermolytic palmoplantar keratoderma (EPPK, OMIM

144200), an autosomal dominant inherited disease (Li et al., 2019). We identified a 13 bp deletion in the

exon seven VNTR of KRT-9 in 20 individuals (Figure S5C).

Finally, mutations in the retinitis pigmentosa-1-like-1 (RP1L1) gene are known to be causal for autosomal

dominant occult macular dystrophy (OCMD) (Zobor et al., 2018). We identified a 24 bp deletion in exon

four of RP1L1 in 10 individuals (Figure S5D).

Detecting frameshift variants in MUC1 VNTR

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a collection of rare kidney disorders,

associated with terminal loss of kidney function. They are known to be caused by mutations in several

genes, one of which is a single cytosine frameshift insertion at a VNTR within MUC1 gene. The underlying

mechanism was revealed only in 2013 (Kirby et al., 2013) because of the complex structure of the VNTR

composed of 25–120 repeats of approximately 60 bp motifs in a GC-rich region, making it hard to detect

using conventional technology (Figure 4A).

A B

C D E

Figure 4. Pathogenic frameshift variants detection in MUC1 VNTR

(A) A VNTR within MUC1 gene and the mechanism of known pathogenic cytosine insertion (MUC1-dupC) causing a premature stop codon resulting in

autosomal dominant tubulointerstitial kidney diseases.

(B) An example of reads aligned to a motif and variant detection in code-adVNTR.

(C–E) The inverse of p value as a function of the number of supporting reads of three MUC1-dupC positive samples. Black dots show the trend, and red stars

indicate the number of supporting reads and the corresponding p value observed in the MUC1-dupC-positive samples. Red dotted line shows the p value

cutoff.
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Long reads have been used to detect the variant, but many clinical pipelines still use short-read sequencing

due to labor and cost (Wenzel et al., 2018). Recent methods designed a panel (SNaPshot) to enrich

coverage of short reads, but the alignments had to be inspected manually to actually identify the variant

(Ekici et al., 2014).

We applied code-adVNTR on three individuals previously identified as MUC1-dupC positives (carrying a

cytosine frameshift insertion) using SNaPshot technology (Ekici et al., 2014), and also three MUC1-dupC-

negative individuals for comparison. Code-adVNTR successfully identified all three MUC1-dupC-positive

individuals using multi-motif HMM (Figure 4B) with enough supporting reads (Figures 4C–4E) and did

not find any variants in the negative samples. Next, we applied code-adVNTR to 271 DNA samples from

German Chronic Kidney Disease cohort (Popp et al., 2021) and cross-checked with the SNaPshot protocol

(Ekici et al., 2014). All 271 samples were classified as MUC1-dupC negative by both code-adVNTR and

SNaPshot.

DISCUSSION

Genetic variation in tandem repeats is challenging to identify. Notably, the mode of variation itself is

complicated. For example, the number of motifs can sometimes expand dramatically. However, in other

cases, the number of motifs may change by one or two and still cause a change in phenotype. Finally, single

nucleotide variants might occur within motif regions.

Methods are being developed to identify these multiple types of TR variations modes. For example,

changes in sequence coverage as also changes in k-mer count frequency can be used to detect large

expansions (Mukamel et al., 2021; Lu et al., 2021). Those methods can work with short reads as long as

the expansions are large enough to cause a significant change in coverage or k-mer counts. For more sub-

tle changes in the number of VNTR motifs, a parsing or decomposition of the motifs can be used to detect

those changes (Bakhtiari et al., 2018), and these subtle changes also may have phenotypic consequences.

They may affect changes in the regulatory circuitry and the expression of proximal genes (Bakhtiari et al.,

2021). These methods, however, work best when the read spans the VNTR, and long reads may be required

for longer VNTRs. Mutations in VNTRs are particularly hard to detect. For example, if two inexact motifs A

and B are both present in a VNTR, a mutation in A might make it identical to B.

Here, we focus on variations in coding VNTRs. Coding VNTRs represent a slightly easier case as they are

less variable than other VNTRs. We focus specifically on identifying insertions and deletions of small

numbers of nucleotides as well as changes in motif counts that would change the coding sequence. These

mutations are hard for traditional pipelines, and also cannot be genotyped using coverage-based esti-

mates of TR variation because of smaller levels of expansion or contraction of motifs.

We provide customizedmulti-motif HMM-based genotyping of VNTRs. Ourmethods are optimized using a

banded Viterbi method, a label alignment after an initial motif alignment, and statistical calculation to

distinguish mutations from sequencing errors. Our methods work for motif count variation in small

VNTRs and small indels/mutations in long VNTRs. Motif count changes in long VNTRs will likely be de-

tected using long-read technologies, although coverage-based methods might also detect large expan-

sions of motif counts. Recent work aimed at isolation of specific target loci followed by long-read

sequencing can help in that effort. Future research will focus utilizing long reads to improve anchoring

to the correct locations.

Our results on the coding VNTRs in 2504 individuals suggest that most coding region repeats are stable;

however, there is greater diversity in the African populations relative to other continents. Interestingly, we

found many instances of VNTR coding region changes in multiple individuals and where the gene was pre-

viously associated with a Mendelian phenotype. Overall, our results suggest a rationale for including VNTR

mutation analyses as part of Mendelian disease pipelines.

Limitations of the study

Code-adVNTR also has a number of limitations, which will be addressed in future work. Notably, code-

adVNTR can work with VNTRs that are longer than the read length. However, in identifying indels, code-

adVNTR does not pin-point the exact location of the detected variants, but only its relative position in a

specific motif. This makes it challenging to validate experimentally, as also compared with existing variant
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calls. Nevertheless, code-adVNTR takes an important step by identifyingmutations that causes a frameshift

in coding sequence. Second, this is not a methodological problem but rather, a limitation of short reads. In

future work, we will extend code-adVNTR to include PacBio HiFi reads as well as other sequencing

methods.

Second, parsing reads through a multiple motif HMMs could be slow when there are too many unique

motifs because code-adVNTR builds HMM for each uniquemotif. The number of states in the HMMs is pro-

portional to the sum of the lengths of the distinct motifs. Thus, both the length of the motif and number of

distinct motifs are crucial. As one example, the VNTR in ZNF662 gene is composed of 22 distinct motifs

where the lengths are 84 bp for each. The processing time for ZNF662 was 308 times slower than the times

for another VNTR with a single motif of 6 bp.

Finally, and as suggested by the name, code-adVNTR is not tested for non-coding VNTRs, which could be

hyper-variable, relative to coding VNTRs. Specifically, if a motif encodes multiple SNPs, identifying indels

while accounting for the natural variation becomes difficult. The default number of mismatches tolerated

per motif by code-adVNTR is currently 4. Similarly, detection of indels in the VNTR has not been systemat-

ically tested for non-coding VNTRs or VNTRs where indels are accompanied by additional large expansion

in the number of motifs. Again, with the larger context provided by longer reads, these constraints can be

relaxed, and this will be tested in future work. In the meantime, code-adVNTR has high utility for identifi-

cation of indels and small motif counts in coding VNTRs.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact Jonghun Park (jop002@eng.ucsd.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing publically available data, with information in the key resources table.

d All original code has been deposited at https://github.com/mehrdadbakhtiari/adVNTR/tree/enhanced_hmm

and is publicly available.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Target coding VNTRs

We started with 693,770 variable number tandem repeats (VNTRs) found by Tandem Repeat Finder (TRF).

We focused on VNTRs with 6 % pattern length% 100, repeat count R 2, total length % 30,000 to exclude

short tandem repeats and very long tandem repeats (satellites). In this study, we focused on VNTRs lying

within coding regions of genes using refseq gene coordinates because any mutations in those regions

are likely to be functionally associated with the corresponding protein product.

To investigate variations in repeat counts, we focused on short-coding-VNTRs with total length% 140 bp.

We filtered out VNTRs if a VNTR has a similar sequence with another TR by comparing the pattern and flank-

ing regions. To select non-overlapping TRs, we sorted the TRs by the end positions and greedily selected

one that ends first. A total of 2237 TRs remained (Table S1).

To investigate small variants within motifs in coding VNTRs, we selected VNTRs with total lengthR 300 bp

(long-coding-VNTRs), which can not be easily detected by other tools due to multiple mapping problem

with short reads. After applying the same filtering methods used to select short-coding-VNTRs, we

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

1000 Genomes Project 1000 Genomes Project Consortium

et al., 2015; Byrska-Bishop, Marta

et al. (2021)

https://www.internationalgenome.org/data-portal/data-collection/

30x-grch38

1000 Genomes Project

variant calls

Byrska-Bishop, Marta et al. (2021) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/

1000G_2504_high_coverage/working/20190425_NYGC_GATK/

NA12878 PacBio BAM file Genome in a Bottle, PacBio https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/

NA12878/PacBio_SequelII_CCS_11kb/HG001_GRCh38/

Software and algorithms

code-adVNTR This paper https://github.com/mehrdadbakhtiari/adVNTR

GATK McKenna et al. (2010) https://gatk.broadinstitute.org/hc/en-us

ART Huang, Weichun et al. (2012) https://www.niehs.nih.gov/research/resources/software/biostatistics/

art/index.cfm

IGV Robinson et al., 2011 https://software.broadinstitute.org/software/igv/
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additionally added three disease-associated VNTR loci with in PER,MUC1, andGP1BA genes. Overall, 364

TR loci (343 unique genes) are selected in our target loci list (Table S3).

Basics of the adVNTR HMM

Recall that any HMM M is defined by a 5-tuple M = fS;S;T ; e;pg Here, S = fA;C;G;Tg denotes the

emitted symbols, S denotes the set of states, T ;e denote the transition and emission probabilities, respec-

tively, and p denotes the initial probability distribution on the set of states. In the single motif profile HMM

used by adVNTR (Figure S2), we always start at a begin state, or pq = 1when q = BEGIN, and pq = 0 other-

wise. The motif itself is represented by a sequence of Match states, with additional Insert states and Delete

states. At the end of the motif, a transition is allowed back to the beginning of the motif as well as to the

END state. In each step, the HMM emits a symbol (unless it is at a non-emitting state), and then transitions

to a new state.

The Viterbi algorithm is used to identify the most likely sequence of states traversed while emitting the

DNA sequence provided as input. Specifically, let V ½q; j� denote the highest (log) probability of emitting

the first j letters of the sequence r1; r2;.rm (lengthm) and ending in state q˛S of an HMMwith state space

S (jSj = n). Then for all 1% j%m, and all q˛ S

V
�
q; j

�
=

8<
:
max
p˛ S

�
V
�
p; j

�
+ logT

�
p;q

�	
q is a ‘silent0 state

max
p˛ S

�
V
�
p; j � 1

�
+ log T

�
p;q

�
+ log eq

�
rj
�	

otherwise;
(Equation 2)

where ‘silent’ states refer to the states that do not emit any letters, and T ½p;q� denotes the transition prob-

ability from state p to q and eq½rj� denotes the emission probability of rj in state q. Each iteration takesOðnÞ
steps for a total time of Oðn2mÞ steps required to parse.

Designing multiple motif HMM

code-adVNTR executes the following steps for constructing he multi-motif HMMs: (1) use the single motif

HMM based adVNTR to parse the reference VNTR sequence into specific and distinct motifs. (2) Builds a

separate profile HMM for each motif and for the flanking regions (prefix and suffix HMMs). and, (3) combine

all HMMs into a single multi-motif HMM (Figure 1B). The HMM for each motif is a standard profile HMM. As

mutations, and specifically indels, are much rarer in coding sequence, the transition probabilities were set

using an empirical analysis of known VNTRs. Specifically, the transitions from the start state to m motifs

were set to 1=m. Within the profile HMM for each motif, the transition from Match to Match state was

set to 0.9975. Similarly, the emission probability of the reference residue was set to 0.996. The emissions

of non-reference residues, and transitions to insert or delete states were set to 0.00125. As most motifs

have only a small probability of a non-reference transition (due to a coding SNV or sequencing error),

repeated traversal of the same non-reference transition during parsing is a signal for a coding indel.

Restricting search space in Viterbi algorithm

Noting that multi-motif structure is also an HMM (though not a profile HMM), the Viterbi algorithm can be

used unchanged to parse the read. The number of states n is largely determined by the number of motifs u

in the model and the lengthw of each motif (nfuw). Thus, a naive modeling of a VNTR with umotifs instead

of one changes the parsing time for a sequence of lengthm fromOðw2mÞ toOðu2w2mÞ, causing a u2 slow-

down.

To speed up computations, we use a ‘banding’ idea to prevent excursion into states where the score is

already too low (Figure 1C). The score threshold t is empirically and automatically computed based on

the HMM and a user-defined parameter d defined as the maximum number of indel transitions allowed

in recruited reads (default d = half of the motif length). We also note that the only way to complete a cycle

in the state space graph is by transitioning from ‘Motif-End’ to ‘Motif-Start’. We disallow degenerate cycles

(that revisit a state without emitting any symbol) by topologically ordering the states while ignoring that

transition. We maintain Qj as a queue of states q that remain active after reading the first j symbols.

Then, Q0 = start � state, and Qj = fq : V ½q; j� > t}). In Algorithm 1, we iterate over all j and repeat the

steps outlined until Qj is empty.
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The algorithm works by maintaining the following invariants for all 1% j <m: (a) State p is added to Qj

only if V ½p; j�R t; (b) when state p is removed from Qj for the last time, then for all non-silent q, maxft;V ½q;
j + 1�gRV ½p; j�+ logT ½p; q�+ logeq½rj + 1�; and for all silent q, maxft; V ½q; j�gRV ½p; j�+ logT ½p; q�. Invariant
(a) is direct from the algorithm. For invariant (b), let t½p;q� = V ½p; j�+ logT ½p;q�+ logeq½rj + 1� for some

non-silent q. The algorithm ensures that if t½p;q�R t, then V ½q; j + 1�R t½p;q�. A similar argument holds for

silent q.

We can use these invariants to assert that when Qj is emptied, then V ½p; j� holds the maximum achievable

score for emitting the first j symbols and ending in state p so long as the maximum score exceeds t. Suppose

the assertion is not true at j, and there exists V ½p; j� which has the highest score among all states that failed to

achieve their maximum value. The maximum value either equaled V1 = V ½q; j � 1�+ logT ½q;p�+ logep½rj � for
some q, or V2 = V ½q; j�+ logT ½q;p� for some q. In the first case, state q had been removed from Qj� 1 for

the last time, and using assertion b, V ½p; j�RV1. In the second case, we know that V ½q; j�’s score is higher

than the maximum score achievable by V ½p; j� and it is therefore correct. Then, by invariant (b), V ½p; j�R V2

when q was removed from Qj for the last time. We used backtracking to parse each readthrough the multi-

motif HMM and used the Viterbi path to partition each read and to align each sub-string in the partition to

a flanking sequence or a motif.

Guidance from the reference sequence motif order

When a mutation in a motif makes it identical to another motif in the multi-motif HMM, it is matched to

the second and would not be detected as a mutation. To differentiate true mutations from such internal

sequence variations, we utilized reference sequences as follows: Each of the u motifs in a VNTR was

given a distinct label i ranging from 1 to u. We built a look-up table of all possible motif-label orders

based on the read length. For example, if the length of the motif was 30 bp, a read of 150 bp could

span a maximum of five motifs, providing a sequence of 5 or fewer labels. Each read was parsed

into its motif labels, and the look-up table was used along with a Smith-Waterman style local alignment

algorithm to positionally align the read, allowing for up to one motif label mismatch. Thus, the read

1; 2; 2; 1; 3 is allowed to align to a longer reference label sequence 2; 1; 2; 2; 4; 3; 1; 2. The alignment in-

dicates that a mutation transformed motif 4 into motif 1. These alignments were used to re-assign sub-

strings to individual motifs, while maintaining the overall output as collection of Viterbi paths for each

motif.

Performance comparison using simulated reads

To evaluate the performance of indel detection in VNTRs, we generated 10 whole genome sequencing

data for each target locus. We simulated heterozygous mutations by putting an indel mutation with a

random size
�
< lengthðmotifÞ

2

�
at a randomposition in each TR locus. Then, we simulated reads (303 coverage)

from the human reference genome (GRCh38) using ART (Huang et al., 2012) with Illumina HiSeq 2500 error

profile.

We compared the performance of indel detection of code-adVNTR with GATK4 Haplo-type-Caller. We

measured accuracy for each simulation, calculated by the number of correctly identified VNTRs divided

by the total number of target VNTRs. We regarded a call as true when a tool found any mutations in

the VNTR region because it is not always possible to locate the exact position of a variant in repeated

sequences, which can not be spanned by a read. Although code-adVNTR does not localize observed

mutation, in many cases such as known pathogenic mutations or diagnostic tests, it is sufficient to

know the existence of the mutation in pathogenic VNTRs, and the results can be used to prioritize can-

didates for the further experiments to confirm the cases. We also measured running time of code-

adVNTR by running them with default parameters on a single core of Intel Xeon CPU E5-2643 v2

3.50GHz CPU.

Identifying coding VNTR variants in 1000 Genomes Project data

Code-adVNTR has two modes: estimating motif count, and detecting variants within motifs in VNTRs. To

investigate coding VNTR variants, we focused on the two different sets of target coding VNTRs (short- and

long-coding VNTRs) as described previously. For short coding VNTRs analysis, we define polymorphic

VNTRs as the VNTRs that have individuals with non-reference alleles R 1% of the population.

ll
OPEN ACCESS

iScience 25, 104785, August 19, 2022 15

iScience
Article



To call small variants in long coding VNTRs, we set the minimum supporting reads threshold as 5. To find

novel variants not reported by standard variant calling pipeline with short reads, we compared the variants

found by code-adVNTR with the variants reported in VCF files.

Finding population-specific VNTR alleles

To investigate population-specific alleles in the short coding VNTRs, we calculated entropy for each VNTR.

For each super population, we counted how many alleles (repeat count) were observed for each allele.

Based on the allele count vector, we calculated normalized entropy

P
i
pi ln pi

ln n , where pi is the fraction of

allele i and n is the total number of observed alleles of a VNTR.

MUC1 VNTR dataset

We used three positive samples that carries a cytosine frameshift variant in MUC1 VNTR and three negative

samples identified from the previous study (Ekici et al., 2014). We also tested code-adVNTR on 271 DNA

samples of German Chronic Kidney Disease cohort (Eckardt et al., 2012).

Generating alignment of reads

Code-adVNTR offers an option to generate alignment of supporting reads to the motif that has variants.

We ran code-adVNTR with ‘-aln’ option to generate the alignments.

QUANTIFICATION AND STATISTICAL ANALYSIS

To detect variants in coding VNTRs, we used likelihood ratio to perform an asymptotic chi-squared test

following Wilks’s theorem. The significance level was set to 0.001. We applied the test on all candidate var-

iants in 1000 Genomes Data. For the frameshift variants in MUC1 VNTR, we applied the same cutoff to call

the variants.
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