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Abstract

Sets of multiple scalar fields can be used to model different types of varying data, such as uncertainty in measurements and
simulations or time-dependent behavior of scalar quantities. Many structural properties of such fields can be explained by de-
pendencies between different points in the scalar field. Although these dependencies can be of arbitrary complexity, correlation,
i.e., the linear dependency, already provides significant structural information. Existing methods for correlation analysis are
usually limited to positive correlation, handle only local dependencies, or use combinatorial approximations to this continuous
problem. We present a new approach for computing and visualizing correlated regions in sets of 2-dimensional scalar fields.
This work consists of three main parts: (i) An algorithm for hierarchical correlation clustering resulting in a dendrogram,
(ii) adaption of topological landscapes for dendrogram visualization, and (iii) an optional extension of our clustering and
visualization to handle negative correlation values. All steps are designed to incorporate the special properties of correlation
consistently. The results are visualized in two linked views, one showing the cluster hierarchy as 2D landscape and the other one
providing spatial context in the scalar field’s domain. Different color and texturing schemes coupled with interactive selection
support an exploratory data analysis.

CCS Concepts
•Mathematics of computing → Cluster analysis; Point-set topology; •Human-centered computing → Dendrograms;

1. Introduction

Many domains require analyzing sets of multiple scalar fields de-
fined over a common grid. In climate research, seismology, or
medicine, e.g., measurements introduce errors, which can be mod-
eled with scalar field ensembles, i.e., multiple observations of the
same phenomenon. Another important application is identifying
structures that persist over longer time spans in time-varying data
sets. Across multiple scalar fields, the values at different points of
the domain usually have dependencies. In temperature measures
taken over the course of a year, e.g., close locations are unlikely to
exhibit large value differences. While these dependencies can be of
arbitrary complexity, the linear dependency, described by correla-
tion coefficients, already carries valuable information while being
simple enough for an efficient analysis.

Since dependency information is given between point pairs, vi-
sualizing correlation directly is unfeasible. Instead, one has to re-
duce correlation information to a manageable amount of features
that can be presented to the user. A common approach organizes
points into clusters with high linear dependency. This, however,
raises a series of new questions, such as: What is the suitable simi-
larity measure to decide whether to group two points into the same
cluster? How does one select a suitable similarity threshold that

avoids grouping together too many or too few points? What is the
appropriate way of dealing with negative correlation, i.e., points
that have high dependency but inverse behavior?

Our work addresses these questions by presenting a new method
for hierarchical point clustering and subsequently using it to ex-
tract correlated regions in multiple scalar fields. The overall goal
is to cover all aspects of correlation, including local and global de-
pendencies as well as positive and negative correlation coefficients.
We accomplish this goal by first transforming the scalar fields into
a space that better reflects the properties of correlation—the sur-
face of a high-dimensional hypersphere. In this representation, cor-
relation corresponds to angular distance, making a geometric in-
terpretation possible. We then use a new variant of agglomerative
clustering, which first reduces the number of considered point pairs
through the use of a neighborhood graph before successively merg-
ing points depending on an edge measure. We introduce and com-
pare different edge measures as they exhibit different benefits and
drawbacks. Furthermore, we propose a new way for consistently
handling negative correlation. The result is a hierarchical cluster-
ing that contains information about correlated regions, their re-
lation and nesting, as well as inverse dependencies. We use two
linked views to visualize the clustering: a 2D landscape and a clus-
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ter visualization in the original domain. The landscape provides the
cluster hierarchy as well as simple selection and filter mechanics.
The domain view shows the correlated regions in a spatial con-
text. This combination enables interactive exploration of correlated
structures.

Our main contributions are:

• a hierarchical and flexible correlation clustering algorithm that
can easily be generalized to arbitrary point clouds;
• a mathematically consistent approach to handling negative cor-

relation coefficients;
• generalizing topological landscape visualization to arbitrary hi-

erarchical clusterings.

2. Related Work

One of the main instances of multiple scalar fields is ensemble data,
which is commonly used to model uncertainty in scalar fields. Sev-
eral taxonomies [THM∗05, PRJ12] and surveys [BOL12, BHJ∗14,
HLH∗16] cover the representation and visualization of uncertainty.
Pfaffelmoser and Westermann [PW13] investigated the influence
of correlation on the structure of uncertain fields. They showed that
correlation is responsible for a significant portion of a field’s topo-
logical features and used glyphs to encode local correlation and
anisotropy information. Sauber et al. [STS06] extracted correlated
regions in multi-fields, summarizing pair-wise dependencies in a
graph structure. The graph then aids the selection of subsets of cor-
related scalar fields for which the correlated areas are visualized us-
ing standard volume rendering techniques. Chen et al. [CWMW11]
reduced the amount of correlation values that have to be considered
in time-dependent multi-field data by sampling regions of the cor-
relation matrix. Zhang et al. [ZMZM15] represented correlation as
labeled graph and augmented a classical graph visualization with
scatterplots for additional dependency information.

Many methods for correlation clustering are based on the work
of Bansal et al. [BBC04]. Using a weighted undirected graph with
correlation-based similarity measures as edge weights, clustering
becomes a problem of maximizing similarity within and mini-
mizing similarity between clusters. There are only few methods
that do not use the graph model. Zhang et al. [ZHQL16] defined
a correlation-based distance metric for time-varying multi-variate
data and used k-means clustering to extract correlated regions.
Sukharev et al. [SWMW09] also used k-means clustering but en-
hanced it with a local search to minimize intra-cluster correlation.
Pfaffelmoser and Westermann [PW12] developed an algorithm for
correlation clustering in uncertain 2D scalar fields that also deals
with negative correlation and is thereby closely related to our work.
They used positive and negative correlation thresholds to find re-
gions that have a certain dependency to centroids in the domain.
Centroids are those points with the highest cardinality, i.e., the
number of points in the domain, whose correlation to the given
point is above the threshold. Their method, however, is sensitive
to small value perturbations and also tends to be ambiguous by not
assigning points to their most correlated cluster.

3. Background

In the following, we describe the data representation before review-
ing the two main clustering approaches our method is related to: hi-
erarchical clustering and topological density-based clustering. Fur-
thermore, we briefly introduce topological landscapes as well as
methods from density estimation that are used later in this paper.

3.1. Correlation in Multiple Scalar Fields

A deterministic scalar field is a mapping s : D → R over some
domain D ⊆ Rm. Values usually are given only at certain grid
points DS = {x1, . . . ,xn} ⊆ D which are connected to form sim-
plicial cells. Linear interpolation for values within cells provides
a dense approximation of the function. Multiple scalar fields can
be provided as data matrix X ∈ Rn×d , which contains d scalar
fields as columns, each storing values for n grid points. Given
d scalar fields over the same domain, the Pearson correlation
coefficient [BCHC09] ρxi,x j ∈ [−1,1] describes the linear depen-
dency between two sample points xi,x j ∈ DS. While ρxi,x j =
0 indicates independence, positive/negative correlation signifies
that the two variables behave proportional/anti-proportional to
each other. All correlation coefficients form the correlation matrix
Corr ∈ [−1,1]n×n with entries Corri j = ρxi,x j , which is symmetric
and positive semidefinite.

3.2. Hierarchical Clustering

Hierarchical clustering is a very common technique with the major-
ity of applications in machine-learning and computational linguis-
tics. Berkhin [Ber06] gives an overview over common clustering
methods, including agglomerative clustering, which is the category
our method falls into. A variant of agglomerative clustering that
is related to our method is single-linkage clustering [ELLS11], in
which points with highest similarity are successively merged until
only one cluster is left. The results of a hierarchical clustering are
commonly presented as a dendrogram [SR62], for which Figure 2
shows a basic example.

3.3. Topological Density-based Point Clustering

Our clustering method is also based on the point cloud clustering
developed by Oesterling et al. [OHJ∗11]. It operates on a point
cloud given in a high-dimensional Euclidean space and consists
of two main parts: (i) approximation of the point cloud’s density
function and (ii) topological analysis using the join tree.

Oesterling et al. approximated the density function by comput-
ing its values only at points of the point cloud using Gaussian kernel
density estimation. While this gives a smooth approximation, they
used a single estimated kernel bandwidth for all points, which leads
to granularity problems (cf. Section 6.5). With the representation
of the density function, the final clustering is computed through in-
vestigation of the density’s topology. Cluster candidates are dense
regions which can be extracted by looking at superlevel sets of the
density function for certain thresholds. Connected components in
a superlevel set represent dense regions that are separated by areas
with low density. The join tree [CSA03] is computed to capture all
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Figure 1: Overview over clustering pipeline and the corresponding paper sections (blue boxes). Yellow and blue parts mark optional steps
for handling negative correlation and point count reduction.

connected components of all thresholds at once. A problem with us-
ing the point cloud itself to sample the density function is that val-
leys separating clusters are often not represented in the sampling.
This problem is bypassed by an edge sampling step, introducing
additional sample points on edges with low density values.

3.4. Topological Landscapes

Since join trees can be computed in spaces of arbitrary dimen-
sion, they are powerful tools for capturing topological informa-
tion. One way of visualizing this information is by generating
topological landscapes [WBP07]. The core idea is to generate a
low-dimensional function with the same topological features as
the high-dimensional one. Due to the simple structure of the join
tree, it can be represented as a landscape profile in two dimen-
sions [OHWS13]. Topological landscape profiles represent the join
tree as nested hills with heights indicating the scalar values of the
underlying function. Further details on the construction of land-
scape profiles are given in Section 5.2.

3.5. Density Estimation

When estimating the density function of a point cloud in a metric
space, the points are assumed to follow a common density distribu-
tion. One of the most basic methods for approximating the density
function is Parzen-window estimation. It estimates the density by
counting all points in a certain area around a point x:

p(x)≈ k
n ·V , (1)

where n is the total number of points, k is the number of points
within the region and V is the window’s volume.

Kernel Density Estimation (KDE) – For a smoother approxi-
mation, the fixed window can be replaced with a weighted kernel
function c [WJ94]:

p(x)≈∑
n
i=1

c(d(x,xi),b)
n ·V (b)

. (2)

The parameter b is used to alter the shape of the kernel thus influ-
encing the volume V . In case of the commonly used Gaussian ker-
nel, b is called the bandwidth parameter and determines the width
of the bell-shaped kernel. The choice of b is very critical and chal-
lenging as it has a strong impact on the shape and accuracy of the
resulting density approximation.

k-nearest neighbor density estimation (kNN) – Instead of
counting points within a certain window size, one can fix the num-
ber of points k and estimate the volume that encloses exactly k
points. This approach is proven to converge towards the real dis-
tribution with increasing number of sample points n [FH73]. How-
ever, the resulting density tends to be very spiky, which makes this
method unsuitable for practical application.

dynamic bandwidth KDE – The kNN can be combined with
KDE to solve two problems at once: the choice of the kernel band-
width and the spikiness of the kNN density. Instead of taking a uni-
form bandwidth, one can use a dynamic bandwidth that depends
on the distance to the k-nearest-neighbor. This way, regions of low
density receive a larger kernel that preserves global structure while
dense areas retain details with smaller kernel sizes.

4. Overview

Figure 1 gives an overview over all steps of our clustering pipeline
together with the corresponding sections. The description of these
steps is divided into three main parts. We first describe how topo-
logical landscapes can be used to visualize arbitrary dendrograms
(Section 5). This is used in the second part, where we describe the
main clustering algorithm and its variations (Section 6). To handle
correlation consistently, we transform the data into a point cloud
embedded on the surface of a hypersphere (Section 6.1). Using
beta-skeletons as neighborhood approximation (Section 6.2) makes
it possible to merge adjacent regions based on a precomputed sim-
ilarity measure (Section 6.3). In the third part we describe a novel
approach for incorporating negative correlation (Section 7). It uses
the surface of the hypersphere to introduce twin points, which leads
to cluster symmetries that provide information about negatively
correlated regions. We also give a brief performance analysis to-
gether with some optimizations (Section 8.1). At the end of the
paper, we demonstrate the applicability and typical use cases for
our pipeline on three different data sets (Section 9).

5. Visualization of Hierarchical Clusterings

Throughout the literature, hierarchical clusterings are almost ex-
clusively visualized by directly plotting the tree-like structure of
the dendrogram (cf. top-left of Figure 2). This method, however,
uses space very poorly, as there is significant overplotting at the
leaves and only a single line representing the main cluster at the
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root. Augmenting the lines with color (e.g. [KH03]) often requires
visual parsing and the overwhelming background reduces the num-
ber of distinguishable colors [War12].

The 2D topological landscapes by Oesterling et al. [OHWS13]
provide much better properties, but are defined only for join trees.
In the following, we will describe how dendrograms can be trans-
lated into a join-tree-like structure, the saddle tree, which we then
use to build topological landscapes for arbitrary hierarchical clus-
terings. This not only makes it possible to add additional informa-
tion through texture and color (see Section 7.3), but also enables
topological simplification to reduce the complexity of the cluster-
ing through the saddle tree.

5.1. Saddle Tree

The dendrogram and the join tree of the point-cloud’s density func-
tion have some key similarities. Both are defined in terms of a vary-
ing threshold that represents similarity between clusters. Further-
more, tree branches represent sets of points with saddle points con-
necting branches at certain similarity thresholds to build a cluster
hierarchy. Note that throughout the paper, we use the term saddle
point for all merge-points in hierarchical clusterings, which is com-
mon terminology in Morse theory and scalar field topology.

Despite the similarities, join trees and dendrograms can not be
directly identified with each other. All nodes in the join tree, e.g.,
have a direct representative in the point cloud or scalar field. In
the dendrogram, however, only leaves correspond to original data
points and all saddles are purely virtual. To bridge the gap between
the different meanings of tree-nodes, we first introduce the notion
of trivial clusters in dendrograms as clusters consisting only of
a single point. Using this concept, we can identify points in the
join tree and the dendrogram that serve the same purpose. Regular
points in the join tree represent events of a single point attaching
to an already existing cluster. In the dendrogram, these are saddles
that merge a trivial with a non-trivial cluster. Saddle points in the
join tree are points where two existing clusters merge. The counter-
part in the dendrogram are saddles merging two non-trivial clusters.
Similarly, maxima in the join tree correspond to saddles merging
two trivial clusters, i.e., the birth of a non-trivial cluster. The last
point left is the global minimum, which has no real representation
in the dendrogram as the lowest point always is a saddle.

Since the number of points in the dendrogram and the join tree
is usually different, the above identification of the point types is not
a one-to-one mapping. However, it shows that the dendrogram can
be translated into a join-tree-like structure that only considers the
saddle points and thus will be called the saddle tree for the rest of
the paper.

5.2. Landscape Construction

The construction of the landscape for a given dendrogram can be
reduced to a small and simple set of steps, which can be seen in Fig-
ure 2. First, we translate the dendrogram into the aforementioned
saddle tree. Second, we apply different construction rules depend-
ing on the type of the saddle tree node, as shown at the bottom of
Figure 2. While these steps only slightly differ from the construc-
tion of topological landscapes, there are some important details to

dendrogram join-tree-like graph topological landscape

landscape construction steps

global minimum regular node saddle node maximum

Figure 2: The process of converting a dendrogram into a topolog-
ical landscape (top) and the construction steps for individual node
types (bottom).

take care of. For the landscape to produce peaks at the leaf nodes of
the saddle tree, one has to start with a total landscape width of n−2
at the global minimum, with n being the size of the clustered point
cloud. At every node v of the saddle tree, the width of the landscape
corresponds to the upper node count, which is the number of nodes
in the upper subtree with root v, excluding v itself. This results in
the width of the landscape being two less than the number of points
in the corresponding cluster. While this seems undesirable, this dif-
ference becomes negligible for bigger point clouds and is required
for a consistent construction.

6. Agglomerative Correlation Clustering

This section covers the main clustering algorithm and its variations.
The proposed method introduces the concept of edge measures,
which heavily influence the final clustering and therefore require
further investigation. After describing the central approach and the
clustering algorithm, we therefore compare different edge mea-
sures, discuss advantages and disadvantages, and give an overview
over noise stability. Finally, we put the algorithm into perspective
between existing methods to highlight major similarities and dif-
ferences.

6.1. Approach

The main goal of the proposed clustering method is to preserve all
information that is contained in correlation coefficients. Because
correlation is a cosine-measure, it is directly related to angular dis-
tance between points, which is given by

dang(xi,x j) = arccos(ρxi,x j ) ∈ [0,π]. (3)

This leads to the following geometric interpretation: Starting with
two points x and y, their angular distance geometrically can be seen
as the angle between two points on the unit circle. A third point
then can be added by moving from the unit circle to the unit sphere.
Continuing, the angular distances and thus the correlations between
n points can be geometrically represented by embedding n points
on the surface of a n-dimensional unit hypersphere Sn−1. This em-
bedding is what we call hyperspherical projection as every grid
point has exactly one representative on the unit hypersphere. These
points can be extracted by decomposing the positive semi-definite
correlation matrix Corr ∈ Rn×n into Corr = AAT with A ∈ Rn×d .
The inner products of all pairs of row vectors ai ∈ Rd then corre-
spond to the correlation values ρxi,x j = 〈ai,a j〉 between two points
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xi and x j. From the diagonal entries Corrii = 〈ai,ai〉 = 1 it follows
that the row vectors ai are the aforementioned hyperspherical unit
vectors. Note that the dimension d often is much smaller than n,
which is caused by dependencies in the data that reduce the rank
d of the correlation matrix. This can also be used to deliberately
reduce the dimension by computing A using Principle Component
Analysis [Hot33].

While the interpretation of correlation as angular distance is not
a new concept, hardly any clustering methods explicitly make use
of it. To make use of the spatial relation of hyperspherical points,
our algorithm first approximates the hyperspherical surface with
a neighborhood graph. We then merge adjacent points into clusters
using an edge measure, which leads to a hierarchical representation
in the form of a dendrogram.

6.2. Neighborhood Approximation

We investigated several different options for approximating the
neighborhood of the hyperspherical point cloud. This search was
driven by three major requirements: the neighborhood structure has
to approximate the space with a suitable density, it has to be com-
putational feasible for real-world data sets, and there has to be a
way to estimate the stability regarding small changes in the input
data. First, we will give a brief overview over possible options be-
fore focusing on beta-skeletons and how we translate them to the
hyperspherical surface.

Oesterling et al. [OHJS10] use either the Gabriel graph (GG)
or the Relative Neighborhood graph (RNG) in a high-dimensional
Euclidean space. Since the GG is a much denser supergraph of the
RNG, using both graphs makes it possible to adjust the tradeoff
between accuracy and performance. Unfortunately they still differ
too much to serve as estimates for output stability, which is why a
more fine-grained control is preferable. Jaromczyk and Toussaint
[JT92] provide an overview of graphs related to the RNG varying
in dimensionality and complexity. Furthermore, stochastic graphs,
like the relaxed Gabriel graph introduced by Correa and Lindstrom
[CL11], can act as stability indicators by looking at variations over
multiple runs.

We selected beta-skeletons, which are a generalization of the
GG and RNG that was first introduced by Kirkpatrick and Radke
[KR85]. Not only do they provide a continuous parameter for trad-
ing performance for accuracy, but their deterministic construction
makes it possible to estimate stability reliably. A beta-skeleton over
a set of points is defined in terms of a single parameter β ∈ [0,∞).
Two points xi,x j ∈ Ds are connected, if and only if their beta-lune

Lβ

i j does not contain a third point xk ∈ Ds \ {xi,x j}. For β ≥ 1 the
beta-lune is the intersection of two d-balls defined by

where α = β/2 and Br(c) = {x ∈Rd | ‖x−c‖ ≤ r} is the ball with

radius r centered around the point c. On the right, some 2D balls
and their lunes (intersections) for different ranges of β are shown.

Using angular distances, the same ball definition applies to the
hyperspherical surface, which implies a valid beta-lune definition.
Because the norm of every point on the unit-hypersphere is equal
to 1, the beta-lune test simplifies to

(2−β)(1−〈xk,xi〉)+β(〈xi,x j〉−〈xk,x j〉)< 0

∧ (2−β)(1−〈xk,x j〉)+β(〈xi,x j〉−〈xk,xi〉)< 0. (5)

All inner products 〈xi,x j〉= ρxi,x j can be either retrieved by a single
lookup in the correlation matrix or computed on-the-fly with d mul-
tiplications. The beta-skeleton is equivalent to the Gabriel graph for
β = 1 and to the relative neighborhood graph for β = 2. We only
use values β ∈ [1,2] since β < 1 increases computation times dra-
matically and β > 2 results in a disconnected graph. An example
for a spherical beta-skeleton with β = 2 can be seen in Figure 1.

While a naive implementation of the beta-skeleton has complex-
ity of O(n3), there are some tricks that bring computation times
closer to O(n2 log(n)). Due to the direct relationship to the Gabriel
graph, we can use the improvements proposed by Oesterling et
al. [OHJS10]. When testing whether a pair of points xi,x j is con-
nected, all points xk are traversed with increasing distance to xi.
This way it is very likely that the beta-lune-test fails early since
points causing that failure are usually close to the testing pair.

6.3. Edge Measure

The clustering method uses the beta-skeleton to successively merge
adjacent regions. The merge order is determined by a graph edge
measure, which is the likelihood of merging the two regions that
are connected by the corresponding edge. Per definition, the edges
of a beta-skeleton represent a small portion of the domain due to the
beta-lune not containing any points from the point cloud. Although
these lunes may overlap, they give every edge a representation in
the domain itself, making the question for a suitable edge measure
more meaningful: How likely is it for the two by the edge con-
nected regions to merge over the portion of the domain this edge
represents?

We investigated multiple different measures, each having ad-
vantages and disadvantages. For simplicity, we will first use the
simplest measure, the edge correlation, and discuss more advanced
ones in Section 6.5. The edge correlation for an edge e = (xi,x j)
is the correlation µcorr(e) = ρxi,x j between the two end points. As
it is a cosine-measure, it fulfills the requirements for a merging
threshold, as points with higher correlation should be more likely
to merge into a single cluster.

6.4. Clustering Algorithm

After computing the neighborhood graph and assigning merging
thresholds to every edge, the final clustering algorithm is quite sim-
ple. Appendix 2 gives a detailed description of the algorithm.

Initially, there are n clusters, each consisting of a single point.
The main loop iterates over all edges of the neighborhood graph
in descending order of their edge measures. For every edge, there
are two cases: (a) The hyperspherical points connected by the edge
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Figure 3: Agglomerative correlation clustering on a synthetic 2D point cloud. 5000 points were generated following a Gaussian mixture
density distribution (a)(bottom), which is defined on the circle (a)(top). Different edge measures (b) lead to different cluster separation and
noise stability. Note that in (A)-(E), the vertical axis represents a correlation or density measure while the plot width equals the number of
points. As there is no single best measure for all data types, we give a basic recommendation for choosing an edge measure (c).

are in different clusters; (b) The connected points already share
the same cluster. In case (a), the two clusters the points belong
to are merged into a single cluster. In case (b), the edge is sim-
ply skipped as it is just an intra-cluster connection. Throughout the
process, we have to keep track of the existing clusters as well as the
merging process to build the dendrogram. Clusters can be tracked
efficiently using the UnionFind [Tar75] data structure. The dendro-
gram is build incrementally using an additional array of cluster rep-
resentative nodes. After initializing the dendrogram with n nodes,
a new one is added every time two clusters are merged. It becomes
the representative of the merged cluster and gets connected to the
representatives of the old clusters. After traversing all edges, the
dendrogram contains a complete representation of the cluster hier-
archy with 2n−1 nodes.

6.5. Alternative Edge Measures

While taking the end point’s correlation as edge measure produces
valid hierarchical clusterings, the result is not as novel as it might
seem. In fact, it produces the same result as single-linkage clus-
tering, for which we provide a proof in Appendix 1. Since the re-
sults are the same, our clustering also inherits all of the flaws like
high noise sensitivity and the tendency to produce long thin clus-
ters [Fos98] [NJB06]. The benefit of our algorithm lies in its flex-
ibility as one can easily replace the edge correlation measure with
one providing better properties. The choice of the correct measure
highly depends on the data complexity and what features the user
is interested in.

Figure 3 gives an overview over the measures that are described
in the following section. To compare measures, we generated a 2-
dimensional data set with 5000 points following the density distri-
bution shown in (a). At the bottom, the plain density distribution
as a mixture from six Gaussians can be seen while at the top we
plotted the same density onto a circle to highlight the periodicity
of the circular data. In (b), figures (A)-(E) show the data clustered
with the different edge measures presented in this work. While the
top row uses the normal point cloud, the bottom row contains addi-
tional 1000 points of uniformly distributed noise. This way, we can
evaluate the stability of the proposed clustering algorithm to small
value perturbations depending on the choice of the edge measure.
Finally, Figure (c) provides a very simplified recommendation for
the measure choice depending on data dimension and the user’s pa-
rameter preference.

In (A), the high noise sensitivity of the edge correlation mea-
sure can be seen. Not only does the bottom row show large grooves
splitting the clusters, but also the top lacks a clean separation be-
tween clusters (1) and (6), which is caused by single outlier points
being enough to merge both clusters.

Edge sample point – For a given edge between two points xi,x j,
we introduce the edge sample point xe as the edge’s center point
xe =

xi+x j
‖xi+x j‖ ∈ Sd−1. Note that the normalization is required due to

xe being the geodetic center point. It is used by all edge measures
below and makes it possible to compute correlation values and an-
gular distances efficiently as the correlation between xe and a point
xk ∈ Sd−1 is given by ρxe,xk = (ρxi,xk +ρx j ,xk )/

√
2+2 ·ρxi,x j .

6.5.1. k-Nearest-Neighbor Correlation

The main problem with the edge correlation measure is that it only
considers a single edge and completely ignores the global point
cloud structure. To solve this, we first rephrase the measure for a
given edge e = (xi,x j):

µcorr(e) = ρxi,x j = cos(dang(xi,x j))

= cos(2 ·dang(xe,NN(xe))), (6)

where NN(xe) is the nearest-neighbor of the edge sample point xe
and dang is the angular distance as defined in Equation 3. This way,
the measure can easily be generalized by replacing the nearest-
neighbor with the k-nearest-neighbor:

µkNN(e) = cos(2 ·dang(xe,kNNk(xe)). (7)

With k ∈ {1,2} we get the single-linkage clustering as the k-
nearest-neighbor would be xi or x j. As shown in Figure 3(a)(B),
k > 2 leads to a smoothing effect, which increases cluster sepa-
ration and noise stability. The strength of the effect, however, de-
pends on the parameter k. A general rule of thumb that was also
used throughout Figure 3 is k =

√
n.

6.5.2. Density Estimation

The point cloud’s density function can also be used to get an esti-
mate on the merging threshold for a specific edge. By definition, the
density function has small values in regions of high point separa-
tion and high values in areas containing dense point clusters. Using
the edge sample point, we evaluate the density value for every edge
using the different estimators introduced in Section 3.5.
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To compute the cluster hierarchy, our algorithm only considers
the order of edges with respect to their measure and the actual
measure values only influence the values of the final dendrogram.
Therefore, it can be shown that the result of k-nearest-neighbor
density estimation is just a distorted version of k-nearest-neighbor
correlation from the previous section. Because correlation values
are much more expressive and the volumes of windows on the hy-
persphere are numerically hard to compute, using kNN-correlation
is more suitable in this context.

Kernel density estimation usually gives more accurate results
when it comes to approximating the distribution of points. To apply
it to the hypersphere, two components have to be specified: the ker-
nel function and the kernel bandwidth. On the hypersphere, the von-
Mises-Fisher-distribution serves as a counterpart to the common
Gaussian distribution in Euclidean spaces. When it comes to band-
width selection, the scale of the point cloud in Euclidean spaces
usually is unknown, which requires advanced techniques for band-
width estimation. On the hypersphere, however, we benefit from the
limited value range, making 0.2 a good entry point for further man-
ual bandwidth refinement. A major problem on the hypersphere
is the normalization of the kernel function, as it is highly unsta-
ble for smaller bandwidths and higher dimensions. With a uniform
bandwidth, this normalization can be avoided as it only introduces
a constant factor to the density and does not affect the value or-
der. Unfortunately, a single bandwidth focuses on a specific feature
granularity but is unable to capture fine detail and global structure
simultaneously, which can be seen in Figure 3(b)(C). A good clus-
ter separation of the smaller clusters requires a small bandwidth,
which causes cluster (6) to start splitting up.

To overcome this, we also implemented the dynamic band-
width selection, which uses the distance to the k-nearest-neighbor
to assign individual bandwidths to all points. This smoothes areas
with low density for the benefit of global connection while smaller
bandwidths preserve details in dense areas. In Figure 3(b)(D), clus-
ter (6) is much more stable and the overall noise stability increased
as well. To weigh points equally, kernel normalization is crucial
which makes this method applicable only for low dimensional data.

Although density estimation as edge measure produces valid
clusterings, there are still two major problems left. First, the den-
sity values do not transport much useful information about correla-
tion. Since the density function is a random distribution function,
its values represent likelihoods rather than separation thresholds.
The second problem is that in the final 2D landscape, cluster size
is represented in two ways. By construction, the width of a hill di-
rectly reflects the number of points inside a cluster. In the density
function, however, hills with more points also have higher density
values. A clear separation between point count and merging mea-
sure would not only make the visualization more readable but also
prevent big clusters from suppressing smaller ones solely because
of cluster size.

6.5.3. Weighted Average Correlation

To resolve double representation of the point count, we developed
the weighted average correlation measure, which can be seen in

Figure 3(E). It is defined by

µwavg(e) = cos
(

∑
n
k=1 c(dang(xe,xk),b) ·dang(xe,xk)

∑
n
k=1 c(dang(xe,xk),b)

)
, (8)

where c is a 1-dimensional Gaussian kernel function with band-
width b. The idea is to use the average correlation in a local neigh-
borhood around the sample point as indicator for cluster coher-
ence. If there are only few points close by, the average angular
distance increases and thus the cosine as correlation measure de-
creases. The kernel function therefore lowers the influence of dis-
tant clusters thus reducing the problem of point count influencing
correlation strength. As with all highly localized measures, smaller
bandwidths can in some instances fail to capture global cluster re-
lations. When testing weighted average correlation on the temper-
ature data in Section 9.2, e.g., the expected negative correlation
between northern and southern hemisphere got lost with smaller
bandwidths. Weighted average correlation should therefore not be
used to investigate global dependencies in high dimensions.

6.6. Relation to Existing Methods

In this section we put our clustering method into context by dis-
cussing the main relations to existing methods.

With our method successively merging points into a hierarchy
of clusters, it falls into the category of agglomerative clustering.
In most methods, the next cluster merge is decided based on some
similarity measure which in theory is given between every pair of
clusters. Because the number of all possible pairs grows quadrat-
ically with the number of points, the algorithmic challenge lies in
the efficient tracking of only the relevant values. Our method does
so by explicitly making use of the point cloud’s structure by first
computing the beta-skeleton. This reduces the set of relevant edges
to those that claim a small portion (beta-lune) of the underlying
domain thus express adjacency of regions. Furthermore, we avoid
updating similarity measures by precomputing the edge-measures
based on local or global point set properties. By considering the
point cloud’s density, e.g., we have a measure of cluster similarity
beforehand without actually merging points into clusters.

This also shows the similarity to density-based clustering.
Oesterling et al. [OHWS13] perform clustering by using the points
themselves as samples for the common density function. While this
makes sense for capturing more dense areas with more points, it ac-
tually misses a key aspect of clustering—the separating valleys. Be-
cause the areas separating the clusters are by definition poorly sam-
pled regions, the main focus should not be the points themselves but
the regions between them. Oesterling et al. try to solve this problem
by performing edge-sampling, i.e. introducing new sample points
on neighborhood graph edges to find valleys. This, however, intro-
duces inconsistency as the point cloud now consists of two different
types of points that are semantically different. Instead of comput-
ing density on the core point set, our method focuses on the edges,
which comes with some major benefits. First, the method becomes
more efficient as we do not have to consider measures at the point
cloud elements themselves. Second, not having two types of sample
points also leads to greater consistency and flexibility in the choice
of the edge measure, like the k-nearest-neighbor or weighted aver-
age measure. Furthermore, the dendrogram is guaranteed to contain
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Figure 4: Process of handling negative correlation for an exem-
plary set of scalar fields. By first inserting twin points with inverse
behavior, positive correlation clustering yields correlated regions
in both parts of the domain. A final merging step produces a consis-
tent clustering that incorporates positive and negative correlation.

exactly n− 1 saddle points while edge-sampling introduces a pre-
viously unknown amount of saddles.

7. Negative Correlation

In this section, we describe how to incorporate negative correla-
tion in our clustering method as well as the landscape visualiza-
tion. While positive correlation can be found in almost all data sets,
inverse linear dependency is usually less common. The main rea-
son is the strong connection between point proximity and positive
correlation, i.e., points with a small distance in the domain usu-
ally have similar values across different scalar field instances. This
makes finding inverse correlation using localized methods impos-
sible, which is why many methods do not handle it at all. Due to
it being a global feature, negative correlation also can not easily be
explained by point proximity, which makes it even more interesting
for an exploratory analysis. Methods that handle negative correla-
tion usually just omit the sign and take absolute correlation values
instead. While this is possible in terms of correlation as similarity
measure, it also comes with some drawbacks. First, this strategy
is not applicable to our method, as it is not clear how to embed
the points on the hypersphere when only some correlation values
are changed. While one could argue that this is a problem that our
method introduced, it actually unveils the mathematical inconsis-
tency of this approach. Just omitting the sign destroys the positive
semi-definiteness of the correlation matrix, which also breaks the
metric properties of angular distances.

In the following, we introduce a different approach to dealing
with negative correlation that is consistent with our method and
preserves the properties of correlation coefficients. While this ap-
proach was mainly developed to support our clustering, it is gen-
eral and simple enough to be applied to other clustering methods as
well, making them mathematically more consistent.

7.1. Approach

Our method handles correlation by mapping all points of the do-
main to the hypersphere through the use of hyperspherical projec-
tion (cf. Section 6.1). Points with high positive correlation have
projections in close proximity while negatively correlated points
will be located on opposite sides. Instead of changing the correla-
tion values, we add a twin point for every hyperspherical point that
lies exactly on the opposite side of the sphere’s surface. This main-
tains a consistent hyperspherical point cloud while transforming
negative correlation coefficients into positive ones by essentially
doubling the number of points. The clustering pipeline as well as

steps

saddle tree pruning

trim unaffiliated branches remove mirrored subtrees

Figure 5: Reduction of the clustering using the symmetry intro-
duced by twin insertion. Only two rules (bottom) are required in
order to modify the clustering (top) to only contain one represen-
tative for every grid point. Yellow and purple nodes represent mir-
rored neighborhood graph edges while red/blue coloring marks the
ratio between original and twin points in a cluster.

the final visualization can be applied without any changes, although
we introduce some modifications in order to improve performance
and provide additional information about inverse correlation.

A different way to describe the twin insertion process and its
effects it outlined in Figure 4. First, a twin with exact inverse scalar
values is inserted for every grid point, which essentially duplicates
the domain. After performing positive correlation clustering, we get
clustered regions that can span the extended part (red) as well as the
original part (blue). In this example we have two clusters A and B
that are represented on both sides and also have a very prominent
symmetry. This is used in our saddle tree pruning step to not only
reduce the domain to its original size, but also extract information
about negative cluster correlation.

7.2. Saddle Tree Pruning

Since the twin insertion mirrors all points to the other side of the
hypersphere, the point cloud becomes symmetrical. This symmetry
also extends to the neighborhood graph creating pairs of edges on
opposite sides. In the following, for illustration purposes we color
original points red and their twins blue. Furthermore, we randomly
assign yellow and purple to all mirrored edge pairs.

Figure 5 (top) shows an exemplary cluster landscape for a point
set with twins. At every height, we mark the ratio between origi-
nal points and twins in the corresponding cluster with color and a
vertical separation line (cf. Section 7.3). There are two major obser-
vations: (i) Red/blue hills always have a mirrored counterpart and
(ii) there is a dark branch from which all mirrored hills originate.
The light colored hills mark clusters that are on one side of the hy-
persphere and, due to symmetry, have a mirrored counterpart on the
other side. The dark branch, on the other hand, marks clusters that
span both sides of the hypersphere, which is why we refer to them
as unaffiliated branches.

As shown in the overview (Figure 4), the goal is to merge the
clustering such that there is only one representative for every do-
main point left. This is achieved by modifying the saddle tree with
two simple simplification rules: (a) remove one of the mirrored
edges in unaffiliated branches and (b) remove one of each pair of
mirrored subtrees. This can be achieved by first making sure that
during edge measure ordering, pairs of mirrored edges are right
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Figure 6: Different texture patterns used to highlight the type of
correlation (left) and an exemplary topological landscape with
polygonal texturing (right). Color marks different selected clusters
and the user can freely specify contrast to either put focus on color
or texture.

next to each other, which usually is implicit since they share the
same measure value. This reduces the number of cases to consider
to only the two shown in Figure 5 (bottom). Mirrored edge pairs
on unaffiliated branches (left) can now be merged and labeled un-
affiliated (gray). If an edge pair is spread across different subtrees
(b), there has to be another node in the saddle tree connecting those
trees together. We track down this node and remove one subtree to
get the final reduced saddle tree.

7.3. Visualization

We modify the dendrogram landscape in order to incorporate neg-
ative correlation into the visualization. After saddle tree pruning,
every point is represented only once in the clustering. Clusters,
however, contain a mixture of original and twin points, which we
visualize in two ways. First, we draw a vertical separation line as
shown in Figure 6 to mark the ratio of the two point types. Second,
we differentiate original from twin points using texture patterns.
Note that due to unaffiliated branches lacking information about
negative correlation, they neither are textured nor have a separation
line. To build the connection between landscape and domain view,
the same texture pattern is used. For different types of domains we
use the two different texturing options shown in Figure 6. Differ-
ently oriented stripe patterns can differentiate between negatively
correlated clusters as introduced by Pfaffelmoser et al. [PW12].
While this works for flat 2D domains, it is impossible to find two
distinct directions for arbitrary 2D manifolds, e.g. a sphere’s sur-
face. MacEachren [Mac04] lists a range of visual variables that
can be varied to distinguish between different map regions, includ-
ing grain, arrangement, and also orientation. Besides orientation,
however, none of these variables seem fit to encode equal-rank fea-
tures in a distinctive manner. We therefore chose a texturing option
that is mainly based on color and also directly reflects the underly-
ing domain—the polygonal pattern. The polygonal pattern uses the
surface triangulation and swapped foreground and background col-
ors to separate negatively correlated clusters. However, this texture
does not support large domains as polygons get too small. Further-
more, we provide an option to vary the contrast between foreground
and background color. This allows to either put the focus on cluster
affiliation (color) or negative correlation (texture).

8. Usability and Performance

This section focuses on our analysis tool for correlation-based data
exploration. First, we discuss two important optimizations that ex-

(a) (b) (c)

Figure 7: Computation times with varying parameters. The method
depends polynomially on point count (a), almost linearly on dimen-
sion (b), and inverse exponentially on neighborhood graph com-
plexity β.

tend the applicability of the proposed clustering pipeline. After that,
the basic analysis setup is described before we give a brief analysis
on the remaining parameters and performance.

8.1. Optimizations

To extend the applicability of our method, we use several optimiza-
tions that deal with the main performance bottlenecks. The most
influencing factor throughout the whole pipeline is the number of
grid points n. Since correlation often has a strong connection to
point proximity, sampling can be used to reduce the point count
significantly. First, a subset of the point set is chosen randomly, on
which the whole clustering pipeline including the final topological
landscape is computed. At the end the missing points are assigned
to the same cluster as their nearest hyperspherical neighbor, i.e., the
point they have the highest dependency to.

Even with sampled data, the quadratic memory consumption of
the correlation matrix can exceed the available main memory. In-
stead of storing correlation values explicitly, one can compute them
on-the-fly with an inner product of the row vectors of the data ma-
trix (see 3.1). Since every correlation value has to be computed with
an d-dimensional inner product, on-the-fly computation introduces
a runtime penalty, which we investigate in Section 8.3.

The introduction of twin points for dealing with negative corre-
lation values doubles the point count. However, many of the clus-
tering steps can be modified to make use of the point cloud’s sym-
metry, which leads to an overall linear slowdown. Edge measures,
e.g., only have to be computed for half the edges since the other half
is completely symmetrical thus sharing the same measures. The
edge symmetry can also be used to speed up the beta-lune check
and edge sorting.

8.2. Analysis Setup

Our tool consists of two linked views: one with the 2D landscape
and one showing the grid of the scalar fields. The landscape view
provides basic exploratory tools for simplification and selection.
Three sliders allow for topological simplification filtering branches
by point count or feature significance [CSvdP04]. Through the se-
lection of hills, the user then can focus on single features, for which
the corresponding regions in the domain view are highlighted to
provide spatial context. With the distinct color schemes provided
by ColorBrewer [HB03], the user can choose to assign a unique
color to each selected cluster or to each individual superarc, i.e.,
each region between two nodes in the dendrogram. Although caus-
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Figure 8: A set of synthetic scalar fields (top) and the resulting
hierarchical clustering (bottom). The domain view (left) exactly re-
sembles the modeled structures and the landscape (right) shows
cluster nesting information.

ing a lot of visual clutter, the second method emphasizes cluster
nesting and global structure, which provides a good overview.

8.3. Performance Measures

We applied our pipeline to a synthetic data set in order to mea-
sure the influence of the three main parameters: point count n,
dimension d, and the neighborhood graph parameter β. With de-
fault values of n = 10,000, d = 30 and β = 2, points were gen-
erated such that their hyperspherical projections follow a uniform
distribution. Figure 7 shows the results when varying one param-
eter at a time. The runtime dependency for the point count (a)
is approximately the expected O(n2 log(n)) that comes from the
neighborhood graph computation. In (b), the almost linear depen-
dency on the data dimensionality shows that our method is fairly ro-
bust to complex data. While a precomputed correlation matrix can
make the actual clustering method independent from dimension, we
specifically performed on-the-fly computation of correlation values
to show worst-case performance. Finally, Figure (c) shows that for
smaller β, the number of edges and also the number of lune-tests
grows exponentially. In practice, however, the impact of the chosen
β is rather small thus allowing for selecting β = 2 and only using
smaller values for stability estimation.

9. Results

In this section, we will demonstrate the applicability using three
examples that cover different types of data. First, we present a syn-
thetic data set to show the correctness of our approach. The other
two data sets are real world data sets that highlight different as-
pects, i.e., a large domain and high dimensionality. For spatial con-
text, we enhanced some figures with borders provided by the Open-
StreetMap project [linc].

9.1. Synthetic Data Set

Our first example is an ensemble of 14 scalar fields shown in Fig-
ure 8 (top) defined on a regular 20× 20 grid. The columns con-
tain pairs of inverted realizations, which ensures an overall mean
of zero at every grid point and makes it possible to model corre-
lated regions explicitly. In the right-most column, e.g., the non-zero

(a) (b)

(c) (d) (e)

(f)

Figure 9: Hierarchical correlation clustering for temperature data.
While the overview (a,b) shows global structure and cluster shapes,
a closer investigation through selection and highlighting mechan-
ics (c-f) unveils different correlation structures, such as prominent
clusters, negative correlation, or independent regions.

valued points are zero in all other fields and therefore create an in-
dependent region with positive correlation.

The clustering shown in Figure 8 (bottom) was computed with
uniform kernel density estimation as edge measure with a band-
width of 0.2, as suggested in Section 6.5. We chose the polygonal
pattern to highlight inverse correlation and selected the most sig-
nificant hills for color highlighting. The domain segmentation into
correlated clusters exactly resembles the regions modeled with the
set of realizations. While there are four independent regions in the
center, region A and B are negatively correlated, indicated by hav-
ing the same color but inverted brightness. Furthermore, there is
a positive correlation between the region pairs (C,D), (E,F), and
(G,H), which is also reflected in the topological landscape. Since
regions (C,D), (E,F), and (G,H) are subbranches of the same parent
and have a dark background, they are correlated positively.

9.2. Temperature Measures

The second data set consists of 12 scalar fields that resemble the
monthly average temperatures of the year 2016. It is provided by
the European Center of Medium-Range Weather Forecast [linb]
and is originally defined on a WGS84-projected regular grid. We
applied two pre-processing steps: (i) we limited the data to land-
masses and (ii) we resampled the scalar fields on a subdivided
icosahedron in order to improve correspondence between point
count and surface area. The resulting data set consists of 190,000
points, of which we take a 10% subset for cluster computation (cf.
Section 8.1). Following the recommendation in Figure 3, the clus-
tering in Figure 9 was computed with k-nearest-neighbor correla-
tion measure (k =

√
10% ·n = 139) and β = 2.
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Figure 10: Hierarchical correlation clustering for the CORS data
set (c) and the spatial context in the domain view (a,b). Close-ups
on Alaska (a) and the contiguous US (b) reveal strong spatial de-
pendencies, which can also be seen in the clustering landscape (c).

Figures (a) to (f) show different observations that can be made
using the selection and highlighting mechanics of our analysis
tool. In (a), the full clustering was given the same color, reveal-
ing the very prominent negative correlation between the northern
and southern hemisphere through different stripe orientations. To
get an overview over the general clustering structure, we use topo-
logical simplification to remove small clusters and color remaining
parts by landscape segment (cf. Section 8.2), which can be seen in
(b). Although producing an overwhelming amount of colors, this
view gives a good impression on cluster shapes and aids further
investigation. On the very right of the landscape, e.g., one can see
a clearly separated purple cluster, for which a closeup with corre-
sponding selection is shown in (c). Because of the significant height
of the hill, this cluster, that is bordered by the Andes to the north-
west, can be seen as a well-separated, stable feature with common
temperature behavior. The opposite can be seen in (d), where the
whole area of Europe is just represented by regular points in the
landscape that attach to an already existing hill rather than creating
its own. Therefore, Europe does not exhibit large topographical de-
pendency when it comes to temperature variation, which is further
emphasized by it being located rather low in the landscape. The
highest parts of the landscape, on the other hand, are shown in (e)
and, due to the high simplification, span huge parts of North-East
Asia. Also note the small part in the lower left of the selected land-
scape, which represents the part of Australia, that has a high nega-
tive correlation indicated by the different stripe orientation. Finally,
we selected the very bottom of the landscape in (f), which unveils
the parts of the world that are mainly independent. The lack of a
stripe pattern also shows that these parts belong to an unaffiliated
branch in the landscape (cf. Section 7.2), for which no clear state-
ment about the type of the correlation can be made. As expected,
these parts are mainly located in the equatorial regions with some
exceptions being coastlines on the east of the pacific ocean.

9.3. GPS Reference Stations

The last data set consists of GPS altitude measures from Continu-
ously Operation Reference Stations (CORS) provided by the Na-
tional Oceanic and Atmospheric Administration (NOAA) [lina].
366 scalar fields, one for every day of the year 2016, contain 815
altitude measures of reference stations that are distributed over the
US. GPS altitude estimation is known to be very inaccurate, which

causes the standard deviations of some stations to be as high as
40m over the course of the year. Sources of this uncertainty are
of widely different nature, ranging from atmospheric effects affect-
ing the signal speed, the local weather, sensor quality, and several
terrain-based effects, such as multipath issues and signal reflection.

Since this is a high-dimensional data set with a small number of
sample points, we used the k-nearest-neighbor edge measure (cf.
Section 6.5.1) with a small k = 5. Figure 10 shows the cluster-
ing landscape (c) as well as the spatial context in Alaska (a) and
the contiguous US (b). Note that even though the data consists of
sample points with scalar values, there is no grid connecting the
points to a dense domain. We therefore draw a circle around every
point to serve as canvas for texturing and cluster colors. Occlusion
is resolved by actually drawing cones in a top-down view, which
ensures that every point is visible even in dense areas.

Since influencing factors for GPS data are mainly of topograph-
ical nature, we expected correlation to follow terrain properties.
However, to our surprise the significant clusters mainly resemble
state borders. The turquoise cluster, e.g., directly follows the bor-
ders of Texas, Louisiana, and Missouri, while the violet cluster only
is present in North Carolina. Furthermore, one can observe a strong
negative correlation between Alaska and the western contiguous
part of the US, which is indicated by different stripe orientations.

Explaining the causes for these correlations is not trivial and
would require further investigation. However, because they resem-
ble the state borders, a first guess is that similar value behavior
comes from different agencies managing the stations, maybe us-
ing different sensors or acquisition strategies. In additional analysis
steps, the clustering can be used to further investigate the data and
locate the source of these possibly unwanted dependencies. Un-
derstanding these effects can help improving the accuracy of the
positioning system.

10. Conclusion and Future Work

We presented a method for computing hierarchical correlation-
based clusterings for multiple scalar fields. A new clustering
method was proposed that preserves the metric properties of cor-
relation and generates a cluster hierarchy through agglomeration.
Furthermore, we incorporated negative correlation coefficients con-
sistently via twin insertion and visualized the results with two
linked views. Besides showing the clustering inside the domain, we
translated 2D topological landscapes to work with arbitrary den-
drogram to then build an interactive tool for data exploration. We
evaluated the method on multiple synthetic and two real world data
sets to capture different data aspects and common applications.

Since correlation alone is not enough for a comprehensive data
analysis, one of the main future goals is to couple our method with
additional analysis tools, e.g. investigating deviations and higher-
order dependencies. We would also like to extend our clustering
method to applications different than correlation and work with do-
main experts to answer more domain-specific questions.
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1. Proof A

This section provides the proof that single-linkage clustering (SL)
with correlation coefficients as similarity measure produces the
same results as our clustering algorithm with the correlation edge
measure (CEM). In the following, X = {x1, . . . ,xn} denotes the set
of points getting clustered and ρi j is the correlation between two
points xi,x j ∈ X .

In every iteration step, SL merges the two clusters A and B with
the highest similarity, which is defined as as the highest similarity
between two points xi ∈ A,x j ∈ B. Therefore, it finds the pair of
yet unmerged points that have the highest correlation. CEM does
exactly the same by first sorting all edges by similarity and then
merging them successively. The only difference is that instead of
considering all possible point pairs, CEM only merges along edges
of the beta-skeleton with 1 ≤ β ≤ 2. Since graphs resulting from
smaller β are always subgraphs of ones with higher β, we only
have to prove similarity for the neighborhood graph with the fewest
edges, i.e., the relative neighborhood graph (RNG) with β = 2.

Both clustering algorithms start with each point in its own sep-
arate cluster. Assume that up to a certain iteration, both clustering
hierarchies are equivalent and C(x) ⊆ X denotes the cluster con-
taining point x ∈ X . Let A⊂ X and B⊂ X be two different clusters
with points xi ∈ A and x j ∈ B. To prove equality of the clusterings,
let us compare the two following statements:

I the next two cluster getting merged by SL are A and B due to the
highest similarity between xi and x j

II the next two clusters getting merged by CEM are A and B due to
the edge between xi and x j corresponding to the highest correla-
tion

I→ II

Let us assume statement (I) is true. It follows that

ρi j = max{ρab |C(xa) 6=C(xb)}. (9)

To show that these points have to be connected in the RNG, we
have to look at the beta-lune. Two points are connected in the RNG
if and only if their beta-lune does not contain a third point xk. As
of Formula 5, the test for containment in the hyperspherical lune
reduces to

(2−β)(1−ρki)+β(ρi j−ρk j)< 0

∧ (2−β)(1−ρk j)+β(ρi j−ρki)< 0.

For β = 2, this simplifies to

2 · (ρi j−ρk j)< 0 ∧ 2 · (ρi j−ρki)< 0

⇔ ρi j < ρk j ∧ ρi j < ρki.

If there would be a point xk fulfilling this criterion, thus causing the
edge between xi and x j to not be part of the neighborhood graph,
either one of the two conditions would contradict Implication 9.
There also can be no edge with higher correlation, as this would
also violate Implication 9.

¬ I→¬ II

To complete the proof, let us now assume that statement (I) is false.
That means there has to be a pair of points xk, xl with C(xk) 6=C(xl)
and

ρkl = max{ρab |C(xa) 6=C(xb)}< ρi j.

With the same implications as above, there has to be an edge be-
tween xk and xl in the neighborhood graph, which causes statement
(II) to be false as well.

This proves equality of the two clusterings. �

2. Agglomorative Correlation Clustering

Algorithm 1: Agglomorative Correlation Clustering
input : G=(V,E) - Neighborhood Graph with vertices

V = {v1, . . . ,vn} and edges E ⊆V ×V
measures - Array of edge measures

output: Dendrogram

// Initialize data structures
d← Dendrogram with n nodes;
uf← UnionFind of size n;
repr← Array of size n;
for i← 1 to n do

repr[i] = i;

// Main loop
sort edges E by measures;
foreach edge (v1,v2) in E do

r1← uf.root(v1);
r2← uf.root(v2);
if r1 6= r2 then

newRoot← uf.merge(r1,r2);
newVertex← d.addVertex();
d.connect(newVertex,repr[r1]);
d.connect(newVertex,repr[r2]);
repr[newRoot]← newVertex;

return d;
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