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REVIEW ARTICLE
Etiology of the Protein-Energy Wasting Syndrome
in Chronic Kidney Disease: A Consensus Statement
From the International Society of Renal Nutrition
and Metabolism (ISRNM)
Juan Jes�us Carrero, PhD,* Peter Stenvinkel, MD, PhD,* Lilian Cuppari, PhD,†

T. Alp Ikizler, MD, PhD,‡ Kamyar Kalantar-Zadeh, MD, PhD,§ George Kaysen, MD, PhD,{
William E. Mitch, MD, PhD,** S. Russ Price, PhD,††‡‡ Christoph Wanner, MD, PhD,§§

Angela Y. M. Wang, MD, PhD,{{ Pieter ter Wee, MD, PhD,*** and Harold A. Franch, MD††‡‡

Protein-energy wasting (PEW), a term proposed by the International Society of Renal Nutrition and Metabolism (ISRNM), refers to the

multiple nutritional and catabolic alterations that occur in chronic kidney disease (CKD) and associate with morbidity and mortality.

To increase awareness, identify research needs, and provide the basis for future work to understand therapies and consequences of

PEW, ISRNM provides this consensus statement of current knowledge on the etiology of PEW syndrome in CKD. Although insufficient

food intake (true undernutrition) due to poor appetite and dietary restrictions contribute, other highly prevalent factors are required for the

full syndrome to develop. These include uremia-induced alterations such as increased energy expenditure, persistent inflammation, ac-

idosis, and multiple endocrine disorders that render a state of hypermetabolism leading to excess catabolism of muscle and fat. In ad-

dition, comorbid conditions associated with CKD, poor physical activity, frailty, and the dialysis procedure per se further contribute to

PEW.

Published by Elsevier Inc. on behalf of the National Kidney Foundation, Inc.

This article has an online CPE activity available at www.kidney.org/professionals/CRN/ceuMain.cfm
Introduction

A SYNDROME OF adverse changes in nutrition
and body composition is highly prevalent in pa-

tients with chronic kidney disease (CKD), especially in
those undergoing dialysis, and it is associated with high
morbidity and mortality. A summary of the mechanisms
*Division of Renal Medicine, Department of Clinical Science, Intervention

and Technology, Karolinska Institutet, Solna, Sweden.
†Division of Nephrology, Department of Medicine, Federal University of S~ao

Paulo, S~ao Paulo, Brazil.
‡Department of Medicine, Division of Nephrology, Vanderbilt University

School of Medicine, Nashville, Tennessee.
§Harold Simmons Center, Division of Nephrology and Hypertension, Univer-

sity of California Irvine Medical Center, Orange, California.
{Departments of Internal Medicine and Biochemistry and Molecular Medicine,

University of California–Davis, Davis, California.
**Nephrology Division, Department of Medicine, Baylor College of Medicine,

Houston, Texas.
††Renal Division, Department of Medicine, Emory University School of Med-

icine, Atlanta, Georgia.
‡‡Research Service, Atlanta Department of Veterans Affairs Medical Center,

Decatur, Georgia.
§§Division of Nephrology, Department of Internal Medicine, University of

W€urzburg, W€urzburg, Germany.
{{Department of Medicine, Queen Mary Hospital, University of Hong Kong,

Hong Kong, Hong Kong.

Journal of Renal Nutrition, Vol 23, No 2 (March), 2013: pp 77-90
involved in these alterations is provided in Figure 1. Al-
though insufficient food intake (true undernutrition)
due to poor appetite and dietary restrictions contributes
to these problems, there are features of the syndrome
that cannot be explained by undernutrition alone.
Many contributing causes are directly related to kidney
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Figure 1. A conceptual model for etiology of PEW in
CKD and direct clinical implications. PEW is the re-
sult of multiple mechanisms inherent to CKD, in-
cluding undernutrition, systemic inflammation,
comorbidities, hormonal derangements, the dialysis
procedure, and other consequences of uremic tox-
icity. PEW may cause infection, CVD, frailty, and
depression, but these complications may also
increase the extent of PEW.
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disease, including increased resting energy expenditure
(REE), persistent inflammation, acidosis, multiple en-
docrine disorders, and the dialysis procedure itself.
However, this syndrome shares etiologic factors that
contribute to cachexia in non-CKD populations, in-
cluding comorbid conditions associated with cachexia,
decreased physical activity, frailty, and aging. The CKD
and end-stage renal disease (ESRD) populations are
unique in the constant surveillance that facilitates the
Table 1. Causes of PEW in CKD Patients

1. Decreased protein and energy intake
a. Anorexia

i. Dysregulation in circulating appetite mediators

ii. Hypothalamic amino acid sensing

iii. Nitrogen-based uremic toxins
b. Dietary restrictions

c. Alterations in organs involved in nutrient intake

d. Depression

e. Inability to obtain or prepare food
2. Hypermetabolism

a. Increased energy expenditure

i. Inflammation
ii. Increased circulating proinflammatory cytokines

iii. Insulin resistance secondary to obesity

iv. Altered adiponectin and resistin metabolism

b. Hormonal disorders
i. Insulin resistance of CKD

ii. Increased glucocorticoid activity

3. Metabolic acidosis

4. Decreased physical activity
5. Decreased anabolism

a. Decreased nutrient intake

b. Resistance to GH/IGF-1

c. Testosterone deficiency
d. Low thyroid hormone levels

6. Comorbidities and lifestyle

a. Comorbidities (diabetes mellitus, CHF, depression,
coronary artery disease, peripheral vascular disease)

7. Dialysis

a. Nutrient losses into dialysate

b. Dialysis-related inflammation
c. Dialysis-related hypermetabolism

d. Loss of residual renal function
diagnosis of wasting before frank cachexia begins. Given
the unique features of the syndrome, the International
Society of Renal Nutrition and Metabolism (ISRNM)
proposed a common nomenclature and diagnostic cri-
teria for these alterations in the context of CKD.1

Protein-energy wasting (PEW) was proposed to denote
concurrent losses in protein and energy stores, with ca-
chexia being regarded as only the end stage. ISRNM’s
intention was to begin creating a framework to identify
and understand disorders that promote PEW.2 To further
this process, the ISRNM now provides a consensus re-
view of current knowledge on the etiology of PEW in
kidney disease (Table 1) to provide a basis for future ad-
vances in diagnosis and therapy and to identify gaps in
knowledge for future research.

Undernutrition and Anorexia
Low energy and/or protein intake associates with a sig-

nificant decline of nutritional parameters (including hy-
poalbuminemia) and increased risk of morbidity and
mortality in patients with advanced CKD.3,4 In most of
these studies, dietary energy and protein intakes are lower
than recommended for patients undergoing either
hemodialysis (HD)3,5,6 or peritoneal dialysis (PD).7,8

However, dietary recalls underestimate dietary intake,9-11

and improving accuracy of dietary monitoring is needed.
There is presently limited information correlating dietary
composition, including micro/macronutrient intake, with
outcomes.12-14 In one study that was based on food-
frequency questionnaires, HD patients consume signifi-
cantly lower amounts of potassium, dietary fiber, vitamin
C, and certain cardioprotective carotenoids.15 Data from
the Third National Health and Nutrition Examination
Survey showed that high dietary total fiber intake was asso-
ciated with lower risk of inflammation and mortality in
CKD patients.16 Many of the restrictions in renal diets con-
tradict current recommendations for healthy eating. Al-
though limiting dietary sodium, phosphate, potassium,
and fluid intake prevents important patient complications,
problems arise when these restrictions are not accompanied
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with appropriate counseling on alternative food choices
and/or strategies to ensure adequate nutrient intake.17,18

Anorexia often drives inadequate protein and energy in-
take and directly contributes to poor quality of life.6,19-21

The prevalence of anorexia has been reported at 35% to
50% of ESRD patients.22,23 Although few studies exist in
CKD stages 1-3, a progressive, spontaneous decrease in
food intake occurs with greater loss of kidney function,
which correlates with accumulation of nitrogen-derived
uremic toxins.24-26 The factors influencing food intake
involve not only metabolic signals but also anomalies in
the digestive system and psychological and acquired
aspects, including a desire for pleasure, social behavior,
and customs.27 Anorexia may be mediated by circulating
appetite regulators, such as gastric mediators (such as cho-
lecystokinin,28 peptide YY,29 ghrelin,30,31 or obestatin),
adipokines (such as leptin32 and visfatin33), or cytokines
A

B

Figure 2. Response to reduced dietary protein and
energy intake. (A) Normal response. Reduced dietary
protein and energy drive an increase in hunger and
a fall in REE, loss of protein preferentially from the vis-
ceral organs, and increased insulin sensitivity of mus-
cle. The liver and kidney provide glucose, and serum
albumin is maintained at a normal level. (B) Response
with PEW. During PEW, the adaptations to increase
hunger and lower REE are blunted in part by an in-
creased half-life of leptin and ghrelin and in part by in-
flammation and dialysis. The loss of protein occurs
preferentially from muscle because of the effects of
metabolic acidosis, glucocorticoids, and inflamma-
tion, leading to increased insulin resistance. Dialysis
results in the loss of amino acids, stimulating muscle
protein breakdown. Under the influence of inflamma-
tion and metabolic acidosis, the liver makes gluta-
mine for deamination in the kidney, increases
acute-phase reactants, and reduces serum albumin.
The kidney increases glucose production from gluta-
mine under the influence of metabolic acidosis.
(such as tumor necrosis factor [TNF], interleukin [IL]-6,
and IL-1b19,20), but these mediators need additional
research in the uremic milieu.34 Signaling by hypothalamic
neurons that sense the ratio of essential to nonessential
amino acids35 may be influenced by the fall in branched-
chain amino acid levels with uremia or dialysis, creating
the so-called brain hyperserotoninergic-like syndrome.
The role of other complications of uremia on anorexia
need to be further explored, including dental and oral prob-
lems (such as palatability problems or incidence of peri-
odontitis36), gastric alterations37 (motility disorders,38

dyspepsia,39 or bacterial infections in the intestine40), and
depression.21,41

Although reduced intake of food or poor absorption
of nutrients plays a critical role in most cases of PEW,42,43

the science of starvation suggests that additional
mechanisms are needed for PEWtooccur (Fig. 2).Decreased
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energy intake reduces insulin secretion and stimulates the
production of sugar from glycogen and increased mobiliza-
tion of fatty acids.44 Activation of these systems contributes
to a reduction in basal metabolic rate and mobilization of
free fatty acids and amino acids.44,45 Muscle proteolysis
only transiently increases in early starvation, but muscle
release of amino acids declines over the first 2 weeks of
starvation and visceral organ proteins are used preferentially
to muscle.46 Muscle and visceral proteins can be preserved
to some extent because of heightened insulin sensitivity,
and diets with as little as 0.55 g/kg/day of balanced protein
may be well tolerated.47 Below that level, the loss of visceral
protein and increases in lipolysis lead to fatty infiltration of
the liver and decreased plasma protein synthesis.48 However,
plasma proteins, particularly prealbumin and S-albumin,
have increased half-life and do not change in concentration
with moderate calorie or protein restriction alone.49,50

Generally, other factors in addition to starvation (especially
inflammation and acidosis) are required for accelerated
muscle loss and hypoalbuminemia. However, depletion of
visceral protein stores caused by prolonged decreased
energy intake or frequent intermittent starvation causes
disruption of certain protective mechanisms. Heavy ketone
body formation marks a transition in metabolism to more
severe starvation and causes a loss of the adaptation that
prevented hypoalbuminemia and limited muscle wasting
earlier in starvation.44,51 The acid and the ketone bodies in
severe starvation appear to be critical in making protein loss
from muscle greater than from other organs and making
amino acids a critical source of glucose.46
Hypermetabolism
Increased Energy Expenditure

In simple starvation, the body reduces energy expendi-
ture to conserve energy needs. REE is usually normal in
stable maintenance dialysis or CKD patients. In contrast,
REE increases from 12% to 20% in CKD patients during
the HD procedure52 or in the presence of comorbidities
such as cardiovascular disease (CVD),53 severe hyperpara-
thyroidism,54 poorly controlled diabetes,55 inflammation,
PEW,53,56,57 and loss of residual kidney function.53 In PD
patients, PEW was more frequent among patients in the
highest tertile of REE when compared with those in the
lower tertile.53 Because protein catabolism and inflamma-
tion result in elevated energy expenditure,58 higher energy
intake alone should not correct increased REE under these
circumstances (although this has not been rigorously
tested). Increased REE is frequently mitigated by decreased
physical activity, leading to a reduction, rather than an in-
crease, in total energy expenditure in some studies.59,60

Persistent Inflammation
Inflammation overcomes the adaptive responses protect-

ing muscle and reducing REE during decreased protein
and energy intake. Inflammation activates intracellular
NADPHoxidases, creating signals that induce muscle insu-
lin resistance.61 The inflammatory response is associated
with a rise in REE, which can be so severe that starvation
responses are activated in well-fed individuals.44,61

Inflammation is associated with a decline in albumin
concentration and reduces the synthesis and half-life of
albumin.62 Inflammation explains the requirement for in-
fection to promote edema and hypoalbuminemia in kwash-
iorkor.48 Protein, DNA, and lipid oxidation occur in severe
starvation as a result of depletion of dietary antioxidants, ex-
haustion of autophagy, depletion of protein stores, and/or
from inflammation.50,63 It is interesting to note that
increased oxidative signaling is associated with muscle
insulin resistance, muscle wasting, and atherosclerotic
disease.51,64 Thus, inflammation causes increased REE,
preferential muscle loss, and oxidation.
Inflammatory markers are increased in most conditions

associated with loss of muscle mass, including CKD,65-68

cancer, congestive heart failure (CHF), chronic pulmonary
disease, acquired immune deficiency syndrome, and
aging.69 Muscle loss due to inflammation has been ascribed
to inflammatory cytokines.65,70 Animal studies show that
infusion of TNF, IL-1, and IL-6 causes an increase in mus-
cle protein breakdown, resulting in muscle atrophy.69

Proinflammatory cytokines also act on the central nervous
system to decrease appetite71 and increase REE.72 Proin-
flammatory cytokines impair insulin/insulin-like growth
factor (IGF)-1 signaling by augmenting the level of
glucocorticoids (see Impairment of Insulin/IGF-1) and by
directly inducing insulin and IGF-1 resistance in skeletal
muscle.73 Multiple studies show that high circulating levels
of IL-6, a prominent biomarker of inflammation, contrib-
ute to inflammatory muscle protein losses.74 In part, these
losses are triggered by alteration of IL-6 signaling due to in-
teraction with acute-phase proteins, including serum amy-
loid A, to impair insulin/IGF-1 signaling via the activator
of transcription 3 and suppressor of cytokine signaling
3.74 Ineffective utilization of exogenous amino acids for
muscle protein synthesis during HD has been linked to
increased skeletal muscle expression of IL-6.75 In uremic
skeletal muscle, IL-6 has also been linked to increased
caspase-3 activity (an initial step resulting in loss of muscle
protein).76

Myostatin, a member of the transforming growth factor
(TGF)-b superfamily of proteins, is induced by CKD in
mouse models via cytokine-activated pathways, and down-
regulating the myostatin receptor improved IGF-1 signal-
ing, enhanced satellite cell function, and suppressed
inflammatory cytokines.77 Significantly, inflammation-
induced increase in muscle protein degradation in CKD
can be blocked by a humanized antibody inhibiting the
function of myostatin, leading to increased muscle growth,
suppression of the levels of inflammatory cytokines, and
improvement in insulin/IGF-1 resistance.78 Consistent
with a role of myostatin in PEW, its endogenous inhibitor,
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follistatin, is induced by exercise,79 one of the few interven-
tions that increases muscle strength and mass in CKD.80

However, in CKD patients, follistatin is positively corre-
lated with inflammation and PEW resistance to its action.81

Thus, it is possible that inflammation or CKD alters the bal-
ance between follistatin, and myostatin to regulate muscle
mass in uremia and that intervening in myostatin signaling
might preserve muscle and/or reduce inflammation.82-84

TNF-related weak inducer of apoptosis (TWEAK),
a member of the TNF superfamily85 binds to its receptor
(Fn14) linked to signaling pathways involved in the regula-
tion of nuclear factor kappa light-chain enhancer of acti-
vated B cells (NF-kB), myogenesis, and apoptotic
cascades.86 TWEAK-Fn14 expression is induced in animal
models of tissue injury and inflammation, and biomarker
studies show a significant interaction between soluble
TWEAK and IL-6 in the prediction of mortality and re-
duced muscle strength in HD patients.85 Recently, alterna-
tive pathways of NF-kB activation have been identified that
regulate distinct forms of NF-kB and its effectors.87 Finally,
complex regulation of IL-15, an immunoregulatory cyto-
kine with proinflammatory activity but also paradoxical
anabolic functions, may play a role in insulin/IGF-1
resistance.88
Abdominal Obesity and Adipokines
Observational studies indicate improved survival in

obese patients undergoing HD. Thus, it is hypothesized
that dialysis patients at high risk of PEW are protected
by excess weight. However, obesity does not necessarily
imply good nutritional status, and muscle wasting occur-
ring despite fat accumulation in the general population has
been termed ‘‘obese sarcopenia’’.89 Furthermore, the
regional fat distribution has metabolic implications.
Abdominal subcutaneous tissue in otherwise healthy sub-
jects is proinflammatory and CKD patients have increased
expression of proinflammatory cytokines and adipokines
in abdominal subcutaneous tissue compared with healthy
controls.90-92 Observational studies in CKD patients
link abdominal fat with inflammation, insulin resistance,
hyperadipokinemia, dyslipidemia and oxidative
stress,91,93-98 and cardiovascular events.99 In a large cohort
of prevalent HD patients, each kilogram of body mass in-
dex (BMI) increase reduced the risk of dying whereas,
concomitantly, each centimeter increase of waist circum-
ference raised mortality risk.100 Thus, although a high
BMI in the setting of CKD may signal health and better
nutritional status, abnormal deposition of abdominal fat
may be detrimental because of metabolic derangements.
This concept was demonstrated in a study of dispropor-
tional fat mass accumulation in HD patients by modeling
the body as a bicone centered on the waist.101 In addition,
the recent observations that waist circumference modifies
the mortality risk associated with circulating triglycer-
ides,102 leptin, and adiponectin103 underscores the overall
effect that abdominal obesity has on PEW.
Although leptin inhibits food intake and increases energy

consumption via the hypothalamic melanocortin system,32

evidence is lacking that the markedly elevated circulating
leptin level in uremia contributes clinically to anorexia
and PEW.90 In fact, the positive association between circu-
lating leptin levels and improved nutrition in CKD suggests
that uremia is a state of leptin resistance.27,104,105 Although
early reports in CKD showed that higher adiponectin levels
are linked to better outcomes,106 recent studies showed the
opposite.107 Lower fat mass in PEW increases circulating
adiponectin, causing adiponectin to lose its association
with mortality after adjustment for BMI in diseases such
as CHF.108 Adiponectin has anti-inflammatory, antiathero-
genic, and insulin sensitizing actions, and increased adipo-
nectin has been suggested to be a ‘‘reparatory response’’ to
the microvascular insults in uremia,109 but experimental
data suggest that adiponectin also promotes weight loss
via increased energy expenditure.110 Therefore, although
adiponectin is a biomarker of PEW, its role in pathogenesis
remains to be determined.
Visfatin is expressed in human atherosclerotic plaques

and is associated with plaque destabilization, independently
predicting coronary artery disease in humans.111 Although
studies are limited, visfatin in CKD is positively associated
with endothelial dysfunction and inflammation and nega-
tively associated with HDL cholesterol.90,112 Visfatin may
also be involved in appetite regulation and nutrient
homeostasis,90 and elevated visfatin levels were associated
with loss of appetite and low fasting serum amino acids in
dialysis patients.33 The inconsistency in PEW is that plasma
visfatin in normal individuals is related positively to fat
mass. However, Hallschmid et al.113 found that visfatin in
human cerebrospinal fluid was negatively correlated with
fat mass, suggesting that central nervous system visfatin
insufficiency and/or resistance drives higher plasma levels.

Hormonal Disorders
Impairment of Insulin/IGF-1
As a direct consequence of the kidneys’ role as modulator

of endocrine function, kidney disease causes abnormalities
in the excretion, synthesis, and action of many hormones.
Resistance to insulin, growth hormone (GH), and IGF-1
are implicated in loss of muscle mass in adult CKD patients.
Insulin or IGF-1 bind distinct cell surface receptors to acti-
vate similar downstream signaling pathways, which act to
prevent loss of muscle protein.114Whenmuscle is lost, large
multinucleated myofibers decrease in size rather than de-
crease in number. Regenerative systems that involve the fu-
sion of muscle cell precursor cells (i.e., satellite or stem cells)
with myofibers are also inhibited. Although current evi-
dence suggests that myofiber shrinkage due to accelerated
protein degradation is the predominant mechanism for
loss of muscle mass, myofiber shrinkage and satellite cell
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fusion are regulated by insulin and IGFs. This has led to the
hypothesis that the integrated outputs of these insulin/IGF-
activated signaling pathways determine the balance be-
tween protein accretion and loss, determining overall
changes in muscle mass.

The effect of low insulin on muscle is clear: Uncon-
trolled type 1 diabetes mellitus leads to negative nitrogen
balance, lean tissue atrophy, and hyperaminoacidemia easily
reversed through the provision of insulin.115 The net pro-
tein anabolic effect of insulin involves a blunting of prote-
olysis rather than enhanced protein synthesis. Alterations
in insulin function in uremia were reported as early as
1951,116 and the alterations in glucose metabolism in the
face of hyperinsulinemia and diminished tissue sensitivity
to insulin are partially correctable by HD.117,118 In
insulin-deprived animals, muscle protein breakdown is sig-
nificantly increased, a process that is mediated by the
proteasome-ubiquitin pathway.110,111 Enhanced protein
catabolism applies to insulin-deficient and insulin-
resistant states. HD patients with suboptimally controlled
type 2 diabetes have a higher rate of muscle protein loss
than HD patients without diabetes.119 Altered insulin sen-
sitivity is primarily due to a postreceptor defect altering pri-
marily skeletal muscle, rather than hepatic glucose uptake.
Furthermore, the extent of insulin resistance correlates
with muscle protein breakdown in HD patients who are
not diagnosed with diabetes mellitus.120 Individual uremic
toxins removed by dialysis (such as P-cresol, the byproduct
of tyrosine metabolism) have been shown to induce insulin
resistance.121 Insulin resistance represents a major target for
intervention in PEW. For example, treatment with an insu-
lin sensitizer (PPARg agonist, rosiglitazone) suppressed
muscle proteolysis in insulin-resistant mice.122 It is not sur-
prising that the use of rosiglitazone treatment was associated
with significantly lower all-cause mortality and higher S-
albumin among insulin-free, but not insulin-requiring,
diabetic HD patients.123

Uremia, inflammatory cytokines, acidosis, glucocorti-
coids, and angiotensin (ANG) II share a common mecha-
nism of muscle wasting: impairment of insulin/IGF-1
actions by altering signaling through the phosphatidylinosi-
tol 3-kinase (PI3-kinase)/Akt pathway.124,125 Although the
precise signals causing insulin/IGF-1 resistance in CKD are
unknown, several steps in PI3-kinase/Akt signaling con-
tribute to the impairment, including activation of the
FoxO family transcription factors that induce the expres-
sion of several atrophy-inducing genes involved in the
ubiquitin-proteasome and autophagic proteolytic sys-
tems.126 Dysfunctional PI3-kinase/Akt activity can also re-
sult in activation of caspase-3, an apoptotic protease that
also degrades actin in actomyosin complexes.127 A byprod-
uct of this proteolytic reaction is a characteristic actin frag-
ment that was shown to serve as a biomarker of muscle
wasting in HD patients and others with conditions associ-
ated with muscle wasting.76
Testosterone Deficiency and Low Thyroid
Hormone Levels
Prolactin retention in CKD impairs the production of

gonadotropic hormones in men and women.128 In men,
this translates into a high prevalence of testosterone
deficiency (hypogonadism).129-132 Testosterone levels are
also abnormally low among women. Testosterone is
an anabolic hormone that induces skeletal muscle
hypertrophy by promoting nitrogen retention, stimulating
fractional muscle protein synthesis, inducing myoblast
differentiation, and augmenting the efficiency of amino
acid reuse by skeletal muscle. Testosterone suppresses
myostatin expression, inhibits apoptosis, induces muscle
IGF-I mRNA expression, and affects the differentiation
of mesenchymal-derived pluripotent stem cells into myo-
cytes.133 In dialysis and predialysis patients, low testosterone
levels were associated with increased mortality risk,134-136

and the observation that adjustment for serum creatinine
levels (a surrogate marker of muscle mass) abrogated this
mortality prediction134 may indirectly support this patho-
physiological mechanism. In CKD stage 2-4, endogenous
testosterone was an independent determinant of bioelectri-
cal impedance analysis-estimated muscle mass and muscle
strength (handgrip).137 Randomized intervention studies
with androgen therapy in CKD patients (alone or in com-
bination with resistance training) have shown significant
improvement of muscle mass and nutritional status.138,139

Available data cannot distinguish if low thyroid hormone
levels in CKD patients with PEWare an adaptation that re-
duces energy expenditure and minimizes protein catabo-
lism or a maladaptation participating in the wasting
syndrome.140 Low triiodothyronine levels in CKD stage 5
patients correlate with systemic inflammatory markers, en-
dothelial dysfunction, and all-cause as well as cardiovascular
mortality.141-144 Correction of metabolic acidosis in dialysis
patients improves these hormonal derangements.145,146

The correlation of triiodothyronine with mortality
prediction was abrogated after adjustment for C-reactive
protein and albumin as surrogates of PEW.147 Thus, even
if low thyroid hormone participates in the PEW process
and is not adaptive, then changes in thyroid hormones
may act as an intermediate link among inflammation,
acidosis, PEW, and mortality and not a primary cause.

Metabolic Acidosis and Glucocorticoids
Metabolic acidosis is a key mechanism in the starvation

response, inducing release of branched-chain amino acids
from muscle during ketosis. It also causes insulin resistance
leading to loss of muscle mass. Acidosis does not alter
insulin/IGF-1 receptor binding, but rather it inhibits intra-
cellular signaling. In a rat model of CKD-induced acidosis,
intracellular pH of myofibers was not changed,148 but an
acidic extracellular pH is sufficient to reduce postreceptor
signaling through insulin/IGF-1 pathways in cultured
muscle cells.149 However, a decline in extracellular pH
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by itself is not sufficient to induce muscle wasting in a
rat CKD model.73,114,122,148,150,151 Metabolic acidosis
induces increased adrenal glucocorticoid production, and
adrenalectomized rats have markedly reduced muscle
wasting that is restored by replacement of glucocorticoids.
Glucocorticoids induce insulin/IGF-1 resistance in skeletal
muscle by altering the same signaling pathways that are af-
fected by acidosis, but they act on slightly different signaling
molecules within the pathway.126 Notably, prevailing evi-
dence from other comorbidities of CKD, including ANG
II and inflammation, indicates that insulin/IGF-1 resistance
and elevated glucocorticoids are the common physiological
responses that are causative for the increase in protein and
amino acid catabolism as well as the suppression of protein
synthesis.74,152,153 Understanding this coordinated
response may provide additional clues in how insulin/
IGF1 signaling controls muscle wasting.
Correction of acidosis has salutary effects on nutritional

parameters. For example, sodium bicarbonate stimulates
the growth of premature infants and that of children with
renal tubular acidosis.138,154 Likewise, treatment with
sodium bicarbonate and potassium bicarbonate improves
the nitrogen balance of elderly women with mild
metabolic acidosis.155,156 In normal adults, induction of
metabolic acidosis not only decreases serum albumin
concentration but also stimulates nitrogen losses due to
accelerated degradation of protein and essential amino
acids.157,158 Similar adverse consequences occur in CKD
patients who develop metabolic acidosis: Acidosis
decreases serum levels of essential branched-chain amino
acids in muscle although muscle protein degradation is ac-
celerated. Both abnormalities correct when metabolic
Table 2. Typical Comorbidities in CKD Patients that Contribute to

Comorbitiy Po

Diabetes/metabolic syndrome Gastroparesis, inflammat

CVD/heart failure Cachexia, inflammation,
circulating ANG II, insu

Peripheral vascular disease Reduced activity, ulcers,

Fluid overload Inflammatory cytokine re

Hyperparathyrodism, CKD-MBD Increased energy expend
gastric ulcers, heart di

Anemia Frailty, decreased activity

Autoimmune/rheumatologic disorders Inflammation, intercurren
pain

Gastrointestinal disorders Anorexia, swallowing dis

ostomies), inflammatio

Chronic lung diseases Increased work of breath
inflammation, glucocor

Liver disease Hypoalbuminemia, volum

therapies), anorexia, p

Infections Inflammation, reduced ap
Pain Anorexia, constipation (n

Psychiatric disorders/depression/dementia Unwillingness to eat, ano

activity
Neurologic disorders Reduced activity, anorex

Malignant diseases Cancer cachexia, inflamm
acidosis is treated.159 Likewise, in patients being treated
by HD or PD, treatment of metabolic acidosis reduced
the excessive rate of protein degradation.160,161 Long-
term clinical trials show similar results in PD and
CKD.162,163 Thus, acidosis contributes to PEW, and
correction of acidosis ameliorates it.

Comorbidities and Lifestyle
Comorbidities
Typical comorbidities associated with CKD or ESRD

contribute to a catabolic milieu and the development of
PEW. As Table 2 demonstrates, these factors share common
etiologic mechanisms with PEW. Given its high prevalence
in CKD patients, diabetes may be themost important single
comorbidity. Pupim et al.164 showed that diabetes mellitus
is an important predictor of lean body mass loss in dialysis
patients, and reduced insulin signaling by insulin absence
or resistance results in increased muscle protein break-
down.119 Diabetes also causes CVD and neuropathy that
contribute to infection, muscle atrophy, and diabetic gas-
troparesis (with resultant food intake impairment). One
out of three long-term diabetic dialysis patients no longer
require hypoglycemic therapy. The poor outcomes in this
subgroup with ‘‘burnt-out diabetes’’ may be the result of
PEW.165

Another common comorbid state in CKD patients is
CVD, in particular CHF.166 Cardiac cachexia is in many
ways indistinguishable from uremic PEW and shares im-
portant mechanisms. Inadequate cardiac output drives neu-
rohumeral responses associated with PEW including
glucocorticoids, increased ANG II, and sympathetic nerve
activity. Right ventricular heart failure with passive
PEW

ssible Effects Related to Etiology of PEW

ion/oxidation, insulin deprivation (type I), insulin resistance, pain

glucocorticoid release, sympathetic nerve overactivity, increased
lin resistance, decreased activity, pain

inflammation, pain

lease, gut edema, leg ulcers, decreased physical activity, pain

iture, glucose intolerance, hypovitaminosis D, muscle wasting,
sease

, iron-deficiency, high output heart failure

t infections, joint involvement reduces activity, glucocorticoids,

orders, nutrient malabsorption, acidosis (diarrhea, drains, and

n, infections, pain

ing (raises REE), decreased activity, intercurrent infections,
ticoids, fluid overload, ANG II

e overload, ANG II, infections, inflammation, acidosis (bowel

ain

petite, increased REE, pain
arcotics), inflammation

rexia, inability to obtain/prepare food, inflammation, decreased

ia, swallowing disorders, pain

ation, increased REE, decreased activity, pain
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congestion of the liver and gut wall edema can be associated
with alterations in nutrient absorption, anorexia, and gut
mucosal barrier function.166,167

CKD-metabolic bone disease (CKD-MBD) is a comor-
bid condition associated with PEW. PEWcan contribute to
CKD-MBD because loss of body weight, inflammation,
and physical inactivity lead to bone loss. Certain conditions
associated with CKD such as protein losses and anorexia
can predispose these patients to hypovitaminosis D. What
is more controversial is the extent to which CKD-MBD
contributes to the etiology of PEW. Low circulating levels
of vitamin D, a decrease in klotho, and a rise in fibroblast
growth factor-23 can increase parathyroid hormone syn-
thesis, thereby contributing to the development of second-
ary hyperparathyroidism.168 Vitamin D and/or parathyroid
hormone have long been considered contributors to PEW,
and vitamin D appears to be involved in some key molec-
ular pathways for PEW and muscle regulation.169 Experi-
mental animal models of kidney failure and humans show
improvements in muscle size and strength, markers of mus-
clemetabolism, and/or serum albuminwith replacement of
1,25-dihydroxyvitamin D.170,171 Finally, there is a positive
association between 25-hydroxyvitaminD and testosterone
levels, suggesting an additional mechanism in which vita-
min D may regulate muscle mass.172

Symptoms of depression are more frequent with reduc-
tion in kidney function and relate to poor outcome and
mortality.173-175 Cytokines are thought to be important
mediators of brain immune connection and may play
an important role in the pathogenesis of depression
because of their effect on neurotransmitters and
neurohormones.173,176 In dialysis patients, symptoms of
depression are associated with increased IL-6 levels,177,178

and 8 weeks of fluoxetine treatment resulted in decreased
serum IL-1b levels.179 Depression may also lead to fa-
tigue180 and unwillingness to eat,23 contributing in avicious
circle to anorexia, physical inactivity, and overall PEW.

Poor Physical Activity, Frailty
Decreased physical activity likely plays a major role in the

etiology of PEWand the associated cardiovascular mortal-
ity. This is in part because individuals with low physical ac-
tivity have increased risk of CKD secondary to obesity,
diabetes, hypertension, and heart disease, and common co-
morbidities in CKD patients, especially heart disease and
aging, are partly associated with decreased ability to exer-
cise. Furthermore, complications of CKD including ane-
mia, volume overload, and muscle wasting limit exercise
ability. Subjects with stages 3-5 CKD have lower median
peak oxygen consumption, and in some individuals this
limits exercise enough to prevent activities of daily liv-
ing.181 Muscle weakness is common in stage 5 CKD by
measures including grip strength, rising from a chair, and
maximum gait speed.181 In the geriatric population, IL-6
level is associated with current physical performance and
predicts a future decline in physical activity.182 Lack of ex-
ercise can increase inflammatory markers, and this change,
rather than the decreased muscle mass, may dominate the
association with mortality.183

In CKD, just as in the diabetic patients, exercise-induced
benefits in muscle are likely due to improvement in insulin/
IGF-1 sensitivity of skeletal muscle.184 Endurance exercise
decreased the rate of protein degradation in the muscle of
CKD rats,185 and aerobic exercise reduced the amount of
caspase-3-generated 14-kDa actin biomarker in muscle
fromHD patients.185 Resistance exercise also has beneficial
effects on muscle in CKD patients by increasing mitochon-
drial biogenesis.186 Because these anabolic actions are at-
tributed to insulin/IGF-1 signaling, it is possible that so
called ‘‘exercise mimetics’’ (e.g., resveratrol) will prove
equally effective at slowing muscle loss in CKD patients.187

Regardless of mechanism, a Cochrane review of trials to
improve physical activity in CKD concluded that the inter-
ventions improved markers of PEWand traditional cardio-
vascular risk factors.188
Dialysis Procedure
As discussed above, dialysis may contribute to PEW

through infectious, inflammatory, and volume-related
complications. Recent studies have improved our under-
standing of how dialysis treatment per se affects protein
and energy homeostasis. Amino acid and protein losses
during the dialysis session, together with low nutrient
intake, promote low nutrient availability for muscle syn-
thesis.189-192 In a study comparing high (1.4 g/kg/day)
and low (0.5 g/kg/day) protein diets, Borah et al.193 found
negative nitrogen balance on every day on the low-protein
diet, but only onHD days with high protein intake. Several
more recent studies show that the catabolic effects of HD,
especially on the protein homeostasis, are profound, affect-
ing whole-body and skeletal muscle protein homeostasis.
All of these careful metabolic studies consistently show
a decrease in protein synthesis at the whole-body level
whereas one specific study showed an additional increase
in whole-body protein breakdown.194Moreover, two sep-
arate studies showed a significant increase in net skeletal
muscle protein breakdown; in one study, these undesirable
effects persisted for at least 2 hours after the completion of
HD.58,195 Mechanistically, the net protein breakdown has
been related to (1) an absolute decline in amino acid
levels due to dialysis losses—a study in normal swine
showed that a reduction in plasma amino acid
concentrations similar to the extent seen during dialysis
signals an inhibition of muscle protein synthesis and that
corresponding changes in eIF2B activity suggest
a possible role in mediating the response196; (2) imbalances
in amino acid levels; and (3) activation of the inflammatory
cascade.58,197,198 Fortunately, in HD and PD patients,
concurrent amino acid supplementation can prevent
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or reverse these adverse effects,199-201 providing an
opportunity for treatment of PEW.
Inadequate dialysis is well known to cause PEW,4,5 and it

has been shown in PD patients that loss of residual kidney
function contributes to PEW.202 Loss of residual kidney
function is independently associated with reduced dietary
energy, protein,203 and micronutrient intake.204 It was
also associated with increased inflammation205 and in-
creased resting energy metabolism.53
Conclusion
This ISRNMworking group concludes that advances in

understanding how inflammation, insulin resistance, oxida-
tive stress, glucocorticoids, and acidosis modify the re-
sponse to reduced protein and energy intake provide
a strong model framework to understand the pathophysiol-
ogy of PEW. PEW naturally develops with the progression
of CKD and is an inherent component of advanced disease.
Although dialysis reverses uremia, residual metabolic de-
rangements, inflammation, comorbid conditions, and the
dialysis procedure itself may allow PEW to develop or
worsen. As new mediators are discovered, integration of
those mediators into the model and refinement of hypoth-
eses are needed. Regarding clinical outcomes, the ability to
separate the effects of nutrition, aging, and comorbidities is
critical for understanding etiology, and, perhaps more im-
portantly, for the design of future therapeutic clinical trials
including anti-inflammatory and anabolic treatment
strategies.
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