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Nomenclature 

cross-sectional radius of torus 

radius of torus 

arbitrary constant 

numerical constant 

unit vectors in r and cp directions 

electric field intensity 

dimensionless form of E 

acceleration due to gravity 

induced magnetic field intensity 

z component of _e. 

dimensionless form of h z 

zero-order perturbation term for h 

value of h in core region 

total magnetic field intensity 

applied magnetic field intensity 

magnitude of H
0 

Hankel function of first kind 

imaginary part 

unit vector in x direction 

electric current density 

Bessel function of first kind 

dimensionless form of J 

thermal conductivity 

unit vectolll' in z direction 

Hartmann number 

reduced Hartmann number 
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Nusselt number 

convective part of Nu 

pressure 

heat energy flow 

radial coordinate 

Rayleigh number 

critical value of R 

value of R when M = 0 
c r 

real part 

>'< 
dimensionless form of T' 

real part of t 

imaginary part of t 

temperature 

excess of boundary temperature over average 

average temperature of system 

complex form of T 

dimensionless form of V 

value of v in core region 

zero-order perturbation term for v 

first-order perturbation term for v 

fluid velocity 

magnitude of V (z component) 

special function 

real part of W (!3) 

imaginary part of W(!3) 

Cartesian coordinates 

dimensionless parameter 
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13 = 
log y = 

dimensionless parameter (Graetz number) 

Euler 1 s constant 

E : dielectric constant 

1') = 
K : 

dimensionless boundary-layer variable 

thermal diffusivity 

X. = 

f.L = 

volume coefficient of thermal expansion 

magnetic permeability 

,v = kinematic viscosity 

dimensionless form of r 

p P,ensity of fluid 

Po fluid density at temperature T 1 

p e .electric charge density 

P,~ dimensionless form of pe 

.a electrical conducti'v-ity 

a r reduced electrical conductivity 

cp angular cylindrical coordinate 

ljJ dimensionless form of x 

Subscriets 

( )1 denotes fluid 

>z denotes solid 

>av denotes average value 

)j_ denotes perpendicular to k 
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EFFECTS OF A MAGNETIC FIELD ON NATURAL CONVECTION 
IN A TOROIDAL CHANNEL 

Paul Concus 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

February 1961 

ABSTRACT 

The problem of the natural convection of an electrically and 

thermally conducting fluid within a long, narrow, vertical toroidal channel 

centered in a large block of an electrically and thermally conducting solid 

is analyzed. A uniform horizontal magnetic field is applied to the fluid, 

and the bottom of the solid block is maintained at a higher fixed temperature 

than the top. The laminar steady-state single-cell convective motion of the 

fluid is considered and an approximate solution is found for the heat transfer 

rate between the bottom and top surfaces of the block in the limiting cases 

of small and large Hartmann number. A numerical example is given for 

liquid sodium in which the application of a magnetic field of a few hundred 

gauss is shown to significantly reduce the rate of heat transfer. 
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Introduction 

Investigation of the laminar flow of liquid metals through an external 

magnetic field under laboratory conditions was first begun by Hartmann [ 1] 

in.l937 when he investigated theoretically the forced flow of mercury due to 

an externally applied uniform pressure through a channel of rectangular 

eros s section in the presence of a transverse magnetic field. He found that 

if the applied magnetic field were large enough, the velocity profile of the 

flow would be completely altered from that with no magnetic field, and, in 

addition, the speed of flow would be significantly reduced. The greater the 

electrical conductivity of the channel walls, the greater the reduction of flow 

speed for a given driving ,pressure. This behavio:r. occurred because the 

pondermotive forces arising from the induced electric current inhibite.d 

motion of the fluid aci·os s magnetic lines of force. 

During the past several years, interest in this phenot;lenon has 

become rather widespread and many more investigations have been carried 

out in elaborate detail for various geometrical configurations and for driving 

pressures arising from convective as well as mechanical and electro~ 

magnetic sources. The classical Benard problem concerning the stability 

of a viscous fluid initially at rest between two infinite horizontal plane 

surfaces and heated from below was solved by Chandrasekhar l 2} for an 

. electrically conducting fluid in the presence of an externally applied 
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magnetic field. He found, as did Hartmann, that fluid motion across the 

magnetic lines of force was inhibited, and as a result, a vertical magnetic 

field could stabilize the fluid so that it would withstand greater temperature 

gradients before giving way to convective motion. 

By viewing Chandrasekhar 1 s results in terms of the amount of heat 

being transferred from the lower surface to the upper, one can see that by 

inhibiting convection at higher temperature gradients the magnetic field has 

also lessened the amount of heat being transferred at these temperatures. 

This suggests that it would be of interest to investigate in detail the manner 

in which a magnetic field can control the heat-transfer rate in situations in­

volving convection of electrically conducting fluids. It is the purpose of this 

paper to record such an investigation for an example in which the convective 

flow is restricted to being laminar. 

In selecting the actual geometric configuration to analyze, one must 

be careful to choose one for which the complex equations of magnetohydro­

dynamics can be reduced to manageable proportions while still capable of 

giving informative results. Such a configuration, the one selected here, is 

that of a single vertical convective cell within block of conducting solid. 

In section l the general set of equations of magnetohydrodynamics 

describing the problem is stated and reduced to a smaller set of six simpli­

fied nondimensional equations. In sections 2 and 3, these equations are 

solved in two steps: In section 2 the energy equation, which is the only non­

linear one, is solved approximately to give the heat transfer rate as a 

function of a parameter proportional to the unknown average velocity of the 

fluid, and the error in the solution is estimated; in section 3 the remaining 

equations are solved in the regions of small and large Hartmann numbers, 

and the unknown average fluid velocity is determined as a function of the given 
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parameters. In section 4 the results of the previous two sections are com-

bined to give the heat-transfer rate in terms of the given parameters,· and 

a numerical example for liquid sodium is calculated. 

1 Formulation o£ Problem 

Consider a .metallic material in the shape of a rectangular solid of 

dimensions 2AX4AX4A, in which a toroidal channel of circular cross section 

2 
TT a and length 2n A has been hollowed out. Let the channel be filled with 

a thermally and electrically conducting fluid and let the solid be so oriented 

that the axis o£ the torus is perpendicular to the direction of gravity, a.s 

shown in Fig. ! . 

The bottom and top faces are kept at fixed temperatures 

T R + T 
0 

and T 
1 

- T 
0

, respectively, and an external magnetic field applied 

s.o that the field inside the channel, lio• is uniform and parallel to the axis 

of the torus. Since the magnetic permeability of the solid may be d:i.fferent 

from that of the fluid, the field :~n 'the soHd will, in general, be different 

from !h· 
If T 0 is made large enough, the fluid in the lower part of ~he channel 

will become gravitationally unstable with respect to the .fluid in the upper 

part because of the thermal expansion. and as a result the fluid will flow 

through the channel. Let the direction of flow be counterclockwise as sho~m. 

This flow then interacts with the magnetic field, lio• to produce an electric 

current throughout the solid and Hquid. The thermally caused body force 

will thus be balanced by the :resulting ponderrnotive force resisting the flow 

as well as by the viscous drag. 

It is s.een that if a/ A << l and. the channel is centrally placed in the 

block, then the curvature of ~he torus and the corner areas of the block will 

have negligible effect on the electric and thermal behavior of the flow. 
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4A 

4A 
j 'if', GRAVITY 

MU-22700 

Fig. 1. Physical configuration. 
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A mo:re formal development would include a perturbation. series in the 

parameter a/ A, and the important contributions (those independent of a/ A) 

would be the ones arising from the formulation used here, Under these 

assumptions, the configuration .can be r·eplaced by the one shown in Fig. 2, 

in which an infinitely long metallic cylinder, radius A, has fluid flowing 

through it inside a concentric cylindrical channel o£ radius a. The gra.vim· 

tational field will be 1 .L , normal to the z direction, plus a component 

which will be in the z direction and equal to -g sin(z/ A) ~ ; the tempe:r·-

1 
ature at the outer surface of the solid w:ii.ll be T 

1 
t 2 T 

0
(1-sin cp) cos (z/ A); 

and. the magnetic field in the fluid. will be in. ihe negative x .direction and 

.. 
equal to - H

0
J.:. • The cente:r of the bottom of the rectang·ular block wiH 

corx·espond to r = A, cp = ·• in, and z = 0 • 

.!.n. w:Tdting the magn.etohyd:rodynami.c equations which govern the 

problem th.e u.sual approximations applicable to labnrato:r·y flow of Hqulld 

met<~.J.s ar'e made, l~ will he assumed that the .fluid is inc:ompre~miblll'l, tha:t 

the Bouss:lnesq[3J approximation of ·~he thermal denF.Jity variationEl being 

i.mpor·tant only in thei:~r. effect on 'ti;he force due to gravity ie valid, that all 

physical proper·v::~.es othex.· than the den.sY.ty are constant, that the eled:Jdcal 

convection current is neglligibJle compared to the conduction current, and. 

that the convective velocity is suffic:i.ently small so th.a.t Joule and viscous 

heating may be ignored. 
2 

Under these assumptions, the governing steady 

state equations aJre: 

Momentum equation: 

where J._ is the flu::i.d velocity, J the electric current density, H the 

magnetic field intensity, p the pressure, p the fluid density, p
0 

its 

density at temperatu:re T !' v the kinematic viscosity, and f.L the magnetic 

permeability; 
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MU-22701 

Fig. 2. Cylindrical approximation. 
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Continuity equation: 

\l• v:;:;: 0 

Energy equation: 

2 
K \l T 

where Joule heating, viscous heating, and kinetic energy transport are 

neglected, where K is the thermal diffusivity, and T the temperature; 

Equation of state: 

p = p O [ 1 - X.( T- T l ) ] , 

where X. is the volume coefficient of thermal expansion; 

Maxwell 1 s equations: 

"ilxH = J --
\l•H=O 

(5) 

(7) 

\lxE = 0 --

(2) 

(3) 

(4) 

(6) 

{8) 

whez:e E is the electric field intensity, e the dielectric constant, and pe 

the electric charge density, convection current being neglected; 

Ohm 1 slaw: 

J ::: a (E + f.1. V xH) , {9) 
,.,.,. - ~-

where a is ihe electrical conductivity; and 

Electrical continuity equation: 

(10) 

which results from combining the first and last of Maxwell 1 s equations. 

Rational mks units are used throughout. 

This system of equations must be solved subject to the boundary 

conditions: 

{a) at r :: 0 all quantities are finite; 

{b) at the fluid-metal interface (r = a) • v = o; J · e . Exe • Hxe , 
- - r -_,.. r _..__.. r 

T, and koT /or are all continuous, where k is the thermal 

conductivity and the unit vector along r. 
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(c) at the outer boundary of the metal (r = A), J· e = 0, H equals ...,. r _, 

the applied magnetic field, and T = T 
1 

+· { T 
0 

(l - sin <j>) cos (z/ A). 

Solutions to these equations will be sought for the condition of laminar 

flow in which the only nonvanishing fluid velocity component is in the z 

direction,i.e., along the length of the channel. Equation (2) then implies that 

the velocity is independent of z, and hence the resulting induced magnetic 

field will also be independent of z. This. allows V to be written as 

V = V(r, <j>) E , and !:_! to be written as the sum of the applied constant field 

-t!o and an induced variable field, ~ (r, <j>). Placing these forms into the 

curl of (9) and substituting into it (6), (7), and the curl of (5) will give an 

equation for _!; in terms of !!o and :f.. The x and y components of this 

equation yield the trivial solution for the x and y components of h, and the 

z component is 

(11) 

Similarly, upon substitution of (4) and (5) into {1), its z component becomes 

0 = - gPo [1 - ~(T-T 1)} sin (z/ A)- JJ.H0 ohz/3x- opjBz 

2 + p
0

v \1 v.(12) 

In (11) and Eq. (12) the Laplacian is, of course, only .two-dimensional. 

The z dependence of the Laplacian of (3) can also be removed by 

assigning to T, in accordance with its periodic boundary conditions at 

r = A, a periodic dependence on z in the form T(r.<j>,z) = T 
1 

+ GGe<T*(r, <j>) 

eiz/ ~. where T*(r, <j>) is a complex variable and the real part of 

T * (r, <j>)eiz/ A is the function of interest. Then (3) becomes 

* 2 2 * iVT /A= K{\1 -1/A )T (13) 

where the Laplacian is now two-dimensional. 
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The complex form of T may be substituted into (12), and upon 

. integration over one period in z from 0 to 2nA, the equation becomes 

* 2 0 = - nAgpo X.Im(T ) - 2nA !J.Ho ohzlox + 2nApo V\7 v . (14) 

The third term of (12) yields zero upon integration, since the pressure must 

be a continuou:s function oL z;~:. the. s.econd .an.d last ter~s .ar..e_indep~ndent of z . 

. Equations .(11) {13) and (14) give the necessary relationships between 

. * the three unknown functions, V, T , and h for the interior of the .channel. z 

By proceeding in a similar manner. the relationships for the region exterior 

to the channel will be found to be v = 0, 2 2 * 2 
( V -1 I A ) T = 0, and 'V h = 0. z 

* Once T , V, and h. are found, the electrical quantities J, E, and p 
z - - e 

can be calculated directly from (5) (9) and (8) respectively, for each of the 

two regions. 

At this point it will be convenient to place the problem in dimensionless 

form by means of the following substitutions: 

* . 2 1 27T 
t = 2T /To = t + 1 t. J v ::: 7T a vI r ( vgdcpdg = v IV ' 

r 1 Jo )o av 

h = hzlll-1 CJ 1 a HO V av ' ~ =!/Il-l a 1 HO V av' .~ = ~lll-1 HO V av• 

p = p ai!J.~e 1 H0V , g =ria, and ljJ = x/a. · e e ~ . av 

Here, as well as in the remainder of the paper, subscript-! refers to the 

fluid quantities, and subscript~2, to the solid. ·It will also be helpful to define 

the following nondimensional parameters: M
1 

= !J.
1

H
0
aa

1
112

l(p
0

v)
112 

(Hartmann number), R = X.gT 
0

a 
41 4A vK 

1 
(one-half the conventional Rayleigh 

numberL and j3 = a 
2

v I A K, {one-half the conventional Graetz number). av Jl. 

Upon substitution of the above quantities, the governing equations 

become: 

Inside Jv 
2

v = R t.li3 + M 1
2

aklo4J = 
the 1 

channe 
(continued) 

R t /13 + M
1
2

{cos cp ohlo£-g-lsincpohlocp) 

(15} 



Inside the 
channel 

Outside the 
channel 
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'V 
2

t - il3vt = 0 

'V 
2

h = av/alfi = cos<j> 'dv/a~ - ~- 1 
sin <I> av/8<1> 

~ : 'V X (h k) 
,;~ -·- -
~- = p + v} = ~ + v (sin4>~ +cos <j>~rt>) 

pe' = ~· k 

'V 
2

t - (a/ A) 
2 

t = 0 

'V 
2

h = o 
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(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

= <a 1/ a 2> ';;) (24) 

p~ = (e 1/e 2)~ .. ~= 0 (25) 

In (16) the term {a/ A) 
2

t has been omitted since it is negligible. It must be 

retained in , (21) since the independent variable is allowed to become as 

·-large as A/a. Pe' is set equal to zero in (25) by using (24) and (10). The 

Laplacian refers to the dimensionless independent variables and is two-

dimensional. 

The boundary conditions for the dimensionless variables will be: 

(a) at s = 0: v, t, and h are finite; (26) 

(b) at ~ = 1: v = 0 and t, h, k at/a~. and a - 1 
ah fa~ are continuous; 

and (27) 

(c) at~= A/a: h= 0 and t= 1- sin<j>. 
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2 Solution of Energy. Equation 

Equations (16) and (21) will now be solved to give an expression for t 

in terms of the parameter (3. This will determine how the temperature (and 

hence the heat transfer) depends upon the average velocity of the fluid. 

Because of the nonlinearity of (16) the usual methods for solving 

systems of linear differential equations cannot be directly applied •. If the 

nonlinear equation is first approximated by one which is linear, however, 

the techniques can be used. Let (16) be approximated by an equation in which 

the velocity, v, has been replaced by its average value, unity .. The equation 

is then 

(28) 

one that is linear and easily solved. The error introduced by this approxi-

mation will be shown later to be smalL 

Upon separation of variables, one finds that ( 28) and (21) have as 

solutions the product of Bessel functions in ~ and circular harmonics in cp. 

However, because of the boundary condition ( 27) on t, only terms independent 

of cp . and those proportional to sin cp will have nonzero coefficients. 

The solution for the temperature in the exterior region as determined 

by (21) subject to the boundary condition (27) is thus 

t =[l-BHJ
1

>(i)] J 0 (i£a/A)jJ0(i) + BHJ
1

>(i£a/A)-sincpJ 1(isa/Aft(i) . 

. (29) 

Terms proportional to HfO(i£a/ A)sin cp are not included because their 

coefficients must be negligibly small owing to the smallness of a/ A and 

the finite boundary conditions on the interior temperature distribution at 

£ = 0. In order to evaluate the arbitrary constant B, the exte'rior solution 

must be matched with the interior solution at £ = 1, and this may be done 

by using the approximate behavior of Eq. ( 29 ) near £ = 1. Replacing the 



-17- UCRL-9574 

Bessel and Hankel functions by their approximations for small argument 

gives 

t ~~= 1 = [1 - BHb
1
)(i)] / J 0 (i)- (2i/n)B log (2A/ya), 

log 'I = 0. 577 · · · and dt/ d~ ~~= 1+ = 2iB/ n . 

It is necessary to denote that the derivative is evaluated on the exterior side 

of ~ = l, since it need not be continuous across this boundary. 

Using this form for the exterior temperature and applying the boundary 

conditions (26) and (27) to the solution of Eq. (28), one obtains for the 

interior temperature 

t = {c W(~)/(W(~) + i a ~/21· {Jo l (-i~) 1/2 £1 /J0 [(-i~) 1 / 21} (30) 

where 

c = l J 0 (i)]- l ' 

a.= i nk
1
/k2 l (2/n)log(2A/ya)-iHJ

1
>(i)jJ

0
(i)] 

and 

is the complex function tabulated in Table XXI of Jahnke and Emde [ 4}. 

The value of B is also obtained, and by substitution into (29) one obtains 

for the exterior temperature 

t = C J 0 (isa/ A)-sin <1> J l (isa/ A)/J 
1 

(i) + ~ n(k 1jk2)l ~ i C~/W(~)+ iia~] 

[ iCHJ
1

)(i) J
0

(isa/ A)-iHbl)(i~a/ A)] . (31) 

The general dependence of these temperature distributions on the 

parameter ~ may be described as follows: When ~=0 the fluid is not moving 

and heat is transferred only by conduction. The temperature distribution is 

purely real so that it is everywhere in phase with the boundary temperature in 

the z direction, and the temperature distribution inside the channel is 

merely t = C, a constant. 

As ~ increases from zero, t becomes complex and the maximum 

temperature for a given £ will no longer occur at z = 0 where the maximum 
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boundary temperature occurs, but will be shifted along the direction of flow 

of the fluid. It is the convection of heat in the fluid that causes this shift in 

extreme temperature position. The amount by which the position of the 

maximum temperature is shifted increases rapidly with 13 and then approaches 

the value inA asymptotically as 13 - • • 

This shift in the position of the maximum temperature of the fluid in 

the direction of flow causes the flu:icd in the cooler half of the metal to be 

warmer· than it would be were it not flowing. Part of this additional heat 

which the flluid has transported from the warmer half of the metal will 

therefore conduct to the cold top surf?.!.Ce, causing an increase in the total 

rate of heat transfer. 

A convenient method for calculating this total rate of heat transfer 

from the lower :face of the block to the upper is to consider separately the 

rate of heat How due to convection and the rate of heat flow due to conduction 

across the horizontal plane mid\117ay between the two faceB. ][£the thermal 

conductivity of the fluid is not excessively larger than that of the solid, the 

presence of the channel will have negligible effect on the part of the heat·-flow 

rate across the pJ.ane due to conduction, and itt will be simply 4Ak2 T 
0

• The 

additional heat-flow rate due to convec·~ii.on must equal 

f.
-} 'ITA f2 'IT 
l k 1 [oT/os] s=l- dcj>d.z , which is the net rate of heat flow into the 

--z 'ITA . 0 · 

channel from the lower half of the block. The total rate of heat flow Q is then 

h f h d b . £ iz/ A t e sumo t ese two expressions, an y wr:i.ting T 1n terms o t e 

and performing the integrations, one obtains 
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After first substituting the derivative of t as calculated from (30), 
r 

the equation may be rewritten in dimensionless form as 

1 . 2 1 2 
Nu = LO i 1. 24 (13k 1/2k 2) · (Wi + 2 al3)/[ W r + (Wi + 2 al3) ]. (32) 

where Nu = Q/4Ak.2 T
0 

(Nusselt number) and Wr and Wi are r~spectively 

the real and imaginary parts of W{l3). 

The first term of (32) gives the rate, unity, at which heat is trans-

£erred purely by conduction and the second term, {Nu) , the additional cv,. 

rate due to convection. This latter term. increases with 13 from its value 

of zero at 13 = 0 to its maximum value of L24 k 1/ak2 at 13 = -. Its vari­

ation with 13 is plotted for three different values of a in Fig. 3. 

It must now be determined under what ranges of a. and 13 the 

approximation of substituting the average velocity for the actual velocity 

into Eq. (16) is a valid one. The closer the actual velocity distribution is 

to a uniform flow, the smaller will be the error introduced. An upper bound 

on the error can thus be estimated by considering the case in which the velocity 

distribution differs most widely from a uniform flow. This case, as will be 

seen later from solutions for the velocity distribution, is that of a paraboloid 

of revolution. That is, by taking v = 2 (l - s 
2

), an upper bound on the error 

can be estimated. 

It will be most meaningful to consider the error introduced in 

[ dtr/ds] s~=l-, the quantity on which the total heat flow depends, rather 

than in t itself. Using the above form for v. integration of 06) shows 

that 

3 
<s-s >t.ds . 

l 

Thus a measure of the error is the amount by which the left side of the 

equation differs from the right when the approximate temperature distribution 

(30) is used. The left side is 
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a=3 

a= 10 

1.5 2.0 2.5 

MU-22699 

Fig. 3. (Nu) , convective Nusselt number, as a function 
cv 

of ~. the Graetz number, for certain values of a.. 
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1 1 2 1 2 
[dt /ds]t 1_ = -2 CI3(W" + ., al3)/[ W + {W. + ., al3) 1. r s= 1 ~ r 1 ~ 

Using integration by parts for the Bessel functions, one obtains for the right 

side 
1 

-213 ( (s-s
3
)t.ds = 4Cl W.(W. + -2

1 al3)- W (1-W )]/[ W 
2

+{Wo + 2
1 al3)

2
]. )o · 1 1 1 r r r 1 

If 13 < 1, the difference between these two expressions depends only 

on the size of a; as a increases from 2 to 4, the error decreases from 

4 percent to 2 percent and is less than 2 percent for a > 4. As 13 becomes 

larger an additional error is introduced depending only on the size of 13; 

as 13 increases from 2 to 4, the additional error increases from 1 percent 

to 4. 5 percent. For 13 > 5 and a < 1, the errors are no longer independent 

and become larger quite rapidly. 

The lower limit on a and the upper limit on 13 which accuracy 

place are quite adequate to cover most of the regions of interest. For 

example, for a/ A < 0.1 the Reynolds number for liquid sodium will exceed 

the critical value for transition to turbulent flow in the absence of a magnetic 

field for 13 greater than unity. Also, for a/A <0.1, a cannot be less than 

2 or 3 or else unreasonably large velocities would be required to achieve 

a sizable convective heat transfer, velocities so large as to again make 

turbulent flow likely. 

However, in the case. where a large magnetic field is applied, the 

fluid is. stabilized [ 5, 6] so that laminar flow can be expected to extend to 

higher velocities and hence higher values of 13. This means that solutions 

for larger values of 13 and smaller values of a would be desirable under 

this condition. Fortunately, the velocity profile in a large magnetic field 

will be found to be nearly uniform, so that in .this case it will be allowable 

to extend the solution to somewhat larger values of 13 
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and smaller values of a. ·because the erorrs so introduced will be smaller 

than those estimated for the paraboloid of revolution profile. 

3 Solution of Remaining. Equations 

In this Section, equations (15), (17), and (22) will be solved for v 

and hand for the relationship between l3 and the given parameters. Once 

v and h are found, the remaining variables 2 , ~ , and p 1 can be found 
e 

by direct substitution into 0 8) through (20) and (23) through (24). The 

solution will be carried out for two limiting regions of interest, M
1 

<< 1 

(small applied magnetic field), and M
1 

>> 1 (large applied magnetic field). 

For intermediate values of M
1

, all of the inherent complexities of the 

equations are present and so involved as to make impractical any attempt 

at an analytic solution. 

Small Magnetic Field 

As a special case of the small-magnetic-field region, first consider 

the case where the field is zero. If H
0 

~ 0, then the resulting simplifi-

2 
cations are that M

1 
::: 0, h = 0, and that (!5) reduces to \1 v::: Rt./!3, z 1 

where ti is the imagina.ry part of t. Subs ti tutin g (30) for t., the 
l 

solution for v subject to the boundary conditions (26) and (27) is obtained as 

.v = (RC/~2} (j, { (l-J
0

[ (-i~}l/ZS]/J0 [ (-i~)l/Z])· W(~)/[ W(~)-i iu~l 
(33) 

Because only those values of l3 for which laminar flow can be 

anticipated are to be considered, the distribution given by (33) can be 

approximated by a simpler form. Assuming that the Reynolds number 

V a/v must be less than 1600, one sees that the maximum permissible av 

value of l3 for liquid sodium will be less than unity for a/ A <0. L Under 

this condition, the Bessel Function J
0
l (-il3)

1
/

2
£} can be closely approximated 

by l + { il3£
2 

so that the velocity distribution reduces to a paraboloid of 

revolution. 



~23- UCRL-9574 

By taking the average of the velocity distribution and setting it 

equal to unity, as required by the definition of v, the relationship between 

!3 and the other parameters can be derived. Integrating Eq. (33) over the 

cross-sectional area gives 

1 = (RC/~ 2) • fie {t W(~)-1] /[ W(~) + ·~ ia~]} (34) 

For !3 < 1 this relationship becomes 

13
2 

= l !/16 RC(n + l/4)- 1} · 4/(n+l/4)
2 

(35) 

when the approximation that W(!3) ::::: 1 t 1/8 i!3 for !3 less than unity is used. 

Equations (35) gives the desired relationship between !3, a, and R. 

It shows that for values of R above the critical value of 16/[ C(n+ ~ )] con-

vection will take place, and the average convective velocity will be proportional 

to the square root of the increase in the applied temperature gradient. 

If now a small magnetic field is applied so that M
1 

remains less than 

unity, the effect of the magnetic field on the flow can be found in terms of a 

perturbation series in powers of M
1

. Values of !3 larger than unity will 

have to be considered, however, since the transition from laminar to turbulent 

flow takes. place at a greater Reynolds number due to the stabilization provided 

by the magnetic field. The only available experimental investigations of this 

stabilization are for nonconducting walls l 5, 6] but they can provide a guide 

in estimating the maximum value of !3 for which laminar flow can be ex-

pected. For M
1 

less than 1, laminar flow can be expected only if !3 < 3. 

Before solving the equations for v and h in the interior region, an 

expression for h exterior to the ~hannel must be found. It is given by the 

solution to (22) subject to the boundary condition (28). Using separation of 

variables on1.finds this solution to be· 

h = L. ;-n (A
1 

sin(ncj>) + A
2 

cos(n<j>) ) (36) 
n=1 n n 

where terms proportional to (a/A)
2

n are neglected because they are small. 
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The parameter relationship can now be found by solving the perturbation 

equations for v and h in the interior region. Let v and h be expanded as 

2 
v = v O + M 1 v l + • · · 

then the lowest-order equations in M
1 

2 
resulting from substitution into (15) 

and 0 7) are 

2 
\7 v 0 =Rtjf3 

'l
2

v
1 

=cos <j>oh0ja£- £e-X sin <j>oh
0

/a<J> (37) 

and 

The solution to the first of the above equations is given by (33). 

Substitution of this expression for v
0 

into the last equation and solving for 

h
0 

subject to the boundary conditions (26) and (27) along with 

h 0 = ~~ (L {[ W(~l + ~ inW 1 
· l ([ ~ - W(~l] :: - ~ ) 

J 1: [( .~: f3) ].j 2 £ } 
+ ·- cos <I> 

ZJ ll {-if3)1/2 

(36) yields 

(38) 

One need not solve for the exact form. of v . The average value is 
ll 

the only information :required in order to find the parameter :relationship. 

Substitution of the expression fo2r h
0 

from (.38} into {37) and multiplying by 

{- 0- £2
) and integrating ove:ro the c:rcoss section from £"" 0 to l and from 

<j> = 0 to 2Tr gives by virtue of Green 1 s theorem and the vanishing of v 
1 

at 

£ = 0, 

RC G4Ir 1 . ]-l [ l al-a2 
(vl)av::;; i32 r W(j3) t 2 wf3 . - fb (a 

1
+a 

2
) 

+ i ~- W(~l < l!l::+uzl + i ~ l]}. 

The parameter relationship to first order in M
1 

2 
can be found by 

setting (v
0

) + M.1

2
(v.,,) -· L Doing this, one obtains 

av !!. .! av 
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2 . i3 ' a } 8(a +a }rl2)} 
1 2 

(39) 
For values of i3 less than unity this expression can be approximated by 

The last relati~mship shows that the magnetic field decreases the average 

speed of flow for a given temperature gradient. In doing so it also raises 

the critical point at which convection just begins. The amount by which 

this critical point is raised depends not only on the Hartmann number of 

the fluid but on the conductivity of the surrounding metaLas well. If a reduced 

conductivity a 
r 

is defined as a r = a 
1 
a 2/ (a 

1 
+a 2), and this conductivity is 

used to compute a reduced Hartmann number, 1/2 
Mr =I-ll H0a(a r/ Po V) then 

it is seen that this is the quantity on which the velocity change depends. 

Making this substitution yields 

2 12 1 1 1 2 i3 = [4/(a+ 4 ) 1l 16 RC(a+ 4 ) (1 - 8 Mr )-1}. (40) 

This equation is valid, of course, only for i3 < 1. For larger values of 

i3 (39) assumes a more complex form. 

This paper is concerned mainly with heat-transfer phenomena, and 

detailed expressions for the remaining electromagnetic quantities, which can 

be found by direct substitution of v and h into (18) through (20) and (23) 

and (24), will not be given. 
3 
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Large Magnetic Field 

In the case in which the applied magnetic field is large and M
1 

>> 1, 

the entire character of the flow changes. For the small magnetic field, the 

velocity distribution v was determined mainly by the viscous drag, and the 

electric current merely assumed the form determined by this distribution. 

In the case of a large magnetic field, however, the opposite is true. The 

velocity distribution is determined mainly by the pondermotive force which 

the electric current produces, and ~he viscous drag acts merely as the means 

by which the distribution adjusts to the boundary conditions. 

The equations governing the flow a:re (15) and (17) along with the 

boundary conditions (26) and (27). Of course, the exterior magnetic field 

solution is still given by (36). Equation (15) is of a type which can be solved 

by using a boundary layer approximation [ 7]. Because M
1

2 
is large, it is 

assumed that a core region exists covering the major part of the fluid in. 

? 

which the magnitude of the 'V'"'v term is, by comparison, negligibly small. 

A thin boundary-layer region is. in addition, assumed to exist along the 

boundary in which the v 2
v term becomes of comparable magnitude to· the 

other terms as the velocity changes rapidly from its value in the core to 

its value of zero at the boundary. 

In boundary~layer analysis the boundary-layer thickness is assum_ed. 

inversely proportional to a power of the large parameter. and the exponent 

is adjusted so that the magnitude of the viscous term is the same as that of 

the other dominant terms. Let 

Tl == ( 1 - S) ~n • 

Then (15} and 0. 7) become respectively, 

-l . Bh s sm <1> 8 <I> ) 

(41) 
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and 

Mn ov s-1 . av 
1 cos <P ClT] - sm<P o<P 

where the terms multiplied by lower powers of M
1 

have been neglected. 

If <P is not near ±in then. M~ cos <P >>sin <P so that (41) and (42) can 

be combined to give 

2n 3 3 2 2 
M 1 a vI oTJ ::o M 1 cos <P a v 1 a TJ 

where s is treated as constant over the _boundary layer, and terms of 

lesser magnitude in M
1 

are neglected. Hence the correct choice for n 

is n = 1. This makes the equation become 

3 3 2 
3 viBTJ =cos ¢avlaTJ 

where now TJ = M
1 

(1 - s) . 

(42) 

(43) 

The solution of this equation, subject to boundary condition (27) and 

the condition that t4e velocity must approach its core value 

v = v c ll- exp(- TJ J cos <P J ) ] 
The corresponding solution for h is 

where h denotes the core value of h. 
c 

v 
c 

as TJ ...... au , is 

(44) 

(45) 

These solutions are valid only so long as M
1 

cos <P ·>> sin ¢. For 

large M
1 

this will cover most of the region except for a small area near 

<P = .:i: { n. The behavior very near <P = in can be found by assuming 

M~ cos <P <<sin <Pin (41) and (42), which will give as the final equation for 

the velocity distribution 

a4
viBTJ

4 = sin
2

¢ a2
vla¢

2
, 

In this case it is necessary to choose 

of orders of magnitude, thus making 

n = { to give the required correspondence 

TJ::: M 112
(1-s). Hence v still has a 

1 
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boundary-layer behavior near <1> = } n, and hence also near <1> = - ~ n, 

l/2 
with the boundary layer thickness proportional to M

1 
rather than M

1 

as it is in the remainder of the channel. 

The solution for v near <1> = ~ n will be similar to that for the rest 

of the region but will contain a more involved function than an exponential. 

This function can be found by substitution of the functional form which 

Shercliff [ 8] used for the boundary layer in the end regions of a rectangular 

channel. By letting 

v • { ~ "·<I>) [l·ff( {- n-.p) -1/2}] 
r 1 _ 1121 

for f r< 2 n-<j>) J the partial differential equation becomes an ordinary one 

and the desired exponential-type solution can be derived. However, since 

the region near <1> = ~ n where this solution holds is very small, the effect 

of this region on the average velocity will be small and it will not be necessary 

to actually solve for the velocity distribution. In fact to derive the core 

velocity, the boundary-layer velocity will be taken to be that given by (44) 

as if it held over the entire range of <j>. The same is true for the induced. 

magnetic field and (45). 

In the core region (15) simplifies to 

2 o = R t./~ + M 1 ah I &fJ • 
1 c 

{46) 

This equation will determine h , and v can then be found by applying the 
c c 

boundary conditions on the total solution for h at s = 1 and by solving (1 7) 

in the core region, where it remains unchanged. It would be rather complex 

to solve for h using the general expression for t. as given by (30), so the 
c 1 

equation will be solved only in the region for which ~ < l which, after all, 

is the region of greatest interest. Using the simplified form which (30) 

assumes for ~ < l, (46) becorpes1 £
2 

RC a+z:-z 
0=·----y- l 2 12 

l + 4 ~ (a + 4) 

ah 
c 

olJJ 
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Solving for h , subject to the symmetry condition resulting from the 
c 

evenness of v and t. in s that h be odd in ljJ , gives 
1 

{ 
1 !3 l 3 ~ l (a.+ -z> s _ 4 s 1 cos <I>+ TZ s cos 3 <l>r 

(4 7) 

The small third harmonic must be kept to give the correct value for the 

electric current, which depends on the derivatives of h. 

Substituting this solution for h into (45), and matching the resulting 
c 

expression for h at s = l with the exterior magnetic field as given by (36) 

according to the boundary conditions (27) gives, to the boundary-layer 

degree of approximation, 

(Jl (Jl 
[ a.(l+ -) +zo:-:-a cos 2<1>] 

(!2 2 

where it has been assumed that both a 2M
1
/a 

1 
and M

1 
are large compared 

with unity. This assumption requires that the surrounding metal be at least 

as good an electrical conductor as the fluid. Equation (47) may now be sub-

stituted into 0 7) for the core region and the above boundary condition imposed 

on the resulting solution for v to yield 
c 

v 
c 

1 l 2 l 2 (J 
[ a.+ 2 - "! g + ( "Z ~ S ) r 

(Jl 
2 s cos 2 <I>] • 

Because of the magnitude of a., the major contribution to the core velocity 

distribution is. uniform; additional contributions of the other terms include 

a paraboloid of revolution profile and terms of average zero. 

The parameter relationship can be most easily derived by assuming 

the .core velocity distribution to extend throughout the cross section, thereby 

neglecting the presence of the boundary layer which affects the result only 

-1 
to order M 1 • Settingthe average of the core velocity equal to unity gives 

2 4 ( 1 ) -2 L 1 -2 1 .!_) 1 (48 13 = a. + 4 z: RCMr \a.+ 4 - 1 . ) 
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This relationship shows that for values of R above the critical value of 

2M~/[ C(a.t {)] convection will take place, and that the average convective 

velocity will be proportional to the square root of the increase in the applied 

temperature gradient. 

The parameter relationship (48) is valid only for 13 < 1. Since the 

magnetic field stabilizes the fluid against transition to turbulent flow,. laminar 

flow can be expected to hold for values of 13 larger than unity. As mentioned 

-
in section 2, it is permissible to extend our solution to these larger values 

of 13 in this case because the velocity distribution is nearly uniform. To 

determine the correct parameter relationship for the larger values of 13, 

replace t. in (46) by its average value over the cross section as calculated 
1 

from (30). Then the corresponding expressions for h and v may be 
c c 

easily derived by the methods of this section, and setting v = 1 will give c 

the desired expression, which is 

.~ 1 ~ zl 1 ]/ __ 2 . · 1 z, 
1 = RC 13 M W. + z a.l3 [ W-+(W:-!t--2 a.l3) .11 • r 1 r - 1 

(49) 

Although explicit expressions will not be given for the remaining 

electromagnetic quantities, 
3 

it will be of interest to describe briefly their 

general behavior, since they affect the fluid velocity distribution so strongly. 

The induced magnetic field does not exhibit rapid changes in the boundary 

layer, whereas the <1> component of electric current, radial component of 

electric field, and electric charge density do. In the core region the electric 

current is nearly uniform and in the negative y direction, whereas the 

electric field is nearly uniform and in the positive y direction. In fact 

the magnitude of the electric current is approximately that which the electric 

field ~ would produce, but it is oppositely directed. This arises from the 

fact that the induced electric field f.L VxH is in the opposite direction to the --
electric field E and about twice as large as the electric field itself. 
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Shercliff L 9] has investigated forced flow through a channel of circular 

cross section in a transverse magnetic field for thin conducting walls. and 

for large Hartmann numbers he found a uniform electric current in the core 

region. The electric current in the present problem was found to depart 

somewhat from uniformity, however, largely because the channel walls 

were not thin and to a lesser extent because the flow was driven by natural 

convection. 

4 Final Solution 

The mathematical details of solving the equations presented in 

section .. 1 have now been completed. In section 2 the solution was found for 

the temperature distribution and total heat transfer in terms of the parameter. 

13. In section 3 the relationship between 13 and the given paramete.rs was 

determined and solutions we:~:·e indicated for the :r·emaining v.ariables. It is 

now necessary on.ly to express the total heat t:ranafer in terms of the given 

parameters using the relation.ship found in section 3 to have in explicit 

form the solution to the problem. A numerical example can then be worked 

out to determine the typical magnitudes of the various quantities. 

The parametric relationships for 13 <J are given by (40) for 

M < <J and (48) for M > > 1. Comparison between these relationships 
r r 

shows that the applied magnetic field increases the critical temperature 

gradient at which convection first takes place. In addition~ it causes the 

velocity of the fluid to increas.e more slowly as the temperature gradient 

is increased. These effects will lessen the amount of heat transferred by 

convection as .the magnetic field is increased. 

The .expression for the total heat transfer in each case may be found 

by placing the appropriate relationship for {3, depending on the magnitudes 

of Mr and {3, into (32). The effect of the magnetic field on. the part of the 
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heat transferred by_ convection is. shown in Fig. 4, where the convective 

heat transfer is plotted as a function of R l/
2

. This figure, of course, 

repres.ents the same quantity as Fig. 3, but it is shown here as a function 

of the given parameter R 1/
2 

rather than the parameter !3. Only the cases 

of zero applied magnetic field are shown because the curves for small applied 

magnetic field lie too close to those for zero magnetic field. The non~ 

magnetic-field curves are drawn only to the point where turbulence may 

begin for liquid sodium. The large-magnetic-field curves are drawn for 

M = 20. Asymptotes representing the maximum possible heat transfer are r 

also shown. for each value of a plotted. 

Figure 4 shows the pronounced effect the magnetic field has on heat 

transferred by convection. Generally speaking, as the magnetic field is 

increased, the curve for a given value of a is stretc.hed along the R l/
2 

coordinate and shifted to the right. Thus by application of a large enough 

magnetic field, the convective heat transfer in a given situation can be completely 

stopped. 

In Fig. 5 the ratio R /R
0 

is plotted as a function of the reduced 
c 

Hartmann number, where R represents the critical value of the Rayleigh 
c 

number at which convection just begins and R
0 

is the value of 

Mr :.: 0. Equation (35) shows R
0 

to be equal to !6/l C(a+ ~)]. 

R when 
c 

Solid portions 

of the curve for M < l and M > 10 represent values calculated from (40) 
r r 

and (48) repsectively, whereas the dotted portion merely suggests a 

probable way in which the solid portions connect. 

It may now be seen what size magnetic fields are required in a 

practical example to produce these effects. Consider the case in which the 

channel is filled with liquid sodium at an average temperature of 300°C. 
1 

The properties of the sodium at this temperature are_ p
0 

= ·s.8Xl0
2 

kg/m 3 , 
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0= 3 

----Asymptotes 

a= 10 
a.= \0 

30 40 50 
R 112 

MU-22703 

Fig. 4. (Nu) , the convective Nusselt number, as a 
CV 

function of Rl/ 2 , the square root of the Rayleigh Number, 
for certain values of a and of M , the reduced Hartmann 

r 
Number. 
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Fig. 5. Rc/R 0 , the increase in critical Rayleigh Number, 
as a funct1on of M , the reduced Hartmann Number. 
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. -7 2/ v'= 3.9Xl0 m sec, 

6 . 6 -1 
(] 

1 
= . OXl 0 (ohm-m) , and I-Ll =!J.

0
, the magnetic permeability of free 

space. Let the solid block be such that its thermal and electrical conductivity 

are the same as those of the liquid sodium so that k
1 

= k 2 and a 
1 

= a 2. 

It should be noted that the block should not be made of a ferromagnetic 

substance, since this would make the achievement of a large magnetic field 

id the sodium very difficult. 

Reasonable dimensions for the channel and the block are 

a= O.Olm and A= 0.25m. This makes a.= 3.0. Applying a magnetic field 

of !J.0 H0 = 0.021 weber/m
2 

(210 gauss) results in a reduced Hartmann 

number of M = 20. Thus this example is described ·by the curve for 
r 

a. = 3 and M = 20, in Fig. 4. The effect of the magnetic field can be 
r 

s.een by comparing this .curve with the one for a. = 3 and M = 0. Figure 
r 

4 shows that the critical value .of R l/
2 

at which convection just begins is 

raised by the magnetic field from 2.5 to 17.7. The corresponding increase 

in critical temperature gradient is from 13° C/m to 630° C/m. This 

illustrates how extremely effective the magnetic field is in inhibiting 

convection under these conditions. 

This study has shown that for the given example of a narrow toroidal 

channel of conducting liquid inside a metallic block, even a moderate applied 

magnetic field has a large effect in stabilizing the liquid against convection. 

Reference to (32) shows that the heat transferred by convection can affect 

the total heat transfer by at most 30 or 40 percent. One might increase 

the number or size of convective channels in the block to provide greater 

control by the magnetic field. Of course. the more fluid there is insid~, 

the block, the more difficult it is to predict its .exact mode of instability, 

and having a large body of fluid would not necessarily increase the amount 

of convective heat transfer, because .of the cellular flow patterns which would 

develop. 
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In the present example no allowance was made for other types of 

instability than that of a single convective cell. That is, it was assumed 

that in the region of interest, the fluid would flow only in the prescribed 

pattern when it was gravitationally unstable. This appears to be quite a 

.resonable assumption, at least at the lower temperatures, and can most 

easily be verified by experiment. 
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Footnotes 

1This paper is condensed from the author 1 s doctoral thesis, "Effects of a 

Magnetic Field on Natural Convection in a Toroidal Channel, 11 March 1959, 

submitted to the Division of Engineering and Applied Physics , ·Harvard 

University, Cambridge, Mass. The research was supported in part by the 

Office of Naval Research. 

2
Veri£ication of the last assumption may be found in the author 1 s thesis. 

3
Such expressions for both small and large Hartmann numbers can be found 

in the author 1 s thesis. 
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