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A Performance Bound on Dyhamic Channel
Allocation in Cellular Systems: Equal Load

Scott Jordan, Member, IEEE, and Asad Khan, Student Member, IEEE

Abstract— We model a cellular network as a more general
multiple service, multiple resource system. We define the “state”
of the system as the number of calls currently carried in each
cell. We restrict ourselves to channel allocation policies that place
restrictions on the global state of the system, are allowed immedi-
ate global channel reallocation, and ignore handoffs. Maximum
packing and fixed allocation are considered as special cases of
such policies. Under uniform load conditions, we prove that
throughput is increasing and concave with respect to increases
in load or capacity, under maximum packing or fixed allocation.
We propose that the optimal policy, in the considered class, varies
from maximum packing at low loads to fixed allocation at high
loads. This policy is often impractical to implement, but can be
considered as a performance bound on practical systems. The
analytical results are investigated numerically using a simple
seven cell linear network.

I. INTRODUCTION

IRELESS services are one of the strongest growth ar-

eas in telecommunications today. Cellular voice service
is well established as a high-end service in most areas, but de-
mand is increasing at 30% per year. Personal communications
services (PCS) are expected to be introduced in the next few
years as a mass market phone service. Wireless data services
are appearing in the form of wireless LANs and modems.
Capacity, however, is now a critical issue for all of these
services.

Carriers are considering cell splitting, allocation of new
spectrum, alternative multiple access architectures and dy-
namic channel allocation, as possible methods to increase
capacity. We focus in this paper on channel allocation tech-
niques. A great deal of recent research has proposed and
investigated a broad range of channel allocation schemes. See
[21] for a good overview. These schemes are based on the
following concepts:

ePermanent Channel Assignment: Some of the channels
are permanently assigned to each given cell, in accordance
with frequency reuse constraints. The current cellular system
permanently assigns all channels. The lack of sharing between
nearby cells results in a lack of efficiency that inspired all
other techniques.
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oChannel Borrowing by Request: Some of the channels
may be borrowed from an adjacent cell when all of the
permanent channels are occupied.

eAdjustment of Parameters according to load: The num-
ber of permanent channels and/or borrowable channels may
be reassigned periodically according to spatial inequities in
load.

By combining these concepts in different ways, a large
number of dynamic channel allocation schemes are possible.
The current system, fixed channel allocation (FCA), perma-
nently assigns all channels. Simple channel borrowing schemes
[2], [23], incorporate the first types of sharing, but differ
according to channel locking methods. Hybrid strategies [9]
assign some permanent channels, and allow the rest to be
borrowed. Borrowing with channel ordering suggests a hybrid
scheme wherein the ratio of fixed to borrowable channels
varies according to load. All of these methods have variants
which add some channel reordering to reduce inefficiency at
high load. Flexible strategies [20] permanently allocate some
channels, but reserve the rest in a central pool to be assigned to
needy cells on a temporary basis. They differ according to the
times at which and the basis on which additional channels are
assigned. More dynamic assignment strategies [1], [3], {23],
assign channels for the duration of an individual call only,
on the basis of a calculated cost function which may include
many and varied factors.

Most of the studies on dynamic channel allocation are based
on simulation models; in contrast, theoretical studies number
relatively few. Kelly [10], [11] studies benefits of “maximum
packing” (MP) dynamic allocation over fixed allocation, pro-
viding a capacity upper bound for some schemes. Hajek [4]
bounds blocking probabilities for a similar system. Sivarajan
[19] derives a “Shannon type bound” for a single service class,
and Xu [22] studies a particular hybrid allocation. All of these
studies ignore handoffs entirely. Kumar er al. [13] compare
dynamic and fixed allocation using the notion of stochastic
dominance, and in incorporating handoffs, they also derive
conditions for which dynamic schemes perform better, for the
case of uniform traffic and well defined cells.

Many claims have.been presented as to the advantage of
one scheme over another. It is as yet unclear to what extent
and in what circumstances each scheme increases capacity of
the system. See [16], [17], [18], for attempts to bound and
compare a few schemes.

Questions remain. How does each dynamic channel alloca-
tion scheme produce its capacity gains? What are the basic
trade-offs that are occuring? Why do some only work well
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under certain traffic patterns? Can they be combined? What is
the value of additional information about the state of nearby
cells? What is the best possible use of bandwidth? What will
channel allocation look like for integrated services?

In this paper, we attempt to provide some insight into some
of these issues by considering a class of channel allocation
policies that includes MP and FCA. To do so we embed the

cellular channel allocation problem within a more general -

Multiple Service, Multiple Resource (MSMR) model. This
unifies all dynamic channel allocation strategies that use
comparable “state” information into one context in which they
can be compared. The restrictions of this model, however,
are significant. Immediate global channel reassignment is
assumed, and handoffs are ignored. The resulting optimal allo-
cation strategy for this model, therefore, can only be considered
to be an upper bound for practical systems.

We show that MP and FCA result in increasing and concave
throughput with respect to increasing load or capacity, in any
symmetric cellular network under equal loads. We propose
that the optimal policy in this class progresses from MP at
low loads to FCA at high loads. We then consider a simple
seven cell linear network in order to numerically investigate
competition for channels between neighboring cells and the
variation of the optimal policy in this class with load.

In Sections I and III we introduce a cellular allocation
model and the underlying multiple service, multiple resource
system model. Section IV analyzes the variation of throughput
under maximum packing, fixed and optimal allocations for this
model with changes in load or capacity. In Sections V and VI,
we discuss the effect of a cell upon its neighbors, and use this
to show how the optimal control for this model progresses
from maximum packing toward fixed allocation as the load
increases in a homogeneous traffic scenario, in our simple
seven cell system.

II. A CELLULAR CHANNEL ALLOCATION MODEL

The channel allocation scheme used in the current cellular
system splits the available spectrum into several (assumed here
to be 7) segments, and the geographical service region into
hexagonal cells. Each cell is assigned 1 of the 7 segments
in a manner in which cells assigned the same segment are
several cell diameters apart. Each segment is then split into
smaller frequency slots called channels, each large enough to
accommodate one phone call.

Two types of interference can occur. First, calls placed in
two adjacent channels can interfere with one another. This is
solved by using a guard band in each channel and filters on
the signal, at the cost of additional complexity and bandwidth.

Second, calls placed on the same channel in nearby cells
can interfere with one another. The magnitude of the inter-
ference is determined by power level and distance between
the two customers sharing the same channel. In the current
system, the segmenting process insures a minimum distance
between co-channel customers sufficient to guarantee low
interference. Cell splitting, as mentioned above, results in a
greater efficiency by lowering the power level and shortening

the permissable re-use distance. This has a practical limit
however.

This segmenting system is overly restrictive and hence
wasteful of capacity. Given a fixed cell size and power level,
the basic frequency reuse constraint is:

e No channel can be used in cells closer than some
specified distance.

Segmenting, however, can result in a call being blocked
when all channels dedicated to the originating cell are busy
even though other channels are available within the frequency
reuse area. Every dynamic channel allocation scheme, each in
its own way, relaxes the strict segmenting rules in an attempt to
allow nearby cells to share the available bandwidth in a manner
that is efficient and that satisfies the interference constraints.
The gain of each scheme is the increased utilization of
allocated bandwidth. The cost is increased complexity and
the requirement of more global information at call start-up
or handoff times.

Each scheme’s gains (or losses) compared to the exist-
ing fixed channel allocation rule depend upon its particular
mechanism and thus upon the spatial traffic demand. They
are therefore hard to compare. Similarly, since each scheme
requires different information from nearby cells, and uses this
information in different ways, the costs of each scheme are
hard to compare.

We can construct a model, however, that encompasses many
channel schemes in a common framework. In general, we need
to keep track of which channels are occupied in each cell in the
network, and the age of each call. If we assume, however, that
immediate global channel reassignment is possible to satisfy
co-channel interference constraints, we can simply keep track
of the total number of calls in each cell, rather than the specific
channel used [3]. In addition, if we assume that call durations
are exponentially distributed, the ages of each call are not
required.

We therefore define the state of the system as z =
(z1,-+-,zN), where N is the total number of cells in the
system and z; is the total number of active calls in cell ¢. The
basic frequency reuse constraints impose restrictions upon
the values the state x can take on, and hence define a state
space “Z”. For an appropriate choice of the minimum reuse
distance, these constraints for the state space Z are

Z z; <M VC;
JEC;

8Y)

where C; are overlapping clusters over the state space Z and
M is the maximum number of channels available to each
cluster [3].

The Maximum Packing strategy accepts a call request if
and only if there exists a global reassignment of the existing
calls and the new call to satisfy the basic frequency reuse
constraints. Since this policy shares all channels among all
cells, we will alternatively call this policy Complete Sharing
(CS) to stress the resource usage. MP is equivalent to accepting
a call if and only if the resulting state remains in the state space
Zcs = Z as defined in (1) [3].

Fixed channel allocation, on the other hand, accepts a call
request if and only if there is a free channel among the subset
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# of channels
avaiiable to
celt 2

complete sharing

Fig. 1. The state space Z for CS and CP policies.

of channels permanently assigned to the corresponding cell.
Since this policy permanently divides all channels among cells
in a cluster, we will alternatively call this policy Complete
Partitioning (CP) to stress the resource usage. FCA is equiva-
lent to accepting a call if and only if the resulting state both
remains in the state space Z as defined in (1), and satisfies

m<w i @

where C is the number of cells per cluster. Equation (2) defines
a reduced state space Zcp C Zcs. (See Fig. 1)

In this paper we restrict ourselves to a class of channel
allocation policies that admit a new call if and only if the
resulting state would be in a state space Y C Z. The particular
policy is given by the definition of Y. By necessity, Y
must be coordinate convex, ie., if r € Y& z; > 1, then
(z1,---,2; — 1,---,zn) € Y. Furthermore, all such policies
lie in between CP and CS, i.e., Zcp C Y C Zcs.

We assume that immediate global channel reassignment
is achievable for any policy in this class, and do not con-
sider the computational burden imposed. Since this burden is
overwhelming for any practical system, the optimal channel
allocation policy in the considered class is only an upper bound
for such systems. Furthermore, there exist policies that base the
decision to accept a new call upon not only the resulting state,
but also upon the current state, or upon the particular channels
occupied. These policies are not in the class considered.

By modeling each call attempt in each cell as a service
request, and the channels available as a pool of resources,
we can view this cellular network as a specific example of
a Multiple Service, Multiple Resource (MSMR) system [5].
The cellular system is modeled as a multidimensional time
reversible Markov chain in which the state is the number of
calls in progress in each cell.

The strengths of this model are that both basic frequency
reuse constraints and any additional dynamic channel alloca-
tion constraints are incorporated in a unifed manner. Therefore,
competing strategies can be equitably compared, and the
differences between them easily understood. The optimal
control policy gives us both an exact upper bound on the
maximum achievable throughput of policies in the considered
class and insight into how increased performance is gained.

The principal weakness of this model is that it ignores
handoffs. This is necessary to achieve a tractable form for the
stationary distribution and for the optimal control. Computa-
tional considerations limit the size of the state space for which

we can easily calculate optimal policies under specific loads;
this is thus a significant secondary weakness of the model.

In the next few sections, we use this model to compare CS
(maximum packing), CP (fixed), and optimal control strategies
in the considered class. First we review the general MSMR
model upon which our cellular model is based. Then we
investigate what can be analytically stated about these policies
in the most general case. Finally, we numerically compare
these 3 strategies for a simple celluar system.

III. THE MSMR MODEL

In this section, we will review the MSMR model and some
relevant MSMR results [5]-{8].

Model: Consider a system that offers n types of services.
Each service requires a set of resources (dependent upon the
service type) to process. If these resources are available then
the system manager may choose to accept a service request,
and then processing starts immediately. If the necessary re-
sources are unavailable, of if the system manager denies the
request, then the request is lost to the system.

Service requests arrive as independent Poisson processes.
Each request occupies each resource that it needs for the same
amount of time, and releases these resources simultaneously
upon service completion. This amount of time is exponentially
distributed, and independent of other service times.

We model this system as a Markov chain. Adopt the
following notation

A= (A1, 5 A, the rates of incoming service
requests.

B= (1,00 i), the rates of service.

p=(p1,,pn), the loads, given by p; = A;/p;.

L=(L;,---,Ly), the rates of accepred service
requests (throughput).

T, the number of type i requests
being processed.

T = (21, ,2Zn), the state of the system.

Z = {=z|zis feasible, the state space.

i.e.,  can be

simultaneously processed
with available resources},

F,={z|z € the full set w.r.t. service type i.
Zbut(zy, -, 7; +

1,---,z,) & Z}

E,={z|z € the empty set w.r.t. service type
Zbut (z1,--+,3; — i.

1,"',$") ¢ Z}v

(), the steady state probabilities.
S={1,---,n}, the set of all service types.

z 1 1I=(y;), a projection function.

Y; =
il?j,
0,

Cz(z1I)={y€ Z|lyt a]l| dimensional cross section

I=211}, of Z.

ri, revenue generated by servicing
request type ¢, per unit of time.

J¢l
Jel forTc §
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Our assumptions regarding the arrival and departure pro-
cesses give us a Markov chain on state space Z with transition
rates

Aiy if.‘I:¢F,'andy=(.’171,”',.’l,‘i+l,-'-,.’l:ﬂ)
Tey = Tiwi, fr¢ E;andy= (1, --,%i— 1,---,Tn)
0, else.

Assume that service completion is never blocked. This implies
that the state space Z is coordinate convex, ie., if z €
Z&x; > 1, then (z1,---,2; — 1,---,2,) € Z.

The Markov chain is time reversible with stationary distri-
bution

.3

Ti

—7‘_(0) II pz

=1

wheren (0) =

(]

|..

T4

z€Z i=1

-
i

S

Our measure of performance is average total throughput
R=)_ mEX;
i

We note that under equal load conditions maximizing total
throughput is equivalent to minimizing the blocking probabil-

ity
R=Y L=) X[1-P(B)

When not explicit, we will write Rz to indicate that the
average throughput is to be taken over the state space Z.
The first relevant result describes interaction between services
sharing resources [5]:

Theorem 3.1: The sensitivity of throughput to arrival rate
is given by

i e

%= —A:cov(z,-,zj), ifi#j

X | Evar(z), ifi=j.
Ai

Pairs of services can be classified as complements of substi-
tutes, according to the sign of the associated covariance. The
sign of the covariance, in turn, is affected by the resources
in common between the services and by other services that
compete with the pair in question. In the next section, we will
use this to investigate contention between neighboring cells
for channels.

The second relevant resuit describes the optimal policy. We
consider policies that correspond to restricting the state to some
subset of the original space. We have only a weak characteri-
zation of the optimal c.c. policy for the Markov chain model
(3) [6]. A much stronger characterization can be obtained by
approximating the discrete product form distribution (3) by a
continuous product form distribution (4)

() = K [] fil=:)

i=1

fi(z;) continuous onz; > 0. (4)

The state space is now a continuous region given by Az < b.
The state is =, a vector of length n of nonnegative real
numbers; A is a m X n matrix of nonnegative real numbers

representing resource usage for each service type; b is a
vector of length m of positive real numbers representing total
numbers of each resource type.

We require that each additional resource added to the system
produces a nonnegative but decreasing return to the optimal
revenue. This is equivalent to the following concavity property
on parallel cross sections of the optimal subset of the state
space [7]: .

Property P3: For any two cross sections C; and Co,

Cr=Cz(z1N&Cr=Cz((z+Be) 1), jé¢l,

RiaCi+(1-a)ca] 2 @ Ric )+ (1= )Ry} Viel
where
aCl + (1 — 0)02 = Cz((IE + (1 - a),Bej) T I)

The optimal control policy is given by a particular convex
subset of the state space. The form of this subset is described
in the next theorem:

Theorem 3.2: If X has a distribution on Az < b given by
(4) satisfying P3, then the optimal c.c. subset Z* C Z is
defined by

zeZ’ifrecZ&x1I1€GIVICS.

The regions G7 tell when to deny service requests and are
further characterized in [7]. Note that optimal policy for the
continuous model is convex, whereas the optimal policy for the
discrete model may not be. This allows a simpler approach to
algorithmically find the optimal policy for (4), and although
the optimal policies for (3) and (4) may differ greatly, the
difference in the throughputs they produce are guaranteed to
be small [8].

IV. FORM OF OPTIMAL POLICIES AND THROUGHPUT

In this section, we analytically compare CS, CP, and optimal
policies for the model presented in Section II. We are partic-
ularly interested in the performance of each at different loads.
We restrict ourselves to the case where each cell contributes an
equal load to the system. Denote the total number of channels
by M, the number of cells by N, and the cluster size by C.

The first 4 theorems characterize the variation in perfor-
mance of CS and CP with respect to capacity or load.

Theorem 4.1: The total throughput under a complete par-
titioning (fixed allocation) policy is increasing and concave
with respect to increases in capacity.

Proof: Under a fixed allocation, the total number of
available channels, M, is divided equally among cells in a
cluster, with each cell allowed access to n = M/C channels.
Each cell now acts as a M/M/n/n server. The throughput
of this system has been shown to be increasing and concave
with respect to increases in capacity [14]. Therefore the total
throughput is similarly increasing and concave with respect to
increases in capacity.

Theorem 4.2: The total throughput under a complete par-
titioning (fixed allocation) policy is increasing and concave
with respect to increases in equal cell loads. The minimum
throughput is zero, and the supremum is u M N/C.
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Proof: The throughput of a M/M/n/n server has been
proven to be increasing and concave with respect to increases
in load in [12]. Therefore the total throughput is similarly
increasing and concave with respect to increases in equal cell
loads. By the Erlang-B blocking formula, the throughput at 0
load is 0, and the supremum is pn = u M/C per cell.

Theorem 4.3: The total throughput under a complete shar-
ing (maximum packing) policy, on a symmetric cellular sys-
tem, is increasing and concave with respect to increases in
capacity.

Proof: Denote the set of channels in a symmetric cellular
system as C Hy. Define Ljys to be the total throughput under
a complete sharing policy in such a system with M channels.
Compare this system to one with M + 1 channels per overlap-
ping cluster. Denote the set of incremental channels as CH;,
and without loss of generality assume that calls are assigned
to channels in C'H, if and only if no channels are available in
CHy. Lar41 — Lpg is thus equal to the throughput achieved
by the incremental channels C' H;. These channels, however,
just see as arrivals the overflow from CHj. From these call
requests, CH; accepts as many calls as possible, and let the
rest go as its own overflow. Since CH; serves some arrivals,
Lps41 — Ly is positive and thus Ly, is increasing in M; and
also the overflow from CH; contains fewer arrivals than the
overflow from CHy.

Similarly, compare the system with M. + 1 channels to the
system with M +2 channels. Denote the set of new incremental
channels by CHp. Lasy2 — Lasya is equal to the throughput
achieved by CH,. These channels, however, just see as
arrivals the overflow from CH;, which as we stated above
contains fewer arrivals than the overflow from C Hg. From this
overflow, C'H; accepts as many calls as possible, but this must
be on average fewer than C H; accept, due to the independence
of arrivals. Therefore Lasryo — Lary1 < Lar+1 — Ly, and
Lys is concave in M.

Theorem 4.4: The total throughput under a complete shar-
ing (maximum packing) policy, on a symmetric cellular sys-
tem, in increasing and concave with respect to increases in
equal cell loads. The minimum throughput is zero, and the
supremum is p MN/C.

Proof: Consider a cellular system presented with equal
cell loads of p, under a maximum packing strategy. Denote
the resulting throughput by L,. Compare this system to the
system resulting from adding in infinitesimal load of & p to
each cell. Denote the resulting throughout by L, 5,.

Since call requests arrive to each cell as independent Poisson
processes, we can, without loss of generality, consider this
incremental load to be presented by Poisson processes of
rate 6 A = (6p)u to each cell, where these processes are
independent both of each other and of the original load. Denote
the Poisson processes corresponding to the original load by P,
and those corresponding to the incremental load by P;.

We wish to examine in detail the incremental throughput
obtained through the incremental load. Consider a realization
of the cellular system with load p, X,(t). Denote the cor-
responding realization for the system with load p + §p by
X460 (t). Construct a new realization X/, (¢) as follows.

p+ép
Start with X,(¢), and add in each arrival in P; that does not

prevent a future arrival in FPy. Note that X, ¢ (t) is thus
composed of X,(t) plus additional calls dropped into open
time slots, and that these additional calls correspond to the
incremental throughput.

CompareX 5, (t) and X, 5, (t). Consider the first arrival
in P, accepted in X,is,(t). If the call completes before
blocking a call from Py, then it is present in both realizations.
If the call is still resident when a call in Py requests service,
and if the new call can only be accepted by terminating the
old call, then the two realizations differ: X, s, (t) contains
the old call whereas X, 5, (¢) contains the new call.

We wish to examine the difference in total throughput
resulting from this decision. Fix the cell, i, of the incremental
call in question and fix the time s, of the conflict with the
new call. Consider all such realization pairs that conflict at
time s over acceptance of an incremental call in cell 7. Denote
by Y, ; those realizations that admit the incremental call, and
by Y, ; those that admit the new call instead. Call durations
are memoryless, therefore all realization will contain the
corresponding call they admit for the same expected remaining
time after s. Furthermore, cell loads are equal on a symmetric
cellular space, therefore the expected number of future calls
accepted in Y, ; equals the expected number of future calls
accepted in Y ;. We conclude that, on average, X,s, () and

p+5p (t) obtain the same throughput L, s,.

We can therefore consider the incremental throughput
Lp+sp — Ly, as due to calls in X, ;,(¢) not present in X, (t).
Since some calls from the incremental load are accepted in
X, 15,(1)s Lovsp — L, is positive and, thus, L, is increasing
in p. We also note that in each realization the open time slots
in X 5,(t) are fewer than in the corresponding X,(¢).

Similarly, now construct corresponding realizations
X, 5,(t) by adding additional incremental Poisson processes,
P, of rate d A to each X, ;,(t). Examine the corresponding
incremental achieved throughput L1235, — Lg4s,. This
additional throughput is the result of calls in P, accepted
into open time slots in X7, (). These open time slots,
however, are, as we stated above, fewer in number than
those present in X,(¢). Since all arrivals in P; and P, are
independent from each other and from the system state,
those from P, accepted in X, ,;,(t) must on average be
fewer than those from Py accepted in X, (t). Therefore,
Lpt26p — Lpysp < Loysp — Ly, and L, is concave in p.

The range of achievable throughputs is

{Z Wi T, T € Z}
1

and the minimum is O at zero load, and the supremum is
1 MN/C, obtained as the load tends to infinity [5].
The next theorem compares CS and CP at different loads.
Theorem 4.5: Consider a symmetric cellular system under
equal loads. At low loads, the total throughput under complete
sharing is higher than under complete partitioning. At high
loads, the total throughput under completer sharing is lower

. than under complete partitioning. Pursuant to theorems 4.2 and

4.4, there therefore exists a unique crossover point of the two
throughput versus load curves.
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high load fine

e

low load line

Fig. 2. Pictorial explaining the difference between CS and CP.

Proof: Denote Z¢g as the state space corresponding to
the maximum packing strategy, and Zcp C Zcs as the state
space corresponding to the fixed allocation strategy. Denote
Rcs and Rop as the corresponding total throughputs, and
Rcs—_cp as the average total throughput on the set of states
Zcs — Zop. Since the Markov chain is time reversible,
Rcs > Rep if and only if Res—cp > Rcp or equivalently
if Rcs > Ros—cp. A two dimensional pictorial! is shown
in Fig. 2.

The load line is given by pX z; = R, and hence passes
through the points at which the instantaneous total throughput
equals the average total throughput of the system. The ex-
pected throughput while in the region Zcs_cp is greater than
the expected throughput while in ZCP(RCS—CP > RC’P) if
and only if the expected point on the region Zcs_cp is above
the load line uXz; = Rcp.

At low loads, the total average throughput per cell, under
CP, is approximately but strictly less than A. Therefore,

Recp < AN.

On the region Zcs—cp however, all states have an instanta-
neous throughput of at least 4 M/C. Therefore,

M
Res_cp2 i ok

Therefore, for low enough loads (A < p M/CN), Rcs_cp >
Rcp and hence Rcs > Rep.

Under high loads, both CS and CP achieve a total throughput
of almost 4 M N/C. To compare the two, we investigate the
probability density functions of instantaneous throughput for
CS and for CP.

For high loads, both density functions achieve a maximum
at u MN/C, and fall off as the instantaneous throughput
decreases. Therefore the policy that results in the density
function with the higher derivative near 4y MN/C will have
the higher average throughput.

Both CS and CP achieve their maximum instantaneous
throughput at the state (z; = M/C Vi). Compare the states at
which each obtain an instantaneous throughput of u (M N/C —
1). Under CP, {(z; = M/C - L,z; = M/C N i # j)

!'Due to the difficulties of capturing the nature of a N dimensional space

on a two dimensional page, this pictorial is not a project. It is intended to
capture the relevant characteristics.

for any j} achieves this. Under CS, not only does {(z; =
M/C - 1,z; = M/C ¥V i # j) for any j} achieve
this, but so do other states such as (z; = M/C — 1,z =
M/C—1,2, = M/C+1,z; = M/C ¥ i# j,k,I) where
(4, k,1) C Cp, for some m.

Since the Markov chain is time reversible, this implies that

P (instantaneous throughput = 7 —MC—N)

P (instantaneous throughput = (—A/é—N - 1))

is  greater under CP than under CS.

Therefore, under sufficiently high load, Rcs < Rcp.

Now since both CS and CP policies start out with zero
throughput at zero load, and both total throughput versus load
curves are increasing and concave, these results imply that
there exists a unique crossover point A\*, such that Rcs >
Rop for A < X* and Reos < Rep for A > A%,

Examples are shown later in this paper.

At low loads, both policies achieve throughput close to
the offered load, but CS obtains a lower blocking probability
because the fundamental re-use constraint is farther out on the
tail of the density of instantaneous load than the constraint im-
posed by CP. At high loads, both policies achieve throughput
close to the capacity of the cellular system, but CP obtains a
lower blocking probability because it more often avoids states
where the instantaneous throughput is suboptimal.

At a moderate load, it is natural to ask if it might be
valuable to combine these two strategies by reserving some of
the channels for each cell, and sharing the remainder among
the cluster. Indeed, several policies have been proposed along
these lines. In this paper we consider any policy that accepts
or denies call requests by restricting the global state of the
cellular system.

We would expect that such optimal policies would depend
upon the system load. At low loads, the optimal policy should
resemble CS; at high loads, it should resemble CP. The gain
achieved by the optimal policy over CS and CP should be
highest at moderate loads, where a mixture is most desirable.

This result could be formalized if the throughput of the
optimal policy were also increasing and concave with respect
to capacity and load. However, since the optimal control is
imposed upon a discrete state space, the amount of control
imposed is a staircase function of capacity or load, and hence
concavity is lost.

We therefore instead investigate the variation of throughput
with capacity and load for the continuous approximation to the
discrete space, where the control imposed can be a continuous
function. The difference between the optimal throughput in
the continuous and discrete cases should be small. If the
throughput curves under the optimal policy, complete sharing
and complete partitioning are all fairly smooth, then we expect
that the gain of the optimal policy over either complete sharing
or complete partitioning is positive and unimodal, i.e., the
largest gains occur at intermediate loads.

Proposition 4.6: For the continuous state space model, the
total throughput under the optimal policies, on a symmetric
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cellular system, is increasing and concave with respect to
increases in capacity.

Reasoning: Consider increasing the capacity from M chan-
nels per cluster to M + 1 channels per cluster. Denote
the corresponding throughputs as L}, and Lj,,;. We are
guaranteed that the new optimal policy generates no less
revenue than the old optimal policy, Lj,,; > L, since the
capability to restrict use of the additional channels is within the
class of control policies we are considering. Furthermore, we
expect that the symmetric cellular system will obey decreasing
returns, namely that the additional revenue generated by a
marginal increase in capacity will be decreasing.

In fact, we expect that

Property DRI: 0 < Ly, — Ly, < Ly — Ly, <uZ.

Now consider the variation of this incremental through-
put with arrival rate. Since the additional throughput is an
increasing function of the overflow, we also expect that:

Property DR2: P(B;) is an increasing function of the ar-
rival rate.

Property DR3: L}, — L,_, is an increasing function of
the arrival rate.

Theorem 4.7: For the continuous state space model, if
properties DR1, DR2, and DR3 hold, then the total throughput
under the optimal policies is increasing and concave with re-
spect to increases in equal cell loads. The minimum throughput
is zero, and the supremum is y MN/C.

Proof: We can relate the sensitivity of throughput to
arrival rate, and the sensitivity of throughput to capacity, using
a result from [10]

g_i = (1- P(By)) (” - %%)

where

AR

——=Rz—-Rz_pF,.
AT z Z-F;

We wish to investigate an incremental increase in the common
load. Suppose

A=A Vi
AR .
ﬁ ELIIM —LIA{_I

Then, using symmetry

R <~ R AR
ﬁ:izla_,\,-_(l_P(“_A_ﬂ)
N AR
= a-P3)(ng -~ 37)

Note that 1 — P(B) is positive. Also, by DR1, pu(N/C) —
(A R/AF) is positive. Therefore (OR/8 A) is positive, and
thus the total throughput is increasing with load.

Consider the variation of (OR/8 A) with A\. By DR2, 1 —
P(B) is decreasing as A increases. By DR3, u(N/C) —
(AR/AF) is also decreasing as ) increases. Therefore,
(OR/3 X) is decreasing as A increases, namely total throughput
is concave with load.

PROO®O®®®

Cluster 1

Cluster 4

N s
v g

Cluster 2 Cluster &

Cluster 3

Fig. 3. A 7 cell linear network.

Finally, the range of achievable throughputs is

{Z u,-zi,z'EZ}
]

and the minimum is O at zero load, and the supremum is
u MN/C, obtained as the load tends to infinity [5].

In the next two sections, we will examine in greater detail
how the optimal policy in the considered class achieves greater
throughput than CS or CP, through a numerical example of a
simple cellular system.

V. SENSITIVITY TO THE STATE OF THE NEIGHBORHOOD

In the last section, we argued that the optimal policy in a
symmetric cellular system with equal loads should progress
from CS at low loads to CP at high loads, and should achieve
its largest gains over these competing strategies at intermediate
loads. In this section, we investigate in more detail how gains
in throughput are achieved at various loads. To do this, we will
investigate the effect of traffic in one cell upon neighboring
cells by looking at the sensitivity of throughput in cell 4, L;,
to the offered demand, );, in nearby cells.

Sensitivity is a measure of interaction between services
sharing resources. Pair of services are either complements or
substitutes, as defined in terms of Theorem 3.1. If E[X;|X;]
increases with X;, the covariance is positive. This means that
rate of change of throughput of type j service with the increase
in arrival rate of type ¢ service is positive. Services ¢ and j
in this case are termed complements. Otherwise, if E[X;|X;]
decreases with X;, their covariance is negative. This from
Theorem 3.1 results in a decrease in throughput of type j
service with an increase in rate of request for service i, and %
and j are termed substitutes.

We consider a 7 cell linear (one-dimensional) network?, with
a 3 cell reuse cluster (Fig. 3). A complete sharing dynamic
allocation scheme is applied.

Load is increased in cell 1 on the left edge and its effect on
throughput in all the cells is plotted. Changes in throughput in
each cell are shown for various loading conditions (Fig. 4).

Increasing the load of one service increases its throughput,
which we know from Theorem 3.1, since cov (X;, X;) =
var (X;) > 0.

Thus the throughput of cell 1 increases with the increase in
its request rate. All other services whose throughput increases
are cell 1’s complements while those cells whose throughput
decreases are the substitutes of cell 1.

2The number of cells is kept small due to computational considerations in
the optimal policy algorithms used in the next section.
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First, note that throughput in cells 2 and 3 decrease for Any increase in effective throughput in a cell, resulting from
all loads. Cells in the same cluster are thus substitutes. This is an increase in request rate for that cell, is at the expense of
caused by the strong competition for channels within a cluster. throughputs of other cells in the same cluster.
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Fig. 7. Blocking probability for competing channel allocation schemes.

Second, note that throughput increases in cell 4 in all cases.
Cells 2, 3, and 4 form a reuse cluster. As throughput of cells
2 and 3 decrease due to an increase in throughput of cell 1,
the result is an effective increase in throughput of cell 4, as
loads remain the same in all 3 cells of the cluster. Thus an
increase in throughput of cell 1 indirectly effects an increase
in throughput of cell 4. Services separated by 1 reuse distance
(in this case 3 cells) are thus complements.

The effect of an increase in traffic in cell 1 upon cells
more than 3 cells away are dependent upon load, both in sign
and magnitude. For low loads, when there are enough idle

channels, any incremental change in the load of cell 1 has a
large effect upon the throughput of cell 1, but this sensitivity
damps quickly with distance from that cell. At high loads,
an incremental change in traffic in cell 1 produces a small
change in throughput there, but this change damps slowly with
distance. The signs and magnitudes of sensitivities of cells
greater than 3 diameters apart thus depend on the particular
load pattern.

Consider the implications of these sensitivities upon a
channel allocation policy by focusing on the decision to accept
or deny a call in cell 1. If the call is accepted, fewer calls on
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Average throughput of other services, conditioned on X =x,

Fig. 8. Placing and adjusting a new constraint.

average will be accepted in all clusters containing cell 1, but
more calls on average will be accepted in cells 1 reuse distance
away. The call in cell 1 should be accepted if it results in an
average increase in the number of calls accepted in the whole
cellular system.

From our discussion above, we expect that the effect of an
acceptance of a call in cell 1 upon neighboring cells depends
on the current state of the system and on the load. We therefore
consider the sum effect of accepting a call in cell 1 upon the
total expected number of accepted calls, conditioned on the
number of existing calls in cell 1 and on the load. Results
are displayed in Fig. 5 for a CS policy under a low load and
under a high load®.

We find that when cell 1 is currently carrying a small
number of calls, accepting 1 more call in that cell results in an
increase of almost 1 in the expected number of calls admitted
in the cellular system. The effect of the additional call in cell
1 upon neighboring cells is small, since there are many idle
channels. When cell 1 is currently carrying a large number of
calls, however, accepting 1 more call in that cell results in a
decrease of almost 1 in the expected number of calls admitted
in the cellular system. Now, the effect of the additional call
in cell 1 upon neighboring cells is large, and 1 additional call
in cell 1 results in a drop of almost 1 call each, on average,
in the two clusters on either side of cell 1.

This implies that the optimal policy accepts all calls when
there are many idle channels, and blocks calls when one cell is
occupying too large a percentage of the cluster’s capacity. The
form of the optimal policy for the considered class, therefore,
will be to restrict the state space to a subset that does not
include states near extreme points corresponding to domination
of a cluster’s capacity by a single cell. One such policy would
be a mixed policy of the form ’

ZiL‘jSM

J€C;

vC;

]

;<K Vi =<K<M.

c

We also find that the transition in net gain from +1 to —1
occurs at a level of calls in cell 1 dependent upon the load

3The results are for the same 7 cell linear network, but with additional
clusters containing cells (6, 7, 1) and (7, 1, 2).

in other cells. At higher loads, the transition from a gain to a
shortfall occurs at a lower occupancy in cell 1. This is expected
from Fig. 4, since at higher loads cell 1 becomes a stronger
substitute with cells 2 and 3. This implies that the optimal
policy is dependent on load. At lower loads, it restricts access
to fewer states; at higher loads, it restricts access to more
states. For instance, if the optimal policy were a mixed policy
of the form above, K would decrease from M to M/C as the
load increased from O to infinity.

The optimal policy in the considered class, therefore, re-
sembles CS at low loads and CP at high loads.

VI. OPTIMAL CONTROL UNDER EQUAL LOADS

We consider a 7 cell linear network, with a 3 cell reuse
cluster, as before (Fig. 3), but to counter edge effects we
add clusters containing cells (6, 7, 1) and (7, 1, 2). This
translates into a seven-dimensional MSMR model where the
state equations are of the form Az < b, where the matrix
A and vector b depend upon the dynamic channel allocation
strategy.*

We initially compare complete sharing and complete parti-
tioning channel allocation policies, under equal loads for all
cells. Plots for both the blocking probability and average total
throughput are shown (Figs. 6 and 7). Note that all throughput
curves are increasing and concave, as expected. Under low to
medium load conditions CS performs better than CP. However,
at high loads CP approaches CS, and at very high loads does
a little better than CS.

This behavior is as suggested by Theorem 4.5. At low
and moderate loads the set of states Zcs_cp has expected
throughput above average. At high loads the same set of states
Zcs—cp has an expected value less than the expected value
for Zcp, and hence CP outperforms CS.

We now turn to the optimal policy for the model introduced
in Section II

Consider the two-dimensional state space Markov chain
for a CS policy (Fig. 8). The load line passes through all
states that generate an instantaneous throughput equal to the
average throughput. States below the load line generate less
than average total throughput, and hence we can do better
by eliminating these states as long as the new state space is
coordinate convex, preserving the product form distribution of
the Markov chain.

The control algorithm adaptively adds constraints to a CS
policy. Average total throughput on the whole state space,
and on all boundaries and extreme points, are calculated. The
routine places new constraints at extreme points with below
average total throughput, and “pushes in” these constraints
until the average total throughput on the new boundary equals
that on the new state space.

The process therefore produces a new convex and coor-
dinate convex state space that is near optimal, pursuant to
Theorem 3.2.

“The length of time required to find the optimal policy is substantial.
Searching among convex policies and approximating the discrete distribu-
tion by a continuous one reduces the complexity, but the current software
implementation of these algorithms still limits us to a small space dimension.
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Fig. 10. Gain of optimal policy over CS and CP policies.

The accuracy of the control algorithm depends on step sizes.
Smaller step sizes result in more accurate results at the cost
of greater execution time. Hence the results that we obtained
are near optimal rather than optimal.

As seen from the plots for blocking probability and total
throughput (Figs. 6 and 7), optimal control results in a gain in
average total throughput and a decrease in blocking probability

over both CS and CP, of the form expected from Theorem 4.7.
At low loads CS is optimal, since all extreme points of the state
space generate above average throughputs. At medium to high
loads we get an improvement over CS as the algorithm restricts
the maximum number of channels used by each cell through
the addition of new constraints. As we have shown in Fig. 5,
the throughput carried by the network decreases if a single
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cell carries too much traffic, and the control algorithm exactly
avoids this scenario. These restrictions increase as the load in
the network increases, with the state space finally approaching
that for CP at high load.

We show the amount of control applied at various loads in
Fig. 9. The abscissa is the difference between the maximum
number of calls allowed in any cell under the optimal policy
and the maximum number allowed under CS. The amount
of control is the same for all cells as we have a symmetric
network under equal load conditions.

No control is required at low loads. As the load increases,
the amount of control applied increases, as discussed above.
Fig. 10 shows the gain of the optimal policies over CS and
CP policies, in terms of average total throughput. At low loads
CS is the optimal policy, and hence there is no gain. As we
increase the load, the control algorithm adds new constraints,
cutting off sets of states generating less than average total
throughput. As we get rid of these states, the average total
throughput increases over that for CS.

For high loads the control algorithm restricts the state space
to an extent that it almost looks like that for CP, resulting in
decreasing differences between throughput from optimal and
CP policies. Maximum gian is achieved at moderate load, as
predicted by Theorem 4.7.

VII. PARTING THOUGHTS

This study has been restricted to the homogeneous traffic
case. Since dynamic channel allocation elicits its gains from
instantaneous differences in perceived load among nearby
cells, we expect these gains to increase in heterogeneous traffic
situations. We will explore optimal channel allocation under
unequal loads in future studies.
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