
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Does Working Memory Load Influence the Prioritization Effect by Affecting the Consistency 
of Attention?

Permalink
https://escholarship.org/uc/item/09m4d0n4

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Rahgosha, Pouria
Moss, Jarrod

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/09m4d0n4
https://escholarship.org
http://www.cdlib.org/


Does Working Memory Load Influence the Prioritization Effect by Affecting the 

Consistency of Attention? 

Pouria Rahgosha (pr677@msstate.edu) 

Jarrod Moss (jarrod.moss@msstate.edu) 

Department of Psychology, Mississippi State University 

Mississippi State, MS, 39762 USA 

 

 

Abstract 

The way working memory, attention, and long-term memory 
interact is an important question given the role these cognitive 
systems play in many tasks. In this paper, we present a study 
examining prior counterintuitive results that show that 
prioritization of some stimuli aids learning but hurts 
performance at a delayed test. In this study, we use eye tracking 
to measure attention consistency, to examine the effect of 
prioritization and working memory load on recall accuracy. 
The goal was to assess two possible explanations of the 
negative effect of prioritization on a delayed test. Our results 
indicate that prioritization reduces response time and increases 
accuracy during learning of associations. However, the 
negative effect of prioritization on a delayed test is replicated 
with participants showing higher accuracy for non-prioritized 
items during testing. Measures of attention shifting and 
consistency impact learning performance but do not explain the 
negative prioritization effect at test.  
 
Keywords: eye tracking; working memory; prioritization; 
attention; association leaning 

 

Prioritization is a fundamental cognitive strategy in which 

individuals devote their cognitive resources to processing 

some stimuli before others. It is expected that prioritization 

yields more efficient encoding of information by minimizing 

distraction from irrelevant or less crucial information and 

subsequently enhances learning through interactions with 

attention and memory (Chun & Turk-Browne, 2007). 

However, it has been observed that prioritization does not 

necessarily enhance the retention of information and does not 

improve memory recall all the time (Williamson & Moss, 

2022). This finding leads to the questions of when 

prioritization is effective for learning, and what are the 

underlying mechanisms that influence its effect on learning?  

Previous findings emphasize the importance of attention 

and working memory in prioritization (Myers et al., 2017; 

Ravizza & Conn, 2022). For example, some explanations of 

prioritization discuss the importance of internal attention to 

select items from memory to prioritize in working memory 

(Myers et al., 2017). In the time-based resource sharing 

theory of working memory, items are maintained in working 

memory via attentional refreshing (Barrouillet & Camos, 

2021), and prioritized items might be more likely to be 

selected to be maintained using this attentional refreshing 

mechanism. This prior research supports the idea that people 

can successfully prioritize some information in working 

memory using attention resources. 

However, in an association learning task, Williamson and 

Moss (2022) found that although prioritizing some items 

allowed people to respond faster and more accurately during 

initial learning, at a delayed test, those prioritized items were 

recalled at lower rates than non-prioritized items. One 

proposed explanation from this prior work was related to skill 

acquisition that interfered with recalling the items later at a 

delayed test. However, another potential mechanism is 

related to the consistency of attention (Unsworth & Miller, 

2021) to prioritized items during learning. The current 

experiment was designed to examine whether consistency of 

attention or skill acquisition is a better explanation of these 

prior results. 

Prioritization in an Association Learning Task 

Williamson and Moss (2022) introduced a prioritization 

manipulation into an association learning task that has been 

used to examine contributions of reinforcement learning and 

working memory to the learning of associations (Collins & 

Frank, 2012). In their study on prioritization, participants 

engaged in an association learning task where they had to 

learn the correct key press ("A," "S," or "D") for different 

stimuli via trial and error. Each category consisted of 3, 4, or 

6 stimuli (i.e., set size), and correct key presses were 

rewarded with points with more points being awarded for 

stimuli designated as prioritized. The learning phase entailed 

presenting participants with blocks of different set sizes and 

some images were designated for prioritization with blue 

borders (1 prioritized item in set size 3, 2 items in set size 4, 

and 3 items in set size 6 blocks). Within a block, participants 

saw 3-6 items from a single category in random order with 

each item being presented 13 times. Following this learning 

phase, after a delay, participants completed a surprise testing 

phase, where all previously encountered images were tested 

individually in random order, with no feedback provided. The 

primary result of concern here is that prioritized item-key 

associations were recalled at a lower rate than non-prioritized 

items in the testing phase for set sizes 3 and 4.  

Williamson and Moss (2022) describe a skill acquisition 

framework that can explain these results. This framework 

emphasizes the transfer of declarative-based memory to 

procedural memory in which learning associations after some 

trials result in an automatic process of responding via 

procedural memory instead of relying on declarative memory 

retrieval for producing answers. This explanation is 

consistent with the ACT-R theory of declarative memory 
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(Anderson et al., 2004) in which the likelihood of retrieving 

a declarative memory is based on the frequency and recency 

with which it has been perceived or retrieved. Well-learned 

associations would become proceduralized via a process 

called production compilation in ACT-R into production 

rules eliminating the need for the declarative representation 

to be retrieved later in a block of trials. Because these 

associations were not being strengthened by memory 

retrieval, they were less available to use during testing. The 

proceduralized responses available during learning were also 

not available at test because the task changed from learning 

associations in a category-based block to testing on all stimuli 

presented in random order. Proceduralized representations 

could be specific to the category learning context, which is 

supported by research showing that when the test is presented 

in the same category-by-category manner as learning, then 

accuracy is higher (Newlin & Moss, 2020). This skill 

acquisition explanation explains reduced response accuracy 

for prioritized items at test by the decrease in retrieval 

attempts that happens after an association is proceduralized 

in the learning phase. 

An alternative mechanism for this negative effect of 

prioritization on test performance is a consistency of attention 

explanation. According to this explanation, increasing the set 

size reduces the consistency of attention on each stimulus 

since participants need to switch their attention from one item 

to another during a restricted time to be capable of 

maintaining a representation of the associations in working 

memory and accessible long-term memory. Consistency of 

attention has been defined as the stability of attention during 

a task and can be seen as a distinct concept from the intensity 

of attention (Unsworth & Miller, 2021). Levels of 

consistency are potentially influenced by factors including 

working memory capacity, and it has been found that 

consistency of attention, as measured by pupil dilation, 

reduces attention lapses and increases learning in a paired-

associates task (Unsworth & Miller, 2021). In another study, 

the impact of sustained attention has been shown to result in 

profound memory recall (Rahgosha, Hadinezhad, & 

Hosseini, 2023; Rahgosha, Hadinezhad, Hosseini, et al., 

2023). In another study prioritization by covert spatial 

attention shifts was examined,  with both trial-by-trial 

fluctuations of sustained attention and prioritization via 

covert spatial attention having an impact on long-term 

memory accuracy (deBettencourt et al., 2021). However, 

prioritizing some stimuli to maintain them in working 

memory may decrease the consistency of attention and 

interfere with long-term learning by promoting frequent 

switches of attention back to and between prioritized items. 

Just as allocating attention and other cognitive resources to 

problem solving may interfere with long-term learning due to 

limited cognitive capacities such as working memory 

(Sweller, 1988), prioritizing items in working memory may 

interfere with retaining those items in declarative memory. 

There are a number of potential mechanisms by which this 

may occur, but one possible mechanism can illustrated within 

the time-based resource-sharing (TBRS) theory of working 

memory (Barrouillet & Camos, 2021). The TBRS theory 

states that working memory traces vanish gradually as 

attention switches away from them such that maintaining an 

item in working memory relies on a process of attentional 

refreshing to reactivate a decaying memory trace. As 

described by the TBRS theory, cognitive load can be 

manipulated by manipulating either the number of elements 

to be maintained or the time allowed to process them, where 

cognitive load = Nt /T. In this formula, N corresponds to the 

number of items that should be processed, t represents the 

amount of time required for processing each single stimulus, 

and T is the total amount of time given to refresh all items. 

The cognitive load would be increased if N or t are increased 

while T is kept constant (Barrouillet & Camos, 2021). Other 

research has shown that attentional refreshing alone is 

unlikely to improve long-term memory for that information, 

but instead the action of elaborative processes may be 

required in addition to refreshing (Bartsch et al., 2018). 

Therefore, if items were refreshed to maintain them in 

working memory but not maintained in activated state long 

enough for elaborative processes to improve long-term 

memory, then they may be accessible from working memory 

without improving long-term memory. Non-prioritized items 

may not be maintained in working memory (or at least be less 

likely to be maintained) and instead retrieved from long-term 

memory in this case. This allocation of resources may 

succeed in making prioritized items more accessible in the 

short-term while making them less accessible than non-

prioritized items at a delayed test. 

Current Study 

In the current study, the goal was to attempt to measure 

shifts of attention between stimuli by providing a task 

environment that encouraged overt attention shifts 

measurable with eye tracking instead of the covert attention 

shifts that might underly performance in the task as it is 

traditionally used. To this end, all stimuli to be learned for a 

block of the task were present on the screen during the entire 

block as shown in Figure 1. Prioritized items were marked 

with a blue border, and one item was specified by a red border 

as the item to which participants should respond on the 

current trial. Upon response, there was a 500-ms inter-trial 

interval before the red border appeared around another item. 

This inter-trial interval may be a time when participants 

would shift attention to other stimuli to aid in maintenance. 

Eye tracking was used for measuring the number of times 

participants began to fixate on one of the stimuli, with each 

stimulus serving as region of interest (ROI). The goal was to 

measure how often attention switched between each ROI and 

how long the ROI was attended on each switch. Each 

stimulus in Figure 1 is an ROI. Gaze data was collected 

during each block of the learning phase of the study and 

segmented into fixations. Each time the ROI being fixated on 

was changed, an entry into a new ROI was recorded (e.g., 

switching from looking at the top-left ROI to the top-middle 

ROI was an entry into the top-middle ROI). All consecutive 

fixations falling within the same ROI were summed together 
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to obtain a measure of how long attention was maintained on 

that ROI before attention was switched to another ROI. Two 

protentional measures of consistency were considered: 

number of entries into an ROI, and the mean duration of 

attention on each ROI (i.e., summed fixation time divided by 

the number of entries into the ROI).  

 

 
Figure 1: Example of a block in the learning phase 

 

We hypothesized that while prioritization enhances 

performance during learning, our results would replicate the 

effect that prioritization decreases performance at test. 

Second, the decrease in performance at test for prioritized 

items will be explained by measures of attention consistency. 

The skill acquisition and the attention consistency 

explanations make different predictions about what should be 

observed in the eye tracking data. 

For the skill acquisition hypothesis, there should be fewer 

attention shifts to prioritized stimuli if they are 

proceduralized faster than non-prioritized stimuli. In 

addition, the number of shifts to stimuli would be weakly 

positively correlated with memory at test because each of 

these shifts would reflect retrieval of the item from memory 

(at least before the item is proceduralized). 

The attention consistency explanation predicts that more 

frequent shifts of attention to an item with each shift being of 

lower duration would be negatively associated with memory 

accuracy at test. Prioritization would affect consistency 

which in turn affects test performance. In other words, there 

is a negative effect of prioritization on consistency of 

attention and this mediates the relationship between 

prioritization and test accuracy. 

To sum up, we tried to examine which of these 

explanations best accounts for the decreased accuracy of 

prioritized items at a delayed test by examining the effect of 

prioritization on attention consistency measured via eye 

tracking. 

Method 

Design 

The association learning task was composed of a learning 

phase, followed by a testing phase which occurs after a delay. 

During the learning phase, the set size (3, 4, 5, and 6) and 

whether an item was prioritized were manipulated within 

participants.  

For the learning phase of the association learning task, 20 

categories of stimuli were used with six different images 

available for each category. In total, there were 20 blocks 

containing between 3 and 6 images from a single category. 

There were five blocks at each level of set size (e.g., a block 

may contain different animals while another other block 

consists of different types of fruit). The task was to learn the 

associations between three keys on the keyboard (A, S, and 

D) and each stimulus in a block. In each block, two items 

were prioritized and awarded twice as many points for correct 

responses as did non-prioritized items.  

For the delay, participants completed the operation span 

task (Unsworth et al., 2005). which lasted 10-20 minutes (M 

= 16). The task is designed as a measure of working memory 

capacity, but it was used here primarily as a delay between 

learning and test, and therefore, the data from this task are not 

reported in this paper. 

Participants 

Based on the prioritization effect during the testing phase 

reported by Williamson and Moss (2022), a power analysis 

was conducted based on monte carlo simulations of the 

interaction effect between prioritization and set size in this 

prior study. This power analysis that yielded a sample size 
requirement of N = 50 for a significance level of α = 0.05 

with power of 0.80. A sample of 65 undergraduate students 

completed the study for course credit or for payment. 

An a priori exclusion criterion was adopted to exclude 

participants who did not perform well on the learning task. 

Participants who had mean accuracy below 75% for set size 

three during the last three trials of blocks during the learning 

phase were excluded (N = 3). This criterion was the same as 

that used by Williamson and Moss (2022). 

During exploration of the data, two additional participants 

were excluded for low quality data. One participant 

responded to more than 70% of testing trials in under 300 ms. 

The other participant failed to respond within the 1.5-s time 

limit on more than 70% of testing trials. These exclusions 

resulted in a final sample of 60 participants. 

Procedure 

During a block of the learning phase, all images for that block 

always remained on the screen and two of them were 

specified, using blue borders around them, as the items that 

need to be prioritized as shown in Figure 1. The locations for 

prioritized items were randomized across blocks. Participants 

had 1.5 s to respond to that image and were then provided 

with correct/incorrect feedback via audio during a 500-ms 

intertrial interval before another stimulus was randomly 

selected to be responded to. Feedback was 0 points for 

incorrect responses, 1 point for correct responses to 

nonprioritized items, 2 points for correct responses to 

prioritized items, and a buzzing sound for when the 

participant did not press a key. The block continued until all 

stimuli had been presented 13 times. 
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Prior to the start of the learning blocks, participants 

completed a practice block to learn the task. They were 

provided with a set of three images and attempted to learn 

associations. They only proceed to the main experiment after 

reaching 80% accuracy for each of the three stimuli over the 

last five presentations of each stimulus. Instructions for the 

task were repeated after all stimuli had been presented ten 

times without meeting criterion. This practice procedure 

ensured that participants understood the instructions. 

After the learning phase, the operation span task was 

presented following the procedure of Unsworth et al. (2005). 

After the delay task, participants completed a surprise testing 

phase. During the testing phase, all images from the learning 

phase were presented one at a time in random order with no 

accuracy feedback provided. Each image was presented four 

times with a 1.5-s response time limit and a 500-ms intertrial 

interval. The stimuli were not presented as blocks during the 

testing phase and participants were instructed to press the 

correct key that they learned earlier in the experiment. 

Analysis Approach 

All analyses were conducted with generalized linear mixed 

effects models. Random intercepts for participants and items 

were included. Random slopes for all within-participant and 

within-item manipulations were also included. If the model 

did not converge or reported a singular fit, then the random 
effects structure was simplified by removing random slopes 

that accounted for little variance (Matuschek et al., 2017). 

Results 

Prioritization in the Learning Phase 

Accuracy and response time both were examined during the 

learning phase to investigate the prioritization effect. Based 

on previous work with this association learning task, larger 

set sizes should be associated with lower accuracy and longer 

response times (Collins & Frank, 2012). In addition, prior 

work with the prioritization variant of this task found that 

prioritization affected response time during learning more so 

than it affects accuracy (Williamson & Moss, 2022). Mean 

accuracy for the learning phase is shown in Figure 2. Using a 

generalized linear mixed model to examine accuracy 

including set size and priority condition as predictors, the 

results indicated that prioritized items were responded to 

more accurately than non-prioritized items, z = 2.59, p = .009 

and that larger set sizes had lower accuracy, z = -13.13, p < 

.001. There was not a significant interaction between set size 

and prioritization. 

Mean correct response time is shown in Figure 3. A linear 

mixed effects model with set size and priority condition 

showed that a larger set size was associated with slower 

response times, t = 10.58, p < 0.001, and prioritized items 

were responded to faster than non-prioritized items, t = -4.87, 

p < 0.001. There was no interaction between set size and 

prioritization. 

 

 

 
Figure 2: Mean accuracy during the learning phase. Error 

bars indicate one standard error of the mean. 

 

 
Figure 3: Set size Versus response time for prioritized and 

non-prioritized stimuli. 

Prioritization in the Testing Phase 

Accuracy in the testing phase is shown in Figure 4. 

Prioritization and set size were used to predict accuracy in a 

generalized mixed effects model. Increasing set size was 

associated with increasing accuracy, z = 3.01, p = .002, and 

prioritized items were recalled at a lower rate than non-

prioritized items, z = -2.02, p = .04. There was no interaction 

between priority and set size. Testing response time was also 

examined in a similar model, and prioritized items had slower 

response times, t = -2.22, p = .03. 

 
Figure 4: Mean accuracy versus set size for prioritized and 

non-prioritized stimuli. 
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Eye Tracking and Attention Consistency 

Eye-tracking was used to examine the effect of consistency 

in our models as a mediator. The primary measures were 

number of entries into an ROI and consistency as described 

earlier. Table 1 shows the descriptive statistics for these 

measures. It appears that prioritization increased the number 

of shifts to an ROI (number of entries), but the amount of 

time fixating on those ROIs per shift is similar for both 

prioritized and non-prioritized items. 

 

Table 1: Descriptive statistics for eye-tracking measures. 

 

Set 

Size 

Number of 

Entries 

Total Fixation 

duration (s) 

Consistency 

(s / entry) 

 N-P P  N-P P N-P  P 

3 
12.98 

(7.4) 

13.62 

(7.9) 

15.08 

(14.0) 

16.11 

(14.1) 

1.32 

(2.2) 

1.31 

(1.8) 

4 
15.40 

(9.2) 

17.08 

(10.4) 

14.80 

(14.3) 

16.43 

(15.0) 

0.92 

(1.0) 

0.96 

(1.0) 

5 
16.21 

(10.1) 

17.61 

(11.8) 

14.71 

(15.0) 

16.33 

(16.7) 

0.85 

(0.6) 

0.86 

(0.7) 

6 
18.28 

(11.5) 

20.27 

(12.4) 

15.19 

(13.9) 

17.21 

(16.1) 

0.78 

(0.4) 

0.84 

(0.8) 

N-P = non-prioritized, P = prioritized, SD in parentheses 

 

The primary research question was whether the skill 

acquisition hypothesis or the attention consistency hypothesis 

is a better explanation of the decreased accuracy of prioritized 

items during the testing phase. As described earlier, for the 

skill acquisition hypothesis, there should be fewer attention 

shifts to prioritized stimuli if they are proceduralized faster 

than non-prioritized stimuli and a positive correlation 

between shifts and memory. The attention consistency 

explanation predicts that more frequent shifts of attention to 

an item with each shift being of lower duration would be 

negatively associated with memory accuracy at test. 

First, the consistency measure was examined, priority 

condition and set size were included as predictors in a linear 

mixed effects model predicting consistency. Higher set sizes 

led to lower consistency, b = -0.14, t = -10.88, p < .001, but 

priority condition was not associated with consistency, b = 

0.03, t = 1.35, p = .17. Consistency was then added to the 

model predicting test accuracy from set size and priority 

condition reported earlier, but it was not a significant 

predictor of test accuracy, z = .40, p = .68. Consistency was 

further tested as a mediator of priority’s effect of test 

accuracy, but there was not a significant mediation 

relationship, p = .70. The lack of an effect of prioritization on 

consistency as well as the lack of mediation is not consistent 

with either explanation. 

The number of entries into an ROI was examined next 

using a similar approach. As set size increased, the number 

of entries increased, b = .18, t = 14.45, p < .001, and 

prioritized items had more entries than non-prioritized items 

b = .13, t = 5.37, p < .001. However, when number of entries 

was added to the model predicting test accuracy from set size 

and priority condition, it was not associated with test 

accuracy, z = -1.06, p = .28. Number of entries was further 

tested as a mediator of priority’s effect of test accuracy, but 

there was not a significant mediation relationship, p = .30. 

The positive effect of prioritization on number of entries is 

consistent with the attention consistency explanation, but 

there was not a mediation of the effect of priority on test 

performance as that explanation would predict. 

Even though the eye tracking measures of attention shifting 

did not impact testing accuracy, their impact at learning was 

assessed. One possibility is that the task just was not good at 

measuring these attention shifts because the shifts of attention 

were still occurring covertly. First, the consistency measure 

was added to the model examining learning accuracy. 

Increasing consistency was associated with lower learning 

accuracy, z = -3.81, p < .001. Priority and set size were still 

significant predictors in this model. Consistency also did not 

mediate the effects of either priority or set size on learning 

accuracy. 

The number of entries measure was also examined by 

adding it to the original learning accuracy model. Increasing 

number of entries was associated with decreased learning 

accuracy, z = -5.25, p < .001. Priority and set size were still 

significant predictors in this model. Number of entries also 

did not mediate the effect of either priority, p = .30, or the 

effect of set size on learning accuracy, p = .30.  

Finally, these two eye tracking measures were added to the 

learning response time model separately. An increasing 

number of entries increased response time, t = 3.66, p = < 

.001, but consistency did not affect learning response time, t 

= 1.85, p = .07. The measures of attention based on the eye 

tracking data therefore had an impact on learning even if they 

did not explain effects on test accuracy. 

Discussion 

Our results support the idea that prioritization facilitates 

learning of associations as it reduces response time and 

increases accuracy compared to non-prioritized stimuli in the 

learning phase. In addition, the negative impact of 

prioritization on long-term memory was replicated. 

Therefore, the results are mostly consistent with those of 

found by Williamson and Moss (2022). The results are 

consistent with participants used attentional refreshing or a 

similar mechanism to prevent decay of working memory 

representations for stimuli, including shifting attention to 

these ROIs more often. This attention could in turn lead to 

higher accuracy and faster response time for prioritized items 

during the learning phase. 

However, examining the effect of attention shifts and 

consistency on learning generally found that increased shifts 

and increased consistency decreased learning accuracy and 

increased response time. The directions of these effects are 

inconsistent with the idea that these attention shifts are aiding 

learning. One potential limitation of these analyses is that the 

direction of causation is uncertain because attention shifts 

were not a manipulated variable. It may be that participants 
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increased attention on items that they were struggling to learn 

the associations for. 

It also appears that the increased shifts of attention did not 

alter the average duration of attention to prioritized stimuli as 

shown by the lack of difference in the consistency measure 

between prioritized and non-prioritized stimuli. Working 

memory load as manipulated by set size did have a strong 

impact on the attention shifting and consistency measures. A 

smaller number of stimuli enables participants to spend 

higher processing time on each item instead of switching 

between items frequently to refresh their mental 

representations. Nonetheless, this consistency was not a 

significant mediator of prioritization on test accuracy. 

Neither of the two potential explanations for the reduced 

accuracy of prioritized items at a delayed test was strongly 

supported. For the skill acquisition hypothesis, there should 

be fewer attention shifts to prioritized stimuli if they are 

proceduralized faster than non-prioritized stimuli. The 

opposite was found. The attention consistency hypothesis 

predicted the increase in shifts to stimuli, but the predicted 

decrease in the average fixation duration per attention shift 

(i.e., the consistency measure) was not found. Neither the 

number of entries nor the consistency measure were 

associated with test performance and neither mediated the 

effect of priority at test. One unexpected finding that could 

have limited the ability to detect this effect was the low 

performance at test. 

Test performance, especially for lower set sizes, was near 

chance levels, and it was much lower than the 60-80% 

accuracy seen in the study by Williamson and Moss (2022). 

Therefore, one limitation of our experiment was the observed 

floor effect in the testing phase. This difference in results may 

be due to the increase in the number of blocks that were 

presented to participants. Increasing the number of blocks to 

20 from the original study’s 15 blocks did increase the 

number of items substantially. Another possibility is that 

participants learned associations in relation to the position of 

the image or its position relative to other images. This spatial 

layout was not preserved at test. This floor effect may have 

limited variability in test performance and impacted the 

ability to detect a mediating effect. 

There were other differences in results from this prior 

study. Williamson and Moss (2022) found an interaction 

between priority and set size on both learning and test 

accuracy. They found that learning accuracy was only 

impacted by prioritization at set size 6 and that the negative 

effect of prioritization at test did not occur for set size 6. 

These differences are possibly due to the differences in 

design. They changed the number of prioritized items from 1 

to 3 as set size increased form 3 to 4 to 6, but in the our study 

the number of prioritized items were kept constant at two 

prioritized items. Therefore, their interactions may have been 

driven by the number of prioritized items rather than changes 

in set size. 

Another potential limitation of the current study is that it is 

not possible to know how successful the task design was at 

making attention shifts overt and measurable with eye 

tracking. There were significant relationships observed 

between the eye tracking measures and learning performance, 

but it is possible that many attention shifts were still 

occurring covertly. 

While set size decreased learning accuracy, it also 

counterintuitively led to increases in testing accuracy as 

shown in Figure 4. This result is consistent with that found 

by Collins (2018), who discusses how a model of association 

learning based on reinforcement learning and working 

memory can explain this kind of result. In that model, 

performance during learning reflects learning associations 

and holding them in working memory and the gradual 

learning of associations via reinforcement learning. 

However, associations correctly held in working memory 

during the learning phase reduce the reward prediction error 

that drives reinforcement learning. Therefore, when the 

contents of working memory are no longer available at a 

delayed test, then only items correctly learned via 

reinforcement learning can be responded to accurately. If the 

prioritization manipulation makes an item more likely to be 

held in working memory, then this model could explain the 

negative prioritization effect at test. This model does not 

incorporate a role for episodic memory, which limits its 

ability to explain why testing manipulations such as whether 

stimuli are blocked or presented in random order impacts 

testing accuracy (Newlin & Moss, 2020). It is therefore 

difficult to explain the large difference in testing accuracy 

between the study by Williamson and Moss (2022) and our 

study using this model. 

During the testing phase, participants possibly benefited 

from bigger set sizes given that they were more available 

mnemonics which helped to recall patterns of associations 

more efficiently and methodically. The elaborative theory 

supports this idea and emphasizes the importance of 

mnemonics in learning associations. This theory maintains 

that patterns with more mnemonics are learned and recalled 

better compared to the learned patterns with limited 

elaborations (Bradshaw & Anderson, 1982). 

Future planned work modifies our testing phase to preserve 

the spatial location of items at test to boost test accuracy. 

Alternatively, using fewer blocks which results in a shorter 

experiment time and fewer stimuli to be recalled may help 

test accuracy. Future studies can also increase the number of 

prioritized items to examine how consistency changes when 

prioritized items increase.  

In conclusion, our results indicate that prioritization 

facilitates the learning of associations but replicates a 

negative effect of prioritization at a delayed surprise test. 

Currently, none of the hypothetical mechanisms explored in 

this study account for the pattern of results observed, but we 

have identified some potential fruitful future research that 

may provide some insight into how these memory systems 

and attention interact. 
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