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Abstract

Interaction of Higher-Order Laser Modes with Underdense Plasmas

by

Blagoje Zoran Djordjevi¢

Doctor of Philosophy in Physics

University of California, Berkeley

Doctor Carl B. Schroeder, Co-chair

Professor Stuart D. Bale, Co-chair

Laser-plasma interactions have become a rapidly growing area of modern plasma physics
and an important sub�eld of it is laser-plasma acceleration. Using high-intensity lasers, one
can drive a plasma structure with electric-�eld gradients three orders of magnitude higher
than the gradients found in traditional, radio-frequency accelerators. This promises to enable
great technological advances in medicine, spectroscopy, and experimental particle physics,
as well as to open up new avenues of studying matter under extreme conditions.

An important aspect of laser-plasma acceleration is how the transverse electromagnetic
�eld of the laser a�ects and drives an accelerated particle via longitudinal waves in the
plasma. To understand how the laser interacts with the plasma, it is necessary to understand
that the transverse characteristics of the laser dictate its longitudinal propagation dynam-
ics. The transverse radiation �eld of the laser pulse can be described in various ways and
decomposed into bases of orthogonal modes. The presence of multiple higher-order modes,
copropagating through the plasma, leads to mode beating. Likewise, these modes propagate
at di�erent velocities through the plasma and are susceptible to nonlinear interactions with
the plasma to varying degrees.

The primary objective of this thesis is to understand how higher-order laser modes in-
teract with the plasma and with one another. In this work, we discuss the detrimental
consequences that mode beating may have on a laser-plasma accelerator and how higher-
order modes can be �ltered out using specially designed plasma structures. Also discussed
is how higher-order mode content can be controlled and utilized to shape and control the
wake�elds. These ideas are extended to the concept of the plasma undulator as a plasma-
based light source. Lastly, we discuss how nonlinear e�ects can excite higher-order mode
content as path to understanding laser pulse break up into multiple �laments.
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bation ñ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.18 Simulation test varying a0, r0, and n0 but keeping P/Pc �xed. . . . . . . . . . . 157
8.19 Filamentation of a0 = 1, r0 = 50 µm pulse in n0 = 5× 1018 cm−3, P/Pc = 13.8. . 158
8.20 Filamentation of a0 = 1, r0 = 50 µm pulse in n0 = 1019 cm−3, P/Pc = 27.6. . . . 160
8.21 High resolution simulation of �lamentation for a0 = 1, r0 = 50 µm, and n0 =

5× 1018 cm−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



ix

List of Tables

7.1 Comparison of modern light sources. . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1 Parameter scan of a0, n0, and r0 for �xed P/Pc = 13.8. . . . . . . . . . . . . . . 156



x

List of Variables

Variable De�nition Units

a Normalized laser vector potential ∅
a0 Normalized laser vector potential amplitude at focus ∅
A Laser vector potential statV s cm−1

am,n a for Hermite-Gaussian mode (m,n) ∅
aµ,ν a for Laguerre-Gaussian mode (µ, ν) ∅
B cmagnetic �eld T
c Speed of light cm/s
c.c. Complex conjugate ∅
e Napier's number ∅
E Electric �eld amplitude statV/cm
E Electric �eld vector statV/cm
Eeff Energy e�ciency of higher-order modes ∅
f General distribution function of particles (cm−3 )(g cm/s)−3

fs General distribution function of particles of species s (cm−3 )(g cm/s)−3

i Imaginary unit ∅
j Current density A/cm2

k Laser wave number cm−1

kdi� Beat frequency k1 − k2 rad/s
kmn Laser wave number of Hermite-Gaussian mode (m,n) cm−1

kp Plasma wave number cm−1

ksum Sum of wavenumbers k1 + k2 rad/s
ku Undulator wave number cm−1

kx Fourier conjugate of spatial variable x cm−1

kβ Betatron wave number cm−1

kµν Laser wave number of Laguerre-Gaussian mode (µ, ν) cm−1

k⊥ Wavenumber of mode (m,n) or (µ, ν). cm−1

K General leaky channel wave number cm−1

L Laser pulse length cm
Lc Length of resonator cavity cm
Ldeph Dephasing length scale cm

Continued on next page



xi

� continued from previous page �

Variable De�nition Units

Ldepl Depletion of laser energy length scale cm
Ldisp Characteristic dispersion length for GVD cm
Le� E�ective separation of gratings on di�raction plate cm
LGVD The e�ective length of the laser pulse after GVD cm
Ls,m1,n1,m2,n2 The slippage length between two modes cm
me Electron rest mass g
ms Particle mass of species s g
M2 Laser pulse shape metric ∅
n Plasma density cm−3

n0 Background plasma density on axis cm−3

nb Bunch density cm−3

N Number of particles ∅
Nd Number of di�raction grooves per unit length ∅
Ns Number of particles of species s ∅
p Particle momentum g cm /s
Pµ The modal power contribution of mode µ erg/s
Pc Critical power for relativistic self-focusing erg/s
q Fundamental charge C
qs Charge of species s C
r Radial coordinate cm
r0 Laser spot size at focus cm
rc Radius of curvature cm
rcut Characteristic truncation width for a leak channel cm
rexp Characteristic radius of exponentially leaky channel cm
re� E�ective radius of exponentially leaky channel cm
rj Characteristic radius of jinc pro�le cm
rLG Characteristic radius of an LG3 pro�le cm
rs Laser spot size cm
R Parabolic channel radius cm
S Sensitivity to slippage of a higher-order mode ∅
t Temporal coordinate s
Tcm Transverse leakage or tunneling rate of mode cm ∅
u Normalized momentum amplitude ∅
u Normalized momentum vector ∅
v Velocity cm/s
vb Velocity of electron bunch cm/s
vg Group velocity of laser cm/s
vgmn Group velocity of Hermite-Gaussian mode (m,n) cm/s
vgµν Group velocity of Laguerre-Gaussian mode (µ, ν) cm/s
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Variable De�nition Units

vlaser Group velocity of general laser in a plasma cm/s
vp Phase velocity of laser cm/s
vφ Phase velocity of plasma wave cm/s
x Horizontal transverse coordinate cm
y Vertical transverse coordinate cm
z Longitudinal coordinate cm
Zµ Characteristic propagation distance of mode µ cm
ZR Rayleigh range cm
α Wavefront curvature ∅
αkp Tuning parameter of linear taper for kp ∅
αr Tuning parameter of linear taper for r ∅
β Normalized velocity ∅
β∗x,y Bunch optical amplitude function bunch for x, y cm
γ Lorentz factor ∅
Γµ E�ective tunneling rate of mode (µ, 0) cm−1

ε Normalized electron bunch emittance cm
ζ Longitudinal comoving variable cm
ζ0 Initial position of laser in comoving frame cm
η Index of refraction ∅
θ Angle rad
θin Angle of incidence rad
λ Laser wavelength cm
λc Central wavelength of a laser pulse cm
λd Plasma skin depth cm
λp Plasma wavelength cm
λu Undulator wavelength cm
λs Synchrotron radiation wavelength cm
λβ Betatron wavelength cm
ρ Charge density C/cm−3

σi Collider interaction cross-section cm
σx,y RMS bunch spot-size for x, y cm
σx′,y′ RMS bunch divergence in trace space for x, y cm
σu RMS bunch divergence mrad
π 3.14159 ∅
τ Propagation variable cm
φ Normalized scalar potential ∅
Φ Electric scalar potential statV
Φbeat Ponderomotive potential due to beating statV
ϕ Laser phase ∅
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Variable De�nition Units

ϕ0 Initial laser phase ∅
χ Frequency chirp of laser pulse ∅
ω Laser frequency rad/s
ωc Central frequency of a laser pulse rad/s
ωdi� Beat frequency ω1 − ω2 rad/s
ωp Plasma frequency rad/s
ωsum Sum of wavenumbers ω1 + ω2 rad/s
ωt Fourier-conjugate of temporal variable t rad/s
ωu Undulator frequency rad/s
ωs Synchrotron radiation frequency rad/s
ωβ Betatron frequency rad/s
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Chapter 1

Introduction

1.1 Background and Motivation

The purpose of this dissertation is to explore how the transverse properties of the drive laser

can a�ect Laser Plasma Accelerators (LPAs) and how these properties may be controlled to

enable new possible avenues of research and applications of LPAs. The �eld of LPA physics,

also known as laser-plasma wake�eld acceleration, was started by Dr. John M. Dawson and

his postdoc Dr. Toshiki Tajima in their landmark 1979 paper Laser Electron Accelerator [1].

In that work they proposed that an intense laser pulse propagating through an underdense

plasma would in turn generate a copropagating plasma wave in its wake that could be used

to accelerate an electron bunch. With the advances of laser technology in the late 1980s,

LPA research rapidly became possible.

Traditional accelerators use radio-frequency (RF) cavities to accelerate the guided parti-

cle bunch via an electric impulse. For example, the Large Hadron Collider (LHC) has 16 RF

cavities, each several meters in length, cooled with liquid Helium and powered by 400 MHz

klystrons. The acceleration gradients generated by traditional RF accelerators are strongly

limited by the RF or multipactor breakdown limit, on the order of 100 MV/m [2]. In this

limit, the electric �eld becomes su�ciently large that �eld emission of electrons from the

cavity wall is triggered, potentially causing a problematic Townsend avalanche. This cri-

terion can be heuristically described by the Kilpatrick criterion, ω = 10.3E2 exp(−8.5/E),

which gives the maximum possible frequency of an RF wave, where ω is the radio-frequency
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measured in MHz and the electric �eld E in MV/m [3]. Inverting this equation and making

additional experimental considerations, we obtain an expression for the maximum possible

�eld in an RF accelerator, E = 220[ω(GHz)/2π]1/3 MV/m. This implies a theoretical max-

imum of about 160 MV/m for the LHC cavity �elds, while in reality they are only several

tens of MV/m.

Plasma-based accelerators are only limited by the cold wave-breaking limit, which, in

the nonrelativistic case, is characterized by a maximum possible �eld amplitude of E0 =

cmeωp/qe, where me and qe are the electron mass and charge, respectively, and ωp is the

plasma frequency [4]. Close to this limit the steepening nonlinearity of a plasma wave

eventually crosses a threshold after which mixing destroys coherent oscillations and generates

multistream �ows of electrons [5]. For a typical, plasma-based structure, with background

electron plasma densities on the order of n0 = 1017 − 1019 cm−3, we have acceleration

gradients on the order of E0 ' 10 − 100 GV/m, which is approximately three orders of

magnitude greater than in a modern, RF-based accelerator [6]. With such strong accelerating

�elds one could, in theory, build a table-top accelerator competitive with linear accelerators

(LINACs) such as those at SLAC [7] and XFEL [8], which are both on the order of several

kilometers long. A plot of electric �eld versus cavity frequency can be seen in Fig. 1.1,

comparing traditional accelerators to plasma-based ones. If achieved and perfected, plasma-

based acceleration would radically change and further advance all basic scienti�c research

that depends on electron acceleration.

Initially limited by the fact that laser technology in the late 1970s and early 1980s was not

powerful enough to generate the necessary laser amplitude intensities, early work looked at

alternative methods such as the beat wave accelerator concept [10]. However, the invention

of chirped-pulse ampli�cation (CPA) opened up the possibility of a direct LPA scheme [11].

The CPA technique allows for the creation of high-intensity lasers, I > 1018 W/cm2, by

stretching a low-energy, ∼mJ, ultra-short laser pulse from femtosecond to picosecond scales,

amplifying it, and then recompressing it with specialized gratings. After the introduction

of CPA technology, LPA research was pursued in earnest and relatively low-quality electron

beams with exponential distributions peaked at 100 MeV were produced with approximately

1 nC of accelerated charge [12]. In 2004 several groups were able to generate high-quality
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Figure 1.1: The �eld gradients of di�erent LINACs and their relation to their respective
wavelength and frequency, taken from Ref. [9].

beams with peak energies again on the order of 100 MeV, with ≥100 pC and low energy

spread [13, 14, 15]. The GeV threshold was eventually passed in 2006 [16] and the community

expects to produce 10 GeV beams, having just achieved 7.8 GeV in 2019 [17].

While LPA research continues to rapidly advance, it can be characterized by the following

state-of-the-art experiments. In 2019 the highest energy electron bunch generated via LPA

reached 7.8 GeV, with total peak charge of 420 pC and divergence of σu ≈ 0.6 mrad rms [17].

This was achieved using a 20 cm long plasma discharge capillary with a plasma density of

n0 ≈ 3.0×1017 cm−3 and channel matched radius of rch = 69 µm. Novel in this case was the

use of a preceding heater laser pulse that reduced the channel radius from approximately 101

µm to 69 µm. The Ti:Sapphire generated drive laser at λ = 0.815 µm was approximately

850 TW in power, giving a0 = 8.5 × 10−10 λ[µm] ' 2.2, and had a spot size of r0 = 60 µm

and duration of L/c = 35 fs. In general, LPA generated bunches typically ranging 10 - 1000

pC in charge, possess a normalized emittance on the order of ε = 1 mm mrad, and a relative

energy spread of ∆E/E =1 - 10% [9]. However, even higher bunch charges and smaller

emittances have been achieved, e.g., ∼ 1 nC and ∼ 1 µm rad [18]. A note of comparison:

the Stanford Linear Collider (SLC) in 1990 readily produced bunches with 5× 1010 particles

(∼10 nC of charge) at about 120 Hz with emittances of ε . 1 mm mrad, energies around 50
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GeV, bunch duration ∼ 10 ps, and energy spread ∆E/E < 1% [19].

The practical motivation for LPA research is primarily driven by three goals: medical

applications, next-generation light sources, and plasma-based colliders. Traditional radiology

uses x-rays to destroy tumors but, in the process, also irradiates signi�cant areas of collateral

tissue outside the target area [20]. The beam-based radiological approach deposits energy in

a much more localized area described by a Bragg peak and a comparison of the various dosage

pro�les can be seen in Fig. 1.2 [21]. The second application is an advanced light source. The

generation of radiation can be achieved by either coupling an LPA-produced electron bunch

into a magnetic undulator (a schematic of which can be seen in Fig. 1.2), coupling an RF-

accelerated bunch into a plasma undulator, or a two-fold plasma-based system. Traditional

undulators, on a circular or linear beam-line, as well as Free Electron Lasers (FELs), have

been a great boon to the scienti�c community at large. A plasma-based system promises

to make such technology even more accessible and a�ordable [22]. The last and primary

motivation for the LPA community is the eventual construction of a plasma-based collider.

While there is a competing approach that uses a beam-driven wake to accelerate an electron

bunch for the same applications as an LPA, both laser-based and beam-based approaches

promise to greatly reduce the scale and costs of a future collider, where the only current plans

for a next-generation LINAC are the International Linear Collider (ILC) and Compact Linear

Collider (CLIC), which would be 10 to 50 km long [23]. Additionally, LPA research and the

basic physics of laser-plasma interactions have also been extremely fruitful in advancing our

understanding of how radiation and matter interact under extreme conditions.

Where historically most everyone has modeled the transverse pro�le of a laser as a Gaus-

sian, this is not the case in experiment and higher-order mode content is almost always

present. Typically higher-order mode content compromises the target goal of the LPA; how-

ever, it is shown in this work that higher-order modes can not only readily be removed but

also controlled and utilized. We also consider how higher-order modes may be used to model

laser beam distortion and eventual breakup via �lamentation.



CHAPTER 1. INTRODUCTION 5

(A) (B)

Figure 1.2: (A) Percentage of on-axis depth-dose (PDD) curves of various types of radiation
in water phantom: (a) 6 MV photons, (b) Bragg peak of 147 MeV protons, (c) spread-out
Bragg peak, (d) 10 MeV electrons, (e) collimated 200 MeV electrons, (f) collimated 2 GeV
electrons, (g) 200 MeV electrons focused at 15 cm, and (h) 2 GeV electrons focused at 15
cm. Taken from Ref. [21]. (B) depiction of the undulator mechanism for an FEL, taken
from Ref. [24].

1.2 Basic Principles of LPA Physics

Assuming a plane-wave model of the electromagnetic �eld, in the low amplitude limit |a|2 �
1, the laser pulse propagates at a group velocity vg = c

√
1− ω2

p/ω
2 and generates a plasma

wave of phase velocity of equal value, vp = ωp/kp = vg, where c is the speed of light,

ωp =
√

4πn0q2
e/me is the plasma frequency, kp is the plasma wave number, and ω is the

characteristic mean frequency of the laser pulse [25]. The wake is most e�ciently generated

if the laser pulse length is approximately half the plasma wavelength, i.e., L ≈ λp/2 [26],

where λp = 2π/kp. Not only does L ≈ λp/2 resonantly excite the wake, but longer pulses,

L > λp, become susceptible to Raman instabilities. The electrons are displaced primarily

by the laser envelope as opposed to the high-frequency structure at the scale of the laser

wavelength λ = 2π/k, creating a plasma cavity of length L and width rs, where rs is the

characteristic spot size of the laser pulse. The electrons are displaced by what is known as

the ponderomotive force, i.e., radiation pressure, which is the average force experienced by

a slow moving particle in a rapidly oscillating �eld and is proportional to the gradient of the

laser intensity, Fpond = −mec
2∇a2/2 [27]. The ions move much more slowly with respect to

the laser given the mass ratio mi/me = 1836, assuming hydrogen, and so form an e�ectively
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static background [6].

A depiction of the basic LPA laser-plasma interaction can be seen in Fig. 1.3. In Fig. 1.3.a

the dashed, orange circle symbolizes the laser envelope of dimensions L and r0 propagating

from left to right at a velocity slightly less than the speed of light, vg . c. In this panel

we see the electron plasma density, which has characteristic peaks (red) and troughs (blue)

separated by the plasma wavelength λp that propagate left to right at the phase velocity

vp = vg. In Fig. 1.3.b is shown the longitudinal wake�elds that are created by the displaced

electrons, with alternating accelerating (red) and decelerating (blue) �buckets�. Likewise,

there are alternating transversely focusing and defocusing wake�elds that are phase shifted

with respect to the longitudinal �elds by λp/4 as depicted in Fig. 1.3.c. Lastly, the electron

bunch is depicted in pink and positioned in the accelerating and focusing �eld of the wake.

z/ZR

r/
r 0

r/
r 0

r/
r 0

Figure 1.3: A portrayal of the linear wake behind a laser pulse (dashed orange) and the
subsequent wake�elds. In panel (a) is the density pro�le, in (b) the longitudinal wake�eld
which accelerates the electron bunch (pink), and in (c) the transverse �elds which focus the
bunch.

While LPA research is extremely promising, there are certain physical limitations that
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must be overcome in addition to engineering challenges. These limitations can be character-

ized in terms of three length scales: the Rayleigh range ZR, the dephasing length Ldeph, and

the energy depletion length Ldepl. ZR = πr2
0/λ describes the distance after which a Gaussian

pulse, starting with a �at phase-front at focus, will di�ract in a vacuum, increasing in spot

size by a factor of
√

2 and decreasing in intensity by a factor of 2, i.e., rs(ZR) =
√

2r0 and

a2(ZR) = a2
0/2. Here rs is the spot size, a = qeA/mec

2 is the normalized laser vector poten-

tial, both functions of propagation distance τ ; r0 is the spot size and a0 is the normalized

laser vector potential, both at focus. ZR can be derived by starting with the paraxial wave

equation in cylindrical coordinates and assuming a solution of the form a = a0e
−r2/r20−iz/ZR

at r = 0, i.e.,

∇2
⊥ + 2ik

∂

∂z
a =

(
−4

r2
0

+
2k

ZR

)
a

∣∣∣∣∣
r→0

= 0 → ZR =
kr2

0

2
=
πr2

0

λ
.

Di�raction is the primary limiting factor for all laser-based acceleration schemes.

In a laser-plasma accelerator the di�raction limit can be overcome by using a plasma

channel that acts like an optical �ber for the laser pulse. The standard approach is to use a

parabolic plasma channel, where the density pro�le is of the form

n = n0(1 + r2/R2),

R is the characteristic channel radius, and it can be generated by various means. One

approach is to just use the prepulse of the drive laser itself to generate a preceding plasma

channel. Another way is to use a preceding laser like an axicon beam, whose main lobe

remains relatively constant over several Rayleigh ranges about the focus point, to ignite a

neutral gas �ow via inverse bremsstrahlung heating and create a plasma column, as depicted

in Fig. 1.4.a. Yet another approach, that is preferred by the BELLA center, is to use a

discharge capillary channel to create a plasma column via a strong current passing through

a neutral gas, Fig. 1.4.b, o�ering more control than a gas jet. The basic evolution of

the plasma channel is shown in Fig. 1.4.c. Technically, plasma channels are continuously

evolving, but as the laser pulse evolves on the femtosecond time scale and propagates on the

picosecond scale, plasma channels appear to the laser as static structures as they evolve on

the nanosecond scale.
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(a) (b)

(c)

Figure 1.4: Examples means for generating a parabolic plasma channel for the purpose of
guiding a laser pulse. (a) The axicon scheme where a Bessel beam generates a plasma column
over an extended length scale. (b) The discharge plasma capillary, where a current is run
between two electrodes through a neutral gas. (c) Example evolution of the plasma column
into a parabolic channel structure.

The second limiting length scale is that of dephasing. It is customary to describe the

trajectory of the electron bunch with respect to the laser in terms of a phase ψ = kpζ,

where ζ = z − ct is the comoving variable. An electron injected into the accelerating bucket

at a velocity v ≈ c will eventually outrun that bucket and then either lose energy in the

decelerating bucket, or leave the focusing region and be dispersed and lost in the defocusing

region of the wake. This length scale, in the low-intensity limit a2 � 1 for a very relativistic

electron with vz ≈ c, can be approximated by (1− vp/c)Ldeph = λp/2, i.e., Ldeph ≈ γ2
pλp. If

we assume γp ≈ ω/ωp � 1, then we can simplify the expression to Ldeph ≈ λ3
p/λ

2 [1]. This

limit can be overcome by using a longitudinal density taper that e�ectively compresses the

wake�eld in phase with the electron bunch, as shown in Fig.1.5.a.

The last limitation is that of energy depletion, in which the laser energy gets completely

converted to plasma wave energy. This is characterized by length Ldepl ≈ λ3
p/(λ

2|a|2), where

|a|2 � 1. This length scale can be estimated by matching the initial laser energy and the

�nal wake energy, E2
LL = E2

zLdepl, where the electric �elds can be approximated by EL ∝ ωa

and Ez ∝ ωpa
2, and the laser pulse length approximately L ∝ λp. The primary approach

proposed to overcoming this limit would be to use a staged setup, where a new laser pulse
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(a) (b)

Figure 1.5: An example of how density tapering works can be seen in (a), with the laser
(red), electron plasma wave (blue), and electron bunch (black). By changing the plasma
density one changes the plasma wavelength and thereby the characteristic length scale of
the wake, allowing for the wake�elds to contract in phase with the electron bunch, which is
moving at vb, i.e., faster than the group velocity of the laser, vg [28]. In (b) is presented an
example of an experiment for staging multiple drive lasers, taken from Ref. [29].

would be coinjected right before the accelerated electron bunch enters a new plasma channel

once the previous laser is depleted, as shown in Fig.1.5.b.

In terms of the laser pro�le itself, research has generally been focused on the longitudinal

characteristics, as that is what drives the magnitude of the accelerating �elds of the wake,

and assumes the transverse pro�le to be a simple Gaussian. This assumption, that the

laser pulse is transversely Gaussian, is problematic for several reasons. However, relaxing

that assumption also allows for new potential avenues in LPA research. The primary issue

with the Gaussian assumption is that most laser pulses are inherently non-Gaussian as a

consequence of the lasing medium or inherent imperfections in components such as a Pockels

cell [30]. Unlike traditional laser systems, at the high-intensities and extremely short length

scales involved in CPA there is no easy way to correct for non-Gaussian features. The far-�eld

pro�le, i.e., far from focus, is super-Gaussian in pro�le, while the near-�eld, i.e., at focus,

is Bessel-like in pro�le with many sidelobes. Experimental examples of these can be seen in

Fig. 1.6. These sidelobes, which we describe as higher-order mode content, are ultimately

inherent to e�cient laser pulse generation and signi�cantly alter the dynamics of the laser

pulse as it propagates through a plasma and compromise the most direct approach to LPAs.

Removing the higher-order mode content would allow one to retrieve the Gaussian pro�le and

thereby allow for a return to the simpli�ed assumptions previously held. However, higher-

order mode content does not necessarily need to be a hindrance to LPAs and if carefully

controlled can open new research directions. Some possibilities explored in this dissertation



CHAPTER 1. INTRODUCTION 10

x [mm]

y
[m

m
]

(a)

x [mm]

(b)

x [µm]

y
[µ
m

]

(c)

x [µm]

(d)

x [µm]

(e)

Figure 1.6: The intensity (a) and phase (b) of a laser pulse right after compression demon-
strating the super-Gaussian pro�le typical of CPA systems. With respect to the focus we
have the laser mode at (c) z = −30 mm, (d) z = 0 mm, and (e) z = 30 mm. This is for a
BELLA-class laser with r0 = 53 µm and L/c = 33 fs; all �gures have linear scaling [31].

use higher-order modes to control the wake�elds, e.g., for controlling the transverse �elds

independently of the longitudinal �elds as well as using beating between modes to create a

plasma-based undulator for light sources. Lastly, higher-order mode content can be used to

describe more complex phenomena in LPAs such as self-focusing and �lamentation.

1.3 Dissertation Outline

This dissertation focuses on the theoretical study of non-Gaussian transverse pro�les of a

laser pulse in the context of LPA physics and its various applications. In Chapter 1 we

discussed the motivation and basic theory involved in this research. In Chapter 2, a brief

review of short-pulse laser physics is presented in the context of vacuum propagation and
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arbitrary source terms. In Chapter 3, the basic principles of plasma physics are surveyed

as they pertain to LPAs. In Chapter 4 we present the wake�eld equations and discuss how

electrons and bunches behave in the wake generated by an LPA system.

Starting in Chapter 5, novel research pursued during these studies is presented by dis-

cussing the theory and application of leaky plasma channels. In this chapter, we discuss var-

ious approaches to �ltering out higher-order mode content and propose a truncated plasma

channel as a solution. The e�ect of leakage is modeled using WKB theory for both a sharp

truncation as well as an exponentially decaying plasma channel. Through the decomposition

into Laguerre-Gaussian modes, the WKB calculations are used to analytically model leakage

via the Source Dependent Expansion. Lastly, the theoretical model is corroborated by PIC

simulations. Chapter 5 includes work published in:

Djordjevi¢, B.Z., C. Benedetti, C.B. Schroeder, E. Esarey, and W.P. Leemans, Filtering

higher-order laser modes using leaky plasma channels, Physics of Plasmas, 25, 013103

(2018).

In Chapter 6 we discuss how higher-order mode content can be used to shape and control

the wake�elds behind the drive laser. Working in both Cartesian and cylindrical coordi-

nates, two approaches for modifying the wake are proposed. The �rst is called geometric

tuning, where a superposition of higher-order modes of equal mode-number sums copropa-

gate at the same group velocity and without beating. A superposition of two second-order

Hermite-Gaussian modes is presented as a means to modify the transverse wake�elds asym-

metrically without modifying the longitudinal �eld. A second concept called color tuning is

also proposed, the essence of which is that a superposition of higher-order modes, that are

not geometrically tuned, are able to copropagate by using di�erent laser frequencies for each

mode. Color tuning does not eliminate beating between modes. This can be overcome by

either longitudinally displacing the modes or by having them be orthogonally polarized with

respect to each other. Color tuning is then used to modify the transverse �elds symmetrically

without altering the longitudinal �eld. In both cases particle tracking is used to study the

behavior of an electron bunch. Chapter 6 includes work published in:
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Djordjevi¢, B.Z., C. Benedetti, C.B. Schroeder, E. Esarey, and W.P. Leemans, Control

of transverse wake�elds via phase-matched laser modes in parabolic plasma channels,

Physics of Plasmas, 26, 013107 (2019).

In Chapter 7 we apply color tuning to the plasma undulator concept. In this scenario,

beating is intentionally used to cause the electron bunch to oscillate and emit high-frequency

radiation. The �rst scenario explored is of a single low-energy electron that propagates at the

group velocity of the laser-driver. This allows us to explore the basic characteristics of the

color-tuned plasma undulator concept. This entails overcoming the group-velocity slippage

limitation of previous plasma undulator concepts while preserving tunability and control,

without the complication of dephasing. A second model is also presented which considers

a high-energy electron bunch. Since the electron beam will eventually outrun the drive

laser, we have to use a longitudinally tapered density pro�le to avoid dephasing. We present

results for various taperings but also present a new formulation that is speci�cally tailored

for maintaining constant undulator frequency. Likewise, tapering can be used to introduce a

controlled chirp into the emitted x-ray radiation for potential further compression. Chapter

7 includes work published in:

Djordjevi¢, B.Z., C. Benedetti, C.B. Schroeder, and E. Esarey, Chromatic matching in

a plasma undulator, Physics of Plasmas, 26, 113102 (2019).

Lastly, in Chapter 8 nonlinear e�ects such as self-focusing are considered as well as how

higher-order modes can be used to theoretically study the onset of �lamentation. Traditional

instability analyses are presented as well as the spot size equation for higher-order modes with

self-focusing as well as higher-order mode excitation driven by self-focusing. Relativistic self-

focusing and pondermotive forcing are the primary drivers for �lamentation and preliminary

results on numerically modeling multiple �lamentation are presented.

In Chapter 9 our results are summarized and potential future work based on this research

is discussed. In Appendix A, example derivations for the transverse laser pro�les used in

this work, i.e., the Gaussian and Hermite-Gaussian bases, are presented. In appendix B,

the derivation of the Source-Dependent Expansion (SDE) in the Laguerre-Gaussian basis is

provided.
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Chapter 2

Laser Mode Characterization

2.1 Basic Properties and Generation

The short-pulse laser is the primary driving technology in LPA physics. Lasers are tradi-

tionally characterized by three properties: monochromaticity, directionality, and coherence

[32]. Unlike a traditional light source, which has a wide spread of wavelengths with a band-

width of tens if not hundreds of nanometers, a laser will have a clearly de�ned wavelength λ

with an extremely narrow, natural linewidth de�ned by the characteristic frequency of the

lasing material, ∆ω = c∆λ/λ2 = ∆E/~, where ∆E is e�ectively the di�erence between the

atomic energy levels in consideration. There is additional broadening of the linewidth due to

homogeneous and inhomogeneous e�ects, such as collisional, thermal, dipolar, and Doppler

broadening [32], but these contributions are typically small in our case.

Lasers are highly directional and have very low or at least highly controllable divergences.

This is primarily a consequence of the fact that the laser beam is generated in a resonant

cavity and only photons propagating along the optical axis can be sustained and ampli�ed.

For spatially coherent light, one can estimate a divergence angle as θD = λ/D, where D is

the characteristic aperture of the laser system. Another way to characterize the divergence

of a laser beam is the Rayleigh range, ZR. This is the characteristic length for a transversely

Gaussian pulse but is approximately valid for laser pulses of di�erent pro�le types.

Lastly, a laser beam is said to be highly coherent. Coherence implies that the re-

lationship between the phases of the radiation �eld at di�erent times and locations are
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clearly de�ned and in phase with one another. Coherence can be de�ned by a time scale,

tc = 2π/∆ω ≈ λ2/(c∆λ), where ∆ω and ∆λ are the frequency and wavelength bandwidths

of the light, respectively [33]. An incoherent light source, such as the sun, will have a very

small coherence time, while for a laser, tc will be larger, i.e., tc,sun ∼ 0.1 fs for visible sunlight

versus tc,Ti:Sapph ∼ 1 fs for a BELLA-type CPA laser at λ = 815 nm and tc,CW ∼ 1 ps for

continuous wave laser at λ = 405 nm. A laser can be characterized by both spatial coherence,

correlation of the phase transversely across the pro�le of the laser, and temporal coherence,

correlation along the length of the laser at di�erent times. Temporal coherence entails a

temporal sinusoidal wave front and transverse coherence entails a �at transverse wave front.

Incoherence reveals itself when the light intensity is not constant, e.g., there is noticeable

`speckle' in the laser front. Coherence is a consequence of the resonator modes of the laser

cavity which for a simple system of parabolic mirrors and an optically homogeneous medium

are Hermite-Gaussian modes, the simplest of which is the Gaussian mode. These modes can

be de�ned by resonant frequencies ωm = 2πc/λ = 2πmc/(2Lc), where Lc is the length of the

resonator.

Laser light is generated as a lasing medium is pumped by an external radiation source.

The medium is capped by two carefully aligned mirrors that allow for a feedback loop as

stimulated radiation interacts with the lasing medium. The ampli�ed radiation exits one

of the mirrors that is intentionally made only partially re�ective. There are many types of

lasing mediums, such as gas, glass, solid-state, semiconductor, etc. There are also several

ways to pump the lasing material, either with traditional, high-intensity �ash lamps, more

e�cient diodes, or a secondary laser system. A distinctive feature of the lasers used in LPA

physics is that a very short pulse is used with high peak intensity [33].

In order to achieve short pulses, on the order of ten femtoseconds (or several microns in

length), LPA experiments typically use Chirped Pulse Ampli�cation (CPA). In 2018 Gerard

Mourou and Donna Strickland were awarded the Nobel Prize in Physics for their development

of the CPA concept (along with Arthur Ashkin for his work on optical tweezers) [34]. The

concept is an extrapolation of an older method of chirped radar transmission because of a

similar challenge of tolerating peak powers [35]. Traditional optics have damage thresholds

that make the necessary peak powers for LPA physics impossible, with critical �uence for
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pulses longer than ∼10 ps scaling as L1/2 [36]. CPA works around these restrictions by

stretching the pulse, amplifying it, and then recompressing it.

Typically, a pulse is stretched from approximately 10 fs to 100 ps by adding relative phase

between di�erent spectral components, where positive dispersion delays shorter wavelengths

relative to longer wavelengths (dv/dω < 0). This can be done by using a re�ective di�raction

grating that does not su�er from intensity-dependent nonlinearities. A double-pass stretcher

adds a phase delay that is given by an expansion about the central frequency as

φ(ω) = −2ωcLe�

c
cos θc(cos θc + cos θin)−

2Le�

c
[1 + cos(θin − θc)](ω − ωc)

+
1

2!

(
Le�N

2
dλ

3
c

πc2 cos θc

)
(ω − ωc)2 + ..., (2.1)

where Le� is the e�ective separation of the gratings, θc is the di�raction angle for the central

frequency ωc = 2πc/λc, Nd is the number of di�raction grooves per unit length, and θin

is the incoming angle [37, 38]. The stretching of the pulse decreases the peak power by

several orders of magnitude. The stretched pulse then passes several times through a gain

medium which is pumped by a secondary source. After the pulse is su�ciently ampli�ed,

it is again re�ected o� a grating, but this time with a negative dispersion that causes the

frequency components to recombine into an intense short pulse. A depiction of this process

is visualized in Fig. 2.1. Final focus is achieved by an o�-axis paraboloid mirror with a focal

length typically of several meters. An intuitive description of the CPA mechanism is that

stretching involves increasing the path length of lower frequencies over higher frequencies,

while compression reverses the process so higher frequencies propagate over a shorter path.

The most common approach to laser generation in current LPA experiments is to use a

Ti:Sapphire crystal, a tunable lasing medium that emits radiation in the red to near-infrared

range from 650 to 1150 nm. The medium is a sapphire crystal (Al2O3) doped with Ti3+

ions. The Ti:Sapphire crystal is pumped by another laser source with a wavelength between

514 nm and 532 nm. The BELLA laser system at LBNL is pumped by Thales GAIA laser

systems that are Nd:YAG based and can deliver a 532 nm (frequency doubled from 1064

nm), 16 J laser pulse at 1 to 5 Hz repetition rate. There are now plans in motion to build

a new system in the kHz range [40]. An important characteristic of this laser system is

that the near-�eld, transverse pro�le of the laser pulse is super-Gaussian in shape, which
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Figure 2.1: A depiction of the process of chirped pulse ampli�cation, taken from Ref. [39].

is an inherent consequence of e�cient pumping of the lasing medium. This has important

consequences for LPA physics as the laser pulse in the far-�eld, where it interacts with the

plasma, is not Gaussian in its transverse pro�le.

2.2 Temporal and Spectral Characteristics

The temporal and spectral properties of a short laser pulse are strongly coupled, related to

one another via Parseval's theorem [33],∫ ∞
−∞
|E(t)|2dt =

1

2π

∫ ∞
0

|E(ω)|2dω. (2.2)

E is the electric �eld and is characterized by the central or mean frequency ω̄ = ωc, also

known as the carrier frequency. Inhomogeneities in the laser pulse or the propagation medium

can result in distortions to the spectral phase pro�le of the laser which can in turn distort the

temporal pro�le of the laser such as pulse-front tilt. Parseval's theorem can also be coupled

with the Poynting theorem of electrodynamics to give a generalized pulse power in Watts in

a dispersionless material:

P (t) =
1

4π
η

∫
dS

1

Tl

∫ t+Tl/2

t−Tl/2
|E(t)|2(t′)dt′ = η

∫
dS

1

Tl

∫ ∞
0

|E(ω)|2(ω′)dω′,

where η is the index of refraction of the propagation medium, dS is the surface area di�er-

ential, and Tl = 2π/ω0.
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The carrier frequency should be chosen so as to minimize variation of ϕ(t), the phase in

a laser pulse [33]. Typically, one will �nd a time dependent carrier frequency of the form

ω(t) = ω̄ +
d

dt
ϕ(t). (2.3)

For a time-dependent phase derivative dϕ/dt, the carrier frequency varies with time and

the corresponding pulse is said to be frequency modulated or chirped. For d2ϕ/dt2 < 0 the

frequency decreases along the pulse and is said to be down-chirped, while for d2ϕ/dt2 > 0

the frequency increases and is said to be up-chirped.

2.2.1 Bandwidth

Since temporal and spectral characteristics are strongly coupled, the bandwidth ∆ω and

pulse duration τL = L/c cannot vary independently of one another. The minimum duration-

bandwidth product is

∆ωτL ≥ 2πcB, (2.4)

where cB is a numerical constant on the order of 1 [33]. A chirped pulse further enlarges the

minimum product. An example is a Gaussian pulse of complex, longitudinal pro�le

E(t) = E0e
−(1+iχ)(t/τG)2 , (2.5)

where χ denotes a positive, linear downchirp (dφ/dt = −2χt/τ 2
G), and τG relates to the

pulse duration via τG = τL/
√

2 ln 2. After taking the Fourier transform and calculating the

spectral phase and intensity, one can �nd a Full-Width Half-Maximum (FWHM) spectral

bandwidth of

∆ω =
1

τG

√
8 ln 2(1 + χ2), (2.6)

which gives a duration-bandwidth product of

∆ωτL = 4 ln 2
√

1 + χ2, (2.7)

which is larger than the Gaussian product of 4 ln 2 by a factor of
√

1 + χ2.

A standard metric for characterizing the shape of a laser pulse, both longitudinally and

transversely, is known as the M2 factor. This is derived from the second moment of the
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conjugate variables. For example, if kx is the Fourier-conjugate variable of x, or for t it is

ωt, it can be shown that

〈x2〉〈k2
x〉 = 〈t2〉〈ω2

t 〉 =
M4

4
≥ 1

4
, (2.8)

where 〈
Y j
〉

= lim
N→∞

1

N

N∑
i

fi(Y )(Yi − Ȳ )j =

∫
f(Y )(Y − Ȳ )jdY. (2.9)

Here Y is an arbitrary variable, Ȳ is its mean value, fi and f are the probability mass

and distribution functions, j de�nes the j-th moment, and N is the number of samples in

question. For a Gaussian pulse without any phase modulation,M2 = 1. For pulse structures

that diverge from a Gaussian, such as a Lorentzian or higher-order Hermite and Laguerre-

Gaussian polynomials, the M2 factor will be greater. The general expression for the M2

factor is

M2 = 4

∫∫∞
−∞ I(x, y)(x− x̄)2dxdy∫∫∞

−∞ I(x, y)dxdy
, (2.10)

where I = cη
8π
|E(t)|2 is the intensity.

2.2.2 Group Velocity Dispersion

An important characteristic of �nite-length laser pulses that propagate through a medium is

group velocity dispersion (GVD), de�ned as the second derivative of the wave number with

respect to the angular frequency,

k′′(ω̄) =
∂

∂ω

(
1

vg(ω)

) ∣∣∣∣∣
ω=ω̄

=
∂2k

∂ω2

∣∣∣∣∣
ω=ω̄

. (2.11)

GVD is a way to determine how a medium will a�ect the length of a pulse traversing it [33].

Normally, in a medium like a plasma we expect a pulse lengthening of form

LGVD(τ) = L
√

1 + (τ/Ldisp)2, (2.12)

where Ldisp = L2

2|k′′| is the dispersive length. Chirp is also a�ected by GVD for a Gaussian

pulse and evolves according to the following:

∂2ϕ

∂t2
(τ) =

(
1

L2

)
2(τ/Ldisp)

1 + (τ/Ldisp)2
. (2.13)
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For extremely short pulses, ones which approach a single cycle, the spatial and temporal

pro�les become highly coupled, but this is not typically a major concern in current LPA

experiments.

GVD is important in LPA physics because typically the laser pulse length is carefully

chosen to be at the resonant wavelength with respect to the plasma in order to maximize the

excited plasma wave amplitude, i.e., L ≈ λp/2. If the pulse length changes noticeably during

propagation through the plasma then it will fall out of resonance and no longer e�ciently

excite the wake�eld. However, GVD is currently a negligible e�ect at the experimental length

scales currently in consideration, i.e., up to several tens of centimeters. For example, in the

case of a 30 fs laser pulse with wavelength of 0.8 µm propagating through air with k′′ = 0.2

fs2/cm, the GVD dispersion length is Ldisp = 75 cm [41]. More interestingly, GVD can be

used as a diagnostic for approximately determining the background plasma density [42, 43].

This works by measuring the auto-correlation of a laser pulse, i.e., the correlation of the laser

with a delayed copy of itself. Experimentally this involves one pulse propagating through

the medium and undergoing dispersion, i.e., reduced group velocity vg/c ∼ 1−k2
p/2k

2, while

the other pulse propagating through a vacuum does not undergo such dispersion. From the

interference fringes one can deduced the di�erence in group velocity, i.e., k2
p/k

2, and thereby

determine the approximate plasma density on-axis.

2.2.3 Polarization

Laser light can be polarized in various ways depending on the application. One encounters

the following [44]. Linear polarization - the electric �eld of the laser is con�ned to a single

plane perpendicular the direction of propagation. Circular - the electric �eld is composed

of two linear components of equal amplitude that are perpendicular to each other but with

a phase di�erence of π/2, resulting in a rotation of the �eld about the axis of propagation.

Circular polarization can be left or right-handed. Elliptical - the combination of two linear

components that are either of unequal amplitudes or the phase di�erence is not equal to

π/2. Light can also be unpolarized, i.e., randomly polarized. The electric �eld of polarized

light is generally presented as a vector a = ax cos(kz − ωt)x̂+ ay cos(kz − ωt+ φ0)ŷ, where

ax = ay and φ0 = 0 for linear polarization, ax = ay and φ0 = π/2 for circular, and ax 6= ay
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and/or φ0 6= π/2 for elliptical polarization.

For each polarization mode the intensity contribution, which governs the laser's inter-

action with matter, varies as a2 for circular polarization and a2/2 for linear. This can be

derived by considering a general potential wave vector of the form

a =
1

2
a0σe

iϕ0 + c.c.,

where σ is the polarization vector and c.c. is the complex conjugate, such that

σ =

ey, linear polarization,

1√
2
(ey + iex), circular polarization.

The square of the vector potential, proportional to the intensity, gives

a2 = a · a =

(
1

2
a0σe

iϕ0 +
1

2
a∗0σ

∗e−iϕ0

)2

=
1

4
a2

0σ
2e2iϕ0 +

1

2
a0a

∗
0σ · σ∗ +

1

4
a∗20 σ

∗2e−2iϕ0

=


1
4
a2

0e
2iϕ0 + 1

2
|a0|2 + 1

4
a∗20 e

−2iϕ0 , linear,

|a0|2, circular,

where the identities σ2 = 0 and σ · σ∗ = 1 have been used for circular polarization. The

linear case can be approximated by taking an average over a complete time cycle, i.e.,

〈a2
lin〉 = 1

2
|a|2, averaging over the fast oscillations. This is valid when the driving terms

evolve on a slow-time scale, e.g., the ponderomotive force for a low-intensity laser. Generally,

circular polarization is preferred in analytical descriptions given their tractability where the

expansion with respect to |a|2 is exact and does not require time averaging [44].
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2.3 Electromagnetic Waves in Vacuum

Electromagnetic waves in vacuum and matter are governed by Maxwell's Equations, which,

for the microscopic formulation, can be written in di�erential form as [45]

Coulomb's Law ∇ · E = 4πQ, (2.14)

Gauss' Law ∇ ·B = 0, (2.15)

Faraday's Law ∇× E = −1

c

∂B

∂t
, (2.16)

Maxwell-Ampère's Law ∇×B =
4π

c
J+

1

c

∂E

∂t
, (2.17)

where E and B are the electric and magnetic �elds, Q is the charge density, and J is the

current density. From these equations we can derive the equations for electromagnetic waves

by substituting Eqs. (2.14) and (2.17) into the curl of Eq. (2.16) and Eqs. (2.15) and (2.16)

into the curl of Eq. (2.17), respectively, and utilize the vector identity ∇ × (∇ × E) =

∇(∇ · E)−∇2E, giving us the inhomogeneous, second-order partial di�erential equations

1

c2

∂2E

∂t2
−∇2E = −4π

c2

∂J

∂t
− 4π

c2
∇Q,

1

c2

∂2B

∂t2
−∇2B =

4π

c2
∇× J

The �elds can be expressed in terms of potentials via the relations

E = −∇Φ +
1

c

∂A

∂t
, (2.18)

B = ∇×A, (2.19)

where Φ is the scalar potential and A is the vector potential. Potentials are not uniquely

de�ned on their own and so can be constrained by a gauge condition, such as the Coulomb

gauge, ∇ ·A = 0, or the Lorentz gauge, 1
c
∂Φ
∂t

+∇ ·A = 0.

Wave equations can also be derived for the potentials, using the Coulomb gauge and

substituting Eqs. (2.18) and (2.19) into Eqs. (2.14) and (2.16), respectively, we can write

the following wave equations in terms of potentials Φ and A:

∇2Φ = 4πQ,

∇2A− 1

c2

∂2A

∂t2
=

1

c

∂(∇Φ)

∂t
− 4π

c
J.



CHAPTER 2. LASER MODE CHARACTERIZATION 23

These equations can be simpli�ed further via normalization, giving(
∇2
⊥ +

∂2

∂z2

)
φ = ρ, (2.20)(

∇2
⊥ +

∂2

∂z2
− 1

c2

∂2

∂t2

)
a =

∂(∇φ)

∂t
+ j, (2.21)

where φ = qeΦ/mec
2, a = qeA/mec

2, j = −(4π/c)qeJ/mec
2, and ρ = 4πqeQ/mec

2. Here

we have separated the gradient operator into its transverse and longitudinal components. In

addition, in LPA physics it is typical to study the propagation and evolution of a laser pulse

in the comoving frame of the laser itself. Therefore, we introduce a change of variables, with

comoving variable ζ = z − ct and propagation variable τ = ct, giving(
∇2
⊥ +

∂2

∂ζ2

)
φ = ρ, (2.22)(

∇2
⊥ +

2∂2

∂ζ∂τ
− ∂2

∂τ 2

)
a =

∂(∇φ)

∂τ
+ j. (2.23)

While the full wave equation provides an exact description of a laser pulse, we will apply

several approximations to facilitate calculations. The �rst assumption we make is that the

laser pulse can be described by the slowly varying envelope approximation (SVEA) or the

paraxial approximation, assuming that |∂ζa| � |ka| and |∂τa| � |ωa/c|, where ω = kc is

the laser frequency in a vacuum and k the corresponding wave number. A linearly polarized

laser �eld is assumed with the form a→ â(r, ζ, τ) exp(ikζ)/2+c.c., where c.c. is the complex

conjugate, giving [
∇2
⊥ + 2

(
ik +

∂

∂ζ

)
∂

∂τ
+

∂2

∂τ 2

]
â =

∂(∇φ)

∂τ
+ j. (2.24)

This is a useful expression as we can clearly de�ne the hierarchy of phenomena with respect

to their e�ect on laser propagation. In the brackets the ∇2 term scales with 1/r2
0, k with

1/λ, ∂/∂ζ with 1/L, ∂/∂τ with 1/ZR, and ∂2/∂τ 2 with 1/Z2
R.

The second-order, partial derivative ∂2/∂ζ∂τ on the left-hand side of Eq. (2.24) describes

non-paraxial e�ects, i.e., longitudinal e�ects along the length of the laser pulse. This is

normally important in LPA physics given the nature of a short-pulse, but it shall be neglected

in our studies as we are primarily focused on the transverse properties of the laser pulse.

The paraxial approximation is generally valid when k2r2
0 � 1 and e�ectively assumes that
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all transverse slices along the length of the laser pulse propagate at the same velocity vg/c

[46]. An intuitive explanation of the paraxial equation is that the transverse length scale

of the laser beam is much less than the longitudinal length scales in consideration, i.e., r0

versus ZR. We assume that the background �eld φ is slowly evolving relative to the vector

potential, so that ∂τ∇ϕ→ 0, and that the ∂2/∂τ 2 term can be ignored since it is negligible for

forward-propagating waves (though important for backward-propagating waves, e.g., Raman

backscatter). These assumptions together give the �nal form of the governing equation for

laser mode propagation, (
∇2
⊥ + 2ik

∂

∂τ

)
â = j, (2.25)

which is known as the paraxial wave equation.

The paraxial wave equation is the most important equation in all following analysis in this

dissertation: it governs how light propagates through matter. The most basic assumption

is that the local propagation direction of energy is normal to the radiation wavefronts and

that this direction remains close to a constant reference axis. In this case the full wave

equation can readily be replaced by the paraxial wave equation. Mathematically it is a partial

di�erential equation governing di�usion, but unlike the heat equation it has an imaginary

contribution in the temporal term just like the time-dependent Schrödinger equation. When

the source term is linear then the paraxial wave equation can be classi�ed as a linear,

parabolic, partial-di�erential equation. Given the strong monodirectionality and coherence

of laser light we are able to accurately model the propagation of Gaussian beams and other

families of solutions to the paraxial wave equation.

2.4 Transverse Laser Pro�les

The paraxial wave equation, Eq. (2.25), allows several solutions depending on the coordinate

system and source terms involved. For our concerns the most interesting solutions are those

of the Hermite-Gaussian and Laguerre-Gaussian bases, of which the fundamental Gaussian

mode is the most basic example.
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Figure 2.2: Propagation of a Gaussian pulse in a vacuum. The wavefront curvature α is
negative before focus, zero at focus, and positive after focus. After a propagation distance
of ZR, the spot size increases by a factor of

√
2 and the intensity decreases by a factor of 2.

2.4.1 Fundamental Gaussian Mode

The general expression for the fundamental laser mode in a vacuum, which is a Gaussian

pulse, is

aG(r, τ) = C0
r0

rs(z)
e
−[1−iα(τ)] r2

r2s(τ) .

Here C0 is the complex amplitude coe�cient, α is the wavefront curvature, related to the

inverse radius of curvature, and for propagation through a vacuum the following relations

can be de�ned as [32]:

α(τ) = τ/ZR,

r2
s(τ) = r2

s(0)(1 + τ 2/Z2
R).

The fundamental Gaussian mode has an M2 factor of 1. The evolution of a Gaussian pulse

near the focus is depicted in Fig. 2.2 and a full derivation is provided in Appendix A.1.

2.4.2 Hermite-Gaussian Basis

While the Gaussian pro�le is the standard description of a laser beam, the paraxial wave

equation admits a simple set of solutions which depend on the geometry of the problem at
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hand. In the Cartesian coordinate system the source free solution (j = 0) for the paraxial

wave equation, Eq. (2.25), can be written as

am,n(r, τ) = Cm,n
r0

rs
Hm

(√
2x

rs

)
Hn

(√
2y

rs

)
ei(m+n+1) arctan(α)e

−(1−iα)
(x2+y2)

r2s ,

where Cm,n is the complex coe�cient of mode (m,n). These are also known in the literature

as transverse electromagnetic modes, or TEM modes. The Hermite polynomial of order m

is de�ned as

Hm(x) = (−1)mex
2 dm

dxm
e−x

2

,

and satis�es the Hermite di�erential equation for arbitrary constant c,

g′′ − 2xg′ + cg = 0,

where x is an arbitrary variable, g(x) is an arbitrary function, and the derivative is taken

with respect to x. Individual Hermite-Gaussian modes can be seen in Fig. 2.3. A Hermite-

Gaussian mode (m,n) will have an M2 factor of (2m+ 1) in the x-direction and (2n+ 1) in

the y-direction. A derivation is provided in Appendix A.2.

2.4.3 Laguerre-Gaussian Basis

A similar solution can be derived in polar coordinates, where the transverse component of

the Laplacian is now de�ned as ∇⊥ = 1
r
∂
∂r

(
r ∂
∂r

)
+ ∂2

∂θ2
:

aµ,ν(r, τ) = Cµ,ν
r0

rs

(√
2r

rs

)ν

Lνµ

(
2r2

r2
s

)
ei(2µ+ν+1) arctan(α)e

−(1−iα)
(x2+y2)

r2s ,

where Cµ,ν is the complex coe�cient of mode (µ, ν). Here the Laguerre polynomial of order

µ, ν is de�ned by the Rodrigues formula as

Lνµ(x) =
x−νex

µ!

dµ

dxµ
(e−xxµ+ν),

and satis�es the general expression of the Laguerre di�erential equation,

xg′′ + (ν + 1− x)g′ + µg = 0,

for non-negative integers µ and ν. These modes can be seen in Fig. 2.4. The M2 factor for

a Laguerre mode is (2µ+ ν + 1). The derivation for the Laguerre-Gaussian modes is similar

to that for the Hermite modes except for the di�erent coordinate system.
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Figure 2.3: Plots of the absolute value of the amplitude, |a|, for Hermite-Gaussian modes,
m = 0, 1, 2 from left to right, and n = 0, 1, 2, from top to bottom.

2.4.4 Orthogonality Principle

An important characteristic of the Hermite and Laguerre polynomials is that of orthogonality.

Two functions f and g are said to be orthogonal if their inner product with respect to a weight

function w over an interval [a, b] is zero [47], that is,

〈f, g〉w =

∫ b

a

f(x)g(x)w(x)dx = 0,
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where x is an arbitrary variable here. A set of functions {fi : i = 1, 2, 3, ...} is said to be

orthogonal on interval [a, b] if

〈fi, fj〉w = 0, i 6= j. (2.26)

For the Hermite polynomials the orthogonality relation corresponding to Eq. (2.26) is∫ ∞
−∞

Hi(x)Hj(x)e−x
2

dx =
√
π2jj!δij,

where the weight function here is w(x) = e−x
2
and the interval [−∞,∞]. For the generalized

Laguerre polynomials the orthogonality relation is∫ ∞
−∞

Lki (x)Lkj (x)xke−xdx =
(j + k)!

j!
δij, (2.27)

where the weight function here is w(x) = xke−x. The orthogonality principle allows one to

isolate individual modes, where the weight function is split between the two modes in both

cases of Hermite and Laguerre polynomials. Likewise, it is the cornerstone of the Source

Dependent Expansion technique, derived in Appendix B and applied in Chapters 5 and 8.

2.4.5 Super-Gaussian and Bessel Beams

After compression, in the near-�eld, the CPA generated laser mode is super-Gaussian in

transverse pro�le. This can be approximated by an intensity pro�le I(r) = I0e
−2(r/rM )M ,

where rM is the characteristic radius, and in the case of the BELLA-laser mode M ≈ 10.

In Fig. 2.5(a) we have a comparison of the intensity pro�les for super-Gaussians of M = 2

(Gaussian), 4, and 10. The experimental BELLA mode can be seen in blue in Fig. 2.5(b)

with the super-Gaussian mode M = 10 overlaid in red [48]. The super-Gaussian pro�le is

inherently a product of two characteristics of the laser generation process. First, in order

to most-e�ciently utilized the lasing medium one needs to pump the entire medium, which

is cylindrical and outputs a corresponding cylindrical laser pro�le. This is exacerbated by

the CPA procedure and given the short-pulse nature of the system it is not possible to use

traditional optics to reshape the beam without either damaging the optics or introducing

strong temporal aberrations.

The super-Gaussian pro�le focuses down to form a Bessel-like pro�le near focus in the

far-�eld, resulting in many sidelobes. In the case of the BELLA laser, such laser pulses with
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Figure 2.4: Plots of the absolute value of the amplitude, |a|, for Laguerre-Gaussian modes,
µ = 0, 1, 2 from top to bottom, and ν = 0, 1, 2, 3, from left to right.

many sidelobes may be described in terms of Bessel functions, de�ned as

Jn(x) =
∞∑
m=0

(−1)m

m!Γ(m+ n+ 1)

(x
2

)2m+n

.

Bessel-type pro�les can also arise due to di�raction through a small aperture. Bessel func-

tions can also be decomposed into an in�nite sum of Laguerre-Gaussian modes via the

relation
Jn(x)

(x/2)n
=

e−t

Γ(n+ 1)

∞∑
k=0

Lnk(x2/4t)(
k+n
k

) tk

k!
,

where t is an arbitrarily chosen parameter. A standard model for a Bessel-like beam is that

of a jinc pro�le, thus named for its similarity in structure to a sinc function, for which the
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Figure 2.5: The super-Gaussian mode, (a) comparison of M = 2 (blue), M = 4 (orange),
and M = 10 (green) and (b) comparison of the experimental mode (blue) with an M = 10
super-Gaussian (dashed red) [48].

transverse pro�le takes the form of

ajinc(r) = 2J1(r/rj)/(r/rj), (2.28)

where rj = 0.3645r0 is chosen such that the Jinc has the same FWHM as the Gaussian.

The jinc is the Fourier transform of a super-Gaussian pro�le propagating through a perfect

lens, so it follows immediately from describing the laser pulse as a super-Gaussian in the

near-�eld. This is the typical model for a laser pulse at the BELLA center and at other

high-intensity laser facilities.

2.4.6 Controlled Generation of Higher-Order Modes

While higher-order mode content is always present when generating a laser to at least a small

degree, there are also several techniques for generating higher-order modes in a controlled

fashion. The most widely used example is that of an axicon lens, which allows one to turn

a Gaussian beam into a Bessel-like beam [49]. An axicon lens has a specialized conical

surface that focuses rays at di�erent points in the forward propagation path of the incident

laser beam, as depicted previously in Fig. 1.4.a. Bessel beams are typically described by a

Bessel function of the �rst kind, J1(x). They are unique because a true Bessel beam is non-

di�ractive, i.e., it does not di�ract and spread out as it propagates. As no beam is perfectly
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Bessel-like, typically there is also a transverse, exponentially decaying envelope in the model

too, meaning there is always di�raction, but an axicon-generated beam is able to propagate

for extended distances with relatively constant on-axis intensity. As noted previously in Sec.

1.2, axicon beams are extensively used to create an initial plasma channel through which a

trailing laser beam would pass.

Hermite-Gaussian modes are the next most commonly used and can be generated in

several ways. One technique is known as �o�-axis pumping,� which involves pumping the

gain medium o�-axis with respect to the optical cavity. One such approach uses a �ber-

coupled diode laser to end-pump the lasing medium, e.g., Nd:YAG, at precise distances from

the optical axis with a re�ective concave mirror on the other end of the cavity. An example of

this setup is depicted in Fig. 2.6.a. It is possible to generate very high-order modes of form

Hm0 and H0n, up to even H100,0, though single-mode operation becomes more di�cult [50].

In order to generate higher-order modes of mixed mode numbers, one can insert a highly

opaque wire into the resonator cavity in between the gain medium and the end-mirror of the

resonant cavity [51].

(a) (b)

Figure 2.6: Techniques for generating higher-order modes. (a) Hermite-Gaussian genera-
tion via o�-axis pumping of a lasing-medium. (b) Spiral phase plate to introduce orbital-
angular momentum into an incident plane wave, converting a Hermite-Gaussian mode into
a Laguerre-Gaussian mode.

In order to generate Laguerre-Gaussian modes a di�erent technique is used. If one just de-

sires a radial Laguerre mode, i.e., axisymmetric, then one can just superimpose two Hermite-

Gaussian modes of opposite indices, i.e., L10 ∼ H10 +H01, and with the proper polarization.

If one seeks an azimuthally non-zero Laguerre mode, one can take a Hermite-Gaussian mode
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and pass it through a spiral phase plate, also known as a q-plate, which transforms the

Hermite mode into a Laguerre-Gaussian mode with azimuthal phase component [52]. The

generation of orbital momentum is a function of the refractive index of the phase plate and

its thickness, i.e., the ray path length. Such phase plates are typically composed of liquid

crystals, polymers, or sub-wavelength gratings, although there has been a proposal to use a

magnetized plasma to the same e�ect, which is of great interest for the high-intensity lasers

needed for LPA applications [53]. An illustration of the transformation of plane-waves into

a wave with orbital-angular momentum is depicted in Fig. 2.6.b.
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Chapter 3

Laser-Plasma Interactions

3.1 Basic Considerations of Plasma Physics

In this study we consider only quasineutral plasmas, in which there is e�ectively an equal

number of electrons and ions (ne ≈ ni ≈ n0). The majority of phenomena in LPA physics

is described by the relativistic, cold �uid model. We will introduce all parameters typically

relevant to plasma physics and discuss their relevance or lack thereof. Generally speaking,

in our LPA models we will neglect thermal and magnetic e�ects, as they are negligible with

respect to the high densities and frequencies typical in laser-plasma interactions.

3.1.1 Debye Length and Plasma Parameter

While quasineutrality is a strong assumption globally, locally it is constrained by the De-

bye length. Consider Poisson's equation ∇2φ = −4π(qene − qini) − 4πqtδ(r), where ne =

n0 exp(−qeφ/kBTe) is the thermal distribution of the electron density at temperature Te,

ni = n0 exp(−qiφ/kBTi) is the ion density distribution at temperature Ti, qt is the test

charge, qe = −qi, kB is the Boltzmann constant, and δ(r) = δ(x)δ(y)δ(z) where δ is the delta

function. Assuming qeϕ/kBTe � 1 and qiφ/kBTi � 1, we can expand Poisson's equation to

obtain

∇2φ ≈ 4πn0

(
q2
e

kBTe
+

q2
i

kBTi

)
φ = λ−2

D φ,
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where

λ−2
D = λ−2

e + λ−2
i =

(
4πn0q

2
e

kBTe

)
+

(
4πn0q

2
i

kBTi

)
(3.1)

gives the Debye length λD, which de�nes the boundary beyond which the �eld of a test

particle is shielded out by the surrounding cloud of electrons and ions. The theory of this

phenomenon was �rst formulated for electrolytes [54]. Debye shielding is e�ectively a di-

electric e�ect in that the polarization of the plasma and the accompanying redistribution of

space charge prevents the penetration of external electric �elds. For a typical LPA plasma

of density n0 ∼ 1017 − 1019 cm−3 and temperature Te ∼ Ti ∼ 10− 100 eV, the Debye length

is approximately λD ∼ 10−9− 10−7 m, so signi�cantly smaller than other characteristic LPA

length scales, e.g., L ∼ r0 ∼ 10−5 m. In most other experimental plasma environments, such

as tokamaks and gas discharges, the Debye length is more on the order of λD ∼ 10 m−5,

while astrophysical plasmas can range from 10−11 m in the solar core to 100 m in the Earth's

magnetosphere.

The average potential energy U of a particle of species s is given by U ∼ n
1/3
0 q2 and the

kinetic energy is approximately T = 1
2
ms〈v2

th〉 for a species s, where vth =
√
kBTs/ms is the

thermal speed of the species. In most all cases, a plasma assumes that T � U , but as a note

of comparison, the physics of condensed matter assumes T � U and for warm-dense matter,

T ∼ U . We can write a quantity known as the plasma parameter that is proportional to

the ratio of the kinetic and potential energies:

Λ = 4πn0λ
3
D = 3ND,

where ND is the number of particles in a Debye sphere.

For an LPA plasma typically Λ ∼ 104, while in an arc discharge it can be approximately

Λ ∼ 102, in a tokamak Λ ∼ 108, and in the solar wind Λ ∼ 1010. In order for a species s of

particles to be considered a plasma, thermal e�ects must dominate over attractive ones, i.e.,

the number of particles within a cube de�ned by the Debye length must be much greater

than unity. Λ relates the electromagnetic and thermal properties of a plasma. A plasma for

which Λ� 1 is said to be weakly coupled, while Λ . 1 indicates a strongly coupled plasma,

such as warm dense matter and a quark-gluon plasma.



CHAPTER 3. LASER-PLASMA INTERACTIONS 35

3.1.2 Collisionless Plasma

Even in problems where collisions are important, e.g., nuclear fusion, collisions are still a

small contribution to the plasma dynamics. Likewise, collisions in a plasma behave di�erently

than molecular collisions in a neutral gas due to collective e�ects. Consider the change in

velocity of an electron colliding with an ion, ∆v = (Zq2
e/meb

2)(2b/v), where b is the distance

of closest approach [27]. The time average of the velocity change is zero, 〈∆v〉 = 0, but the

change in the mean square velocity is nonzero. This quantity can be written out as

〈(∆v)2〉 =

∫∫
2πbn0v(∆v)2dbdt =

8πn0Z
2q2
e ln(bmax/bmin)

m2
ev

t,

where bmax = λD, the Debye length, and bmin = Zq2
e/mev

2, the classical distance of closest

approach. The ratio of impact parameters bmax/bmin ≈ 8ND/Z, where ND = 4
3
πn0λ

3
D is the

number of electrons in a Debye sphere.

The frequency of 90◦ collisions, when the rms change in velocity becomes as large as the

impact velocity,
√
〈(∆v)2〉 = v, can be written out as

ω⊥ =
8πn0Z

2q2
e ln(bmax/bmin)

m2
evth

.

The ratio of sharp collisions to the plasma frequency is then expressed as

ω⊥
ωp
' Z ln(bmax/bmin)

10ND

∼ ln Λ

Λ
.

To zeroth order one can see that collisions are negligible given that Λ ∼ ND � 1 for a

plasma. Likewise, collisional e�ects are much higher for electrons than for the ions, i.e.,

ω⊥e ∼
√

mi
me
ω⊥i, meaning that the collision frequency is even lower for ions. In some ways,

collisions would help to simplify the plasma dynamics by driving the system towards sta-

tistical equilibrium which can then be characterized by Maxwell-Boltzmann distribution

functions. In the case of an LPA plasma, for densities n0 . 1019 cm−3 and temperatures

kBT & 10 eV, the number of electrons in a Debye sphere is ND > 104 (assuming Z = 1 for

hydrogen). In this case the collisional frequency ratio of ω⊥/ωp ∼ 10−3. For magnetic fusion,

where collisions are important, it is even lower at ω⊥/ωp ∼ 10−7. Likewise, the collision time

is also much greater than the drive pulse duration, i.e., ω−1
⊥ � L/c. This shows that, at

least for a typical LPA plasma, collisions are negligible.
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3.1.3 Cyclotron Frequency and Magnetic E�ects

Another important quantity in plasma physics is the cyclotron frequency. Considering the

relativistic Lorentz force law [55],

F =
dp

dt
=
d(γmev)

dt
= q(E +

v

c
×B). (3.2)

We can eliminate the electric �eld by taking the above equation to an inertial frame, allowing

us to write v→ vE×B = cE×B
B2 , which is the E×B drift velocity. Under this transformation,

the Lorentz force law reduces to

me
d(γv)

dt
= q

v

c
×B. (3.3)

Likewise, we can expand the left-hand side of Eq. (3.3) as

me
d

dt
(γv) = meγ

dv

dt
+meγ

3v
(v · a)

c
,

when the Lorentz factor is written as γ = (1− v · v/c2)−1/2 = [1 + p · p/(mec)
2]1/2, p being

the relativistic momentum of the particle [56]. In an isolated magnetic �eld the acceleration

a = dv/dt is always perpendicular to v, so v · a = 0. As a result, we can further simplify

Eq. (3.3) by extracting the Lorentz factor from the derivative.

Assuming a constant, uniform magnetic �eld, the magnitude of the velocity vector will

remain constant as the particle gyrates about the magnetic �eld line, therefore the Lorentz

factor will remain constant, i.e., γ = γ0 = (1 − v2
0/c

2)−1/2. From the Lorentz force we can

now write two coupled, �rst-order di�erential equations,

dvx
dt

=
qB

γ0me

vy,
dvy
dt

= − qB

γ0me

vx,

which can be combined to give the general harmonic oscillator result d2vx
dt2

+ ω2
cvx/γ0 = 0,

where

ωc =
qB

me

is the cyclotron frequency. The concept of the cyclotron frequency, while relatively simple

physically, played an important part in the development of the �eld of particle acceleration.

The idea of accelerating a particle con�ned to a magnetic �eld at the resonant frequency
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was �rst proposed experimentally by Rolf Wideröe in 1928, though his model was for linear

acceleration [57]. Ernest O. Lawrence came upon the paper and from that formulated the idea

of the cyclotron and patented it in 1932, the �rst high energy particle accelerator, producing

0.5 MeV bunches of H+
2 ions [58]. From the idea of the cyclotron resonance principle came

the term cyclotron frequency.

While there have been proposals to use strong magnetic �elds in experiments either to

control dephasing or for otherwise improving the accelerator scheme [59], typically magnetic

e�ects are neglected just like thermal e�ects. For example, for a plasma with density n0 =

1017 cm−3 and the Earth's magnetic �eld B0 = 3.2 × 10−5 T, we have a frequency ratio of
ωc
ωp

= 1.6×106

3.6×1010
≈ 10−4. This demonstrates that at the very least natural magnetic e�ects are

negligible in current LPA schemes, for which magnetic �elds typically scale as a fourth-order

e�ect, ∼ O(a4). In the linear and quasilinear regimes this means that magnetic �elds are

negligible but become important when a & 1 and the wake�elds transition from electrostatic

to electromagnetic �elds [60].

For highly energetic scenarios where relativistic motion becomes important but still as-

suming that γ = γ0 is constant, the cyclotron frequency scales as γ−1
0 while the plasma

frequency scales γ−1/2
0 , further mitigating magnetic e�ects. In space plasma physics, where

the densities are much lower and bulk motion nonrelativistic, e.g., 105 cm−3 in the iono-

sphere or even 1 cm−3 in the solar wind, magnetic e�ects play a much larger role. If one

wishes to observe noticeable magnetic e�ects in an LPA experiment, they would need to

apply strong magnetic �elds on the order of 1 T or higher (some theoretical proposals are as

high as several hundred Teslas), the generation of which can be highly cumbersome on their

own, let alone to couple to current LPA experiments [61]. For example, for the lowest plasma

density of interest to an LPA, n0 ∼ 1015 cm−3, neglecting relativistic e�ects, for ωc = ωp

one would need a magnetic �eld of at least 10 T, while higher densities would require higher

magnetic �elds.
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3.2 Plasma Descriptions: Particle, Kinetic, and Fluid

In order to describe the laser-plasma system macroscopically, we typically assume that ther-

mal e�ects and magnetic �elds are negligible, i.e., vth ≈ 0 and ωc ≈ 0 and that the plasma

is underdense, i.e., the oscillation frequency of the laser is much greater than that of the

plasma, ω/ωp � 1. Likewise, we only consider the envelope of the laser as it interacts with

plasma and not the small-scale structure of oscillations within the pulse.

3.2.1 Particle Description

The most basic description of a plasma in the classical regime can be derived from single

particle motion. We assume a microscopic distribution of particles of a single species s in

six-dimensional phase space [25],

Ns(x,u, τ) =
N∑
i=1

δ[x− xi(τ)]δ[u− ui(τ)], (3.4)

where τ = ct, u = γβ = p/msc is the normalized momentum. xi(τ) and ui(τ) satisfy the

following equations of motion:
dxi(τ)

dτ
=
ui(τ)

γ
,

dui(τ)

dτ
=

qs
msc2

{
Em[xi(τ), t] +

ui(τ)

γ
×Bm[xi(τ), t]

}
,

where γ = γ(u) =
√

1 + u(τ) · u(τ) and Em and Bm are the microscopic electric and

magnetic �elds experienced by each individual particle. By taking the time derivative of Eq.

(3.4),
∂Ns(x,v, τ)

∂τ
=

∂

∂τ

N∑
i=1

δ[x− xi(τ)]δ[u− ui(τ)]

=
N∑
i=1

{
δ[x− xi(τ)]

∂x
·
[
−dxi(τ)

dτ

]}
δ[u−ui(τ)]+

N∑
i=1

δ[x−xi(τ)]

{
∂δ[u− ui(τ)]

∂u
·
[
−dui(τ)

dτ

]}
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=
N∑
i=1

∂

∂x
δ[x− xi(τ)]δ[u− ui(τ)] ·

[
−ui(τ)

γ

]

+
N∑
i=1

∂

∂u
δ[x− xi(τ)]δ[u− ui(τ)] ·

{
− qs
msc2

[
Em(x, t) +

u

γ
×Bm(x, τ)

]}

= −u(τ)

γ
· ∂
∂x

N∑
i=1

δ[x− xi(τ)]δ[u− ui(τ)]

+

{
− qs
msc2

[
Em(x, t) +

u

γ
×Bm(x, τ)

]}
· ∂
∂u

N∑
i=1

δ[x− xi(τ)]δ[u− ui(τ)],

we derive the microscopic, particle description of a plasma known as the Klimontovich equa-

tion [62]:

∂Ns(x,u, τ)

∂τ
+
us(τ)

γ
· ∂Ns(x,u, τ)

∂x
+

qs
msc2

[
E(x, τ) +

us(τ)

γ
×B(x, τ)

]
· ∂Ns(x,u, τ)

∂u
= 0.

(3.5)

While exact, the Klimontovich equation is not particularly useful as it is too compu-

tationally expensive to be e�ective for any macroscopic plasma. For example, a modern

high-performance desktop computer processor clocked at 4 GHz will be able to operate at

about 100 GFLOPS, that is, 1011 �oating-point operations per second. For an LPA-relevant

problem, considering a laser pulse traveling though a plasma 500 µm by 500 µm wide and

10 cm long, i.e., a volume of 25 mm3, with a density of n0 ∼ 1018 cm−3, we would have to

calculate the trajectories of at least N � 1016 particles. In order to do just a single �oating

point calculation for every particle in consideration once on such a computer it would take

28 hours. In order to repeat just that single �oating-point operation 105 times so that one

can resolve longitudinally the plasma on 1 µm resolution over a distance of 10 cm, con-

sidering typical LPA laser pulses are L ∼ 10 µm in length, although in reality one needs

c∆t� λ ∼ 1µm, it would take 300 years to �nish such a simple numerical simulation for so

many particles. Supercomputer clusters such as Cori at the National Energy Research Scien-

ti�c Computing Center (NERSC) at LBNL are far more powerful than a desktop computer,

with a theoretical speed in the PFLOPS range, which would reduce the above calculation to

15 minutes. However, that is a very naive estimation which ignores the computational costs

of the necessary parallelization and overhead to use a supercomputing cluster as well as the

fact that no physical simulation is so simple as a single arithmetic operation repeated many
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times, as pushing a single particle a single time step in reality requires tens if not hundreds

of operations, rendering even modern supercomputers a moot option for large-scale Klimon-

tovich calculations. Not to mention, someone else might be waiting to use the computer as

well.

3.2.2 Kinetic Description

One solution to the computational challenge of a microscopic description of a plasma is

a kinetic description, which can be achieved by taking the ensemble averages of Ns,E
m,

and Bm. Assuming a perturbative description of the microscopic dynamics, i.e., Ns =

fs + δNs,E
m = E + δEm, and Bm = B + δBm, and taking the ensemble average over

phase-space, i.e., 〈x〉 =
∫
fxd3xd3u, we then have,

〈Ns〉 = fs, 〈Em〉 = E, 〈Bm〉 = B,

〈δNs〉 = 0, 〈δEm〉 = 0, 〈δBm〉 = 0.

Taking the ensemble average of Eq. (3.5), we can write what is known as the Boltzmann

equation:

Dfs
Dτ

=
∂fs
∂τ

+
us

γ
· ∂fs
∂x

+
qs
msc2

(
E +

us

γ
×B

)
· ∂fs
∂u

= − qs
γmsc2

〈(
δEm +

us

γ
× δBm

)
· ∂δNs

∂u

〉
=
δfs
δτ

∣∣∣∣∣
collision

(3.6)

Here D/Dτ is the material or macroscopic time derivative from continuum mechanics. The

Lorentz force can be replaced with a generalized force in di�erent circumstances, and the

perturbative contribution that was not averaged out describes collisional e�ects.

If we assume that the contribution from collisions is zero, we can then reduce Eq. (3.6)

to the well-known Vlasov equation [63]:

∂fs
∂τ

+
us

γ
· ∇xfs +

qs
msc2

(
E +

us

γ
×B

)
· ∇uf = 0. (3.7)

The Vlasov equation is one of the most important in plasma physics and is quite power-

ful in its application and description of laser-plasma interactions when coupled to Maxwell's
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equations. This is especially pertinent with respect to computation. In the Klimontovich for-

mulation, we have the real number of particles, so O(N2) interactions are computed. Using a

particle-in-cell (PIC) approach with rapid Poisson solvers as well as the use of macroparticles

extrapolated from the Vlasov formulation, where a single computational particle represents

several physical particles, computational complexity goes down to at least O(N logN) [64].

However, the Vlasov formulation is limited by the fact that a kinetic description cannot

account for single particle physics, particularly the emission of radiation.

3.2.3 Fluid Description

One may describe the plasma from an even more macroscopic perspective than the Vlasov

equation by deriving the �uid equations. While the kinetic approach is powerful, a �uid

description further simpli�es the description of the plasma and more readily allows for ana-

lytical descriptions.

We can rewrite Eq. (3.7) and Maxwell's equations as

∂fs
∂τ

+
u

γ
· ∇xfs +

qs
msc2

(
E +

u

γ
×B

)
· ∇ufs = 0, (3.8)

and

∇ ·E = 4π
∑
s

qs

∫
fsd

3u, ∇ ·B = 0,

∇×E = −∂B
∂t

, ∇×B = 4π
∑
s

qs

∫
1

γ
usfsd

3u+
4π

c

∂E

∂t
.

We then proceed to extract the macroscopic properties of the plasma by taking the moments

of the previous equations, that is, the density of species s,

ns(x, τ) =

∫
fsd

3u, (3.9)

the bulk momentum of species s,

us(x, τ) =
1

ns

∫
ufsd

3u, (3.10)

and the pressure tensor

Πij =
1

ns

∫
(ui − us,i)(uj − us,j)fsd3u.
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The pressure tensor will be neglected in our calculations as thermal e�ects have a minute

e�ect on the laser-plasma interactions we will be considering.

By taking into consideration Eqs. (3.9) & (3.10), we take the zeroth- and �rst-order

moments of Eq. (3.8) to generate the cold �uid equations of a plasma. From here on we will

only be considering one species, the electrons, and drop the s subscript, i.e., fs → f . The

zeroth moment is∫
∂f

∂τ
d3u+

∫
u

γ
· ∇xfd

3u+

∫
q

mc2

(
E +

u

γ
×B

)
· ∇ufd

3u

=

∫
∂f

∂τ
d3u+∇x ·

∫ (
u

γ
f

)
d3u+

q

mc2

[∫
E · ∇ufd

3u+

∫ (
u

γ
×B

)
· ∇ufd

3u

]
=

∫
∂f

∂τ
d3u+∇x ·

∫
u

γ
fd3u

+
q

mc2

[∫
∇u · (fE)d3u+

∫
∇u ·

(
f
u

γ
×B

)
d3u−

∫
f∇u ·

(
u

γ
×B

)
d3u

]
. (3.11)

The integral with respect to E in Eq. (3.11) vanishes as a Maxwellian-like distribution f

falls o� faster than u−2 as u→∞, as is necessary for a �nite energy distribution. The �rst

integral with respect to B can be turned into a surface integral by the divergence theorem,∫∫∫
(∇ · F)dV =

∫∫
(F · n)dS, and again for a Maxwellian-like distribution f falls o� faster

than any power of v, causing the integral to vanish. The second integral with respect to B

vanishes because u×B is perpendicular to ∂/∂u. The �nal solution to the zeroth moment

of the Vlasov equation, assuming a cold plasma such that fs = ns(x, τ)δ(u − us) with

γs =
√

1 + u2
s, is the continuity equation,

∂ns
∂τ

+∇ ·
(
n
us
γs

)
= 0. (3.12)

The �rst order moment of the Vlasov equation with respect to u is∫
u
∂f

∂τ
d3u+

∫
u

γ
(u · ∇x)fd3u+

q

mc2

∫
u

(
E +

u

γ
×B

)
· ∇ufd

3u, (3.13)

where γ =
√

1 + u2. The �rst integral gives∫
u
∂f

∂τ
d3u =

∂

∂t

∫
ufd3u =

∂

∂t
(nsus).
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The second integral gives∫
u

γ
(u · ∇x)fd3u =

∫
∇x ·

(
1

γ
fuu

)
d3u = ∇ ·

∫
1

γ
fuud3u = ∇ ·

(
ns
γs
ūsūs

)
.

When considering thermal e�ects, i.e., v̄ = v + vth, this leads to a more complicated result

including the pressure tensor, but as v/c ∼ a� vth/c, it simpli�es to

∇ ·
(
n

γs
ūsūs

)
= us∇ ·

(
n
us
γs

)
+ n

(
us
γs
· ∇
)
us.

The third integral in Eq. (3.13) results in∫
u

(
E +

u

γ
×B

)
· ∇ufd

3u =

∫
∇u ·

[
fu

(
E +

u

γ
×B

)]
d3u

−
∫
fu∇u ·

(
E +

u

γ
×B

)
d3u−

∫
f

(
E +

u

γ
×B

)
· ∇uud

3u. (3.14)

As in Eq. (3.11), the �rst integral in Eq. (3.14) on the right-hand side vanishes as the

distribution f goes to zero faster than u. The second integral vanishes because the �elds

are only a function of space, i.e., ∇u · (uγ × B) = 0 and ∇uE(x) = 0. The third integral

simpli�es via the identity tensor, ∇uu = ∂u/∂u = I. The resulting equation is now

∂

∂τ
(nsus) + us∇ ·

(
ns
us
γs

)
+ ns

(
us
γs
· ∇
)
us +

q

mc2
ns

(
E +

us
γs
×B

)
.

Expanding the �rst term as ∂
∂τ

(nu) = u∂n
∂τ

+ n∂u
∂τ
, combining that with the second term,

taking advantage of Eq. (3.12), and dividing through by n, our equation now reduces to the

standard relativistic, cold-�uid momentum equation:

∂us
∂τ

+

(
us
γs
· ∇
)
us +

q

mc2

(
E +

us
γs
×B

)
= 0. (3.15)

If we distinguish between species, we can account for a multi-�uid �ow, such as separate

dynamics for the electrons versus the protons as well as for heavier species such as helium

versus hydrogen. However, on the time scale of a femtosecond pulse, heavier molecules are

considered to be part of the static ion background versus the dynamic electron �uid, i.e,

ω2
pi = 4πn0q

2
i /mi � ω2

pe. Henceforth, the �uid momentum of species s will assumed to be

just that of the electrons and the subscript will be dropped, i.e., us → u.
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3.3 Conservation of Canonical Momentum

An important assumption frequently used in LPA physics is the conservation of canonical

momentum as an electromagnetic wave propagates through the plasma. The Lagrangian for

a relativistic free particle is

Lfree = −mc2
√

1− v2/c2. (3.16)

Through the Euler-Lagrange equation,

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0,

where q and q̇ are the generalized spatial coordinate and velocity, one can retrieve the

free-particle equation of motion,

d

dt

∂Lfree

∂q̇
= ṗ =

d

dt
(γmq̇) =

d

dt
(γmv).

The interaction contribution between a charged particle and the electromagnetic �eld is

de�ned as

Lint =
q

c
v ·A− qΦ. (3.17)

Combining Eqs. (3.16) & (3.17), we have the complete Lagrangian for a single particle in

an electromagnetic �eld,

L = −mc2
√

1− v2/c2 +
q

c
v ·A− qΦ. (3.18)

The canonical momentum ṗi conjugate to the position coordinate qi is derived from the

expression
∂L

∂q̇
= p = γmv +

q

c
A. (3.19)

The relativistc energy is E = [(mc2)2+p2
mc

2]+qΦ, where the �rst term in the square brackets

is the relativistic rest mass and pm = γmv is the mechanical momentum. Replacing the

mechanical momentum using Eq. (3.19), i.e., pm = p − qA/c, the relativistic Hamiltonian

for a charged particle can be written as

H =
∑
i

q̇i
∂L

∂q̇i
−L = mc2

[
1 +

(
p

mc
− qA

mc2

)2
]1/2

+ qΦ.
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This can be normalized as

Ĥ =
[
1 + (u− a)2

]1/2
+ φ.

Assuming a plane-wave for the vector potential that varies as a function of ζ, i.e, a =

e⊥a(ζ) and φ = φ(ζ), we can then write

ṗ⊥
mc

= −∇⊥Ĥ = 0, (3.20)

ṗζ
mc

= −∂Ĥ
∂ζ

=
1

γ
(u− a)

∂a

∂ζ
− ∂φ

∂ζ
. (3.21)

Here γ =
√

1 + (u− a)2. Eq. (3.20) implies that the transverse momentum is a constant of

motion and Eq. (3.21) describes the energy gain of a particle being driven by the laser and

the wake. Since Ĥ is constant, prior to the arrival of the laser pulse we can assume that

p⊥/(mc) =
∫
∇⊥Ĥ rdr = const. = 0, which means that we can assume, in 1D, that

u⊥ = a⊥, (3.22)

This result can also be intuited by examining Eq. (3.18), in which it is evident that for

a variation in any coordinate on which the Lagrangian does not depend, i.e., q = x, the

canonical coordinates associated with that Lagrangian, Eq. (3.18), also do not depend on x.

So in whichever direction the �elds do not vary, the canonical momentum in that direction

remains equal to its initial value plus the vector potential contribution in that direction at

that coordinate. This always holds true in the 1D nonlinear regime and is approximately

true in the 3D nonlinear regime to the leading order quiver motion. The degree to which this

holds in 3D assumes that a laser pulse propagating through a plasma does not appreciably

vary in the transverse direction compared to the longitudinal oscillation, i.e., (kr0)2 � 1.

3.4 Electrostatic Waves and the Plasma Frequency

The most important quantity for characterizing a plasma is the plasma frequency, ωp, which

describes motion in an unmagnetized plasma. We assume a steady-state plasma in which

we only consider high frequency oscillations and assume a �xed ion background which is in

charge density equilibrium with the electrons, i.e., ni = ne. Assuming charge densities of



CHAPTER 3. LASER-PLASMA INTERACTIONS 46

the form Q = qe(n− n0) and J = qen0cu/γ, we can write Coulomb's law and Ampère's law,

Eqs. 2.14 and 2.17, as

∇ · E =4πqe(n− n0),

∇×B− ∂E

∂τ
=4πqen0u/γ,

where here u is the �uid momentum for the electrons.

These two equations, along with the continuity and �uid momentum equations, Eqs.

(3.12) & (3.15), assuming a static state in which the electron �uid is initially at rest, can

be linearized with respect to small parameters n = n0 + ñ, u = ũ, a = a0 + ã, B = 0, and

E = Ẽ, where we are only considering the wake contribution to the �elds only, to write to

�rst order

∂ñ

∂τ
+
n0

γ0

(∇ · ũ) =0, (3.23)

∂ũ

∂τ
+

qe
mec2

Ẽ =0, (3.24)

∇ · Ẽ− 4πqeñ =0, (3.25)

∂Ẽ

∂τ
=

4πqen0

γ0

ũ =0, (3.26)

where γ0 =
√

1 + a2
0 is derived from the Taylor expansion of the Lorentz factor

1

γ
' 1

γ0

− a0 · ã
γ3

0

. (3.27)

Here we assumed purely electrostatic wake excitation, i.e., B ≈ 0. We can combine the Eqs.

(3.23) - (3.25) to write

∂2ñ

∂τ 2
+

(
4πn0q

2
e

γ0mec2

)
ñ =

(
∂2

∂τ 2
+
k2
p

γ0

)
ñ = 0. (3.28)

An e�ectively identical equation can be derived by taking the time derivative of Eq. (3.25)

and combining it with Eq. (3.24), assuming a cold plasma.

Eq. (3.28) is a simple harmonic oscillator equation for which we can de�ne the charac-

teristic frequency as

ω2
p = k2

pc
2 =

4πq2
en0

me

,
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which is known as the plasma frequency [65]. The relativistic contribution in Eq. (3.28) is

typically neglected in most sub�elds of plasma physics but it plays an important role in laser

plasma interactions.

3.5 Electromagnetic Waves in a Plasma

A laser pulse can be approximated as an electromagnetic plane-wave propagating through a

medium. Electrostatic oscillations are longitudinal in nature for which oscillating magnetic

�elds vanish. A plasma, however, can sustain oscillations from an external electromagnetic

wave.

Starting with the full wave equation, Eq. (2.21), now that we have speci�ed our medium

explicitly as plasma, we can de�ne the source term as j = k2
p
n
γn0
u⊥ ' k2

p
n
γn0
a⊥, where we

have applied the principle of conservation of canonical momentum from Eq. (3.22). Likewise,

the scalar potential of the wake φ evolves slowly with respect to the laser potential a and so

can be neglected. We linearize Eq. (2.21) with respect to n = n0 + ñ and a⊥ = a0 + ã, to

give: (
∂2

∂t2
− c2 ∂

2

∂z2
+
ω2
p

γ0

)
a0 = 0,

where the same Taylor expansion of the Lorentz factor is used as in Eq. (3.27). By simple

Fourier analysis of this equation, whereby ∂2/∂t2 → −ω2 and ∂2/∂z2 → −k2, we can derive

the dispersion relation for a relativistic light wave:

ω2 = k2c2 + ω2
p/γ0. (3.29)

We can express dispersion relation (3.29) in the following form:

η =
kc

ω
=

√
1−

ω2
p

γ0ω2
,

where η is the index of refraction and which in the language of general plasma physics

corresponds to an ordinary wave or O-wave. There is a critical threshold frequency, i.e.,

critical plasma density, when ωpc = ω, such that electromagnetic radiation will no longer

propagate through the plasma. This threshold is reduced in a relativistic plasma as ωp scales

instead with
√
γ0ω. Circumstances for which ωp < ω are known as underdense plasmas,
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e.g., laser-plasma acceleration of electrons, magnetic con�nement fusion, and radio-wave

propagation through the lower atmosphere. When ωp > ω the plasma is known as overdense

and electromagnetic waves exponentially damp out as they propagate through the plasma

and are re�ected, as in laser-driven ion acceleration, inertial con�nement fusion, and radio

wave re�ection by the ionosphere [66].

When thermal e�ects are to be considered the dispersion relation changes. In this case,

where θB = kBTe/mec
2 is the normalized plasma temperature, the dispersion relation takes

the form [67]

ω2 =
ω2
p

γ

(
1 +

3

2

a2θ2
B

γ2
− 5

2

θB
γ2

)
+ 3k2c2 θB

γ2

(
1− 3

2

a2

γ2
+
a2k2c2

γ2ω2

)
.

Thermal e�ects are often ignored in short-pulse laser plasma interactions. This is the case for

laser propagation, where the quiver velocity vq/c is proportional to a, which is much larger

than vth/c [6]. The thermal velocity is already a perturbation relative to the laser oscillation,

so generally it is a second-order perturbation to the plasma oscillation. Another perspective

is the energy considerations involved, where relativistic e�ects scale as mec
2γq ∼ mec

2 ∼ 1

MeV, but thermal e�ects 1
2
mev

2
th ∼ 10 eV. However, thermal e�ects do play an important

role in trapping electrons in the wake [68], but this phenomenon is not considered in this

work.

3.6 Governing Equations

The governing equations that we will be considering in this work are based on the following

assumptions: (1) Conservation of canonical momentum, i.e., u⊥ = a⊥, and where we will

be considering only the transverse �eld henceforth unless otherwise noted, i.e., a⊥ → a. (2)

The scalar potential φ is slowly varying relative to a and so can be neglected in the wave

equation. (3) Thermal, collisional, and magnetic e�ects are negligible, i.e., v ∼ a� vth and

ωp � ωcol > ωc. (4) Microscopic and single particle motion does not a�ect the macroscopic

�uid dynamics of the plasma. (5) The paraxial approximation, that the vector potential a is

a slowly varying variable with respect to the propagation distance τ , i.e., that
∣∣∣∂2a∂τ2

∣∣∣� ∣∣k ∂a
∂τ

∣∣.
Given these assumptions, the basic governing equations we will be considering for LPA

physics are the normalized cold �uid equations, i.e., the continuity and momentum equations
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derived in Eqs. (3.12) and (3.15), setting us → u, considering only the electron species, as

well as the normalized Poisson's and the reduced paraxial wave equations, Eqs. (2.22) and

(2.25), i.e. [6],

∂n

∂τ
+∇ ·

(
nu

γ

)
= 0, (3.30)(

∂

∂τ
+
u

γ
· ∇
)
u = ∇φ+

∂a

∂τ
−
(
u

γ

)
× (∇× a), (3.31)(

∇2
⊥ +

∂2

∂ζ2

)
φ = k2

p(n− n0)/n0, (3.32)(
∇2
⊥ + 2ik

∂

∂τ

)
a = k2

p

n

n0

a

γ
. (3.33)

To reiterate, τ = ct, u = γv/c = p/mec is the normalized electron �uid momentum,

γ =
√

1 + u2 =
√

1 + a2 is the Lorentz factor, φ = qeΦ/mec
2 is the normalized scalar

potential, a = qeA/mec
2 is the normalized vector potential, and ζ = z − ct is the comoving

variable.

3.7 Propagation Velocity in a Plasma

For a plane wave, the dispersion relation de�nes the phase velocity as vp = ω/k and the

group velocity as vg = ∂ω/∂k. For a Gaussian laser pulse governed by the paraxial wave

equation (2.25) [69], we can write the radiation �eld and phase as

a(r, z, t) = a0(r0/rs) exp(−r2/r2
s + iϕ),

ϕ(r, z, t) = k(z − ct) + αr2/r2
s − arctan(α)− k2

pr
2
0α/4,

where α is related to the wavefront curvature (α = z/ZR in vacuum) and the axial wave

number kz = ∂φ/∂z. Assuming constant α and rs, kz can be de�ned in terms of the total

phase ω = −∂ϕ/∂t, i.e.,

kz = k − 1

2k2

{
k2
p −

4

r2
s

[
1− r2

r2
s

(1− α)

]}
. (3.34)

In this case, the phase velocity is given by vp = ω/kz and the group velocity by vg =

(∂kz/∂ω)−1. Assuming that vg/c = (1 + εp)
−1 ≈ 1 − εp, where εp, proportional to the
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expression within the brackets in Eq. (3.34), is a small parameter given that k2
p/k

2 � 1 and

1/k2r2
s � 1, we have

vg
c
≈ 1− 1

2k2

{
k2
p −

4

r2
s

[
1− r2

r2
s

(1− α)

]}
.

This reduces to vg/c = 1 − (2k2)−1(k2
p − 4/r2

0) on axis where r = 0, assuming rs = r0 is

constant.

While the transverse gradient of a Gaussian pulse gives a geometric contribution of 4/r2
0, a

Hermite-Gaussian pulse gives 4(m+n+1)/r2
0 and a Laguerre-Gaussian pulse 4(2µ+ν+1)/r2

0.

With this in mind, we can write the group and phase velocities for a laser pulse of �nite

spatial length as

vg
c

= 1− 1

2k2

(
k2
p + k2

⊥
)
, (3.35)

vp
c

= 1 +
1

2k2

(
k2
p + k2

⊥
)
. (3.36)

Here k2
⊥ = 4(m + n + 1)/r2

0 for Hermite-Gaussian modes and k2
⊥ = 4(2µ + ν + 1)/r2

0 for

Laguerre-Gaussian modes (the zeroth-order contribution is the same for both, i.e., k2
⊥ = 4/r2

0,

which is the Gaussian pulse).

3.8 Energy Depletion and Redshifting

The normalized energy content of a laser can be readily described by taking the integral of

the laser �eld intensity, |a|2 ∼ |E|2, over all space [42, 70],

E = k3
p

∫∫
r

[∣∣∣∣(1− i

k

∂

∂ζ

)
a

∣∣∣∣2 +
1

2k2

∣∣∣∣∂a∂r
∣∣∣∣2
]
dζdr.

In physical units the energy is equal to Ulaser = [(m2c4k2)/(4q2k3
p)]E . Using the paraxial

wave equation, we can approximate it as

∂a

∂τ
' − i

2k

[
k2
pn̂a−∇2

⊥a+ i
1

k

∂

∂ζ
(k2
pn̂a−∇2

⊥a)

]
,

where n̂ = n/(γn0), and we can determine the normalized energy evolution via

∂E
∂τ
' −

k5
p

2k2

∫∫
r
∂n̂

∂ζ
|a|2dζdr + i

k3
p

4k3

∫∫
r
∂n̂

∂r

[
∂a

∂r
a∗ − a∂a

∗

∂r

]
dζdr. (3.37)
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This formulation is valid at early times of the laser pulse's propagation through a plasma

for any laser intensity.

Assuming a Hermite or Laguerre-Gaussian basis for our laser pulse, the second integral

in (3.37) vanishes, since a = a∗ and (∂ra)a∗ = a(∂ra
∗). The initial rate of change for the

laser energy can then be written as

∂E
∂τ
' −

k5
p

2k2

∫∫
r
∂n̂

∂ζ
|a|2dζdr. (3.38)

For a short laser pulse we have ∂ζρ > 0 in the region of the laser driver so that ∂τE < 0,

thus we are extracting energy from the laser. The laser-induced perturbation to n̂ = n0 + ñ,

assuming circular polarization, satis�es the following relation:(
∂2

∂ζ2
+ k2

p

)
ñ = −(k2

p −∇2
⊥)
|a|2

2
.

The Green function solution to this equation has the form

ñ =
1

2

(
1− k−2

p ∇2
⊥
)
|a⊥(r)|2

∫
kp sin[kp(ζ − ζ ′)]g2(ζ ′)dζ ′, (3.39)

where we have separated out the contributions of the vector potential, |a| = |a⊥(r)|g(ζ),

where g is the longitudinal pro�le of the laser.

The mean laser wave number, normalized to the initial value, can be expressed as a

function of the normalized energy E and wave action A, i.e., 〈k̄/k0〉 = E/A, where k0 is the

initial mean wave number of the laser and A, an adiabatic invariant, which can be written

as

A = k3
p

∫∫
r

[
|a|2 + i

1

k

(
a
∂a∗

∂ζ
− a∗∂a

∂ζ

)]
dζdr,

such that ∂τA = 0. From conservation of action, the frequency shift of the mean laser wave

number can be expressed as A∂τ 〈k/k0〉 ' ∂τE . Normalizing by the Gaussian energy,

E0 '
√
π

2
kpLa

2
0

(kpr0)2

4
,

an explicit expression for the frequency shift, inserting Eq. (3.39) into Eq. (3.38), can be

written out as
∂k

∂τ
= E−1

0

k4
p

2k2

∫∫ (
|a⊥|2 − k−2

p ∇2
⊥|a⊥|2

)
|a⊥|2Fdxdy, (3.40)
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and

F = k2
p

∫ ∞
−∞

∫ ∞
ζ

cos[kp(ζ − ζ ′)]g2(ζ)g2(ζ ′)dζdζ ′ ≈ π

4
(kpL)2e−(kpL)2/4,

and g(ζ) = exp[−(ζ − ζ0)2/L2] is the longitudinal pro�le of the laser mode.

The characteristic length scale for energy depletion is Ldepl ∼ λ3
p/λ

2/(2a2
0) for a2 � 1

and Ldepl ∼ λ3
p/λ

2 for a2 � 1, assuming a �xed Gaussian pulse length near linear resonance

[71]. Ldepl is typically one or two orders of magnitude longer than the di�raction length

scale, ZR. For quasilinear-regime LPA systems, redshifting of the laser pulse is insigni�cant

on the primary length scale, the dephasing length, Ldeph ∼ λ3
p/λ

2. The leading proposal for

overcoming depletion would be to use a staged setup, as shown previously in Fig. 1.5, which

would use a new laser pulse at every stage, essentially ignoring any detrimental e�ects due

to depletion and redshifting.

3.9 Relativistic Self-Focusing

The concept of self-focusing arises in several ways in laser physics. Self-focusing is a nonlinear

e�ect, involving an e�ective change in the refractive index of the medium through which the

laser pulse propagates. In our case the index of refraction is a function of the intensity of

the laser �eld. For example, Kerr-induced self-focusing is driven by the Kerr e�ect, in which

the action of the electric �eld causes the dipole moments of the medium to align with the

polarization of the laser [72]. Thermal self-focusing involves a change in refractive index due

collisional heating [73].

In LPAs, the dominant mechanism for self-focusing are relativistic e�ects. The basis for

this is the relativistic mass increase of the electrons as they approach the speed of light [74].

This is known as the quiver motion of the plasma and it modi�es the index of refraction as,

η2(ω) = 1−
ω2
p

γω2
≈ 1−

ω2
p

ω2

(
1− a2

2

)
,

where the above has been Taylor-expanded assuming a2 � 1. The physical mechanism

behind this is that the electrons in the immediate vicinity of the laser �quiver� with a velocity

vq/c ∼ a0, which in turn causes their momentum to relativistically increase where the laser

pulse is more intense. This increase in mass causes the background density near the laser
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Figure 3.1: Example of the relativistic self-focusing e�ect. (a) the electrons near the laser
peak undergo stronger quiver motion than those by the wings, with redness corresponding to
the relativistic mass increase. (b) The quiver motion causes a change in the overall density
pro�le, example cases of uniform plasma (dark blue) and parabolic plasma channel (light
blue), for a0 = 0.5 and kpr0 = 5.

to increase, as visualized in Fig. 3.1.a., causing an e�ective decrease in the density pro�le

locally. The decrease occurs regardless of the initial background plasma, as visualized in Fig.

3.1.b for both a uniform plasma as well as a parabolic plasma channel. In the low-intensity

limit, we can estimate a critical power ratio at which relativistic self-focusing will cancel out

di�raction:

P/Pc = (kpr0a)2/16. (3.41)

This is for circular polarization, the power ratio is a factor of two smaller for linear po-

larization, i.e., P/Pc = (kpr0a)2/32. Here Pc ' 17(ω/ωp)
2 GW is the critical power for

self-focusing [75].

This expression for the critical power ratio can be derived in several ways. For example,

if we assume a Gaussian pulse of transverse pro�le a = a0 exp(−r2/r2
0) ≈ a0(1 − r2/r2

0),

expand the source term of the paraxial wave equation, i.e., k2
pn/(γn0) ≈ k2

pn/n0(1 − a2/2),

and assume no evolution (∂a/∂z = 0), then by matching second-order terms in r we have

∇2a ≈ k2
p

n

γn0

→ 4r2

r4
0

= k2
p

a2
0

2

2r2

r2
0

→ P

Pc
=
k2
pa

2
0r

2
0

4
.

This result is o� by a factor of 1/4 but the proper result Eq. (3.41) can be derived via the

variational approach [76]. Another derivation uses the moment of the relativistic perturba-

tion, 1/γ = 1/
√

1 + |a|2 ≈ 1− a2/2, where critical power comes from the a2 term. This can
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be derived from the �rst order moment of the source term (see Appendix B), thus:

P

Pc
'
k2
pr

2
0

2

∫ ∞
0

|a(r)|2e−2r2/r0rdr, (3.42)

where we assume a uniform plasma background, n = n0, and Gaussian mode a(r) = a0e
−r2/r20 .

For a Gaussian pulse this gives us the exact solution for low-intensity relativistic self-focusing,

i.e., Eq. (3.41).

An exact determination of relativistic self-focusing is possible for a single laser mode, and

is exact and does not su�er from catastrophic self-focusing as well, i.e., |a| → 0. Assuming

a source term k2
p
n
γn0

a, where γ =
√

1 + |a|2 is the full Lorentz factor, we can calculate the

contribution due to relativistic self-focusing as follows. Taking the �rst moment with respect

to the weight function e−r
2/r20 in cylindrical coordinates, we have∫ ∞

0

k2
p
n
n0
a0e
−r2/r20√

1 + a2
0e
−2r2/r20

e−r
2/r20rdr. (3.43)

Collecting terms and making a change of variables ξ = 2r2/r2
0, we can rewrite Eq. (3.43) as

a0C

∫ ∞
0

e−ξ√
1 + a2

0e
−ξ
dξ,

where C =
k2pr

2
0

4
, assuming a uniform background plasma, n = n0. This can be simpli�ed

further by another change of variables, Ξ = e−r
2/r20 and noting that dΞ = −Ξdξ, which we

can now readily integrate:

−a0C

∫ 0

1

1√
1 + a2

0Ξ
dΞ = −2

C

a2
0

(√
1 + a2

0 − 1

)
. (3.44)

This is the exact solution for the source term for a relativistic plasma with respect to its mo-

ment. The Taylor expansion of Eq. (3.44) gives us the same solution as the approximations

of Eqs. (3.41) and (3.42), that is

−
k2
pr

2
0

2a2
0

(√
1 + a2

0 − 1

)
≈
k2
pr

2
0

4

(
1− a2

0

4

)
,

where the �rst term in the parenthesis corresponds to di�raction and the second term to

relativistic self-focusing.
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3.10 Ponderomotive Force

What ultimately drives wake�elds in an LPA is the ponderomotive force. In the nonrelativis-

tic regime, linear limit, a2 � 1, the ponderomotive force can be derived from the momentum

equation,
∂u

∂τ
+ u · ∇u = −∂a

∂τ
− u× (∇× a),

where we are neglecting the scalar potential contribution. In the linear limit the leading

order contribution to the electron �uid momentum is the quiver momentum pq = meca, i.e.,

u⊥ = a⊥. Assuming a second-order perturbation u = u0 + ũ, where ũ is a second-order

perturbation with respect to �rst-order perturbations a0 and u0, we can write

∂ũ

∂τ
+ u0 · ∇u0 = −u0 × (∇× a0).

Setting u0 = a0 throughout and using the vector calculus identity ∇(a2/2) = (a ·∇)a+a×
(∇× a), we can rearrange terms to write

∂ũ

dτ
= −∇(a2

0/2). (3.45)

This is the standard expression for the linear ponderomotive force and is valid when a2 � 1

[25, 6].

The nonlinear ponderomotive force is also relatively straightforward to derive [77]. Again,

starting with the momentum equation, but now relativistic and retaining the scalar potential

contribution, we have(
∂

∂τ
+
u

γ
· ∇
)
u = ∇φ+

∂a

∂τ
−
(
u

γ

)
× (∇× a). (3.46)

Using the vector identity [(u/γ) · ∇]u = ∇γ − (u/γ) × (∇ × u), where γ =
√

1 + u2 and

∇γ = ∇(u2/2)/γ, we can rewrite Eq. (3.46) as

∂

∂τ
(u− a) =

(
u

γ

)
× [∇× (u− a)] +∇φ−∇γ. (3.47)

Taking the curl of Eq. (3.47) gives a vorticity equation of the form [78]

∂

∂τ
[∇× (u− a)] = ∇×

{(
u

γ

)
× [∇× (u− a)]

}
, (3.48)
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where the gradient terms have vanished given the vector identity ∇×∇f = 0.

The vorticity can be de�ned as Ω = ∇× (u− a) and Eq. (3.48) can be expressed as

∂Ω

∂τ
−∇×

(
u

γ

)
×Ω = 0. (3.49)

This expression says that the �ux of generalized vorticity through an arbitrary surface

bounded by a comoving constant is constant, i.e., Ω remains constant regardless of how

u and a vary. This is Kelvin's theorem in a barotropic ideal �uid, in which Ω is transported

by the �ow. If the plasma is at rest before the laser pulse arrives, then Ω = ∇× (u−a) = 0

both before and for all time thereafter, given Eq. (3.49). From this and Eq. (3.47), the

momentum equation can be written as

∂

∂τ
(u− a) =

∂ũ

∂τ
= ∇(φ− γ), (3.50)

where ∇φ = −F/mec
2 is the space-charge force and ∇γ corresponds to the generalized

nonlinear ponderomotive force [6]

FpN = −mec
2∇γ.

Eq. (3.50) reduces to Eq. (3.45) when a2 � 1 and γ ∼ 1. Using this we can also derive the

equivalence between normalized momentum and laser potential. Considering a time-scale

separation, i.e., u = uf + us, φ = φs, and γ = γs, where f denotes the fast time-scale and s

slow, we can write ∂τ (uf − af ) = 0, and so uf = af [79].

3.11 Multimode Beating

Due to the fact that Maxwell's equations are linear, it is possible to superimpose �elds.

However, the physical aspect of the laser that is observed and which interacts with the

plasma is not the �elds themselves but rather the intensity, i.e., the square of the �eld

contributions, through the ponderomotive force. When two di�erent modes overlap they

inherently beat, causing an oscillation in intensity.

Beating has been an important tool in past experiments, where the beating of lasers of

di�erent frequencies allowed one to achieve a laser envelope closer to the plasma resonance
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than was otherwise possible at the time. The beat wave between two beating lasers will

generate a �eld of the form

Eb(r) cos[(kdi�/2)τ − (ωdi�/2)t] cos(ksumτ − ωsumt), (3.51)

where ωdi� = ω1 − ω2 and ωsum = ω1 + ω2, creating a plasma wave with a phase velocity

vp ≈ 1−ω2
p/(2ω1ω2) [80]. The time average of Eq. (3.51) will in turn create a ponderomotive

potential,

Φbeat = −q
2
eEb(r)

2

4meω2
cos2[(kdi�/2)τ − (ωdi�/2)t],

which will beat at a frequency ωdi� ≈ ωp, though this mechanism also works without a

plasma. In addition, beating has also been considered as an injection mechanism [81] and

radiation source [82].

While standard approaches to LPA physics generally only consider a single mode, the

superposition of two or more modes introduces a cross term of the form

a2 = |a1 + a2|2 = a2
1 + a2

2 + a∗1a2 + a1a
∗
2.

The cross term will be zero for laser modes of the same geometric mode numbers, i.e.,

m1 = m2, i.e., a single mode. However, when m1 6= m2, in the case of Hermite-Gaussian

modes, or µ1 6= µ2 for Laguerre-Gaussian modes, the phase contributions of the two modes

will create a beating contribution [83]. For am = Cm exp(iωmt), the cross terms give

a∗1a2 + a1a
∗
2 = C1C2{exp[i(ω1 − ω2)t] + exp[−i(ω1 − ω2)t]} = 2C1C2 cos[(ω1 − ω2)t]. (3.52)

This means that, whenever there is more than one mode present in a system, except under

very particular conditions, there will always be beating and the intensity will always vary

with propagation distance.

The cross term described Eq. (3.52) is an important factor in the study of higher-order

mode propagation through a plasma. Beating occurs whenever the phases of the two laser

modes di�er, including in vacuum in the case of the vacuum beat-wave accelerator concept

[84]. Eq. (3.52) applies to all nonlinear phenomena in LPA physics as well, wherever there is a

term proportional to |a|2. This introduces a beat term into the Lorentz factor γ =
√

1 + |a|2,
a�ecting self-focusing, and the ponderomotive force, Fp ∼ ∇|a|2.
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Chapter 4

Wake�elds and Particle Dynamics

In the linear limit, when a2 � 1, we consider the �uid continuity and momentum equations,

Eqs. (3.30) and (3.31), simpli�ed with the linear ponderomotive force, Eq. (3.45), and

Poisson's equation, Eq. (3.32):

∂ñ

∂τ
+∇ · ũ = 0, (4.1)

∂ũ

∂τ
= ∇φ−∇a2/2, (4.2)

∇2φ = k2
pñ. (4.3)

We make use of the quasistatic approximation, which assumes that individual plasma par-

ticles are passed over by the laser pulse and its associated wake in a relatively short time

compared to the evolution time of the laser pulse and wake themselves. This approximation

allows us to make the following change of variables with respect to the derivatives [44],

∂

∂z
=

∂

∂ζ
,

∂

∂t
= c

∂

∂τ
− c ∂

∂ζ
' −c ∂

∂ζ
,

and
∂2

∂z2
=

∂2

∂ζ2
,

∂2

∂t2
= c2 ∂

2

∂ζ2
.

The propagation distance τ is considered to be slowly varying during the transmission of the

pulse, essentially setting ∂/∂τ = 0 in the comoving frame. The quasistatic approximation

can be physically understood as assuming that a rigid photon propagates abruptly through a

static, undisturbed plasma but then leaves a wake behind it, i.e., we do not consider forward

propagating e�ects.
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4.1 Linear Plasma Wake�eld Equations

Eqs. (4.1) - (4.3) can be combined to write an expression for a plasma wave driven by the

ponderomotive force. By considering the relation between the plasma density, the electric

�eld, and the scalar potential, 4πρ = ∇·E/E0 = −∇2φ, we can write the following for small

perturbations to the electron density, electric �eld, and scalar potential:(
∂2

∂ζ2
+ k2

p

)
n

n0

=
1

2
∇2a2, (4.4)(

∂2

∂ζ2
+ k2

p

)
E

E0

=
1

2
k2
p∇a2, (4.5)(

∂2

∂ζ2
+ k2

p

)
φ = −1

2
k2
pa

2. (4.6)

Here E0 = mecωp/e represents the cold, nonrelativistic wave breaking �eld. Wake breaking

corresponds to when nonlinearities saturate the electric �eld to the maximum extent a linear

plasma wave can sustain before the nonrelativistic �uid description loses its validity [85].

Eq. (4.4) - (4.6) are driven Helmoholtz equations and can be solved via Green functions.

The Green function solution for a driven harmonic oscillator is readily known and allows

for an explicit expression for the scalar potential:

φ =
kp
2

∫ ζ

∞
sin[kp(ζ − ζ ′)]∇2|a(r, ζ ′)|2dζ ′,

from which the density perturbation and electric �eld can be derived, namely n/n0 =

−k−2
p ∇2φ and E/E0 = −k−1

p ∇φ. For a Gaussian pulse, a = a0 exp(−r2/r2
0) exp(−ζ2/L2),

the density perturbation and wake�elds can be written as [86]

n

n0

= −π
4
a2

0

[
1 +

8

k2
pr

2
0

(
1− 2r2

r2
0

)]
exp

(
−2r2

r2
0

)
sin(kpζ), (4.7)

E⊥
E0

=
π

2
a2

0

(
r

kpr2
0

)
exp

(
−2r2

r2
0

)
sin(kpζ), (4.8)

Eζ
E0

= −π
4
a2

0 exp

(
−2r2

r2
0

)
cos(kpζ), (4.9)

φ =
π

4
a2

0 exp

(
−2r2

r2
0

)
sin(kpζ). (4.10)

Here we assume we are examining the wake behind the laser pulse where a ' 0, i.e. |ζ−L| �
L. We also assume a resonant laser pulse length of L = λp. For a longitudinal Gaussian pulse
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Figure 4.1: Plotted are the laser intensity (red), the wake scalar potential (blue), the longi-
tudinal electric wake�eld (dashed green), transverse electric wake�eld o�-axis (dashed cyan),
and the density perturbation to the background plasma (dot-dashed black).

the linear solutions are plotted in Figure 4.1. From Fig. 4.1 it is clear that the numerical

integration of the Green function solution can be well approximated by sinusoidal functions,

(4.7)-(4.10), particularly when we are outside the laser envelope in the wake.

4.2 Electron Bunch Propagation

The primary intent of an LPA is to manipulate the dynamics of an electron bunch trailing

behind the driving laser. From a single particle perspective, assuming a linear wake, each

individual particle's trajectory is governed by the equations of motion for the position and

momentum:

dx

dτ
=
ux
γ
,

dy

dτ
=
uy
γ
,

dζ

dτ
=
uζ
γ
− β0,

dux
dτ

=− ∂φ

∂x
,

duy
dτ

=− ∂φ

∂y
,

duζ
dτ

=− ∂φ

∂ζ
, (4.11)

where we assume that the particle is only interacting with the wake and not directly with the

laser �eld. The longitudinal displacement is initialized with respect to the comoving frame

of the particle, ζ = z−β0τ , explaining the presence of β0, the initial electron bunch velocity.

The transverse position and the linearized forces equations can be combined to write the
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following for the transverse electron coordinate r = (x, y):

d2r

dτ 2
+
γ′

γ

dr

dτ
+ k2

βr = 0. (4.12)

Here the betatron wave number can be expressed as

k2
β = lim

x→0

1

γ

∂φ

∂x

1

x
= kp lim

x→0

[(Ex −By)]

γE0

1

x
,

which describes characteristic motion of an electron focused by linear �elds, assuming small-

amplitude betatron oscillations near the propagation axis [87]. For example, for a Gaussian

pulse the transverse �eld equation (4.8) can be linearized to give

E⊥
E0

≈ π

2

a2
0

k2
pr

2
s

sin(kpζ)kpr = K2
⊥kpr,

which gives us a betatron frequency of ω2
β = k2

βc
2 = K2

⊥ω
2
p/γ.

4.2.1 Bunch Envelope Equation

The purpose of an LPA is to accelerate not just a single charged particle but rather a

beam of particles, typically known as a bunch. An electron bunch can be described by a

distribution of values both with respect to position x and momentum p, i.e., f(x, p). It is

typical to work in trace-space when studying bunch dynamics, i.e., (x, x′) and f(x, x′), where

x′ = dx/dτ = (dx/dt)/(dτ/dt). The centroid of an electron bunch will behave the same as a

single electron if the forces in consideration are linear.

To characterize the general behavior of the bunch we take the second moment of the

distribution, σij =
∫
xixjf(x)d2x. The rms ellipse of a beam distribution in space is charac-

terized by the matrix

σ =

(
σ11 σ12

σ21 σ22

)
,

where the bunch width is described by

σ11 = σ2
x = 〈x2〉 =

∫
(x− 〈x〉)2f(x)d2x =

1

N

N∑
i=1

(xi − 〈x〉)2.
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The beam divergence, i.e., the angular measure of increase in beam radius with propagation

distance, is described by

σ22 = σ2
x′ = 〈x′2〉 =

∫
(x′ − 〈x′〉)2f(x)d2x =

1

N

N∑
i=1

(x′i − 〈x′〉)2,

and the correlation factor,

σ12 = σ21 = σxx′ = 〈xx′〉 =

∫
(x− 〈x〉)(x′ − 〈x′〉)f(x)d2x =

1

N

N∑
i=1

(xi − 〈x〉)(x′i − 〈x′〉).

If we are studying a bunch centered on axis, (x, y) = (0, 0), then the average positions and

momenta are zero, i.e., 〈x〉 = 〈x′〉 = 0. An important characteristic of an electron bunch is

its un-normalized rms or geometric trace space emittance, de�ned in the x-direction as

εx =
√
〈x2〉〈x′2〉 − 〈xx′〉2, (4.13)

and in the y-direction εy =
√
〈y2〉〈y′2〉 − 〈yy′〉2. The emittance roughly describes the area

or volume of a bunch in trace space.

The transverse dynamics of an electron bunch can be described by the rms envelope

equation, derived by taking the second derivative of the spot size:

σx =
√
〈x2〉 → σ′x =

〈xx′〉√
〈x2〉

=
〈xx′〉
σx

,

σ′′x =
〈xx′′〉
σx

+
〈x2〉〈x′2〉 − 〈xx′〉2

σ3
x

. (4.14)

We can simplify the previous equation by taking Eq. (4.12) and de�ning the second order

derivative of coordinate x as x′′ = −γ′x′/γ − k2
βx. This reduces the �rst term on the right-

hand side of Eq. (4.14) to k2
βσx. The numerator of the second term is the emittance,

simplifying Eq. (4.14) further to

d2σx
dτ 2

+
γ′

γ

dσx
dτ

+ k2
βσx −

ε2n
γ2σ3

x

= 0,

which is the rms envelope equation for an electron bunch, where εn = γε is the normalized

emittance. In order to have matched propagation, i.e., d2σx/dτ
2 = dσx/dτ = 0 or

σx = |εn/(γkβ)|1/2 = const., (4.15)
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Figure 4.2: An electron bunch undergoes emittance growth and �lls out phase space if
exposed to nonlinear �elds.

one likewise needs a bunch that is properly initialized with respect to the momentum distri-

bution to have constant emittance. For example, in the x-direction one needs a momentum

distribution with σpx0 = mecγ0kβxσx0 and σpy0 = mecγ0kβyσy0 in the y-direction with respect

to σy0. This comes directly from the expression for matched rms spot size, Eq. (4.15), where,

for a 〈xx′〉2 � σ2
xσ

2
x′ , then γ0kβσ

2
x = εn ≈

√
σ2
xσ

2
x′ = σxσx′ , where σx′ is equivalent to σp in

trace space.

An important problem inherent to all accelerators, magnetic and plasma-based, is that

of emittance growth, as described by Eq. (4.13). All of the previous analysis in this chapter

assumed that the �elds experience by the bunch are linear. However, in a realistic experiment

one cannot have perfectly linear �elds, in particular far away from the propagation axis.

When a bunch experiences nonlinear �elds then it starts to undergo emittance growth and

�ll out phase space. A depiction of this can be seen in Fig. 4.2.

4.3 Dephasing

As a laser pulse propagates through a plasma it moves at a velocity less than the speed of

light, i.e., βg ≈ 1 − k2
p/(2k

2), as expressed by Eq. (3.35). Unless the electron is injected

with an energy γ0 = 1/
√

1− β2
g and experiences no acceleration, i.e., if it is located at the

zero-acceleration phase of the focusing bucket at kpζ = (4n+ 1)π/2, where n = 0, 1, 2, 3, ...,

it will eventually leave the focusing bucket and either lose energy or be completely ejected

from the wake. This is assuming that the bunch is located outside the laser envelope. This

particle loss, as the bunch transitions from one phase to another, is known as dephasing.
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kpζ = ψ0
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Figure 4.3: An example of how longitudinal tapering and dephasing work. The thick blue
line de�nes the normalized plasma wave number k̂p = kp/kp0 ∝

√
n/n0 necessary to keep an

electron bunch in phase with the wake�elds. Also depicted are example wake�eld structures
for k̂p = 1 and k̂p = 3.5, i.e., n = 12n0. The singular point at which the plasma wavelength
goes to zero is demarcated by the black vertical line. The laser pulse is several pulse lengths
ahead of the singular point at kpζ = 11π/2 in this case, where kpL = 1.

A bucket within a wake is approximately λp in length, as seen in the linear wake�eld

expressions, e.g., Eζ = Emax sin[ωp(τ/vp − t)], where vφ is the phase velocity of the plasma

wave. In the one-dimensional limit, the linear dephasing length Ldeph can be de�ned as the

length an electron must travel before its phase slips by one-half of a period with respect to

the plasma wave. For a highly relativistic electron, v ' c, the linear dephasing length is

given by (1 − vp/c)Ldeph = γ2 = λp/2, i.e., Ldeph ' γ2
pλp, and describes the distance for a

particle to slip π in phase from an accelerating/focusing region to a decelerating/defocusing

region. Here γp = 1/
√

1− βp corresponds to the Lorentz factor for its phase velocity and is

equal to γl = 1/
√

1− βg, where the phase velocity of the plasma wave, βp is equal to the

group velocity of the laser, βg, assuming linear wakes a2 � 1. The Lorentz factor can be

approximated as γp ' γl ' ω/ωp, which allows for the approximation Ldeph ' λ3
p/λ

2. The

primary solution to dephasing is to use a longitudinal taper in the plasma pro�le to cause the

plasma wave to compress in phase with electron bunch propagation, up to a singular point

as the plasma wavelength approaches zero. A visualization of the dephasing and tapering

scheme can be seen in Fig. 4.3.

We start with the governing equations for a cold plasma and laser envelope, Eqs. (3.30)

- (3.33), following the analysis provided in Ref. [28]. These equations can be combined to
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give [88] [
∂2

∂τ 2
+ k2

p(τ, r) +∇×∇
]
u = − ∂

∂τ

∇a2
0

2
. (4.16)

If the longitudinal taper is su�ciently slow, then the quasistatic approximation can be used,

meaning that the laser does not evolve much over a pulse duration L ' λp. Assuming

axisymmetric geometry, the radial and axial components of Equation (4.16) can be combined

to yield [
∂2

∂τ 2
+ k2

p −∇2
⊥ −

1

r

∂

∂r

r

k2
p

∂

∂r

∂2

∂τ 2

]
Ψ = (k2

p −∇2
⊥)a2

0/2, (4.17)

where Ψ = φ− a is the e�ective potential. The longitudinal and transverse forces are given

by

Eζ/E0 = k−1
p0 ∂τΨ, (4.18)

(Er −Bθ)/E0 = −k−1
p0 ∂rΨ. (4.19)

To the lowest order in transverse scale length and assuming a broad channel kprch � 1,

Equation (4.17) can be simpli�ed to (∂2
τ + k2

p)Ψ0 = k2
pa

2
0/2, which is identical to (4.6). The

solution for the scalar potential is given as

Ψ0 =
kp
2

∫ ζ

∞
sin[kp(ζ − ζ ′)]a2(ζ ′)dζ ′,

where the variable comoving with the laser centroid can be more exactly de�ned as

ζ =

[∫ τ

0

dτ ′

βg(τ ′)

]
− τ,

as opposed to just ζ = z− ct. Here βg is the linear laser group velocity. The solution for the

scalar potential in the wake of a laser propagating through a quiescent plasma is given by

Ψ0 = −A(r) sin[kp(τ, r)ζ + ϕ0], where A(r) = A0kpL exp(−2r2/r2
s − k2

pL
2/2). Substituting

this equation into Equations (4.18) and (4.19) yields

Eζ
E0

=
kp
kp0

A(r) cos(kpζ + φ0),

(Er)

E0

=
1

kp0

∂A(r)

∂r

√
1 + tan2(φA) sin(kpζ + φ0 + φA),

where tan(φA) = Aζ ∂kp/∂r
∂A/∂r

.
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4.3.1 Phase Velocities of the Plasma Wave

A caveat of a tapered plasma channel is that the phase velocity of the transverse wake�elds

is slightly di�erent than the phase velocity of the longitudinal wake�eld, which comes from

the fact that near the axis the forces Fζ and Fr can be expressed as Fζ ∝ exp(iψζ) and

Fr ∝ exp(iψr) [28], where

ψζ = kp0ζ, (4.20)

ψr = kp0ζ

(
1− r2

s

2R2

)
+
π

2
. (4.21)

For a phase of the form ψ = kp(τ)f(τ)ζ, the phase velocity in a uniform plasma can

be written as βp = −∂τψ/∂ζψ or βp(τ) = [ζ(kp0f)−1∂ζ(kp0f) + 1/βg(τ)]−1. In a nonuni-

form plasma, e.g., a plasma channel, there are now two di�erent phase velocities for the

longitudinal and transverse wake�elds, i.e.,

βpζ = 1 +
k2
p0

2k2

(
1 +

k2
⊥r

2
0

k2
p0r

2
s

)
− ζ

kp0

∂kp0
∂τ

, (4.22)

βpr = 1 +

(
k2
p0

2k2
− ζ

kp0

∂kp0
∂τ

)(
1 +

k2
⊥r

2
0

k2
p0r

2
s

)
, (4.23)

where k2
⊥ = 4(m + n + 1)/r2

0 for Hermite-Gaussian modes and k2
⊥ = 4(2µ + ν + 1)/r2

0 for

Laguerre-Gaussian modes.

In an axially uniform plasma channel, i.e., one without tapering, the ∂ζkp0 terms are

zero and βp = βg, i.e., the wake phase velocity equals the laser group velocity. A highly

relativistic electron bunch with velocity βb = vb/c di�ers from the phase velocity by βb −
βp '

k2p0
2k2

(1 +
k2⊥r

2
0

k2p0r
2
s
). In order for the particle to remain in phase with the wake, the phase

velocity must approximately equal the bunch velocity, i.e., βp ' βb ' 1. In general, when

ψ0 = kp0(τ)f(τ)ζ and when βp ' βb ' 1, we can write

−ψ0

[
∂τ (kp0f)

k2
p0f

2

]
= β−1

g − β−1
p '

k2
p0

2k2
+

2

(krs)2
. (4.24)

Here ψ0 is assumed to be a constant to eliminate slippage. For a phase given by (4.20), we

have f = 1, and for (4.21), we have f = 1− r2
s(τ)/2R2(τ).
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4.3.2 Longitudinal Plasma Density Taper

If a laser pulse is to propagate down a channel with a varying plasma density, then the

channel radius needs to vary as R(τ) = kp(τ)r2
0/2. For longitudinal phase matching, i.e.,

having the longitudinal wake�elds copropagate with the bunch, the phase of the accelerating

force is ψτ = kp0ζ, and Eq. (4.24) can be expressed, with f = 1, as

dk̂p
dτ̂

=
k̂2
p

2|ψ0|
(k̂2
p + κ2), (4.25)

where k̂p = kp/kp0, τ̂ = k3
p0τ/k

2 and κ = 2/(kp0r0). Eq. (4.25) has the general solution

τ̂(k̂p) =
2|ψ0|
κ2

{
1− k̂−1

p + κ−1 arctan(κ−1)

[
1− arctan(k̂pκ

−1)

arctan(κ−1)

]}
. (4.26)

Using Eq. (4.26) we can determine the singular point at which the electron bunch �nally

outruns the laser beam, assuming k̂p →∞:

τ̂s =
2|ψ0|
κ2
{1− κ−1[π/2− arctan(κ−1)]}. (4.27)

Transverse phase matching, when the transverse wake�elds copropagate with the bunch, is

similarly determined, with
dk̂p
dτ̂

=
k̂2
p

2|ψ0|
(k̂2
p − κ2/2), (4.28)

τ̂(k̂p) =
2|ψ0|√

2

{
k̂−1
p − 1 +

√
2

κ

[
arctanh

(√
2

κ

)
− arctanh

(√
2k̂p
κ

)]}
,

and

τ̂s =
2|ψ0|
κ2

{√
2

κ
ln

[(
1 +

√
2

κ

)/∣∣∣∣∣1−
√

2

κ

∣∣∣∣∣
]}

.

One hindrance to this method is that in a longitudinally tapered channel the transverse

�elds move at a di�erent phase velocity than the longitudinal �elds, as noted in Eqs. (4.22)

and (4.23). In order to overcome this discrepancy we can also vary the channel width as

a function of propagation distance. In prior studies this has been done by making the

substitution κ→ κ/r̂ [28], where r̂ = rs(τ)/r0 = R(τ)/R(0), such that

dk̂p
dτ̂

=
k̂2
p

2|ψ0|
(k̂2
p +

κ2

r̂2
), (4.29)
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and coupling k̂p to a laser spot-size equation that governs matched propagation, i.e.,

d2r̂

dτ̂ 2
=

(
2kp0
kκ

)
1

r̂3
(1− k̂2

p r̂
2). (4.30)

In this case both transverse and longitudinal wake�elds will copropagate with the electron

bunch, preserving the initial focusing and accelerating �elds up to the singularity point,

approximately the same as Eq. (4.27).



69

Chapter 5

Plasma Filtering of Higher-Order Modes

5.1 Introduction

As noted in Section 2.4, realistic laser pulses are typically not Gaussian with respect to their

transverse pro�les. This is true for continuous wave and pulsed lasers but is an even more

strict reality for short-pulse lasers. The propagation lengths of Gaussian laser pulses can be

greatly extended when a pulse is guided by a parabolic plasma channel, typically generated

using either a laser-ignitor scheme or a gas-�lled discharge capillary as described in Sec. 1.2.

A properly tuned parabolic channel of the form

n(r)

n0

= 1 +
r2

R2
, (5.1)

for which the channel radius is equal to the initial laser spot size, i.e., R = kpr
2
0/2, will allow

for matched guiding of the laser pulse.

Despite best e�orts, matched guiding will be compromised by experimental realities.

For example, channel characteristics, e.g., the channel radius, density, etc., may not be as

optimally matched to the pulse at focus as expected and also may not be constant along the

propagation length, leading to poorer guiding. Likewise, realistic laser pulses, which are often

super-Gaussian in the transverse direction, as shown in Fig. 1.6 for an experimental BELLA

laser pulse, develop Bessel-like sidelobes at focus, which cannot be guided perfectly in a

parabolic channel. These oscillations, due to mismatching and non-Gaussian laser pro�les,

can be deleterious to LPA applications and lead to non-optimal acceleration and often total
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electron bunch loss. This is due to the fact that as the spot size oscillates so too does the

on-axis intensity |a|2. In the linear and quasilinear regimes, this weakens the focusing forces

as well as potentially shifts the electron bunch to a defocusing phase. The presence of higher-

order laser modes will exacerbate the problem of mismatching. Likewise, all laser content

will leak out of the parabolic plasma channel to a certain degree, as it is ultimately �nite in

the transverse direction. Higher-order modes leak out even faster than the Gaussian mode

and this energy content can compromise the guiding structure itself, typically sapphire-based

optical wave guides in the case of discharge capillaries which can be di�cult to machine and

replace.

To guide an unmodi�ed, non-Gaussian pulse in a parabolic channel perfectly is e�ectively

impossible or at least di�cult to achieve experimentally. One possibility would be to use a

specially shaped plasma channel that is better matched to the transverse pro�le of the laser

pulse. Starting with the paraxial wave equation and assuming a solution of the form a =

a⊥(r, ζ, τ)f(ζ) exp[i(ϕ(r, ζ, τ)], where a⊥ describes the transverse pro�le, f the longitudinal

pro�le, and ϕ the phase, we can separate Eq. (3.33) into two coupled equations according

to its real and imaginary components [70]:

∇2
⊥a⊥ − (∂rϕ)2a⊥ − 2k(∂τϕ)a⊥ = k2

pρa⊥ (5.2)

a⊥∇2
⊥ϕ+ 2(∂rϕ)(∂ra⊥) + 2k(∂τa⊥) = 0. (5.3)

For a matched laser pro�le, one seeks ∂τa⊥ = 0, simplifying Eq. (5.3) to (∂rϕ)a2
⊥ = const.

Considering that ϕ is an even function of r near the axis, we can then write (∂rϕ)|r=0.

Assuming that a⊥(r = 0) is of �nite value, then ∂rϕ = 0 for all r and the wavefronts of the

matched laser pulse are �at. Eq. (5.2) then reduces to

∇2
⊥a⊥ − 2k(∂τϕ)a⊥ = k2

pρa⊥.

In the low-intensity, low-power regime, one could theoretically guide a non-Gaussian pulse

using a plasma channel de�ned by the following expression:

ρ(r) =
n(r)

γn0

=
1

k2
p

(
∇2
⊥a⊥(r)

a⊥(r)
− 2k

∂ϕ

∂τ

)
. (5.4)

For a Hermite-Gaussian mode the phase is ϕ = − 1
2k

[k2
p + 4(m + n + 1)/r2

0]τ , and for a

Laguerre-Gaussian mode it is ϕ = − 1
2k

[k2
p+4(2µ+ν+1)/r2

0]τ . Inserting a Laguerre-Gaussian

or Hermite-Gaussian mode into this expression retrieves the parabolic plasma channel.
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Such a non-standard guiding scheme has been experimentally demonstrated for tradi-

tional �ber optics when attempting to guide an Airy-type pulse [89]. However, this exper-

iment was at much lower laser intensities, there is also the �exibility of manipulating the

refractive index of a glass-based �ber optic that is currently not possible for an analogous

plasma channel. Experimentally, there have been attempts to use a ceramic aperture to cut

o� the sidelobes in the far-�eld [31]. While this is relatively easy to do, this mechanism

not only strips energy from the Gaussian contribution but also fails to limit non-Gaussian

features as the mainlobe alone is still not Gaussian. The di�erence between the modal con-

tent is directly evident from the M2 calculation: a Gaussian has M2 = 1, an L1,0 mode has

M2 = 3, while a jinc beam according to Eq. (2.28) integrated to r = 10r0 has M2 ≈ 10, and

for r → ∞, M2 = ∞. The objective of reference [90] is to use a leaky plasma channel to

�lter out higher-order mode content while still guiding and preserving the Gaussian mode.

Tailored plasma structures for the purpose of guiding and controlling a laser pulse can

come in several forms. Leaky channels may be generated using either the hydrodynamic

shock (hydroshock) technique or clustered gas-jets [91, 92, 93]. In both cases, an axicon-

formed pump laser, as depicted in Fig. 1.4, is used to ionize a gas stream and a plasma

channel is formed after several nanoseconds of evolution. The channel is approximately

parabolic near the central axis and is truncated beyond several pulse-widths. Leaky channels

have previously been studied for other applications such as the minimization of instabilities

such as forward Raman scattering [94].

5.2 Non-Gaussian Pulse Propagation

Standard approaches to LPA physics treat the laser beam as being Gaussian in the transverse

direction, i.e., a⊥(r) = a0 exp(−r2/r2
0). However, the high-intensity laser pulses used are

always initially super-Gaussian and at focus can be approximated by a jinc pro�le, that is,

jinc(r) = 2J1(r/rj)/(r/rj), where rj = 0.3645r0 is speci�ed so that the jinc pro�le has the

same FWHM as a Gaussian with spot size r0. As noted in Section 2.4, Bessel functions

can be exactly described by a Laguerre-Gaussian decomposition, but they require an in�nite

number of terms.
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Figure 5.1: (a) Comparison of a Gaussian pulse with r0 = 53 µm, a jinc-type pro�le, and
a superposition of three LG modes. For the jinc pro�le, rj = 0.3645r0 and for the LG3
pro�le,

∑3
m=1CmLm(2r2/L2

LG) exp(−r2/r2
LG), where the mode amplitudes are C0 = 0.729,

C1 = 0.418, and C2 = −0.146 and the LG3 matched radius is rLG = 1.1444r0. (b) The
evolution of the normalized laser amplitude a for a non-Gaussian pulse in a parabolic channel
with R = r0. The blue line corresponds to a for a Gaussian pulse, the red line to a jinc
pulse, and the green line to an LG3 pulse, i.e.,

∑3
m=1 CmLm(2r2/r2

LG) exp(−r2/r2
LG).

In order to preserve analytical tractability we instead decompose the Bessel function

into a �nite number of Laguerre modes, Lµ(2r2/r2
LG) exp(−r2/r2

LG), where rLG is a modi�ed

spot size we employ in order to match the superposition of modes to the FWHM of a

Gaussian. A useful truncation is to use the �rst three modes, which we call an LG3 pro�le,

with L0(x) = 1, L1(x) = 1 − x, and L2(x) = 1 − 2x + 1
2
x2. We will be neglecting the polar

contribution ν for the rest of this chapter. The characteristic spot size is set to rLG = 1.1444r0

for these three modes, which matches the LG3 to both the jinc and the Gaussian pro�les. A

comparison of these three pro�les, the jinc (red), Gaussian (blue), and LG3 (green) pro�les

can be found in Fig. 5.1.a. It would be better to have rLG = r0, the true matched radius, but

we choose to match instead the FWHMs since that is the practice in experiment. An LG3

pulse is a useful model since it very accurately models the mainlobe, the �rst zero, and the

�rst sidelobe. Likewise, our simulations will be tailored to match experimental setups, where

the plasma only extends to about 250 − 500 µm in radius, which is typical for a capillary

discharge channel [95], and allows us to account for 94% of the power content of a realistic

jinc pro�le.

To demonstrate the behavior of a realistic pulse we will compare the evolution of a

Gaussian, jinc, and LG3 pulses in a matched parabolic channel given by Eq. (5.1). The
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evolution of these three pro�les is shown in Fig. 5.1.b and these lineouts were generated

using the PIC code INF&RNO [96, 97]. These results demonstrate that for non-Gaussian

pulses, characterized by a Rayleigh length of ZR = πr2
0/λ ≈ 1 cm, i.e., the Gaussian ZR, and

initial amplitude a0 = 0.1, such that nonlinear e�ects do not signi�cantly contribute, the

presence of higher-order mode content in the form of sidelobes leads to signi�cant oscillations

in the on-axis amplitude. This is due to beating between the superimposed modes, giving a

contribution of the form 2C1(τ)C2(τ) cos[φ1(τ) − φ2(τ)]. For linearly polarized LG modes,

the di�erence between the phases can be de�ned in terms of a beat wave number φµ1 −
φµ2 = kbeatτ , where kbeat = 2(µ1 − µ2)/ZR. Likewise, the comparison of these three pro�les

demonstrates the relative e�ectiveness of the LG3 pro�le in describing the general behavior

of the jinc pro�le.

In order to ameliorate the detrimental e�ects of beating generated by higher-order modes,

we propose the use of leaky plasma channels. A leaky plasma channel will not be able to

perfectly guide all the modes in an exact and matched fashion as would a solution to Eq.

(5.4), however it is matched to each mode individually. The �nite nature of the leaky channel

will preferentially leak out higher-order mode content �rst, leaving the Gaussian contribution

relatively undiminished. Likewise, there are several options for leaky channels depending on

how one generates the channel and at what point in the plasma channel's evolution one

injects the laser pulse we wish to be �ltered.

5.3 Characterization of Leaky Plasma Channels

Leaky channels are proposed to o�set the detrimental e�ects of higher-order mode content.

A leaky channel is essentially any channel whose �nite width is greater than but on the order

of the laser spot size, i.e., rcut & r0, which is distinguished from the characteristic channel

radius R. Likewise, we will assume that all channels are parabolic near the central axis,

though alternatives such as hollow channels have also been proposed [98]. In this work we

consider two possibilities for leaky channels, one which has a sharp truncation and the other

which exponentially decays.
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A sharp truncation is simply a parabolic channel modi�ed by a Heaviside function, i.e.,

ns(r)

n0

=

(
1 +

r2

R2

)
Θ(r − rcut), (5.5)

where rcut determines the truncation width. This simple formulation is analytically appealing

since it just entails a truncation in the source term integral and well approximates the later

stages in the evolution of both hydroshock and capillary discharge channels.

An exponentially decaying channel is somewhat more complicated but still analytically

tractable. It is described by

ne(r)

n0

=

(
1 +

r2

R2

)
e−r

2/r2exp , (5.6)

where rexp is an arbitrarily chosen constant. The e�ective characteristic radius near the axis

in terms of R and rexp is

Re� ≈ R

[
1−

(
R2

r2
exp

)]−1/2

, (5.7)

where rexp > R. These leaky channel models are visualized in Fig. 5.2, with a sharp

truncation (solid blue), shallow exponential decay of e�ective radius Re� = 49 µm (dot-

dashed blue), steep exponential decay with e�ective radius Re� = 27 µm (dashed blue),

and a jinc pro�le as a point of reference (solid black). The shallow exponential decay, i.e.,

Re� ≈ 50 µm was chosen to give a pro�le matched to a potentially injected laser pulse of

radius r0 = 50 µm increasing the �ltering rate. It is important to note that exponential

channel matching requires Re� = r0 and not R = r0, although intentional mismatching can

allow for greater control of the �ltering process.

One bene�t of the models described by Eqs. (5.5) and (5.6) is that they are analyti-

cally tractable. This will allow us to derive analytical expressions for the leakage rates of

higher-order modes via the WKB method as well as incorporate our results into the Source

Dependent Expansion. However, numerical integrations of the non-standard density pro�les

would technically allow for the inclusion of any physical model.

5.4 Leakage Rates Calculations via WKB

In order to determine the e�ect of a leaky channel we will �rst calculate the characteristic

leakage rates, i.e., the amount of power leaking out of such a channel as function of propa-
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Figure 5.2: Examples of theoretical models used in simulating truncated plasma channels
relative to a Gaussian pulse with r0 = 53 µm: sharp truncation at rcut = 2r0 (solid curve), ex-
ponentially decaying walls with matched e�ective radius, i.e., Re� ≈ r0 (dash-dotted curve),
and exponentially decaying walls with mismatched e�ective radius (dotted curve).

gation distance. This can be done by the Wentzel-Kramers-Brillouin (WKB) method. We

do this by �rst heuristically assuming a modal power loss given by [99]

dPµ = −ΓµPµdτ,

where Pµ is the power contribution of mode µ, Γµ = Tµ/Zµ where Tµ is the transverse leakage

rate per mode µ, and Zµ is the characteristic propagation distance of mode µ. In the case

that Γµ does not depend on propagation distance τ , we can write

Pµ(τ) = Pµ(0) exp(−Γµτ).

In order to calculate Tµ and Zµ we make use of the WKB formalism [100]. We will assume

that the generalized laser potential �eld Ψ satis�es a Helmholtz wave equation of the form

[∇2
⊥ +K2(r)]Ψ(r) = 0, (5.8)

where K2(r) ≈ ω2/c2 − k2
p(r)− k2

z is the square of the general laser mode wavenumber in a

leaky channel. We assume that the plasma wavenumber varies transversely as k2
p(r) = k2

p0
n(r)
n0

.

The axial wave number of Laguerre mode µ is kz ≈ ω2/c2 − k2
p0 − 4(2µ + 1)/r2

0. For the
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Helmholtz equation (5.8), we can write down the WKB solution for an arbitrary density

pro�le as

Ψ(r) =
C√
K(r)

exp

[
i

∫ rtp,2

rtp,1

|K(r′)|dr′
]
,

where C is a coe�cient to be determined. Integration takes place between the turning points

of K2.

On axis, the turning points are determined by the zeros of K2. For a parabolic channel

with

K2
s = k2

p

[
4(2µ+ 1)

k2
pr

2
0

− r2

R2

]
,

we have a turning point rtp,1 = 2
√

2m+ 1 R/(kpr0). The upper bound and turning point rtp,2

is the leaky channel cuto� radius, i.e., rtp,2 = rcut, otherwise Laguerre-Gaussian modes are

always con�ned in a parabolic channel. For an exponentially decaying channel the turning

points are more complex. In this case the square of the channel mode number is

K2
e = k2

p

[
4(2µ+ 1)

k2
pr

2
0

+ 1− e−r2/r2exp
(

1 +
r2

R2

)]
.

In this case there is now an explicit dependence on density. By expanding the expression for

K2
e with respect to r we can estimate the lower turning point as

r2
tp,1 ≈

1

2
r2
exp

[
1−R2/r2

exp −
√
r−4
exp +R−4 − 16(2m+ 1 + k2

pr
2
0/8)/(kpr0rexpR)2

]
.

The wavenumber K2
s for the sharply truncated channel is shown in Fig.5.3.a, where we

have plotted modes µ = 1, 2, and 3 and have also shown how the leakage rate can be tuned

by mismatching the channel radius R, where R = 0.95r0 (green dashed) has a lower turning

point radius than R = 1.05r0 (green dotted). We can also modify the turning points by

varying the density via kpr0, where kpr0 = 6 (dotted blue) has a lower turning point radius

than kpr0 = 5 (solid blue) or kpr0 = 4 (dashed blue). Fig.5.3.b plots the wave number for

the exponentially decreasing channel. The baseline values used for this plot are kpr0 = 6,

rexp = 1.5r0, and R = r0. One immediately observes that there are conditions for which

certain modes will never be contained, for example the baseline curve of µ = 2. To change

the leakage rate we can vary kpr0 as has been done for the µ = 0 mode, where kpr0 = 6

(solid red), kpr0 = 8 (dotted red), and kpr0 = 5 (dashed red). In addition we can vary the
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Figure 5.3: (a) Leaky channel wave number for a sharp truncation: µ = 0 (red), µ = 1 (blue),
and µ = 2 (green). The normalized spot size can be varied, such that kpr0 = 5 for µ = 1
(solid blue), kpr0 = 4 (dashed blue), and kpr0 = 6 (dotted blue). The channel radius can be
varied, such that R = r0 (solid green), R = 0.95r0 (dashed green), and R = 1.05r0 (dotted
green). (b) Leaky channel wave number for exponential truncation. Solid lines correspond
to µ = 0 (red), µ = 1 (blue), and µ = 2 (green) with kpr0 = 6, rexp = 1.5r0, and R = r0. For
the µ = 0 mode (red) we vary the normalized spot size kpr0, i.e., the density, with kpr0 = 6
(solid), kpr0 = 5 (dotted), and kpr0 = 8 (dashed). For the µ = 1 mode (blue) we vary the
exponential radius rexp, with rexp = 1.5r0 (solid), rexp = 1.575r0 (dashed), and rexp = 1.425r0

(dotted). For µ = 2 (green) we vary the channel radius R, i.e., R = r0 (solid), R = 0.95r0

(dashed), and R = 1.05r0 (dotted).

exponential radius, such that rexp = 1.5r0 (solid blue), rexp = 1.575r0 (dashed blue), and

rexp = 1.425r0 (dotted blue). Lastly, we can also control the channel radius, i.e., R = r0 (solid

green), R = 0.95r0 (dashed green), and R = 1.05r0 (dotted green). While more complicated,

the exponential channel gives one much greater control over the leakage rates than a simple

truncation.

In the WKB formalism, we describe the transverse pro�le in terms of incident (i), re�ected

(r), and transmitted (t) local plane waves, which are distinguished, respectively, by di�erent

coe�cients Ci, Cr, and Ct. These plane waves are also distinguished with respect to their

integration limits: r < rtp for the incident/re�ected waves, where rtp is a turning point for

|K|2 = 0, and r > rcut for the transmitted waves. In the region rtp < r < rcut, the �eld is

evanescent and decreases exponentially with r. This decay is characterized by Ci. Using the

standard connection formulas for WKB theory, by which we write Ct = Ci exp(−
∫ rcut
rtp
|K|dr),
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the transmission coe�cient [99] for the transverse laser pro�le can be written as

T =
|Ψt|2

|Ψi|2
=
|Ct|2

|Ci|2
= exp

(
−2

∫ rtp,2

rtp,1

|K|dr

)
. (5.9)

The propagation distance between turning points along a ray path is written as

Zµ = 2kz

∫ rtp,1

0

|K|−1dr ≈ πZR.

While Tm is an accurate calculation of the leakage rate for sharp truncation, it neglects the

e�ect of multimode interference and internal re�ection, which has been explored in other

�elds [101].

For the µ-th order LG mode propagating in a sharply truncated parabolic channel, we

integrate Eq. (5.9) from rtp,1 = 2
√

(2µ+ 1)/(kpr0)R to rtp,2 = rcut, giving us the leakage

rate [93]

Tµ =

[
rcut√

2µ+ 1R
+

(
r2
cut

(
√

2µ+ 1R)2
− 1

)]2(2µ+1)

× exp

[
−2
√

2µ+ 1
rcut
r0

(
r2
cut

(
√

2µ+ 1R)2
− 1

)1/2
]
. (5.10)

In Fig. 5.4.a we show Tµ for modes µ = 0, 1, and 2, and channel radii R/r0 = 0.95, 1.0, and

1.05. Higher-order modes leak out at a faster rate than the fundamental mode for all cuto�

radii and higher-order modes are more sensitive to deviations in the characteristic guiding

radius of the channel. In addition, all tunneling coe�cients saturate to a value of unity

below a certain cuto� radius, i.e., the vacuum di�raction rate. The channel parameters can

be selected using Fig. 5.4.b, where the white line governs the maximum leakage coe�cient

T1 for the µ = 1 LG mode for varying channel parameters. Higher-order modes will have a

shallower slope since they will leak out even faster. Wider truncation radii allow for a lower

T0/T1 ratio but slower overall leakage.

5.5 Modeling Leaky Modes via SDE and WKB

The Source Dependent Expansion (SDE), see Appendix B, is well suited to describing the

propagation and evolution of near-Gaussian pulses since it requires only a few LG modes.
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Figure 5.4: Leakage coe�cients (Tµ) estimated with WKB method for the �rst three modes
in (a) with µ = 0 - red, µ = 1 - blue, and µ = 2 - green, for varying channel radii, R/r0 = 0.95
- dashed, 1.0 - solid, and 1.05 - dotted. (b) Coe�cient ratio T0/T1 for varying rcut/r0 and
R/r0.

This is the case for an idealized (in�nite) parabolic channel. For a leaky channel with sharp

truncation and modifying the source term as j = k2
p0
n(r)
n0
a(τ)→ k2

p0
n(r)
n0

Θ(rcut− r)a(τ) in Eq.

(2.25), the SDE method becomes problematic, since a signi�cant portion of the laser power

will tend to propagate outside of the channel. This results in a laser pro�le consisting of a

near-Gaussian core with low amplitude wings that extend to large radii and represent the

leaked power. In order to describe the low amplitude wings of the leaked laser �eld, the SDE

method would require the retention of hundreds of LG modes.

Alternatively, one can modify the SDE equations by heuristically including a power loss

damping coe�cient, as determined previously with the WKB method, in the wave operator

of the paraxial wave equation. In this approach, we equate the power for the LG modes,

which conserve energy over all space, to a separate solution with an exponentially decaying

component, which is aµ(τ)2 ≈ âµ(τ)2 exp(−Γµτ), and insert that expression into paraxial

wave equation Eq. (3.33), giving us an additional term proportional to Γµâµ. In this case

the source term is that of the in�nite channel, i.e., no Heaviside function, and for which the

LG modes are the proper eigenfunctions.

In the low-power limit, a2 � 1, analytical solutions can be derived for pulse decompo-

sitions of a few lower-order modes. Integrating the paraxial equation (3.33) with respect to

variable ξ = 2r2/r2
s gives a series of decoupled equations for each of the LG modes by taking

advantage of the orthogonality principle of the Laguerre polynomials, Eq. (2.27). Using the
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SDE formalism described by Eqs. (B.5), (B.6), (B.8), and (B.9), we can write the following

hierarchy of equations for an LG3 pulse:

(∂τ + Γ0 + A0)â0 − iB∗â1 =− iF0, (5.11)

(∂τ + Γ1 + A1)â1 − iBâ0 − 2iB∗â2 =− iF1, (5.12)

(∂τ + Γ2 + A2)â2 − 2iBâ1 =− iF2, (5.13)

−3iBâ2 =− iF3. (5.14)

The Eqs. (5.11) � (5.13) govern the evolution of the amplitude coe�cients and phases.

Using the relative smallness of the highest order terms, i.e., m ≥ 3, such that â3 � â2, etc.,

we obtain a fourth equation, Eq. (5.14) to provide closure for an initially over-determined,

three-mode system. The above system of equations e�ectively describe the evolution of rs

and α. The SDE is a powerful tool and by modifying it to account for power leakage we

can e�ectively model a multimode pulse in a leaky channel. Next we will turn to numerical

results to provide a fuller description of laser pulse dynamics in a leaky channel and compare

those results to the SDE to verify the validity of our analytical calculations.

5.6 Numerical Veri�cation of Leaky Channel Model

Since we have established an analytical approach to leaky channels, we will use particle-in-

cell (PIC) simulations to verify our models. First, it is important to verify whether the LG3

pulse is a good approximation of a jinc in a leaky channel as it was in an in�nite channel.

This can be seen in Fig. 5.5, which overlays INF&RNO PIC calculations for the jinc (red)

and LG3 (green) pulses. In our calculation the pulses propagate through a plasma channel

of on-axis density n0 = 1017 cm−3, truncation radius rcut = 2r0, and pulse spot size r0 = 53

µm. The numerical parameters involved are propagation step size kp0∆τ = 1, plasma grid

kp0∆rplasma = 1/10, kp0∆ζplasma = 1/20, laser grid kp0∆rlaser = 1/20, and kp0∆ζlaser = 1/15.

In the simulation we have rLG = r0 so that the individual modes are matched to the channel.

We have chosen to match the jinc and LG3 pulses with respect to the on-axis amplitude a,

which means that there is a di�erence in energy content between the two pulses as the jinc
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Figure 5.5: PIC modeling results comparing the evolution of a jinc pulse with rj = 0.3645r0

and r0 = 53 µm in a matched, truncated parabolic channel with rcut = 2r0, ZR = 1.083
cm, and n0 = 1017 cm−3, to three LG modes of amplitude C0 = 0.729, C1 = 0.418, and
C2 = −0.146, for which we normalize the initial sum such that a⊥(0) = 0.1.

has larger wings. Despite this di�erence, it is evident that the LG3 is an e�ective model for

a jinc pulse, even more so in a �nite channel than in an in�nite channel.

In Fig. 5.6 we compare the results of the SDE model of an LG3 pulse to PIC simulation

results. We consider three di�erent cuto� radii: (a) & (b) rcut = 3r0, (c) & (d) rcut = 2.25r0,

and (e) & (f) rcut = 1.75r0. This is for a sharply truncated parabolic channel with n0 = 1017

cm−3 and matched channel radius. In addition, we implemented an exponential numerical

�lter near the boundaries of the simulation to absorb emitted radiation and minimize numer-

ical re�ection back into the channel. This is also a low intensity simulation which, for a ≤ 0.3

and r0 = 53 µm, gives a critical power ratio of P/Pc ≤ 0.06. Therefore, self-focusing is not

a signi�cant contribution to pulse evolution. It is clear that, as the cuto� radius decreases,

the SDE is less able to model the evolution of the pulse in a leaky channel. However, the

greatest discrepancy is near pulse injection As the pulse propagates, the higher-order modes

leak out faster and the SDE and PIC begin to agree again. We believe the discrepancy at

the beginning of pulse evolution, most noticeably in Fig. 5.6.c, is the result of the coupled

excitation of di�erent modes due to back re�ection from the sharp truncation, which is not

accounted for in this model.
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Figure 5.6: Comparison of PIC results with the SDE, including transverse transmission
coe�cients calculated via WKB theory. Three injected modes with equal initial amplitudes
C0 = C1 = C2 = 0.1, with a pulse radius of r0 = 53 µm and a matched parabolic density
pro�le R = r0, ZR = 1.083 cm, with cuto� radii of (a) & (b) rcut = 3.0r0, (c) & (d)
rcut = 2.25r0, and (e) & (f) rcut = 1.75r0.

5.7 Leaky to Guiding Channel Coupling

While a leaky channel may be used to guide a laser pulse as an LPA on its own, a more

e�ective approach is to couple a leaky channel to a very wide channel to maximize the

e�ectiveness of both �ltering and guiding separately. That way the leaky channel can be

optimized for �ltering out the higher-order modes while the second channel can be tailored

to maximize LPA guiding. This can be seen in Fig. 5.7, where a sharply-truncated parabolic

channel is used to �lter a jinc pulse. Using the same numerical parameters as before, we �lter

the pulse for a length of 27.5ZR = 30 cm before the pulse is injected into a wide parabolic

channel rcut = 8r0. In Fig. 5.7.a, we plot the normalized amplitude a in red and compare

it to an identical pulse injected only into an in�nite parabolic channel in black. We can see
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once again how the jinc pulse will undergo much more severe oscillations if the higher-order

modes are not removed. The energy content of the pulse is plotted in dashed-blue and falls

to about 75%, which is a signi�cant loss. However, the Gaussian mode accounts for 68%

of the initial pulse energy and so most of this loss can be attributed to leaked higher-order

modes.

In Fig. 5.7.b we provide a modal decomposition of the pulse during �ltering, focusing

primarily on µ = 0, 1, and 2, and can see how the higher-order modes leak out, leaving what

is e�ectively just the zeroth and �rst order modes. We can extract the individual mode

content numerically by exploiting the orthogonality property of the LG modes,

aµ(τ) =

∫ ∞
0

anum(τ, ξ)Lµ(ξ) exp(−ξ)dξ,

where anum is the transverse lineout of the PIC-generated pulse at peak �eld intensity and

ξ = 2r2/r2
0.

A comparison of the transverse lineouts of the initial (red) and �ltered (black) pulses can

be seen in Fig. 5.7.c. In addition to �ltering, the sharp cuto� of the �lter leads to strong

internal re�ection and mode excitation, which means that, even for a perfect Gaussian pulse

on entry, there will be modest but noticeable generation of higher-order modes. This can be

seen in the transverse pro�le of the �ltered pulse, where there are small but long lived wings.

Likewise, the sharp truncation requires signi�cantly longer �lters, on the order of 20 ZR, for

higher-order mode content to be �ltered out. This can be challenging in present experiments,

as gas-jet-generated leaky channels thus far are at most 5-7 centimeters in length and even

that only by concatenating several jets. However, if one uses a discharge capillary channel

that was designed and prepared for the leaked energy, then such long leaky channel �lters

could be realized.

A solution to the problem of mode excitation and slow �ltering of the truncated channel

is to use a channel that is tailored to leak out higher-order modes faster. A simple analytical

candidate that is also experimentally tenable is an exponentially decaying leaky channel.

This naturally occurs in the earlier stages of a hydroshock-generated channel, which is vi-

sualized in Fig. 5.2. An implementation of this model can be seen in Fig. 5.8.a, where

a parabolic channel with exponentially decaying walls is used to guide a laser pulse (red).

Comparing it again to a jinc pulse directly injected into a matched parabolic channel (black),
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Figure 5.7: A truncated leaky channel (rcut = 2.25r0, n�lter = 1017 cm−3, and length of 27.5
cm), acting as a �lter, precedes a parabolic capillary discharge channel with n0 = 3 × 1017

cm−3 and R = 1.1r0 µm. (a) The laser amplitude as it propagates through the �lter into
a parabolic channel is in red, an un�ltered jinc pulse propagating just through a matched
in�nite channel (black), and the energy content of the �ltered pulse (dashed-blue). (b) Modal
decomposition of intensity. The color lines represent the fundamental (red), 1st (blue), and
2nd (green) higher-order modes in the basis of a LG decomposition. (c) The initial pulse
pro�le (red) and �ltered pulse pro�le (black), where a⊥(0) = 0.5, r0 = 53 µm, ZR = 1.083
cm, and rj = 0.3645r0.

we can see the stark di�erence due to beating. The laser energy depletion is similar to that

of a sharp truncation (blue). We also used the same numerical parameters as before, except

now the �lter length is 6ZR = 6.5 cm and is characterized by kp0re = 3.86 and a slight

channel mismatching of R = 0.856r0.

It was found that leaky channels with steeper walls, i.e., channel radii smaller than

matched, e.g., Re� = 27 µm for r0 = 53 µm, both guide the main lobe and leak out higher-

order modes more e�ciently. Likewise, the lack of a sharp boundary mitigates higher-order

mode excitation. The fact that the e�ective radius is mismatched causes the laser pulse to
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Figure 5.8: An exponentially decaying leaky channel (rexp = 1.22r0, R = 1.357r0, n�lter =
1017 cm−3, and length of 6.2 cm), acting as a �lter, precedes a parabolic capillary discharge
channel with n0 = 3 × 1017 cm−3 and R = 30 µm. (a) The laser amplitude propagating
through the �lter into a parabolic channel (red), an un�ltered jinc pulse propagating just
through a approximately matched in�nite channel (black), and the energy content of the
�ltered pulse (dashed-blue). (b) Modal decomposition of intensity. The color lines represent
the fundamental (red), 1st (blue), and 2nd (green) higher-order modes in the basis of a LG
decomposition. (c) The initial pulse pro�le (black) and �ltered pulse pro�le (red), where
a⊥(0) = 0.5, r0 = 53 µm, ZR = 1.083 cm, and rj = 0.3645r0.

focus. With Re� < r0 leakage rates are higher for all modes, which leads to faster �ltering,

although steeper density pro�les are more di�cult to achieve in experiment.

5.8 Summary

It has been demonstrated that the presence of higher-order modes in realistic laser pulses

is problematic but can be addressed by using leaky plasma channels, part of a growing

�eld of plasma-based optics [102]. Higher-order mode content, often described as a jinc
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pro�le, can accurately be modeled using a superposition of LG modes, which are the inherent

eigenfunctions of a parabolic channel in cylindrical coordinates. Using the WKB method

and the SDE we were able to show that one can analytically model the evolution of a realistic

LG3 pulse in an in�nite and �nite plasma channel. Numerical examples were provided that

demonstrated the viability of leaky channels in a realistic simulation given by PIC codes.

Two models were tested: sharp truncation of a parabolic channel as well as exponentially

decaying walls. Both models are experimentally tenable, depending only on when the laser

is injected into the plasma channel, typically generated using hydroshock expansion but also

realizable in a discharge capillary.

The implementation of plasma �lter structures has the potential to greatly improve on-

going LPA research that relies on laser guiding in parabolic plasma channels. For the two

examples explored, we proposed placing the plasma �lter directly before the idealized plasma

channel intended for actual LPA applications in order to improve guiding (reduce laser mis-

match, reduce spot size oscillations, and improve pulse evolution). In the �rst example,

a 27.5 cm long leaky channel with sharp truncation was used. Guidance in the parabolic

channel was greatly improved due to the preferential loss of higher-order mode content and

approximately 75% of the initial laser power was coupled into the second parabolic plasma

channel. In the second example, a 7 cm leaky channel with exponentially decaying walls was

used. This provided even greater �ltering at a shorter length.

Leaky plasma channels have been generated experimentally in the past using gas jets but

strictly for the purpose of guiding the laser. These were on the order of a few centimeters

in length at most. Longer plasma channels can be generated using a capillary along with

laser-assisted heating [103, 17]. A secondary issue not considered in this work is the potential

damage by and containment of leaked energy, as several joules of laser energy (for a GeV

LPA) would be leaked into the walls of a capillary. A better solution is to use an axicon

generated plasma column in a gas jet. Another prospect is to incorporate a plasma �lter

earlier in the CPA process altogether. Placing a leaky channel immediately after the power

ampli�ers, but before compression, can take advantage of the long pulse and low �uence

properties of the laser pulse at this point. Here the laser pulse can be focused to a very

small spot size, ∼ 1 µm without inducing self-focusing, thereby shortening the Rayleigh
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length ZR and also shortening the length of the �lter while also without strong wake e�ects.

This would have the advantage that the �ltered pulse would then put a smaller strain on the

compression gratings used in the ampli�cation process as well as resulting in a more Gaussian

pulse in the end. However, the e�ect of long-pulse laser-plasma instabilities (e.g. Raman

back-scattering) during uncompressed laser propagation would need further investigation.
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Chapter 6

Wake�eld Tuning via

Higher-Order Modes

6.1 Introduction

Higher-order mode content, while detrimental to LPA research if unwanted and uncontrolled,

can provide new opportunities to advance the �eld. Higher-order laser modes have already

been proposed for several advanced LPA concepts, such as plasma undulators [104, 105, 106],

higher harmonic generation [107], ring-shaped electron bunches [108, 109], and independent

control of the focusing �elds [83]. Cormier et al. [83] in particular explored the use of two

modes to modify the transverse wake�elds.

In this chapter we extend that concept and propose the use of higher-order Laguerre-

Gaussian and Hermite-Gaussian modes to control the wake properties in an LPA. One can

choose geometric mode numbers such that the di�erent modes have the same group and phase

velocities, which results in a superposition of modes without beating. This technique is here

called geometric tuning and will be used to create a wake pro�le that can be used to guide

elliptical bunches. Modes, for which the sum of their geometric mode numbers are not equal,

will always beat if they overlap in space and time. However, it is still possible to overcome

mode slippage. This can be done by carefully choosing the frequency of each individual mode

so that they propagate at the same group velocity. However, in this case there will still be

mode beating, which can be overcome by either having the modes copropagate a speci�c
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distance apart from one another or having two modes with orthogonal polarizations.

6.2 Copropagation of Multiple Modes

An individual laser mode of the proper basis with matched spot size will propagate without

intensity variation down a plasma channel. However, if one were to inject two or more

overlapping Laguerre-Gaussian or Hermite-Gaussian modes they would interfere and induce

beating, a�ecting the wake�elds. As noted in Sec. 3.11, the superposition of modes a1

and a2 will create a cross term of the form 2a1a2 cos[(k1 − k2)τ ] in the intensity pro�le

|a|2 = a2
1 + a2

2 + a∗1a2 + a1a
∗
2. For the superposition of Hermite-Gaussian modes we expect a

beat wave number kbeat = k1 − k2 of the form

kbeat,H = [(m1 + n1)− (m2 + n2)]/ZR,

and for Laguerre-Gaussian modes,

kbeat,L = [(2µ1 + ν1)− (2µ2 + ν2)]/ZR.

If the sums of the mode numbers for each individual mode are not equal, then there will be a

beating term with a characteristic wavelength λbeat = 2π/kbeat. However, ifm1+n1 = m2+n2

for HG modes or 2µ1 + ν1 = 2µ2 + ν2 for LG modes then there will be no beating.

This behavior is visualized in Fig. 6.1, in which have been plotted several examples of

copropagating modes in a matched parabolic channel. The base line is that of two Gaussian

pulses (black) which propagate without oscillation in amplitude or spot size, since this is

essentially just a single mode. When propagating two modes of di�erent mode numbers

we see oscillations, for example L10 + L00, L20 + L00, and L04 + L00 and several things can

happen. First, as the total sum of mode number indices increases, e.g., L10 + L00 versus

L20 + L00, the frequency of the oscillation increases. Second, when the sums of the mode

numbers are equal they oscillate at the same frequency, e.g., L20 +L00 versus L04 +L00, where

(2µ20+ν20)−(2µ00+ν00) = (2×2+0)−(0) = 4 and (2µ04+ν04)−(2µ00+ν00) = (2×0+4)−0 =

4. However, the di�erence between the individual sum of mode numbers is nonzero, i.e.,

(2µ20 + ν20)− (2µ00 + ν00) = (2µ04 + ν04)− (2µ00 + ν00) 6= 0, therefore there is beating. Most

importantly, when the sums of the individual mode numbers are equal and their combined
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Figure 6.1: Comparison of the on-axis intensity of copropagating modes. The black line corresponds

to two Gaussian modes, blue line to a10 and C00, red line to C20 and C00, dashed cyan line to C00

and a04, and dashed orange line to a10 and C02.

sum is zero, as in the case of (2µ10 + ν10)− (2µ02 + ν02) = (2× 1 + 0)− (2× 0 + 2) = 0, the

modes will copropagate and do so without beating.

The group velocity di�ers depending on the mode number, as discussed in Sec. 3.7. For

the Hermite-Gaussian mode the group velocity can be expressed as

vH
c

= 1− 1

2k2

[
k2
p +

4(m+ n+ 1)

r2
0

]
, (6.1)

and the group velocity for the Laguerre-Gaussian modes as

vL
c

= 1− 1

2k2

[
k2
p +

4(2µ+ ν + 1)

r2
0

]
. (6.2)

As noted before, a laser mode always propagates at less than the speed of light as long as it

propagates through a plasma or is noticeably �nite in transverse width. More importantly,

higher-order modes propagate slower than lower-order modes.

6.3 Geometric Tuning

The wake�elds for the superposition of multiple modes can be calculated directly from the

scalar potential φ via E/E0 = −k−1
p ∇φ. Any superposition of modes can be used, but in order

to have on-axis acceleration one needs to select either even mode numbers in the Hermite-

Gaussian basis or radial modes for the Laguerre-Gaussian basis. For example, we will be
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using a superposition of two Hermite-Gaussian modes of mode numbers (m1 = 2, n1 = 0)

and (m2 = 0, n2 = 2) as depicted in Fig. 6.2, which is equivalent to a Laguerre-Gaussian

mode (µ = 1, ν = 0). The intensity of the superposition of these modes can be expressed as

|a|2 =
1

2

[
C2

20

(
1− 4

x2

r2
0

)2

+ C2
02

(
1− 4

y2

r2
0

)2

+ 2C20C02

(
1− 4

x2

r2
0

)(
1− 4

y2

r2
0

)
cos(∆ϕ)

]
×e−2(x2+y2)/r20e−2(ζ−ζ0)2/L2

,

(6.3)

where ∆ϕ is the di�erence between the initial phases of the modes. The dependence of

|a|2 on ∆ϕ can be seen in Fig. 6.3 and can be fairly sensitive. A phase di�erence of

∆ϕ = π can extinguish the on-axis peak intensity completely if C20 = C02. The phase needs

to be carefully controlled, either by careful controlling individual phase contribution, e.g.,

orthogonal polarization between the modes, or by temporally separating the modes. That

way the modes can interact with each other via the wake but not directly overlap.

x/r0

y
/r

0

(a)

x/r0

y
/r

0

(b)

Figure 6.2: Comparison of |a|2 for higher-order Hermite-Gaussian modes (a) (m1 = 2, n1 = 0)
and (b) (m2 = 0, n2 = 2). Color denotes the amplitude intensity |a|2.
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Figure 6.3: Comparison of |a|2 for the superposition of higher-order Hermite-Gaussian modes
m1 = 2, n1 = 0 and m2 = 0, n2 = 2 with equal amplitudes C20 = C02. (a) ∆ϕ = 0, (b)
∆ϕ = π/2, and (c) ∆ϕ = π. Color indicates the intensity |a|2.

6.3.1 Wake�eld excitation by H0H2 +H2H0 and L10 + L02 laser

modes

The wake�elds for the superposition of H0H2 +H2H0 modes derived from the intensity |a|2

in Eq. (6.3) for ∆ϕ = 0 and |ζ − ζ0| � L, can be written as

Ex
E0

=
√

8π
xL

r2
0

[
C20

(
5− 4

x2

r2
0

)
+ C02

(
1− 4

y2

r2
0

)][
C20

(
1− 4

x2

r2
0

)
+ C02

(
1− 4

y2

r2
0

)]
×e−k2pL2/8e−2(x2+y2)/r20 sin[kp(ζ − ζ0)],

(6.4)

Ey
E0

=
√

8π
yL

r2
0

[
C20

(
1− 4

x2

r2
0

)
+ C02

(
5− 4

y2

r2
0

)][
C20

(
1− 4

x2

r2
0

)
+ C02

(
1− 4

y2

r2
0

)]
×e−k2pL2/8e−2(x2+y2)/r20 sin[kp(ζ − ζ0)].

(6.5)

These modes are matching given the condition m1 +n1 = m2 +n2. In Fig. 6.4 are portrayed

the intensity pro�le described by Eq. (6.3), i.e., Figs. 6.4.a, 6.4.d, and 6.4.g, and the

corresponding transverse wake�elds by Eqs. (6.4) and (6.5) in Figs. 6.4.b, 6.4.e, and 6.4.h.

This is done for three instances of varying modal amplitude contributions, i.e., C02 = C20 = 1

in Figs. 6.4.a, 6.4.b, and 6.4.c, C20 = 1 and C02 = 0.5 in Figs. 6.4.d, 6.4.e, and 6.4.f, and

C20 = −1 and C02 = 5 in Figs. 6.4.g, 6.4.h, and 6.4.i. The variation in mode contributions

allows for signi�cant asymmetries between the horizontal and vertical planes. Lineouts of
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the electric �elds plots can be seen in Fig. 6.4. In addition, considering the slopes of the x

and y wake�elds, we can choose the relative value of the asymmetry using these modes just

as a function of modal amplitude contributions, as seen in Fig. 6.5.

Similar calculations can be done in the cylindrical basis of the Laguerre-Gaussian modes

with the matching condition 2µ1 +ν1 = 2µ2 +ν2. An example of this can be seen in Fig. 6.6,

where we have plotted the real and imaginary components of the amplitude a, the intensity

|a|2, and the transverse electric �elds E⊥/E0 for a superposition of modes (µ1 = 1, ν1 = 0)

and (µ2 = 0, ν2 = 2), i.e., L10. +L02. The expression for the intensity and transverse electric

�elds can be written out as

|a|2 =
2

π

[
2C2

02

r2

r4
0

+ 2
√

2C10C02
r2

r2
0

(
1− 2r2

r2
0

)
cos(∆ϕ+ 2ϕ) + C2

10

(
1− 2r2

r2
0

)]
×e−2r2/r20e−2z2/L2

,

Er
E0

=
√
πkpL

[
C2

10

r

r0

(
3− 8r2

r2
0

+
4r4

r4
0

)
+ C10C02

(
r

r0

− 6r3

r3
0

+
4r5

r5
0

)
cos(∆ϕ+ 2ϕ)

−4C02
r3

r3
0

(
1− r2

r2
0

)]
e−k

2
pL

2/8e−2r2/r20 sin[kp(ζ − ζ0)],

and

Eϕ
E0

= −
√

2kpLC02C10
r

r0

(
1− 2r2

r2
0

)
cos(∆ϕ+ 2ϕ)e−2r2/r20 cos[kp(ζ − ζ0)].

These cylindrical representations can be easily converted to Cartesian coordinates using

Ex = Er(x/r)−Eϕ(y/r) and Ey = Er(y/r) +Eϕ(x/r), where r2 = x2 + y2. In this example,

we again can have asymmetric focusing �elds, with near-zero focusing along the vertical axis

and strong focusing along the horizontal axis.

6.3.2 Electron bunch propagation in an H0H2 +H2H0 wake

Near the axis of propagation of the laser, where x, y � r0 and where we expect the electron

bunch to travel, we can consider only the linear contribution of the wake�elds. We will also

only consider the phase when the transverse �eld is at its maximum and the longitudinal

�eld is zero, i.e., kp(ζ − ζ0) = (4l+ 1)π/2, where l = 0, 1, 2, ... is a non-negative integer. The
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Figure 6.4: Comparison of the superposition of higher-order Hermite-Gaussian modes (m1 =
2, n1 = 0) and (m2 = 0, n2 = 2), visualized in density plots of the laser intensity |a|2 as well
as density plots and lineouts of the transverse electric �eld E⊥/E0. In sub�gures (a) , (b),
and (c) C20 = C02 = 1; in (d), (e), and (f) C20 = 1 and C02 = 0.5; and in (g), (h), and (i)
C20 = −1 and C02 = 5. The color denotes the amplitude and �eld intensities and the arrows
the transverse direction of the �eld.



CHAPTER 6. WAKEFIELD TUNING VIA HIGHER-ORDER MODES 95

C20

C
0
2

(a)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.01

0.10

1

10

100

a20/(a20+a02)

∂x Ex

∂y Ey

a02>0 a02<0

(b)

Figure 6.5: Ratio of the slopes for ∂xEx and ∂yEy with constant longitudinal �eld Ez, where
(b) corresponds to the red line in (a). There is freedom in picking the asymmetry of the
wake�eld just by modifying the amplitudes of the individual modes. For H20 and H02, there
are poles at C20/(C20 + C02) = 1.25 and -0.25.
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Figure 6.6: Example of matched Laguerre-Gaussian modes L10 and L02 with a10 = 1 and
C02 = 3/2. (a) the real component of mode L10, (b) the real component of mode L02, (c)
the overall intensity pro�le |a|2 = |a10 +C02|2, and (d) the corresponding transverse electric
wake�eld, where the color denotes the strength of the �eld and the arrows the direction.

purpose of this is just to simplify particle tracking and decouple the focusing e�ect from

acceleration, which can otherwise be accounted for. Taking the Taylor expansion of Eqs.

(6.4) and (6.5) near the axis we have

Ex
E0

≈
√

8π
L

r2
0

e−
k2pL

2

8 |(C02 + C20)(C02 + 5C20)|x = −K2
xkpx, (6.6)

Ey
E0

≈
√

8π
L

r2
0

e−
k2pL

2

8 |(C02 + C20)(5C02 + C20)|y = −K2
ykpy, (6.7)

where

K2
x =
√

8π[L/(kpr
2
0)] exp[−k2

pL
2/8]|(C02 + C20)(C02 + 5C20)|,
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and

K2
y =
√

8π[L/(kpr
2
0)] exp[−k2

pL
2/8]|(C02 + C20)(5C02 + C20)|.

From the linear �elds we can compute the betatron frequency of a particle in the wake�eld:

ω2
βx = K2

xω
2
p/γ, (6.8)

and

ω2
βy = K2

yω
2
p/γ, (6.9)

where γ is the relativistic Lorentz factor.

In order to understand the e�ect of higher-order modes on an electron bunch we will

numerically calculate the individual electron orbits as described in Sec 4.2 via particle track-

ing. All the �elds in question are inherently nonlinear except near the axis and the use of

higher-order modes further constrains the region of linearity. This can be seen in Fig. 6.7,

where in Fig. 6.7.a we have a bunch with σx0 = σy0 = 0.03r0 and in Fig. 6.7.b, where we

have σx0 = σy0 = 0.1r0. The relevant laser-plasma parameters are |a| = 0.1, pulse length

L/c = 33 fs, density n0 = 3 × 1017 cm−3, and spot size r0 = 50 µm. For this and all

subsequent particle-tracking examples in this section we solve Eqs. (4.11) using the electric

�elds de�ned by Eqs. (6.4) and (6.5) to push the particles. Numerically this was done with

the 4-th order Runge-Kutta algorithm (RK4) for six, �rst-order coupled di�erential equa-

tions with time step ∆t = ω̄−1
β /50, where ω̄2

β = K2ωp/γ0 is the larger of the two betatron

frequencies de�ned by Eqs. (6.3.2) - (6.9). Scaling the simulation with respect to betatron

frequency is important as that is the smallest physical feature we wish to resolve. In Fig.

6.7.b we can see emittance growth due to the wings of the bunch sampling the nonlinear

region of the wake�elds. In order to avoid this the electron bunch typically must be much

smaller than the width of the drive laser where the �elds are linear.

Assuming a bunch with matched spot sizes, σx0 = σy0 = 0.003r0 but with emittance ratio

of εx/εy = 10, we can show that the wake generated by higher-order modes can guide such a

bunch. In this particle tracking example, the initial parameters are |a| = 0.1, n0 = 3× 1017

cm−3, and r0 = 50 µm. Since the �elds are approximately linear near the axis, there will

be no emittance growth, though the spot size might still evolve. In Fig. 6.8.a we inject a

symmetric bunch into a matched wake�eld of a laser driver composed of H0H2 and H2H0
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Figure 6.7: Comparison of a bunch guided by the full, nonlinear wake�eld of H02 and H20

modes for an initial bunch size of (a) σx0 = 0.03r0 and (b) σy0 = 0.1r0.

modes. This gives the trivial solution of constant emittance εx = εy = 0.01 µm and relatively

constant spot size. If we increase the emittance εx by a factor of 10 by increasing σpx by a

factor of 10 we can see in Figure 6.8.b how the bunch is matched in the y direction but not

the x direction, such that εx = 0.1 µm and εy = 0.01 µm. A mismatched bunch will undergo

betatron oscillations and we will have emittance growth. However, if we keep the asymmetric

electron bunch but tune the amplitude coe�cients of the laser driver, i.e., C02 = 0.0235 and

C20 = −0.1235, which still gives an on axis amplitude of |a| = 0.1, we obtain the result

shown in Figure 6.8.c, with a larger bunch spot size σx = σy = 0.0115r0 giving us similar

emittances as before of εx = 0.1 µm and εy = 0.01 µm. In this plot we see two distinct

emittances but equal spot sizes.

A potential application of higher-order modes such as these is when one wishes to guide a

bunch with asymmetric emittances, e.g., the �nal focus of a collider. As higher energies were

reached in colliders the problem of beam-beam interactions became and remains a dominant
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Figure 6.8: Comparison of bunch guided by the �elds of an H02 and H20 wake. (a) Initially
matched bunch with εx/εy = 1 in a symmetric wake. (b) Initially mismatched bunch with
εx/εy = 10 with matched bunch spot sizes in a symmetric wake. Due to the mismatch strong
betatron oscillations can be observed. (c) Initially mismatched bunch with εx/εy = 10 with
matched spot sizes in an asymmetric wake with coe�cients C02 = 0.0235 and C20 = −0.1235.
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limiting factor. An important parameter in accelerator physics is the luminosity,

` =
N2Nbfc
4πσxσy

=
N2Nbfc

4πεxεyβ∗xβ
∗
y

,

where N is the total number of particles, Nb is the number of bunches per beam (as in an

accelerator you typically collide many bunches in sequence), fc is the collision frequency, εx,y

is the emittance, and β∗x,y is the optical amplitude function (β-function) at the interaction

point, where we used the relation σx,y =
√
εx,yβx,y [110]. The luminosity e�ectively tells one

the ratio of events Ne detected in a time period t to the interaction cross-section σi, i.e.,

` ≈ σ−1
i dNe/dt. Accelerators seek to maximize the luminosity.

Another important parameter is the linear beam-beam parameter,

Bx,y =
Nreβ

∗
x,y

2πγσx,y(σx + σy)
=

Nreβ
∗
x,y

2πγσx,yσx(1 + σy/σx)
,

where re = q2
e/mec

2 is the classical electron radius. B quanti�es the strength of the beam-

beam interaction. By controlling the shape of the bunch we can limit beam-beam interactions

to a certain extent, i.e., Bx,y can be reduced, for �xed luminosity, by using �at beams with

σy/σx � 1 at the interaction point. Flat beams at the interaction point can be achieved by

accelerating beams with asymmetric emittance ratios εx/εy � 1.

6.3.3 Limitations due to dephasing and e�ciency

Possible limitations to using higher-order modes in this context are the e�ect of dephasing

and the energy e�ciency with respect to electron bunch acceleration. Dephasing between

the accelerated electron bunch and the wake is a well known problem that is present in all

LPA experiments. In the weakly-relativistic limit, the dephasing limit for a higher-order

mode in the Hermite-Gaussian basis can be approximated as Ld ≈ 1
2

λ3p
λ2

[
1 + 4(m+n+1)

k2pr
2
0

]−1

.

In current LPA systems a tapering of the background plasma density pro�le along the path

of acceleration is often proposed as a means to overcome dephasing [28]. Another option is

the implementation of multiple stages [29]. The same applies for higher-order laser modes,

except that the group velocity is lower for higher-order modes than in the case for a Gaussian

laser driver, so the e�ective acceleration length would be reduced.
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The e�ciency � the amount of laser energy contributing directly to electron acceleration

� of using of higher-order modes can be simply estimated by the ratio of the integrated laser

intensity of the Gaussian mode, i.e., H0H0, relative to that of a superposition of higher-order

modes, e.g., H2H0 + H0H2, assuming equal on-axis intensity, C2
00 = |C20 + C02|2, i.e., for

an equal accelerating gradient. For any two arbitrary, Hermite-Gaussian modes, this can be

expressed as

Eeff ∝
∞∫∫
−∞

C2
00 e

−2
(x2+y2)

r20 dxdy

/ ∞∫∫
−∞

|a1Hm1Hn1 + a2Hm2Hn2|
2 e
−2

(x2+y2)

r20 dxdy,

where we assume the same longitudinal pro�le for both modes. For example, the superpo-

sition of second-order modes as seen in Figure 6.4.a, where C20 = C02 = 1, would give an

e�ective e�ciency loss of Eeff = 1/4. However, if we want to guide or accelerate an electron

bunch with an asymmetry ratio of εx/εy = 10, we need a laser pro�le as seen in Figure

6.4.c, which also approximately corresponds to the setup for particle tracking in Figure 6.8.

This would lead to greater e�ciency loss with Eeff ≈ 1/13. The relative decrease in energy

e�ciency with respect to the Gaussian mode is intuitive as more energy content is located

away from the axis, which is an important consideration for a collider [111].

6.4 Frequency tuning of the wake�eld

Color tuning is the ability to select di�erent frequencies for each of the independent modes.

However, since the phase velocity is a function of the laser wavenumber k as well, it is not

possible to select di�erent, lower-order modes that propagate at the same group velocity and

do not beat. This can be seen from the following expression,

|a|2 = |a1 + a2|2 = a2
1 + a2

2 + a1a2e
i(k1z−vp,1t)e−i(k2z−vp,2t) + c.c.,

as having di�erent wavenumbers to have equal vp terms and thereby equal group velocities

would result in a new beating contribution from the (k1 − k2)z term. In order to prevent

beating, one can either use two modes of orthogonal polarization or modes that are tempo-

rally separated and do not overlap, which are equivalent situations in terms of the interaction

between the modes in the linear regime. Using orthogonal polarization limits one to only
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Figure 6.9: Amplitude intensity pro�les of Laguerre-Gaussian modes L00, L01, and their
superposition L00 + L10.

two modes in a single instance as opposed to an inde�nite number of arbitrary modes with

temporal separation. However, temporal separation may be more di�cult to achieve experi-

mentally, as each mode needs to be injected exactly λp apart and would be more susceptible

to longitudinal e�ects.

6.4.1 Wake�eld excited by L00 + L01 laser modes

For two Laguerre-Gaussian modes of indices µ1 = ν1 = 0 and µ2 = 0, ν2 = 1 and orthogonal

polarization, the intensity pro�le can be written as

|a|2 =
2

π

(
C2

00 + 2
r2

r2
0

C2
01

)
e−2r2/r20e−2z2/L2

.

This is a superposition of the intensity pro�les of a simple Gaussian and a �rst-order ring

mode, as seen in Figure 6.9. In order for the two modes to copropagate, it is necessary for

them to have the same group velocity, and that can be done by solving for k = ω/c in Eq.

(6.2). The general expression for matching the frequency of two Laguerre-Gaussian modes

for copropagation is

ω2 = ω1

√
k2
pr

2
0 + 4(2µ2 + ν2 + 1)

k2
pr

2
0 + 4(2µ1 + ν1 + 1)

. (6.10)

For example, in the case of an LPA system, with n0 = 3 × 1017 cm−3 and r0 = 50 µm, for

λ00 = 0.815 µm we have λ01 = 0.766 µm.

When considering positions in the resonantly driven plasma wave far behind the laser

driver, where |ζ− ζ0| � L and we have orthogonal polarization, the transverse electric �elds
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Figure 6.10: Lineouts of the transverse pro�les of Laguerre-Gaussian modes L00 and L01 for
(a) the amplitude intensity |a|2 and (b) for the transverse electric �eld E⊥/E0. The blue line
is for C00/C01 = 100, e�ectively just the Gaussian, the yellow line is for C00/C01 = 1, green
for C00/C01 = 1.25, and red for C00/C01 = 0.8.

for L00 and L01 can be written as

Er
E0

=

√
2

π

L

r2
0

[
C2

00 − C2
01

(
1− 2

r2

r2
0

)]
e−k

2
pL

2/8e−2r2/r20 sin[kp(ζ − ζ0)]r,

Ez
E0

=
kpL√

8π

(
C2

00 + 2C2
01

r2

r2
0

)
e−k

2
pL

2/8e−2r2/r20 cos[kp(ζ − ζ0)].

The linear expressions on axis for these �elds, i.e., when r/r0 � 1, can be written as,

Er
E0

≈
√

2

π

L

r2
0

(C2
00 − C2

01)e−k
2
pL

2/8 sin[kp(ζ − ζ0)]r

Ez
E0

≈ kpL√
8π
C2

00e
−k2pL2/8 cos[kp(ζ − ζ0)].

From the linear equations one can conclude that the longitudinal �eld depends primarily on

the Gaussian mode and the higher-order mode L01 can be used to independently modify the

transverse �elds. A lineout of the intensity pro�le and the corresponding transverse electric

�eld can be seen in Figure 6.10. The thin blue, solid lines correspond to just a Gaussian

driver. The thick, yellow solid lines correspond to C00 = C01 and electric �eld equal to zero

near the axis. The dashed, green line corresponds to a modi�ed Gaussian wake and the

dot-dashed, red line to a strongly modi�ed wake.
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6.4.2 Bunch propagation in an L00 + L01 wake

By using two modes we can tailor the focusing forces of the wake�elds. Considering a bunch

with emittance ratio εx/εy = 1, propagating in the full, nonlinear wake�elds, we demonstrate

that higher-order modes can be used to reduce the focusing gradients and ensure matched

propagation. Initial parameters are |a| = 0.1, n0 = 3×1017 cm−3, and r0 = 50 µm. Likewise,

we are only considering the focusing forces in this simulation, so kp(ζ − ζ0) = lπ/2, where l

is a non-negative integer. Numerical results can be found in Fig. 6.11.

In Fig. 6.11.a we have an electron bunch with matched spot sizes, σx = σy = 0.1r0 in the

wake of a Gaussian pulse, i.e., L00 mode. This is the trivial result with constant emittance

εx = εy = 1.3 µm and relatively constant spot size. In Fig. 6.11.b we have a wider bunch with

σx = σy = 0.2r0. We can see that the bunch begins to experience the nonlinear contributions

of the �eld and both emittance, initially εx = εy = 5.3 µm, and spot size grow. Keeping

a0 = 0.1, we introduce an L01 mode with amplitude C01 = 0.08 such that C00/C01 = 1.25,

which corresponds to the dashed lines in Fig. 6.10. In this case, we still have the wider,

initial bunch spot size σx = σy = 0.2r0 but relatively constant emittance εx = εy = 3.2 µm

and spot size evolution, shown in Fig. 6.11.c. Just as in the case for geometric tuning,

frequency tuning is also limited by issues of dephasing and energy e�ciency loss.

A potential application of this focusing force control is to the problem of ion motion and

positron acceleration [112]. The same analysis used for the case of a beam-driven wake�eld

accelerator scheme also applies to a laser-driven problem [113]. The problem of ion motion

in a future plasma-based collider project is not typically associated with the drive laser, for

which one normally would need a ∼
√
mi/me = 42.85 to see signi�cant ion motion on the

length scale of the laser. What causes potentially problematic ion motion is actually the

trailing electron or positron bunch. For a bunch we assume a transverse bunch wake�eld

∂ζE⊥ = (4π/c)J⊥ = 4πeniZiβi,⊥, where Zi is the ion charge state, ni is the ion charge

density, and βi is the ion �uid velocity, which we assume is nonrelativistic, i.e., βi � 1. The

amplitude of the transverse wake�eld due to the trailing bunch can then be expressed as

E⊥
E0

=
kpr

2

[
1 + Zi

me

mi

nb,0
n0

(kpζ)2

2
G

(
r2

2σb,⊥2

)]
, (6.11)

where G(q) = (1 − e−q)/q and σb,⊥ is the transverse spot size of the trailing bunch. The
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�rst term in the square bracket of Eq. (6.11) describes the static ion background, while the

second term can be approximated by an ion motion parameter

Γi = Zi
me

mi

nb,0
n0

(kpζ)2 = Zi
me

mi

Nb/n0

σ2
b,⊥Lb

(kpζ)2,

whereNb is the total charge number in the bunch and Lb is the length of the bunch. Assuming

an e+e− collider-like bunch with Zi = 1 for a Hydrogen ion background, Nb = 109, Lb =

30 µm [114], and using the previous plasma parameters, we have Γi = 0.03 for a bunch width

of σ⊥ = 0.1r0 and Γi = 0.007 for σ⊥ = 0.2r0. This example takes a small perturbation and

makes it completely negligible, but if we use an even smaller bunch size of σ⊥ = 0.0165r0 =

0.825 µm, which is normal for an LPA experiment, we reach the threshold for ion motion,

Γi = 1, when the bunch wake�elds become strong enough to strongly perturb the background

ions during bunch transit, results in degraded bunch emittance. This also holds true for

positron bunches in the quasilinear regime, and so by mitigating the transverse focusing forces

using color tuning we can accelerate the development of an LPA-based positron accelerator

as well.

6.5 Summary

In this chapter it was shown how higher-order modes can be utilized in laser-plasma accel-

erators to control and shape the transverse wake�elds via the two mechanisms of geometric

tuning and color tuning. With geometric tuning it was shown that two laser modes with the

same laser frequency but of di�erent mode indices will copropagate at the same group veloc-

ity and without beating if the sum of the modes numbers is equal, i.e., m1 + n1 = m2 + n2

for Hermite-Gaussian modes and 2µ1 + ν1 = 2µ2 + ν2 for Laguerre-Gaussian modes. This

was shown for two examples, H2H0 + H0H2 and L10 + L02. This principle can be used to

control the shape of the wake and more speci�cally to create asymmetric wake�elds. More

speci�cally it was shown that the superposition of H2H0 +H0H2 could allow for the guiding

of an asymmetric electron bunch with an emittance ratio of εx/εy = 10, which allows for the

possibility of a plasma-based �nal focus in a linear collider.

In addition, it was demonstrated that two di�erent modes, which would normally propa-

gate at di�erent group velocities given the dependence of the group velocity on mode number,
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Figure 6.11: Comparison of a bunch guided by the nonlinear wake�elds of an L00 and L01

laser driver. (a) Initially matched bunch with σx = σy = 0.1r0 in a symmetric wake with
C00 = 0.1 and C01 = 0. (b) Initially matched bunch with σx = σy = 0.2r0 in a symmetric
wake with C00 = 0.1 and C01 = 0. The bunch feels the nonlinear �eld and emittance grows.
(c) Initially matched bunch with σx = σy = 0.2r0 in a symmetric wake with C00 = 0.1 and
C01 = 0.08. The softening of the transverse gradients reduces the e�ect of the nonlinear
�elds on the bunch and emittance remains e�ectively constant.

can copropagate if they have di�erent frequencies. One potential de�ciency of this approach

as opposed to geometric tuning is that the modes still beat and so must either be of orthog-

onal polarizations or temporally separated in the wake. It was shown that with L00 +L01 we

were able to alter the transverse gradient of the wake near the axis and allow for the guiding

of a larger bunch than normally feasible. This has potential applications to positron beam
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acceleration as well as for mitigation of ion motion.



107

Chapter 7

Application of Color-Tuning

to Plasma Undulators

7.1 Introduction

One of the most promising applications of LPA technology is next generation advanced light

sources. These devices generate highly energetic soft (1 - 10 nm or 1 - 10 keV) and hard ( < 1

nm or > 100 keV) x-ray beams with very high spatial and temporal resolution [115]. The

high energies and high resolutions in turn make it possible to resolve very small structures

on the sub-nanometer scale as well as to e�ectively ��lm� molecular activity in real time,

e.g., the folding of a protein, with promising pharmaceutical applications [116]. Modern

light sources of note are the Advanced Light Source (ALS) at LBNL in Berkley, CA, the

National Synchrotron Light Source (NSLS) at Brookhaven, NY, the LINAC Coherent Light

Source (LCLS) at SLAC in Stanford, CA, and FLASH and XFEL at DESY in Hamburg,

Germany [117, 118, 119, 120]. The ALS is a circular accelerator while LCLS and XFEL are

both LINACS. A comparison of various light sources can be found in Table. 7.1

Most modern light sources are e�ectively accelerators. Originally the radiation emitted

by the bending of a beam around a curved lattice or from betatron oscillations was considered

parasitic, it was lost energy that was intended to accelerate particle beams for the purpose of a

collider [121]. This originally arose in second generation accelerators known as synchrotrons,

where the relativistic nature of the highly energetic beam modi�ed the cyclotron frequency
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Date Type Length λmin Energy Peak Brill.

ALS 1993 Circular 198 m 0.035 nm 1.9 GeV 1× 1022

NSLS-II 2015 Circular 792 m 0.1 nm 3 GeV 1× 1022

LCLS 2019 Linear 3 km 0.05 nm 15 GeV 3× 1033

XFEL 2016 Linear 3.4 km 0.05 nm 17.5 GeV 5× 1033

Table 7.1: Comparison of modern light sources.

as ωs = ωc/γ. Therefore the emitted light has come to be known as synchrotron radiation

and is typically generated through use of an alternating magnetic structure known as a

wiggler for broad spectra and an undulator for narrow spectra. The synchrotron wavelength

is typically de�ned as

λs =
2πc

ωs
=
λu
2γ

(
1 +

K2

2

)
, (7.1)

where λu is the characteristic length-scale and K is the strength parameter of the undulator,

which varies depending on the approach taken and additional phenomena in question such

as betatron oscillations.

Synchrotron radiation is e�ectively a consequence of Doppler shifting of the emitted

radiation due to the highly relativistic velocities of the electron bunch. The classical radiating

dipole model of an oscillating electron in its own frame gives a radiation frequency of ω′ =

2πc
λ′

= 2πcγ
λu

, where the prime (′) denotes the electron frame, as opposed to the lab frame. For

a highly relativistic electron we have

ω =
ω′

γ(1− βz cos θ)
=

2πc

λu(1− βz cos θ)
,

where θ is the observation angle [122]. Assuming a Taylor expansion for small angles, cos θ =

1− θ2/2 + ..., as well as βz ' 1 and 1− βz ' 1/(2γ2), we can write

ω =
2πc/λu

1− βz(1− θ2/2 + ...)
=

2πc
λu(1−βz)

1 + βzθ2

2(1−βz)

=
4πγ2c/λu
1 + γ2θ2

,

which gives us the observed wavelength λs = 2πc/f , which to �rst order in γ2
⊥θ

2 reads

λs =
λu
2γ2

(1 + θ2γ2). (7.2)

Henceforth we will only be consider the transverse component to the Lorentz factor, replacing

γ⊥ with γ. At very high, relativistic speeds the radiation pattern is dominated by a cone
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de�ned by the angular width of 2θ ' 1/(γ
√
Nu), where Nu is the number of undulator

oscillation periods.

In a realistic undulator the emitted radiation deviates from Eq. (7.2) according to what

e�ects predominate, often incorporated into what is known as the strength parameter K.

For a traditional accelerator, starting with the Lorentz force equation, dp
dt

= q(E + v/c×B),

and background focusing forces of E ≈ 0 and By = −B0 sin(2πz/λu), where z is in the

direction of propagation, we can approximate the particle velocity as

meγ
dvx
dt

= qvτBy = −qdz
dt
B0 sin

(
2πz

λu

)
, (7.3)

where we also assume v ' vz given the relativistic nature of the particle. Integrating Eq.

(7.3) and slightly rearranging the constants, we have

vx
c

=
qB0λu
2πmec

cos

(
2πz

λu

)
=
K

γ
cos

(
2πz

λu

)
,

where K = (qB0λu)/(2πmec) is the strength parameter for a magnetic undulator.

By considering separate velocity components, such that γ = (1− v2/c2)−1/2 = [1− (v2
⊥+

v2
z)/c

2]−1/2 and therefore v2
z/c

2 = 1− 1/γ2 − v2
⊥/c

2, we can solve for vz:

v2
z

c2
= 1− 1

γ2
− K2

γ2
cos2

(
2πz

λu

)
.

Expanding to �rst order in small parameter K/γ, the average axial velocity is then

v̄z
c

= 1− 1 +K2/2

2γ2
,

which gives us an e�ective Lorentz factor of γ∗ = γ/
√

1 +K2/2. Replacing γ with γz in Eq.

(7.2), we have

λs =
λu
2γ2

(
1 +

K2

2

)(
1 +

γ2

1 +K2/2
θ2

)
,

which reduces to Eq. (7.1) for radiation near the axis, i.e., θ ≈ 0.

In traditional light sources, synchrotron oscillations are driven by conventional magnets

with undulator length scales on the order of a millimeter at the smallest but with very

energetic electron bunches with γ0 ∼ 10, 000 [123]. In this case the strength parameter, a

function of B0, can be varied simply by changing the gap between the magnets, as depicted in
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Figure 7.1: Representation of a traditional synchrotron magnetic undulator.

Fig. 7.1. Recent advances in undulator technology have involved the use of superconducting

magnets, allowing for higher magnetic �elds on the order of 1 T [124]. Despite the relative

simplicity, static undulator technology is limited by the fact that it cannot be dynamically

tuned on the time scales of the electron bunch and that it is di�cult to build a magnetic

lattice structure with λu < 1 cm. This requires very energetic electron bunches to compensate

for the large undulator wavelength λu and means that the prerequisite LINAC structures

must be very large and built with such energies in mind. One proposed alternative is to

use an RF-based undulator, which would allow for fast, dynamic control of λu and K as

well as a larger aperture size of cm versus mm scale for static undulators [125]. In this

case the strength parameter is now a function of both the electric and magnetic �elds, i.e.,

K = [q(B⊥ + E⊥)λu]/(2πmec
2). For RF-based undulators there is no concern of permanent

magnet damage due to radiation and magnetization reversal as there is for a static undulator

[126]. However, the RF-undulator would require immense power and would be prohibitively

expense to operate given current conditions.

7.1.1 Plasma-Based Undulators

An alternative to traditional, magnetic-based undulators is the plasma undulator. The �rst

proposals for a plasma-based undulator used betatron oscillations, which in the bubble regime

scale as ωβ = ωp/
√

2γ0 [127]. This has already been proposed and tested as a backlight prober

for several applications, such as the study of high-density plasmas at the National Ignition

Facility (NIF) [128]. Another approach is to use oscillations in the drive laser centroid to

cause oscillations in the electron bunch [104, 105]. In this approach a laser is injected o�-axis

into a parabolic plasma channel and oscillates at a frequency inversely proportional to the
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Rayleigh range, i.e., ωu = 2πc/ZR, which creates a snaking wake�eld structure and in turn

causes the trailing electron bunch to oscillate at ωu.

Yet another approach is to use the superposition of two laser pulses of di�erent mode

numbers which cause beating and in turn create the oscillating wake�eld structure [106].

Unlike betatron oscillations or o�-axis injection, which are limited to their characteristic

frequencies, beating allows for greater �exibility in controlling the frequency of the output

radiation as the undulator frequency is a function of the di�erence between mode numbers.

One potential limitation of this approach is that laser pulses of di�erent mode numbers prop-

agate at di�erent group velocities, extinguishing the e�ect after several tens of oscillations

[83]. For example, the group velocity for a Hermite-Gaussian mode of index (m,n) is

vg
c

= 1− 1

2k2
m,n

[
k2
p +

4(m+ n+ 1)

r2
0

]
,

where km,n is the wavenumber of the mode in question. The characteristic slippage length

between two modes of the same color, i.e., km1,n1 = km2,n2 = k, is

Ls,m1,n1,m2,n2 ≈ L(kr2
0)/[2|(m1 + n1)− (m2 + n2)|]. (7.4)

Higher-order mode content at several Watts of power can be readily generated using o�-axis

pumping, as discussed in Sec. 2.4.6 [51, 52, 129].

7.1.2 Color-Tuned Plasma Undulator

One solution to group-velocity slippage is the use of color-tuning as proposed in Sec. 6.4,

where two modes of di�erent laser frequencies propagate at the same group velocity [130].

By setting the group velocities of two di�erent modes equal to one another, we can de�ne a

simple relation betwen the wave numbers, i.e., colors, of the modes:

k2 = k1

√
1 + κ2(m2 + n2 + 1)

1 + κ2(m1 + n1 + 1)
, (7.5)

where κ = 2/(kp0r0) and κ < 1 and this is identical to Eq. (6.10). From this we can deduce

that a higher-order mode requires a higher frequency in order to propagate at the group

velocity of a lower mode. Using two colors modi�es Eq. 6.2 to read

kbeat = 2
∣∣k2[κ2(m1 + n1) + 1]− k1[κ2(m2 + n2) + 1]

∣∣ /(κ2k1k2r
2
0). (7.6)
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Henceforth we will only be considering the beating between a mode (m,n) and the Gaussian

mode (0, 0), i.e.,

kbeat = 2
∣∣k0[κ2(m+ n) + 1]− km,n

∣∣ /(κ2k0km,nr
2
0),

where we modify Eq. (7.5) to

km,n = k0

√
1 + κ2(m+ n+ 1)

1 + κ2
,

which is the wave number of higher-order mode (m,n) with respect to the Gaussian mode

k0.

It is worth noting that such color-tuning is relatively sensitive and so one only has a

margin of error of a few percent ∆k/kmn before signi�cant slipping occurs again. This can

be seen in Fig. 7.2, where we have plotted the relative sensitivity to slippage,

S = 1− e−[vg,00−vg,m0(k̃)]2L2
s,m0/(2L

2),

where v0,0 is the group velocity of the Gaussian mode, vm,0 is the group velocity of higher-

order mode (m, 0), and Ls,m,0 = Ls,m,0,0,0 is the group-velocity slippage length de�ned in Eq.

(7.4). This quantity gives us a sense of the relative copropagation between modes, that is,

the sensitivity to slippage of the beating term between a Gaussian and a mode (m,n) over

the characteristic slippage length, if the color k̃ of mode (m, 0) is o� relative to its expected

color-tuned value of km,0. The higher the mode the less sensitive the beating term is to

slippage.

Another possible detractor from color tuning is that of energy depletion, which causes

the frequency of the laser light to red-shift as it propagates through a plasma, which can

potentially detune the laser mode. Using the analysis discussed in Sec. 3.8, we can modify

Eq. (3.40) to account for a mode dependent wave number km, that is,

∂km
∂τ

= E−1
0

k4
p

2k2
m

∫∫ (
|a⊥|2 − k−2

p ∇2
⊥|a⊥|2

)
|a⊥|2Fdxdy, (7.7)

where km = km,0. The variation of ∂km/∂τ as a function of mode number is shown in Fig.

7.3 for k/kp = 0.025. For typical parameters, very little energy is depleted over a Rayleigh

range. Therefore, red-shifting is not a serious concern for color-tuning.
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Figure 7.2: Plot of the slippage sensitivity factor S between a Gaussian mode and a mode
m = 1 (red), m = 3 (blue), and m = 5 (green) as a function of relative wavenumber k̃/km,
assuming n = 0 for all modes.
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Figure 7.3: A plot of ∂τkm/km as a function of mode numberm over a distance Zm for kp/k =
0.025 and r0 = 5/kp = 25 µm (blue), r0 = 10/kp = 50 µm (orange), and r0 = 20/kp = 100 µm
(green), each normalized to their corresponding Rayleigh range Zm = πr2

0λm.
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7.2 Wake�eld Calculations of Color-Tuned Modes

Following the prescription given in Sec. 4.1 we can calculate the wake�elds of two superim-

posed, color-tuned modes. The comoving variable will be with respect to the lowest order

mode, the Gaussian, ζ = z − vg,00t. For the superposition of a Gaussian with a Hermite-

Gaussian mode of arbitrary number m, but n = 0, we have

|a|2 =

[
C2

0e
2(ζ−δβτ)2

L2 +
21−m

2

√
m!

C0CmHm(x̃)e
ζ2+(ζ−δβτ)2

L2 cos(ku,mτ) +
2−m

m!
C2
mHm(x̃)2e

2(ζ−δβτ)2

L2

]
×e−(x̃2+ỹ2),

(7.8)

Ex
E0

=
4√
2
Ce−(x̃2+ỹ2)

{
C2

0 x̃ sin(kpζ) +
2−m

m!
C2
mHm(x̃)

[
2mHm−1(x̃)− x̃Hm(x̃)

]
sin[kp(δβτ − ζ)]

+
2−m/2√
m!

C0Cme
− δβ

2τ2

2L2

[
2mHm−1(x̃)− 2x̃Hm(x̃)

]
cos(ku,mτ) sin[kp(δβτ − 2ζ)/2]

}
,

(7.9)

Ey
E0

= Ce−(x̃2+ỹ2)ỹ

{
C2

0 sin(kpζ)− 2−m

m!
C2
mH

2
m(x̃) sin[kp(δβτ − ζ)]

−21−m
2

√
m!

C0Cme
− δβ

2τ2

2L2 Hm(x̃) cos(ωknt) sin[kp(δβτ − 2ζ)/2]

}
,

(7.10)

and

Ez
E0

= −Ce−(x̃2+ỹ2)kpr0

{
C2

0 cos(kpζ) +
2−m

m!
C2
mH

2
m(x̃) cos[kp(δβτ − ζ)]

+
21−m/2
√
m!

C0CmHm(x̃)e−
δβ2τ2

2L2 cos(ku,mτ) cos[kp(δβτ − 2ζ)/2]

}
, (7.11)

where C0 = C00, Cm = Cm0, C = 1
4
e−k

2
pL

2/8(kpL)
√
π/2/(kpr0), x̃ =

√
2x/r0, ỹ =

√
2y/r0,

δβ = βg0 − βgm, and

ku,m =
∣∣km(κ2 + 1)− k0[κ2(m+ 1) + 1]

∣∣ /(kmZR) (7.12)



CHAPTER 7. APPLICATION OF COLOR-TUNING TO PLASMA UNDULATORS 115

C1/C0 = 0

C1/C0 = 1/10

C1/C0 = 1/   2  @ ku1τ=0 

C1/C0 = 1/   2  @ ku1τ=π/2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

x/r0

E
x
/E

0

Figure 7.4: Lineouts of the transverse electric �eld Ex/E0 for the superposition of m = 0
and m = 1 modes with C0 = 0.1 and ζ = −π/2. Four cases: only Gaussian �eld m = 0
(red); two modes m = 0 and m = 1 with coe�cient ratio C1/C0 = 1/10 (blue); modes m = 0
and m = 1 with coe�cient ratio C1/C0 = 1/

√
2 at ku,1τ = 0 (solid green); and modes m = 0

and m = 1 with coe�cient ratio C1/C0 = 1/
√

2 at ku,1τ = π/2 (dashed green).

is the undulator frequency. The Rayleigh range here is de�ned with respect to the color, that

is, the wave number k, of the Gaussian mode, i.e., ZR = kr2
0/2, and km is the wavenumber

of m-th higher-order mode, i.e., km = km,0.

In Fig. 7.4 we have plotted Ex/E0 for four di�erenct circumstances of the superposition of

the m = 0 and m = 1 modes with C0 = 0.1 and ζ = −π/2, when C1 = 0 (red), C1/C0 = 1/10

(blue), C1/C0 = 1/
√

2 at ku,1τ = 0 (solid green), and C1/C0 = 1/
√

2 at ku,1τ = π/2 (dashed

green). C1/C0 = 1/10 corresponds to a modest perturbation of the transverse �eld while

C1/C0 = 1/
√

2 corresponds to electric �eld with zero gradient on axis, i.e., kβx = 0. Here

kβx is the betatron wave number in the x-direction. In Fig. 7.5 we have density plots of

the intensity (color) and direction (vectors) of the m = 1 �elds when C1/C2 = 1/
√

2, at

six instances in the modes' evolution: (a) ku,1τ = 0, (b) ku,1τ = π/4, (c) ku,1τ = 3π/8, (d)

ku,1τ = π/2, (e) ku,1τ = 5π/8, and (f) ku,1τ = 3π/4.
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Figure 7.5: Electric �elds E⊥/E0 of modes H1H0 + H0H1, where the color corresponds to
the intensity of the �eld and the vectors to the direction, at several instances of their time
evolution: (a) ku,1τ = 0, (b) ku,1τ = π/4, (c) ku,1τ = 3π/8, (d) ku,1τ = π/2, (e) ku,1τ = 5π/8,
and (f) ku,1τ = 3π/4.

The �eld equations (7.9)-(7.11) can be linearized for particles near the axis of propagation

of the laser. For example, for the superposition of a Gaussian (m = 0) and an odd-numbered

Hermite-Gaussian mode, i.e., m = 1, 3, 5, ..., the linear wake�elds are

Ex
E0

≈ 4√
2
C

{
x̃

[
C2

0 sin(kpζ)− g(m)2C2
1 sin[kp(δβτ − ζ)]

]
+

√
2C0C1e

− δβ
2τ2

2L2 cos(ku,mτ) sin[kp(δβτ − 2ζ)/2]

}
, (7.13)

Ey
E0

≈ 4√
2
CC2

0 ỹ sin(kpζ), (7.14)

Ez
E0

≈ −4CC2
0(kpr0) cos(kpζ), (7.15)

where g(m) = 2m/2mΓ(m/2)sin(πm/2)/
√
πm!, e.g., g(1) =

√
2, where Euler's re�ection

formula Γ(z)Γ(1 − z) = π/ sin(πz) has been used. Analogous expressions can be generated
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for the m = 2, 4, 6, ... modes but such modes have a beating term in both Ex/E0 and Ey/E0

that is linearly dependent on the transverse coordinates x, y in the linearized �eld equations.

This would cause electrons to beat with di�erent strengths as a function of x, y, which would

be undesirable for an undulator and lead to emittance growth.

Eqs. (7.13)-(7.15) can be used to derive the betatron frequencies of the trailing bunch as

well as the undulator strength and betatron parameters, au and aβ, which are equivalent to

the traditional K strength parameter. The betatron wave numbers for mode m are

k2
βx ≈ 2

√
2C[C2

0 − g(m)2C2
1 sin(kp(ζ − δβτ)]k2

p/γ0, (7.16)

k2
βy ≈ 2

√
2CC2

0k
2
p/γ0, (7.17)

and the betatron strength parameters are

aβx = γ0kβxxb, aβy = γ0kβyyb,

where xb and yb are the amplitudes of the betatron oscillation. The undulator strength

parameter for mode m can be written as

au ≈
√

8

π

kpku,m
k2
βx − k2

u,m

CC0C1g(m)e−δβ
2τ2/(2L2)kpr0 cos(ku,mτ) sin

[
1

2
kp(δβτ − 2ζ)

]
. (7.18)

The undulator and betatron strength parameters modify the emission frequency as

ωs = 2γ0ωu,m/(1 + a2
u/2 + a2

β/2),

where ωu,m = ku,mc. For simplicity, we will neglect motion in the y-plane in the following

analysis, i.e., aβ = aβx.

From Eqs. (7.16) and (7.17) it is possible to control not only the strength of the undu-

lation but also the betatron oscillations. For example, C0 =
√

2C1 will minimize betatron

oscillations in the x-plane for the m = 1 mode. The same approach can be taken in the

y-plane by including a second n = 1 Hermite-Gaussian mode or by working in the cylindrical

basis with Laguerre-Gaussian modes, both of which will produce circularly polarized radia-

tion. Being able to control kβ independently of ku would best be used as a means of matching

an undulator channel to the injected electron bunch. However, in both Eqs. (7.16) and (7.17)

there is a time dependence that decays on a length scale
√

2L/δβ, which corresponds to the
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slippage length Ls,mn. As soon as the modes slip apart, the bunch will then oscillate be-

tween betatron frequencies of
√

2
√

2C(C2
0 − 2C2

1)/γ0ωp and
√

2
√

2C(C2
0 + 2C2

1)/γ0ωp and

undulator radiation at the resonant frequency will be suppressed.

7.3 Low-Energy, Color-Tuned Synchrotron Source

We �rst present a proof-of-concept model of a single, low-energy electron for which γ0 =

1/
√

1− v2
g/c

2. That is, the energy of the electron bunch corresponds to the velocity of the

lowest-order, fastest, Hermite-Gaussian mode in consideration, i.e., the Gaussian. In this

example we are not limited by dephasing between the accelerated electron and the laser

mode, assuming that the electron is sitting at a phase in which it does not experience any

longitudinal acceleration. With the �elds described in Eqs. (7.9) - (7.11) we can determine

the trajectory of a test electron and the emitted radiation.

This and subsequent calculations in this chapter are numerically executed in a similar

fashion as the particle tracking done in Secs. 6.3.2 and 6.4.2. To reiterate, we solve Eqs.

(4.11) but here using the full, nonlinear electric �elds de�ned by Eqs. (7.9) and (7.11) to

push the particles using the RK4 algorithm. However, now we use an adaptive-step RK4

algorithm, which operates by making sure the di�erence between one full step and two

half steps is within a tunable error tolerance. Unlike Secs. 6.3.2 and 6.4.2, computation

for this problem is more challenging, as we seek trajectories on length scales on the order

of the Rayleigh range as opposed to the characteristic distance of betatron motion, where

ZR/λβ ∼ 0.05. In order to resolve undulator motion then we need ∆τ � ZR.

In Fig. 7.6 are plotted three example trajectories of single particle motion. For one

trajectory the modes are the same color but di�erent mode numbers and thereby propagate

at di�erent group velocities with the electron initialized at x0 = 0 (dashed red). The second

is similar, with the electron initialized at x0 = au(k0)/(γ0ku,1) (solid red). In the �nal case,

the modes are color tuned and initialized at x0 = au(k1)/(γ0ku,1) (solid blue). In all three

cases, the on-axis density is n0 = 1018 cm−3, the laser mode amplitudes are C0 = 0.003 and

C1 = C0/
√

2, laser spot-size kp0r0 = 5, centroid position kp0ζ0 = −π/2, and γ0 = 37.83. In

Fig. 7.6 it can be seen how the electron driven by non-tuned modes initially oscillates at the
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undulator frequency but eventually the oscillations decay into simple betatron motion. As the

two modes slip apart, the wake e�ectively becomes that of two independent, superimposed

wakes moving in and out of phase with one another. In the case of color-tuned modes,

the modes never slip apart and we have simple oscillatory motion. At τ = 81ZR we have

demarcated the slippage length Ls,1. The trajectories have di�erent amplitudes but the laser

energy is the same in all cases. To initialize the non-tuned modes at x(0) = x0 so that they

have the same amplitude as the color-tuned case would require four times as much power.

The ultimate purpose of calculating these trajectories is to determine the radiation spec-

trum emitted. Assuming that the emitted radiation does not signi�cantly perturb the tra-

jectories, we consider �rst only the trajectories up to the slippage length and calculate the

emitted radiation via the far-�eld approximation of the Poynting vector according to the

Liénard-Wiechert �elds:

d2I

dωdΩ
=
q2
eω

2

4π2c

∣∣∣∣∣
N∑
n=1

∫ ∞
−∞

[s× (s× βn)] e−iω(t−s·xn/c)dt

∣∣∣∣∣
2

.

Here d2I/dωdΩ is the energy radiated per frequency dω per solid angle dΩ, N is the number

of electrons in consideration, s = [0, sin(θ), cos(θ)], θ is the polar angle with respect to the

axis (we only consider radiation emitted in a single plane), βn = (βx, βy, βz) are the velocity

components of particle n, related to the momentum via u = γ0β, and xn = (x, y, z) is

the position of particle n. We solve for the radiation �eld numerically by appropriately

discretizing the time integral accordingly.

In studying the spectra we also consider the m = 3 mode trajectories in addition to the

m = 1 trajectories depicted in Fig. 7.6. The wavelengths used are λ = 815 nm for the

Gaussian mode and λ1 = 764 nm and λ3 = 685 nm for the color-tuned mode. The spectra,

normalized to I0 = q2
e/(4π

2c), are integrated up to Ls,1 ≈ 81ZR for the m = 1 trajectories

and Ls,3 ≈ 27ZR for m = 3, all initialized at x0 = au/(γ0ku,m). These are all plotted

in Fig. 7.7.a as a function of ω/2γ2
0ω1. Integrating over the same propagation distance,

the spectrum is more intense, though at a lower frequency for a color-tuned pulse (blue) as

opposed to a non-tuned pulse (red). The lower frequency can be compensated for by going to

a higher-order mode. For example, the m = 3 superposition has higher frequency radiation

outputted than for m = 1. A color-tuned m = 3 pulse (green) has the same intensity as
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an m = 1 pulse (blue). Increasing the mode number decreases the slippage length of non-

tuned modes, leading to even lower intensities (purple). The ability to arbitrarily control the

output frequency is one of the many bene�ts of the color-tuned scheme. This can be seen

in Fig. 7.7.b where we have integrated up to 200ZR = 53 cm and the color-tuned modes

greatly increase in intensity.

In all of these examples, the emitted radiation is of relatively long wavelength. For

m = 1 we have 5.9 µm for non-tuned and 12.2 µm for color-tuned modes; for m = 3 we

have 1.97 µm for non-tuned and 2.5 µm for color-tuned modes. This is infrared radiation

and a plasma undulator is not very useful or practical for the generation of radiation of

such long wavelengths, when a standard semiconductor laser could more readily produce

the same wavelengths. The real bene�t of a plasma undulator comes from the generation

of short wavelength radiation in the x-ray regime, which can be achieved by using higher

energy electrons.

τ/ZR

x
/r

0

Figure 7.6: Plot of the trajectories of an electron propagating in the wake of an m = 0 and
m = 1 laser driver. Three trajectories in the wake of non-tuned modes (dashed red) initialized
at x0 = 0; in the wake of non-tuned modes (solid red) initialized at x0 = K/(γ0ku,1); and in
the wake of color-tuned modes (blue) that are properly initialized.

7.4 High-Energy, Color-Tuned Synchrotron Source

The primary objective of a light source is to generate high-frequency radiation. To achieve

this it is necessary to use high-energy electron bunches with at least γ0 = 1000, both with
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Figure 7.7: The spectra corresponding to the trajectories in Fig. 7.6. Panel (a) presents an
integration of the energy up to slippage lengths Ls = 81ZR for m = 1 and Ls = 27ZR for
m = 3, while panel (b) presents an integration up to 200ZR for both. The spectra are for:
non-tuned m = 1 wake�eld (red); color-tuned m = 1 wake (blue); non-tuned m = 3 wake
(purple); and m = 3 color-tuned wake (green).
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traditional and plasma-based undulators. Unlike the low-energy case, in which the electron

velocity is the same as the group velocity of the laser, in the high-energy case the electron

bunch will dephase and either be lost or outrun the drive laser. This process is known as

dephasing.

In general the dephasing length for a Hermite-Gaussian mode can be expressed a

Ldeph ≈
1

2

λ3
p

λ2
[1 + κ2(m+ n+ 1)]−1,

and similarly for Laguerre-Gaussian modes, Ldeph ≈ 1
2

λ3p
λ2

[1+κ2(2µ+ν+1)]−1. This dephasing

length is on the order of the slippage length Ls when operating at the plasma resonance, i.e.,

L ≈ r0 ≈ λp/π, such that,

Ls
Ld
≈ k3

p0r
2
0L[2π|(m1 + n1)− (m2 + n2)|]−1 = 4[π|(m1 + n1)− (m2 + n2)|]−1.

Therefore, dephasing cannot be ignored even for a moderate energy electron bunch, i.e.,

γ0 . 100. It can also be deduced that higher-order modes will be less impacted by dephasing

than lower-order modes, which is desirable since higher-order modes can be used to generate

higher synchrotron frequencies. Dephasing for a high-energy bunch can be addressed using

the transverse �eld synchronization of Eq. (4.28) and the channel radius dependence of

Eqs. (4.29) and (4.30). In this case, the evolution equations for the normalized plasma

wavenumber k̂p and channel radius r̂ are

dk̂p
dτ̂

=
k̂2
p

2|ψ0|

(
k̂2
p −

1

2

κ2

r̂2

)
(7.19)

and
d2r̂

dτ̂ 2
=

(
2kp0
kκ

)
1

r̂3
(1− k̂2

p r̂
2). (7.20)

A comparison of these expressions for k̂p and r̂ can be seen in Fig. 7.8.

Using a channel pro�le with tapered channel radius, which corresponds to laser spot

size for matched propagation, i.e., rs/r0 = R/R0, we can model an electron bunch of 1000

particles injected into the wake of a color-tunned, multimode laser pulse. Since the spot size

is changing we must also modify the modal contributions so that energy is conserved, i.e.,

C0 → C0/r̂ and Cm → Cm/r̂. In this example, we use an m = 0 mode with λ0 = 815 nm
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Figure 7.8: Plot of the normalized plasma wavenumber k̂p and channel radius r̂ for various
longitudinal tapering pro�les. Density tapering of Eq. (7.19) with r̂ = 1 (red). Tapering
of density (dashed purple) and radius (solid purple) such that the bunch is �xed in phase
with both the transverse and longitudinal �elds, as described by the coupled system of Eqs.
(7.19) and (4.30). Tapering of density (dashed blue) and radius (solid blue) so that bunch is
�xed with respect to the transverse �elds and the undulation frequency ωu remains constant,
Eqs. (7.19) and (7.20).

and an m = 7 mode with λ7 = 581 nm and a bunch of initial energy γ0 = 1000, zero energy

spread ∆E/E = 0 so that all particles start with the same longitudinal velocity, and the

bunch has an rms spot size σx = 〈x2〉1/2 = 0.1 µm with corresponding rms momentum σpx =

mecγ0kβx〈x〉. This gives a normalized transverse emittance of εx = 1
mec

√
〈x2〉〈p2

x〉 − 〈xpx〉2 =

0.32 µm. Similar numerical parameters are used as in the case with the low-energy electron

except now the modes are initialized with C0 = 0.1 and C7 = 0.43C0, where we allow

for minor betatron oscillations for a more realistic bunch. The bunch is also initialized at

kp0ζ0 = −21π/2 and x0 = au/(γ0ku,7). The undulator strength for this case is au = 0.34 and

there will be a small contribution due to betatron motion, aβ = γ0kβxxb = 0.02, where xb is

the average oscillation amplitude of the electron trajectory (oscillations in the y-plane are

neglected).

Trajectories for the high-energy case can be seen in Fig. 7.9 for four di�erent conditions,

where the average orbits are plotted in black. For a longitudinally uniform parabolic channel

the bunch will pass through di�erent phases of the wake and beat between two di�erent

frequencies (red) until expelled from the wake by the defocusing phase of the wake, shown
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in Fig. 7.9.a. Simple tapering of the density, described by Eq. (7.19) with constant channel

radius r̂ = 1, is not su�cient to have a properly radiating bunch, resulting in increasing

undulator wavelength until the particles are eventually lost (green) as in Fig. 7.9.b. One

can use density tapering in addition to �xing the phase of the transverse �elds to the bunch

via the spot size evolution equation Eq. (7.20) to initially guide the bunch at the proper

frequency. Eventually the wavelength will begin to decrease until the particle is lost again

(purple), Fig. 7.9.c.

Lastly, one can use density tapering, as described by Eq. (7.19), with a spot size equation

speci�cally chosen to keep the undulator frequency constant. This tapering scheme can be

derived by simply taking the derivative of Eq. (7.6) and setting it to zero such that the

undulator frequency remains constant. We di�erentiate kp and rs with respect to τ , replacing

r0 with rs, and set k1 = k and m1 = n1 = 0. Likewise we will assume that k1 and k2 remain

constant, even though they are technically functions of rs(τ) and kp(τ). This gives

dkbeat
dτ

=
d

dτ

[
k2
p

2

∣∣∣∣ 1

k1

[(
4

k2
pr

2
s

(m1 + n1) + 1]− 1

k2

[(
4

k2
pr

2
s

(m2 + n2) + 1]

∣∣∣∣] = 0,

(k2 − k1)kp(τ)k′p(τ)− 4[k2 − k1(m2 + n2 + 1)]r′s(τ)/r3
s(τ) = 0,

where ′ denotes d/dτ . The above equation can be reduced to a �rst-order di�erential equation

by replacing k′p with a density taper solution for �xing the transverse �elds, Eq. (7.19). After

rearranging terms we get

dr̂

dτ̂
=

(
κm

2|ψ0|

)
k̂3
p r̂

3

(
k̂2
p −

1

2

κ2

r̂2

)
, (7.21)

where κm = (km − k0)/κ2/[km − k0(m + 1)]. Eqs. (7.19) and (7.21) will prevent dephasing

and result in constant undulator frequency at ωu, as shown in Fig. 7.9.d. Such an electron

bunch will propagate until the particles reach the following limit,

τ̂s =
2|ψ0|
κ2

{√
2

κ
ln

[(
1 +

√
2

κ

)/∣∣∣∣∣1−
√

2

κ

∣∣∣∣∣
]}

.

The spectra for these four cases can be seen in Fig. 7.10. Using proper tapering allows for

a narrow and intense peak at a wavelength of λu,7 = 3.12 nm (solid blue line).



CHAPTER 7. APPLICATION OF COLOR-TUNING TO PLASMA UNDULATORS 125

x
/r

0
x
/r

0
x
/r

0

τ/ZR

x
/r

0

Figure 7.9: The trajectories of a bunch of 1000 test electrons in the wake of an m = 0
and m = 7 laser driver with various channel taperings: (a) no channel tapering, (b) only
density tapering, (c) tapering of the channel density and radius so that the bunch is �xed
with respect to the phase of both the transverse and longitudinal �elds, and (d) tapering of
density and radius such that the bunch is �xed with respect to the transverse �elds but also
so that the undulator frequency ωu remains constant.

7.5 Chirped Synchrotron Pulses

While in many cases one seeks to have an undulator that produces radiation at a constant

frequency, there are other applications for which a chirp may be bene�cial [131]. A chirped

radiation pulse can be achieved by using a slight mismatched, tapered channel to slowly

modify the undulator frequency and thereby introduce a controlled chirp to the generated

synchrotron radiation, speci�cally using Eqs. (7.10) and (7.19) and modifying them slightly.

First, they are linearized with respect to a small parameter ε, i.e., k̂p = 1+εk̂p1 and r̂ = 1+εr̂1,
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Figure 7.10: The spectra corresponding to the trajectories in Fig. 7.9.

and parameters αkp and αr will be introduced via ε→ αkpε and Km → (αr/αkp)Km, yielding

k̂p(τ) = 1 + αkp(1 + κ2)(τ/ZR), (7.22)

r̂(τ) = 1 + αrKm(1 + κ2)(τ/ZR), (7.23)

where ε is set to unity and we are assuming that τ � τs. These equations are valid on the

length scales in consideration and allow us to vary and tune the tapered plasma channel via

αkp and αr.

As a test case we will use Gaussian mode m = 0 and higher-order mode m = 11 with

λ0 = 815 nm and λ11 = 513 nm and again an electron bunch of initial energy γ0 = 1000. This

bunch will be initialized at kp0ζ0 = −41π/2, x0 = au/(γ0ku,11), and σβ,x = 0.1 µm. The laser

will be initialized with C0 = 0.1 and C11 = 0.387C0. The undulator and betatron strength

parameters for this case are au = 0.207 and aβ = 0.04. This is done for 1000 particles. The

results for this numerical example can be seen in Fig. 7.11, where again the average orbit per

bunch is plotted in black. In Fig. 7.11.a we have plotted the full numerical solution for Eqs.

(7.19) and (7.21) (red). In Fig. 7.11.b we have the linear taper described by Eqs. (7.22) and

(7.23) (orange) with αkp = αr = 1. Fig. 7.11.b e�ectively demonstrates that a linear taper

is a good approximation. In Fig. 7.11.c we have αkp = 1 and αr = 5 for the linear taper

(pink), causing the wavelength of the undulator to rapidly decrease. In Fig. 7.11.d we have

αkp = 1.2 and αr = 0 (turquoise), causing the undulator wavelength to increase. Fig 7.12

shows the energy spectra and the time-frequency spectra for the four trajectories. The peak
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is at ωs = 2γ2
0ωu,11/(1 + a2

u/2 + a2
β/2). The αkp = 1, αr = 5 case yields a negatively chirped

spectrum while αkp = 1.2, αr = 0 yields a positive chirp. The slope and width of the chirp

can be tuned by varying the initial parameters. The peak wavelength in all three cases is

λu,1 = 2.25 nm.

x
/r

0
x
/r

0
x
/r

0

τ/ZR

x
/r

0

Figure 7.11: The trajectories of a bunch with N=1000 test particles in a channel linearly
tapered with respect to density and radius: (a) a nonlinearly tapered channel Eqs. (7.19)
and (7.21), (b) a linear taper, Eqs. (7.22) and (7.23), with αkp = 1 and αr = 1, (c) αkp = 1
and αr = 5, and (d) αkp = 1.2 and αr = 0.

7.6 Summary

In this chapter we have sought to utilize the principle of color-tuning developed in Sec. 6.4

and to apply it to the plasma undulator concept. These calculations will further enable

the idea of a plasma undulator as an alternative to traditional, magnetic-based synchroton
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Figure 7.12: The energy spectra corresponding to the trajectories in Fig. 7.11. In (a) we
compare the spectra from an optimal, numerically-determined, density taper according to
Eqs. (7.19) and (7.21) versus a linear taper, Eqs. (7.22) and (7.23). The energy spectrum
in (b) corresponds to a positive chirp in frequency while (c) corresponds to a negative chirp.
The corresponding time-frequency spectra: (d) the trajectory from the linear tapering, (e)
positive chirp, (f) negative chirp.

systems. A limiting factor in previous conceptions of the plasma undulator has been slippage

between modes that propagated at di�erent group velocities. In the examples anaylzed,

we used the Hermite-Gaussian basis. However, an identical analysis can be made in the

Laguerre-Gaussian basis, particularly if one wished to generate circularly polarized radiation

as opposed to linearly polarized.

Several examples were explored. The �rst example was of a low-energy electron whose

energy corresponded to the group velocity of the laser, meaning that it would propagate along

in phase with the plasma wave. This was done for the superposition of the Gaussian, m = 0,
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mode, with m = 1 and m = 3 modes for both non-tuned and color-tuned scenarios as well as

various initial conditions. In order to generate soft x-rays a higher-energy electron bunch was

used with γ0 = 1000. At higher energies dephasing becomes an issue and a longitudinally

tapered plasma channel needed to be used. In the provided case a superposition of m = 0

and m = 7 modes was chosen and a particular plasma tapering derived that allowed the

radiation emitted to be of constant frequency. Our last example explored linear tapering

with tunable parameters for the purpose of introducing a chirp into the generated radiation.

This was done for the superposition of m = 0 and m = 11 modes.

Experimental implementation of a color-tuned undulator depends on several factors. It is

important to have �ne control over the phase and polarization of individual laser modes. A

potential technological impediment is that one needs to generate higher-order modes at high

intensities, although this can be relaxed if additional radiation from betatron oscillations is

not a concern. Control and tuning is also necessary as one must be able to select modes that

correspond to laser frequencies that can be readily generated using modern laser technology.

Ti:Sapphire lasers typically have a wide wavelength range from 650 nm - 1150 nm, allowing

for a single system to generate the necessary mode content. Alignment and combination of

multiple modes will be a potential complication, but advancement in �ber optics and pulse-

front-tilt control will ameliorate this. Lastly, it will be necessary to have greater control over

the longitudinal and transverse properties of the plasma channel.

Advanced light sources are a promising application of LPA technology. They can be

realized by coupling an LPA to either a traditional magnetic undulator or to a plasma-based

undulator as proposed in this manuscript. While magnetic based systems are currently well

understood, a plasma-based system will be far more compact, allowing for advanced x-ray

spectroscopy in a university laboratory as well as new possibilities for medical applications.

An additional application would be XUV lithography, as a plasma based light source would

provide a cheap and compact means of optical etching [132].

Future work could include exploring a more rigorous formulation, without assumptions

with respect to the transverse scale lengths. This may be important since higher-order

modes have much steeper gradients that may contribute nonlinearly to the evolution of the

wake�elds and particle trajectories. Likewise, a more rigorous description of redshifting
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could be incorporated into plasma undulator studies as well as the three-wave interactions

between two modes of di�erent colors and the plasma.
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Chapter 8

Nonlinear Excitation of Higher-Order

Modes and Filamentation

8.1 Introduction

All of our work up to now has assumed the preexistence of higher-order modes, either as

an accidental or intentional aspect of the laser pulse. However, higher-order modes can

also be excited naturally through the interaction of a laser with the plasma. Throughout

our analysis of higher-order mode propagation so far we have assumed the validity of linear

wake�eld theory. While it is di�cult, if not impossible, to �nd analytical solutions that

fully describe nonlinear e�ects, it is possible to introduce such e�ects perturbatively. The

two primary phenomena neglected so far are relativistic self-focusing and the full, nonlinear

density perturbation due to the ponderomotive force. These phenomena were introduced in

Secs. 3.9 and 3.10.

Self-focusing and ponderomotive e�ects, while closely related, can be somewhat decoupled

depending on the parameters considered. According to Eq. (3.41), self-focusing dominates

when P/Pc = (kpr0a0)2/16 ≥ 1, in the case of circular polarization. This power ratio inher-

ently assumes a2
0 � 1. The ponderomotive e�ect, Eq. (3.50), drives a density perturbation

of the form k−2
p ∇2γ ≈ a2

0/(γ0k
2
pr

2
0), where for a Gaussian pulse ∇ ∼ 1/r0. The boundary

determining whether ponderomotive e�ects or self-focusing dominates scales approximately

as Λsf/pd = (P/Pc)/(δn/n0) ∝ γ0k
4
pr

4
0, where k

2
p ∝ n0. This means that ponderomotive e�ects
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will dominate when the system is less relativistic, the plasma is tenuous, or when there are

very sharp gradients in the transverse laser mode pro�le, i.e., the presence of higher-order

modes or a very small spot size, and vice versa for self-focusing.

In what follows we will also demonstrate that the appearance of higher-order modes can

describe the onset of �lamentation, the process by which a laser pulse breaks up into smaller

beamlets. Filamentation is relatively poorly understood from a theoretical point of view but

has an important impact on broad, kpr0 � 1, and high-power, P/Pc ≥ 1, laser pulses. The

term �lamentation can be somewhat misleading as originally it described the focusing of a

laser beam into a single, narrow �lament, which at lower power ratios, e.g., P/Pc ∼ 1− 10,

does predominate. However, when P/Pc & 10, the main laser beam will break up into several

smaller beamlets, also known as multiple �lamentation. Henceforth we will be assuming a

laser wavelength of λ = 2π/k = 0.815 µm, i.e., a TiAl2O3 laser system, such as BELLA.

8.2 Growth Rate of Tranverse Modulations due to

Nonlinearities

One way to characterize the excitation of higher-order modes and the onset of �lamentation

is to calculate the relevant growth rates. Instability analysis is commonly used to study how

a perturbation may grow over time. Important examples in LPA physics are self-modulation

[133], stimulated Raman scattering [27], and the laser-hose instabilities [134]. Here we will

explore what is known as the transverse modulation instability (TMI). First we will explore

early examples and then derive new growth-rates more speci�cally tailored to higher-order

mode excitation and �lamentation.

8.2.1 Early Work on Transverse Modulation Instability:

Dispersion Analysis

According to an early study of TMI [135], the instability due to self-focusing can be derived

from the perturbed wave equation,(
∇2 − ∂2

∂τ 2

)
ã = k2

p

[
ã

γ0

(
1 +

˜̃n

n0

)
+

ñ

n0

]
,
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where ˜̃n is the second-harmonic density perturbation. Coupling this equation to the �rst-

order perturbation of the continuity and momentum equations, Eqs. (3.12) and (3.15), we

can write the following dispersion relation:

(ω2
s − k2c2)2 − 4(ωsω − k̄s · ~kc2)2 + a2

0ω
2
pcs(ω

2
s − k2

s c
2) = 0,

where ωs and ks are the frequency and wave number of the excited instability and

cs = 3/4− (ω2 − ω2
p)/(4ω

2 − ω2
p).

If we assume k ‖ ks, we can derive the maximum growth rate for the self-modulation

instability, i.e., longitudinal perturbations along the length of the laser pulse, Γsm,max =

(ω2
p/4ω)a2

0cs which occurs for ks < (ω/c)a0c
1/2
s . If instead we take k · ks = 0, we obtain the

case for self-focusing. Assuming ωs ∼ a2
0ω and k ∼ a0(ω/c), we obtain

ωs ' ±
1

2
iksc[(ksc/ω)2 − a2

0cs(ωp/ω)2]1/2.

The �rst term in the brackets describes di�raction and acts as a stabilizing factor. The

maximum wave number for instability is k < (ωp/c)a0c
1/2
s and the maximum growth rate is

the same as for self-modulation,

Γsf,max = (ω2
p/4ω)a2

0cs,

but occurs at a ksf = (ωp/ω)ksm, where ksm = (ω/c)a0(cs/2)1/2.

8.2.2 Bespalov-Talanov Theory of TMI

We can also model the perturbation when longitudinal variation is slow, i.e., at the scale of

the laser envelope as opposed to the response of the plasma to the small-scale oscillations

at the laser wavelength. We start with the nonlinear transverse di�usion equation, i.e., the

paraxial equation with a cubic nonlinearity [136, 137, 138],

∇2
⊥ã− 2i

∂ã

∂τ
− k2

pã+
k2
p

2
|ã|2ã = 0.

Here we only consider one transverse direction, i.e., ∇⊥ = ∂/∂x, and assume circular polar-

ization for the laser. If we break up the vector potential into real and imaginary components,
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a→ ar + iai, and let ar ∼ exp[i(kxx+ kττ)], we can write the longitudinal wave number as

k2
τ =

1

4k2
(k2
x + k2

p)
[
k2
x +

(
1− a2

0

)
k2
p

]
. (8.1)

The growth rate is de�ned as the imaginary component of the longitudinal wave number,

i.e., Γ = =[kτ ], leading to exponential growth in the exponent of the wave amplitude, i.e.,

e−ikτ τ ∼ eΓτ . The imaginary component in Eq. (8.1) arises when a0 > 1, however this is

unphysical given our original assumption regarding a low intensity laser. While a cubic non-

linearity may be an appropriate description of self-focusing in a standard dielectric medium,

it does not fully describe the e�ect due to relativistic self-focusing in a plasma. Nonetheless,

this instability analysis suggests that a plane wave will be destabilized by smaller wave num-

ber perturbations rather than larger ones, as can be seen in Fig. 8.1.a, where λ = 0.815 µm

and n0 = 1.5× 1018 cm−3.

8.2.3 Relativistic Transverse Modulation Instability

To further our analysis so that it better complements our problem, we can modify the Lorentz

factor in the paraxial wave equation using Eq. (3.27) such that 1/γ ≈ 1/γ0 − a2
0/γ

3
0 , where

γ0 =
√

1 + a2
0. We also assume that the perturbation to the laser vector potential is driven

not by a plane-wave but by a Gaussian pulse, i.e., ã0 = a0 exp(−x2/r2
0). Given this, the

paraxial wave equation 3.33 now reads

∇2
⊥a− 2i

∂a

∂τ
−
k2
p

γ0

a+
k2
p

γ3
0

a2
0a = 0. (8.2)

The dispersion relation for Eq. (8.2) can be derived for a = ã0 + ã by solving for ã = u+ iv,

giving

k2
τ = − 1

4k2

{
k4
⊥ +

1

γ6
0

(
1− a2

0

)
k4
p +

2

γ3
0

[(
1− a2

0

)
k2
⊥ −

a2
0

γ2
0r

2
0

(
5− a2

0

)]}
. (8.3)

This relation allows physical results for small interaction distances since the assumption

a2 � 1 no longer constrains the drive pulse, but only the seed instability ã. However, we are

still assuming that we are exciting only plane-wave instabilities. Example growth rates can

be seen in Fig. 8.1.b - c, where the laser spot size varies as (a) r0 = 10 µm, (b) r0 = 50 µm,

and (c) r0 = 200 µm. The corresponding maximum growth rate for Eq. (8.3) as a function

of both a0 and n0 is plotted in Fig 8.2.
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Figure 8.1: Example growth rates as function of transverse wave number k⊥, assuming n0 =
1.5× 1018 cm−3 and λ = 0.815 µm. (a) Growth rates for plane-wave instabilities (r0 ≈ ∞).
Growth rates assuming a Gaussian drive pulse with (b) r0 = 10 µm, (c) r0 = 50 µm, and
(d) r0 = 200 µm.
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Figure 8.2: The maximum growth rate as a function of n0 and a0, corresponding to Eq.
(8.3).

8.2.4 Tranverse Modulation Instability of Higher-Order Modes

It is possible to estimate the TMI growth rate of a higher-order, Laguerre-Gaussian mode

driven by a Gaussian drive pulse. Starting with Eq. (8.2) and using a seed of the form
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Lµ(2r2/r2
0)e−r

2/r20e−ikτ τ , we can write the dispersion relation as

k2
τ =

1

4k2

{
32

r4
µ

[1 + 2µ(µ+ 1)] +
2

r2
µγ

5
0

(4− a2
0)(2µ+ 1)k2

p

− 2

r2
0γ

2
0

(6− γ2
0)a2

0k
2
p −

1

γ6
0

(2− γ2
0)2k4

p

}
,

where rµ is the spot size of the excited mode. Plotted in Figs. 8.3 and 8.4 are the growth

rates for di�erent values of a0 and n0. From these plots we can deduce that the excitation

of higher-order modes is signi�cantly more sensitive to variations in a0 than in n0. Larger

values of a0 not only excite higher-order modes but also increase the total number of modes

excited for a given choice of parameters. It also appears that higher background densities n0

will allow for simultaneous excitation of more modes, while lower densities allow for greater

di�erentiation between which modes are excited.

Filamentation is a fundamentally three-dimensional phenomenon and a highly intractable

problem, particularly given the fact that it is induced by two similar but distinguishable

phenomena, the ponderomotive force and self-focusing, that perturb both the laser mode

a and the background plasma n. Likewise, these growth rates only characterize the initial

onset of �lamentation and do not describe the long-term evolution of �lamentary structures.

This prevents decisive determination of growth-rates as the �lamentation process evolves

over several steps. Still, it is possible to gain some intuition from these growth rates. For

example, the onset of instabilities and the appearance of higher-order modes is a function of

drive pulse amplitude a0, spot size r0, and background plasma density n0.

8.3 Higher-order mode spot size and critical power

A useful way to characterize laser pulse evolution is to write a spot size equation, the general

form introduced in Ref. [139], which reads:

∂2rs
∂τ 2

=
4

k2r3
s

+
4

rs
F. (8.4)

This comes directly from the SDE, where we have di�erentiated Eq. (B.12) and substituted

Eq. (B.13) for the α′ term. Here F is the source term determined by the SDE, Eq. (B.9).
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Figure 8.3: Growth rates for higher-order Laguerre-Gaussian modes as a function of density
n0, considering mode numbers m = 0 (blue), 1 (orange), 2 (green), 3 (red), 4 (purple), and
5 (brown), assuming spot sizes r0 = rµ = 50 µm. In these �gures the drive laser vector
potential is varied as (a) a0 = 1.1, (b) a0 = 1.3, (c) a0 = 1.5, and (d) a0 = 1.7.

F can include any and all e�ects of interest as long as they are perturbative or analytically

integrable, i.e., self-focusing and parabolic channel guiding. The full equation for a Laguerre-

Gaussian mode Lµ of spot size rµ is

∂2rµ
∂τ 2

=
4

k2r3
µ

{
1 +

kr2
µ

aµ(µ+ 1)

[
(<[Fµ]− α=[Fµ]) + rs

(
=[Fµ]2 − ∂z=[Fµ]

)]}
. (8.5)

The source term has an imaginary component only if there exists a dissipative mechanism,

e.g., leakage or heating of the plasma. Ignoring =[Fµ], we have

∂2rµ
∂τ 2

=
4

k2r3
µ

[
1 + kr2

µ

Fµ
aµ(µ+ 1)

]
. (8.6)

In order to consider the e�ect of self-focusing we assume a mode that is driven by itself

alone, i.e., γ−1 = (1 + a2
µL

2
µ(ξ)e−ξ)−1 ≈ 1 − 1

2
a2
µL

2
m(ξ)e−ξ for circular polarization, where
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Figure 8.4: Growth rates for higher-order Laguerre-Gaussian modes as a function of a0,
considering mode numbers m = 0 (blue), 1 (orange), 2 (green), 3 (red), 4 (purple), and 5
(brown), assuming spot sizes r0 = rµ = 50 µm. In these �gures the background density
varies as (a) n0 = 3 × 1017 cm−3, (b) n0 = 6 × 1017 cm−3, (c) n0 = 1 × 1018 cm−3, and (d)
n0 = 2× 1018 cm−3.

ξ = 2r2/r2
0. Assuming also a matched plasma channel, the source term can be written as

Fµ ≈ Cµ
k2
p

2k

∫ ∞
0

(
1 +

1

k2
pR

2
ξ2

)[
1− 1

2
a2
µLµ(ξ)2

]
Lµ(ξ)Lµ+1(ξ)e−ξdξ. (8.7)

Here we are accounting for both self-focusing and parabolic channel guiding, but not pon-

deromotive forcing. Inserting Eq. (8.7) into the spot size equation Eq. (8.6) and collecting

terms yields
∂r̂2

∂τ 2
=

1

Z2
Rr̂

3

(
1− r̂4

R̂2
− Pµ
Pc

+
Rµ

Rc

)
, (8.8)

where R̂ = R/r0, ZR = πr0/λ, and each mode's spot size is normalized to the characteristic

spot size, i.e., r̂m = rs,m/r0.

The �rst term in the parentheses of Eq. (8.8) describes vacuum di�raction, the second
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channel guiding, and the third term the e�ect of self-focusing, which is

Pµ
Pc

=
(kpr̂µCµ)2

4(µ+ 1)

∫ ∞
0

Lµ+1(ξ)Lµ(ξ)3e−2ξdξ. (8.9)

The critical self-focusing power ratio Pµ/Pc can be approximated by the following relation:

Pµ
Pc
≈ P0/Pc

16Γ(µ)22µµ(µ− 1)!
,

where P0/Pc is the critical self-focusing power ratio for a circularly-polarized Gaussian pulse

and Γ(x) is the gamma function. The critical power, Pµ, normalized to P0, is plotted in Fig.

8.5, where higher-order modes require more power in order to self-focus. The fourth term in

Eq. (8.8) is
Rµ

Rc

= −
r̂4
µC

2
µ

4R̂2(µ+ 1)

∫ ∞
0

ξLµ+1(ξ)Lµ(ξ)3e−2ξdξ,

which describes the coupling between the channel and relativistic self-focusing.

For the �rst four Laguerre-Gaussian mode numbers, µ = 0, 1, 2, and 3, we can write the

following spot size equations:

m = 0,
∂2r̂0

∂τ 2
=

1

Z2
Rr̂

3
0

[
1− r̂4

0

R̂2
− (kpr0C0)2

16
r̂2

0

]
,

m = 1,
∂2r̂1

∂τ 2
=

1

Z2
Rr̂

3
1

[
1− r̂4

1

R̂2
− (kpr0C1)2

64
r̂2

1 +
a2

1

128

r̂4
1

R̂2

]
,

m = 2,
∂2r̂2

∂τ 2
=

1

Z2
Rr̂

3
2

[
1− r̂4

2

R̂2
− 11(kpr0C2)2

1, 536
r̂2

2 +
7a2

2

768

r̂4
2

R̂2

]
,

m = 3,
∂2r̂3

∂τ 2
=

1

Z2
Rr̂

3
3

[
1− r̂4

3

R̂2
− 17(kpr0C3)2

4, 096
r̂2

3 +
147a2

3

16, 384

r̂4
3

R̂2

]
.

While all four equations are identical with respect to di�raction and channel guiding, the

e�ect of self-focusing and the coupling term progressively decreases with increasing mode

number. This suggests that higher-order modes are less susceptible to self-focusing. This

analysis can be veri�ed by comparing it with INF&RNO PIC simulations, as seen in Fig.

8.6.

To further demonstrate the in�uence of self-focusing with respect to higher-order modes,

we can modify Eq. (8.8) to include more than one mode that drives the self-focusing non-
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Figure 8.5: Critical power ratio Pµ/P0 per mode number µ according to Eq. (8.9).
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Figure 8.6: Comparison of PIC simulations (solid) with SDE spot equations (dashed). Initial
pulse with r0 = 50 µm, n0 = 5 × 1017 cm−3, a0 = 0.5 for modes µ = 0, 1, and 2, with
corresponding critical power ratios of P0/Pc = 0.35, P1/Pc = 0.08, and P2/Pc = 0.04.

linearity, as seen for a0 + a1,

∂2r̂01

∂τ 2
=

4

Z2
Rr̂

3
01

{
1−

[
1 +

1

64

(
C2

0 − C2
1 −

C3
0

C1

ei(ϕ0−ϕ1)

)]
r̂4

01

R̂2

−
(
P1

Pc
+

3

4

P0

Pc

)
r̂2
01 −

1

4

P0

Pc

(
C0

C1

+
C1

C0

)
r̂4

01

R̂2
ei(ϕ0−ϕ1)

}
.

Here r̂01 is the shared spot size of the a0 +a1 system and ϕ0 and ϕ1 are the respective phases.

This formulation of the spot size demonstrates the complexity introduced when more than
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one mode is considered.

8.4 E�ective Potential Theory for Higher-Order Modes

A way to examine the stability of a speci�c mode in a plasma is e�ective potential theory.

Assuming that we can write the right-hand side of Eq. (8.5) as the derivative of an e�ective

potential, i.e., F/rs ∼ −∂V/∂r, we can write an e�ective energy conservation equation

analogous to orbital mechanics, 1
2
(∂rs/∂τ)2 +V = const., also known as a Sagdeev potential

[140]. For a Gaussian pulse, with exact self-focusing, we can write the e�ective potential as

[141],

∂V

∂r
=

4

k2r3
s

− 4

rs

(
2k2

p[ln(16)− 1]

k2a2
−
k2
p[2
√

2 +
√

2a2 − 4
√

2 + a2 ln(2 +
√

2(2 + a2))]

k2a2
√

2 + a2

)
.

This can be extended directly to all modes of an appropriate basis, Laguerre- and Hermite-

Gaussian per Eq. (8.4), and a stable solution can be found at the minimum of the potential

well V , where ∂V/∂r = 0.

For a higher-order Laguerre-Gaussian mode we can numerically solve Eq. (8.6) with

respect to the source term Fµ,ν , where we will now also consider the azimuthal contribution.

The e�ective potential can be expressed as

Vµ,ν =

∫
4

k2r3
s

1 +
1

2
k2
pr

2
s

µ!

(µ+ ν + 1)!

∫ ∞
0

1 + 2
k2pr

2
0
ξ√

1 + aµνL2
µν(ξ)e

−ξ/2
Lµ+1,ν(ξ)e

−ξdξ

 dr.

Solutions to this expression are plotted in Fig. 8.7. In Fig. 8.7.a are plotted the potentials

for several radial modes, a00, a10, a20, and a30. The minimum of the potential de�nes the laser

intensity for which a laser pulse of spot size r0 = 50 µm will be matched to a plasma channel

of density n0 = 3× 1017 cm−3. We are assuming that modes are always con�ned given that

this is for an in�nite, parabolic plasma channel. In Fig. 8.7.b we consider azimuthal modes.

According to our potential theory calculations, pure azimuthal modes such as a01 and a02

will never be matched given the presence of relativistic self-focusing. Mixed modes such as

a11, a12, and a21 can be matched but only given much higher laser intensities. This is an

intuitive result, as ring modes have been found to be susceptible to nonlinear instabilities

[142].
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Figure 8.7: The e�ective potential of higher-order modes as a function of amplitude |a| for
initial conditions r0 = 50 µm and n0 = 3×1017 cm−3. (a) Plots for radial modes a00, a10, a20,
and a30. (b) Plots for mixed and azimuthal modes a01, a02, a11, a12, and a21.

8.5 Modeling Higher-Order Modes via SDE

In addition to spot size and potential calculations, we can approximate the evolution of

the modal amplitude contributions analytically by including an approximate self-focusing

contribution in the source term of the SDE. However, to simplify our analysis we will assume

that only the Gaussian mode is driving higher-order mode excitation, giving us a source term

of the form Fµ ≈
∫
k2
p
n
n0

(1− 1
2
a2

0)a2
µrdr. Besides simplifying our calculations, assuming that

only the initial mode content drives self-focusing is a valid assumption in the early stages of

laser-pulse propagation.

For example, we can model a system with only two modes, a0 and a1, via the SDE with

the following system of equations:
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Here the source functions Fµ are real if we constrict our analysis to a single mode of any

order, i.e., no phase mixing, and we do not consider dissipative nonlinearities. In order to

better understand the e�ects of self-focusing we can decompose the source terms into linear

and nonlinear components, i.e., F → FL + FNL, letting γ−1 ≈ 1 − 1
2
|a|2 while including a

parabolic channel n/n0 = 1 + r2/R2:

FL,0 = a0

k2
p

2k

[
(1 + R̂−2)− R̂−2a1

a0

ei(θ1−θ0)

]
, FNL,0 = a0

k2
pa

2
0

16k

[
(2 + R̂−2)− a1

a0

ei(θ1−θ0)

]
,

FL,1 = a1

k2
p

2k

[
(1 + 3R̂−2)− R̂−2a0

a1

ei(θ0−θ1)

]
, FNL,1 = a1

k2
pa

2
0

32k

[
2
a0

a1

ei(θ0−θ1) − (2 + R̂−2)

]
,

FL,2 = −a1

k2
p

k
R̂−2, FNL,2 = −a1

k2
pa

2
0

64k

[
(−2 + R̂−2)

a0

a1

ei(θ0−θ1) − (3 + R̂−2)

]
.

We model a pulse with initial, non-zero amplitude C0, but C1 = 0 for a transverse Gaus-

sian pro�le with r0 = 100 µm and n0 = 5 × 1017 cm−3. The total and modal contributions

as a function of propagation distance as well as the results of the corresponding full PIC

simulation are plotted in Fig. 8.8. Here we increase the initial amplitude and with it the

critical power ratio from C0 = 0.1 and P/Pc = 0.055, to C0 = 0.2 and P/Pc = 0.22, up to

C0 = 0.3 and P/Pc = 0.50. Not only does the presence of the C1 mode provide tranverse

structure, it also seems to sharpen the oscillation pattern longitudinally in a way that more

closely matches the PIC simulation, which otherwise would be sinusoidal in form.

In Figs. 8.8 we see a variation in the Gaussian modal contribution as a0 increases,

con�rming prior work on self-focusing, as the e�ect drives an oscillation in the laser spot size

every πZR propagation distance. However, in addition, we see some of the energy go into

the �rst order mode, and this contribution grows with a0. The relative modal contribution

of a1 for P/Pc = 0.055, P/Pc = 0.22, and P/Pc = 0.50 can be seen in Fig. 8.8.d. As a0

increases so does the saturation value of a1.

In Fig. 8.9., for an initially self-focusing Gaussian mode of amplitude a0 = 0.1 and spot

size r0 = 120 µm in a parabolic plasma channel of density n0 = 5 × 1018 cm−3, giving

a critical power ratio of P0/Pc = 0.8, are plotted the corresponding spot size calculation

(dashed orange), full SDE solution (blue), Gaussian contribution to the SDE (green), and

µ = 1 mode contribution to the SDE (orange). In Fig. 8.9.a is plotted an SDE solution

where only the Gaussian mode contributes to self-focusing, while in Fig. 8.9.b both the



CHAPTER 8. NONLINEAR EXCITATION OF HIGHER-ORDER MODES

AND FILAMENTATION 144

(a)

|a
|

(b)

(c)

z/ZR

|a
|

(d)

z/ZR

Figure 8.8: Initial Gaussian pulse with r0 = 100 µm and n0 = 5× 1017 cm−3, with full PIC
simulation (red), total SDE amplitude (blue), µ = 0 modal contribution (dashed yellow),
and µ = 1 modal contribution (dashed green): (a) a0 = 0.1 and P/Pc = 0.055, (b) a0 = 0.2
and P/Pc = 0.22, and (c) a0 = 0.3 and P/Pc = 0.50. In (d) are compared the L1 excitations
for the previous sub�gures (a) � (c): a0 = 0.1 and P/Pc = 0.055 (blue), a0 = 0.2 and
P/Pc = 0.22 (orange), and a0 = 0.3 and P/Pc = 0.50 (green).

Gaussian and the µ = 1 contribute to self-focusing. The contribution of higher-order modes

to source term generally increases the agreement with the PIC, although it also introduces

new spurious artifacts.

τ/ZR

|a
|

τ/ZR

Figure 8.9: Initial Gaussian pulse of a0 = 0.1, r0 = 120 µm, and n0 = 5 × 1018 cm−3. Spot
size (dashed yellow), full SDE solution (blue), Gaussian µ = 0 contribution (green), and
µ = 1 contribution (orange): (a) only a0 contributes to self-focusing, (b) both a0 and a1

contribute.
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8.6 Numerical Modeling of Higher-Order Mode

Excitation and Filamentation

Filamentation is a consequence of both relativistic self-focusing and ponderomotive e�ects.

Given the complexities of the phenomena involved it is necessary to turn to simulations to

help advance our understanding. The �rst approach was to use the already well bench-

marked PIC simulation code known as INF&RNO [96, 97]. This is a full PIC solver that

allows for one to separately manipulate the e�ects of self-focusing, wake generation, and

nonparaxiality. The main limitation of this code is that it is axisymmetric, which is still

useful for modeling acceleration but is unable to fully model the path to �lamentation.

However, INF&RNO is able to model radially axisymmetric modes and therefore explore

our previous work regarding the excitation of axisymmetric modes such as Lm0. The second

approach was to write a new code to speci�cally model �lamentation. Whereas INF&RNO is

a full PIC code that processes a longitudinal slice in cylindrical coordinates, our new code is a

cold-�uid model of a 2D tranverse slice in Cartesian space. This constrains us to long-pulse,

paraxial problems, but this is su�cient to study transverse modulations and �lamentation.

8.6.1 Axisymmetric Excitation of Higher-Order Modes

To build intuition, we �rst consider only the e�ects of self-focusing with INF&RNO. Rel-

ativistic self-focusing appears via the source term of the paraxial wave equation. Using a

�uid model constrained by axisymmetry, i.e., considering only the radial modes, we can

quickly numerically model the evolution of a single transverse slice of the laser as it prop-

agates through a matched plasma channel, R = kpr
2
0/2, while only considering the e�ect

of relativistic self-focusing. The excitation of higher-order modes can be seen in Figs. 8.10

and 8.11. The respective normalized vector potentials and corresponding self-focusing power

ration are a0 = 1 and P/Pc = 0.85, a0 = 4 and P/Pc = 13.5, a0 = 1 and P/Pc = 6.6, and

a0 = 3 and P/Pc = 60. In Fig. 8.10.a and 8.10.b we have a standard, BELLA-type case with

r0 = 50 µm and n0 = 3 × 1017 cm−3, while in Figs.8.11.a and 8.11.b the parameter values

are r0 = 200 µm and n0 = 1.5× 1019 cm−3.

The reason for the large laser spot size and higher density is to more readily excite
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relativistic self-focusing while initial pondermotive e�ects are small. This is a valid approach

initially but fails as small-scale structures develop. As is clearly visible in all cases, small-scale

structures form within a single Rayleigh range and become more complex as P/Pc increases,

most visibly in Fig. 8.11.b. On the path towards self-focusing driven �lamentation, higher-

order mode content can be seen, e.g., particularly the superposition of L0 and L1, in Figs.

8.10.g and 8.11.d.
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Figure 8.10: Waterfall plot of the evolution of |a| for an initially Gaussian laser mode (a)
with a0 = 1, r0 = 50 µm, R = kpr

2
0/2, and n0 = 3× 1017 cm−3, such that P/Pc = 0.85, and

(b) with a0 = 4, r0 = 50 µm, and n0 = 3 × 1017 cm−3, such that P/Pc = 13.5. Plots of the
transverse lineouts for (a) at (c) z/ZR = 0, (d) z/ZR = 1.2, and (e) z/ZR = 2.7, and lineouts
for (b) at (f) z/ZR = 0, (g) z/ZR = 1.3, and (h) z/ZR = 2.3.
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Figure 8.11: Waterfall plot of the evolution of |a| for an initially Gaussian laser mode (a)
with a0 = 1, r0 = 200 µm, R = kpr

2
0/2, and n0 = 1.5 × 1017 cm−3, such that P/Pc = 6.6,

and (b) with a0 = 3, r0 = 200 µm, and n0 = 1.5 × 1017 cm−3, such that P/Pc = 60. Plots
of the transverse lineouts for (a) at (c) z/ZR = 0, db) z/ZR = 0.7, and (e) z/ZR = 3.6, and
lineouts for (b) at (f) z/ZR = 0, (g) z/ZR = 0.9, (h) z/ZR = 2.3, and (i) z/ZR = 3.4.

8.6.2 Pseudospectral Modeling of Transverse Modulations

To generate a 2D transverse model for �lamentation, we start with the full nonlinear paraxial

wave equation,
∂

∂τ
a− i

2k
∇2
⊥a+

ik2
p

2kγ
(1 + ñ)a = 0. (8.10)

Here γ =
√

1 + |a|2 for circular polarization and we are considering the long-pulse density

nonlinearity ñ = δn/n0 = ∇2
⊥γ. The density perturbation is constrained so that ñ ≤ 1,

primarily so that we do not have negative densities in our simulations. At �rst we tried to

explore this problem with explicit RK4 integration of the Eq. (8.10) in the temporal domain

and central-di�erence for the Laplacian operator. However, explicit, forward integration
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here was vulnerable to numerical instabilities. A second approach was to use a split-step,

implicit method that treated the real and imaginary components of the vector potential, i.e.,

a = u+ iv, as separate quantities. This gave us two coupled equations that were integrated

by staggered half-integer steps. This was an improvement over RK4 but still relatively slow

and constrained by relatively strict stability conditions. The last technique, which was the

one ultimately pursued, was a split-step, pseudo-spectral algorithm [143].

Finite di�erence methods approximate a function via a local polynomial interpolation.

For slowly varying functions this is a reasonable approximation, as there is no need to

include information from far-away points. Spectral methods, on the other hand, take a global

approach and use all available function values to generate the appropriate approximations.

A split-step approach addresses the nonlinearity in the source term. We can assume that a

nonlinear contribution varies little with su�ciently small time steps, therefore allowing us

to approximate the solution to ∂a(t)/∂τ = −iN̂a(t) as a propagator of form a(t + ∆t) =

exp(iN̂∆t)a(t+ ∆t), where N̂ is the nonlinearity.

This decomposition can be approximated as e(L̂+N̂) ≈ eL̂eN̂ , or the �rst-order Strang

approximation, where L̂ is the linear contribution [143]. We can extend this one more step

to get a second-order Strang approximation of form e(L̂+N̂) ≈ eN̂/2eL̂eN̂/2 ≈ eL̂/2eN̂eL̂/2. We

discretize Eq. (8.10) as follows, according to the analysis of Ref. [143]:

a∗i,j − ani,j
∆t/2

+ N̂(ani,j)a
∗
i,j = 0,

a∗∗i,j − a∗i,j
∆t

− i

2k

(
∂2

∂x2
+

∂2

∂y2

)
a∗∗i,j = 0,

an+1
i,j − a∗∗i,j

∆t/2
+ N̂(a∗∗i,j)a

n+1
i,j = 0.

Here N̂(a∗) =
ik2p
2kγ

(1 + ñ) and ñ = k−2
p ∇2

⊥γ. The above intermittent steps are equal to

a∗i,j = ani,je
iN(ani,j)∆t/2,

a∗∗i,j =
m∑

i=−m

m∑
j=−m

â∗i,je
−i(ki+kj)∆z,

an+1
i,j = ˆ̂a∗∗i,je

iN(ˆ̂a∗∗i,j)∆t/2.
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Here â denotes the Fourier transform of the variable a, and ˆ̂a is the inverse Fourier trans-

form. ki = −(iπ/Lx)
2/(2k) and kj = −(jπ/Ly)

2/(2k) are the transverse wavenumbers that

correspond to the second-order derivatives of the Laplacian, where Lx and Ly are the lengths

of the spatial box in consideration. For every step, the density perturbation ñ = ∇2
⊥γ was

calculated using a 4-th order central di�erence Laplacian of the form

∇2
⊥fi,j ≈ −

15

6

(
1

∆x2
+

1

∆y2

)
fi,j +

1

12∆x2
(−fi+2,j + 16fi+1,j + 16fi−1,j − fi−2,j)

+
1

12∆y2
(−fi,j+2 + 16fi,j+1 + 16fi,j−1 − fi,j−2).

The purpose of this was to improve the accuracy of the nonlinear density perturbation when

lower transverse resolutions are considered.

8.6.3 Benchmarking the Pseudospectral Algorithm

Using the pseudospectral algorithm prescribed in Sec. 8.6.2, we were able to get results

demonstrating higher-order mode excitation as well as examples of �lamentation. This code

was written in the new Julia language, which o�ers the convenience and ease of development

similar to Python but with computation speeds approaching C [144]. Downsides of Julia

are that, because it is a newer language, the community is smaller and there is less support

and fewer developed packages. Likewise, Julia seems to have issues with multithreading,

stability, and memory-leakage, but these issues were addressed in our work. Similarly to

the INF&RNO code, we have provided the option to enable or disable self-focusing and

ponderomotive e�ects.

Unlike our previous theoretical models, we provide for a more robust approximation of

the density perturbation due to the ponderomotive e�ect. Just by considering force balance

in the wake, i.e.,

Fpond − qeE = 0,

and taking the Laplacian of this expression, one is able to derive a simple expression for the

density perturbation:

ñ = k−2
p ∇2γ =

1

k2
p

(
∇2
⊥ +

∂2

∂ζ2

)
γ, (8.11)
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Figure 8.12: The density pro�le for a uniform plasma background with self-focusing (SF) and
relativistic ponderomotive forcing (PF): only self-focusing for a0 = 1, r0 = 1 (dashed blue)
and a0 = 2, r0 = 2 (dashed green), ponderomotive forcing for for a0 = 1, r0 = 1 (orange) and
a0 = 2, r0 = 2 (red).

where we have used Gauss' law and γ =
√

1 + |a|2. Since we are working in the paraxial

approximation, we can make the long-pulse assumption, which means that ∂2a/∂ζ2 ≈ 0,

reducing Eq. (8.11) to

ñ = k−2
p ∇2

⊥

√
1 + |a|2. (8.12)

Neither Eqs. (8.11) nor (8.12) take into account the continuity relation and so do not

properly preserve particle density if the perturbation becomes too large. The immediate con-

sequence of this is the possibility of negative densities, which is unphysical. To compensate,

we arbitrarily limit the minimum amplitude of the density perturbation to ñ > −1, so that

the full density pro�le, n/n0 = 1+ ñ+r2/R2, remains nonzero for all space. An example plot

of the perturbed density pro�le is shown in Fig. 8.12. In this �gure are compared the e�ect

of self-focusing alone as well as relativistic ponderomotive forcing on the density pro�le. For

a narrow pulse, r0 = 1 (arbitrary normalization), the ponderomotive e�ect is strong and

the perturbation drives the density to zero near r = 0. However, for a wider pulse, r0 = 2,

ponderomotive forcing is relatively weak, even with a0 = 2, and it does not di�er much from

the pro�le due just to self-focusing.

An initial test was to use similar parameters as used in Fig. 8.10.a, that is a0 = 1, r0 =

50 µm, R = r0, and n0 = 3 × 1017 cm−3, such that P/Pc = 0.85. As we can see, the laser
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Figure 8.13: Fluid simulation with a0 = 1, r0 = 50 µm, R = kpr
2
0/2, and n0 = 3×1017 cm−3.

In panel (a) is plotted the laser amplitude |a| as a function of propagation distance τ , in (b)
is the density pro�le as a function of τ , (c) is the transverse slice of |a| at τ = 0, and (d) is
the slice at τ = 4.35ZR.

beam becomes much more focused and the amplitude peaks at |a| = 2.43, as opposed to

|a| = 1.24 as in Fig. 8.10.d, due to ponderomotive e�ects. In Fig. 8.13.a we presented the

τ vs. x plot of the laser amplitude |a|. In 8.13.b we present the density pro�le, in 8.13.c is

the initial, transverse laser pro�le, and in 8.13.d is the transverse plot at τ = 4.35ZR. We

can again see the formation of ring structures, clearly visible in Fig. 8.13.d. If we now keep

the same parameters as before but double the initial spot size to r0 = 100 µm we start to

see di�erent dynamics at play, increasing the critical power ratio to P/Pc = 3.32, which is

well beyond the quasilinear regime. The results for this simulation are plotted in Fig. 8.14,

where it is clear that the laser pulse is carving a deep and persistent channel through the

plasma. In addition, more higher-order mode content is being generated, as can be seen

from the greater number of ring structures in Fig. 8.14.d. Note that this is taking place in

a plasma channel, but, given the high intensity involved, the laser would also self-guide on

its own for extended distances due to self-channeling.
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Figure 8.14: Fluid simulation with a0 = 1, r0 = 100 µm, R = kpr
2
0/2, and n0 = 3 × 1017

cm−3. In panel (a) is plotted the laser amplitude |a| as a function of propagation distance
τ , in (b) is the density pro�le as a function of τ , (c) is the transverse slice of |a| at τ = 0,
and (d) is the slice at τ = 4.64ZR.

8.6.3.1 Numerical Boundary

A persistent challenge when exploring the parameter space of n0, a0, and r0, and thereby

increasing the critical power ratio P/Pc, in order to instigate and investigate �lamentation,

is numerical resolution, discussed in 8.6.3.2. On the one hand, we need to have a relatively

large integration box of at least rmax = 4r0 in order to minimize the e�ects of numerical

re�ections at the boundaries. Back re�ection from the boundaries will create an unphysical

features in the plasma even if the most basic boundary conditions are set, a|rmax
= 0 and

∂a/∂r|rmax
= 0. One way to overcome this issue was by setting a circular boundary at

a speci�ed distance rboundary so that all values of a and ñ beyond this distance are set to

zero. This enforced an e�ective cylindrial symmetry on the Cartesian grid. We also matrix-

multiplied a and ñ by a numerical aperture, super-Gaussian in pro�le, such that

a∗(r) = a(r) for r � rboundary,

a∗(r) = a(r) exp(−rh/rhmax) for r ∼ rboundary,
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where h ∼ 30. This e�ectively acts as a naive absorbing boundary by damping out pertur-

bations far away from the axis and was su�ciently far out that it did not noticeably deplete

laser energy content over the propagation distances considered.

To determine what spatial grid size is su�cient we ran the code many times, varying rmax

but �xing the grid resolution to kp∆x ≈ 0.5, on the order of the plasma skin depth. From

here on, we assume a uniform plasma background, i.e., R =∞. The results are visualized in

Fig. 8.15. In Fig. 8.15.a is plotted the laser mode amplitude |a| as a function propagation

distance and in Fig. 8.15.b is plotted the density pro�le. In this example, we have varied

the maximum boundary length as in Fig. 8.15.c., with rmax = 3r0 for a 151 × 151 grid. In

Fig. 8.15.d we imposed rmax = 4r0 for a 201 × 201 grid, Fig. 8.15.e uses rmax = 5r0 for a

252× 251 grid, and Fig. 8.15.f uses rmax = 8r0 for a 401× 401 grid, all integrated over 1000

times steps. Only for a minimum boundary of rmax = 3r0 can additional structure be seen,

albeit even that is faint. Technically, one ought to have a maximum radius of rmax ≈ ZR/2

to ensure that radiation re�ected from the boundaries does not return to the central axis

before the end of the simulation, but for our laser parameters that would be rmax ≈ 100r0,

which is too di�cult to achieve computationally.

8.6.3.2 Numerical Resolution

We need high resolutions in order to resolve �lamentary structures that can be as small as the

plasma skin depth, λd ≈ c/ωp, where λd ≈ 0.05r0 for n0 = 5× 1018 cm−3. The combination

of high resolution and large spatial extent requires a large grid. From our investigations, the

grid required is at least 201×201 or about the order of 50 000 grid points. Even this, however,

can be insu�cient. A persistent issue in our analysis was whether the onset of �lamentation

was due to physical conditions or whether it arose due to the quadrature imposed by the

grid. Without randomly perturbing the laser or density pro�les, i.e., completely symmetric

initial conditions, we would �nd deterministic and symmetric �lamentary structures, where

the seeding noise comes from the implementation of the simulation itself.

In order to determine what resolutions were su�cient we ran the following simulations,

visualized in Fig. 8.16. Our laser pulse is initialized at a0 = 1, r0 = 50 µm, R = ∞, i.e.,

uniform plasma background, n0 = 5×1018 cm−3, and P/Pc = 13.8. In this example, we vary
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Figure 8.15: Simulation with a0 = 1, r0 = 50 µm, R =∞, i.e., uniform plasma, n0 = 5×1018

cm−3, kp∆r = 0.42, and P/Pc = 13.8. In panel (a) is plotted the laser amplitude |a| as a
function of propagation distance τ , in (b) is the density pro�le as a function of τ , (c) is the
transverse slice of |a| at τ = ZR for 1000 time steps with rmax = 3r0 for a 151× 151 grid, (d)
rmax = 4r0 for a 201× 201 grid, (e) rmax = 5r0 for a 252× 251 grid, and (f) rmax = 8r0 for a
401× 401.

the transverse and longitudinal resolutions. In Fig. 8.16.a we have a 101× 101 grid for 1000

time steps, in Fig. 8.16.b we have a 201 × 201 grid for 2000 time steps, in Fig. 8.16.c we

have a 301× 301 grid for 4000 time steps, in Fig. 8.16.d we have a 401× 401 grid for 5000

time steps, and in Fig. 8.16.e we have 501 × 501 for 10 000 time steps. What is presented

is just the upper right quadrant of the transverse slice at the �nal time step, τ = ZR.

As shown, the �lamentary structure is actually fairly robust with respect to the transverse

resolution, surprisingly so, although the symmetry that arises is certainly a consequence of

the quadrature of the Cartesian grid.

8.6.3.3 Numerical Noise

In order to avoid the e�ect of the grid quadrature, we introduce a randomized perturbation

to both the initial laser mode and initial background plasma. That is, we introduce a

random perturbation, ε̂a = εa(1 + i)[0, 1) and ε̂n = εn[0, 1), where we allow for an imaginary

contribution to the laser mode to represent variations in the phase front. All subsequent
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Figure 8.16: Simulation with a0 = 1, r0 = 50 µm, R =∞, i.e., uniform plasma, n0 = 5×1018

cm−3, rmax = 4r0, and P/Pc = 13.8. In panel (a) is the upper right quadrant of the transverse
slice of |a| at τ = ZR for a grid of 101 × 101 grid for 1000 times steps � kp∆r = 0.83, (b)
201× 201 grid for 2000 times steps � kp∆r = 0.42, (c) 301× 301 grid for 4000 times steps �
kp∆r = 0.28, (d) 401× 401 for 5000 times steps � kp∆r = 0.21, and (e) 501× 501 for 10 000
times steps � kp∆r = 0.17.

simulations are run on a 201× 201 grid over 2000 time steps, integrating from τ = 0 to ZR,

with a maximum transverse radius of rmax = 4r0.
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Figure 8.17: Simulation with a0 = 1, r0 = 50 µm, R = ∞, n0 = 5× 1018 cm−3, rmax = 4r0,
and P/Pc = 13.8 integrated up to τend = ZR on a 201× 201 grid over 2000 times steps with
kp∆r = 0.42. In panel (a) is the �nal transverse laser mode with uniform initial conditions,
(b) and (c) have an initial random perturbation to |a| and n on the order of ε = 0.1%, and
(d) and (e) have ε = 1.0%.

To study the e�ect of randomized initial conditions, we repeat the numerical experiment

corresponding to the parameters used in Figs. 8.15.e and 8.16.b. These results are presented

in Fig. 8.17, with 8.17.a initialized with ε = εa = εn = 0, 8.17.b and 8.17.c with ε = 0.001,

and 8.17.d and 8.17.e with with ε = 0.01. As is evident, the number of stable �laments is

sensitive to the noise present in the initial conditions, with uniform laser mode and density

giving 5 �laments, 0.1% noise giving 4 �laments, and 1% noise giving 3 �laments. However,

no serious relation can be made between �lament number and noise given these few examples.

Given the presence of higher-order mode content in realistic laser modes in addition to the

challenge of optimizing high-power lasers, 1% noise is not that unreasonable, but for the sake
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Fig. 8.18 (a) (b) (c) (d) (e) (f)

a0 2 2 1 1 0.5 0.84
n0 [1020 cm−3] 0.125 0.5 0.5 0.125 0.5 2

r0 [µm] 50 25 50 100 100 42

Table 8.1: Parameter scan of a0, n0, and r0 for �xed P/Pc = 13.8.

of simplifying our simulations we will continue with just 0.1% noise. Further studies will be

necessary to ensure what level of physical noise is necessary to always be greater than the

inherent numerical noise present.

8.6.3.4 Variation of Parameters: a0, n0, and r0

In previous studies, such as the analysis by Bespalov and Talanov in Ref. [136], the dominant

characterization parameter for �lamentation was the critical power ratio for relativistic self-

focusing, P/Pc. It has also been said the the number of �laments corresponds roughly

to the whole number value of P/Pc, e.g., ten �laments for P/Pc = 10. However, when

P/Pc = (a0kpr0)2/16 > 1, all the parameters involved, that is, a0, n0 (via kp), and r0, do not

contribute in the same way. This is visualized in Fig. 8.18, where we assume P/Pc = 13.8 is

�xed but vary the other parameters according to Table 8.1.

As we can see, certain variations are equivalent. For example, for constant a0 we have

equivalent laser evolution according to the relation γ0k
4
pr

4
0 = const., as seen in the pairs of

plots Figs. 8.18.a and 8.18.b as well as Figs. 8.18.c and 8.18.d. In Figs. 8.18.a and 8.18.b we

actually do not see �lamentation at all, although it is possible that it would arise for longer

propagation distances than ZR. For lower values of a0 but proportionally large values of r0

we actually see even stronger self-focusing, i.e., as in Fig. 8.18.e, to the point where the

current numerical scheme does not resolve the �laments well. Lastly, scaling up the density

n0 but proportionally lowering r0 and a0 in Fig. 8.18.f gives results similar to the ones for

constant a0 as presented in Figs. 8.18.c and 8.18.d.
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Figure 8.18: Simulation runs for constant P/Pc = 13.8 on a 201× 201 grid integrated up to
τend = ZR over 2000 time steps and maximum radius rmax = 4r0 with kp∆r = 0.42. In panel
(a) a0 = 2, n0 = 1.25×1018 cm−3, r0 = 50 µm, (b) a0 = 2, n0 = 5×1018 cm−3, r0 = 25 µm, (c)
a0 = 1, n0 = 5× 1018 cm−3, r0 = 50 µm, (d) a0 = 1, n0 = 1.25× 1018 cm−3, r0 = 100 µm, (e)
a0 = 0.5, n0 = 5×1018 cm−3, r0 = 100 µm, and (f) a0 = 0.84, n0 = 2×1019 cm−3, r0 = 42 µm.

8.6.4 Numerical Examples of Filamentation

We proceed now to make some basic studies of the �lamentation process. The purpose of

our study is to numerically simulate �lamentation and observe how the higher-order modes

transition from symmetric ring structures to individual �laments. Likewise, we investigate

the general characteristics of the �lamentary structures and their dependence on physical

parameters, speci�cally a0, n0, and r0.

In our �rst example, we initialize a laser-plasma system with a0 = 1, r0 = 50 µ, n0 =

5×1018 cm−3, uniform plasma background, giving a critical power ratio of P/Pc = 13.8. This

was solved on a 201 × 201 grid integrated longitudinally from τ = 0 to ZR over 2000 time

steps and transversely to rmax = 4r0. The laser mode and density pro�les were initialized

with ε = 0.1 but the random seed will be �xed for subsequent simulations. The results are

provided in Fig. 8.19. In Fig. 8.19.a we have a 3D isosurface plot with surface at |a| = 5.5

(red), |a| = 4.5 (orange), |a| = 3.5 (yellow), |a| = 2.5 (green), |a| = 1.5 (cyan), and |a| = 0.5

(blue). Color plot of the x vs. τ slice of |a| are shown in Fig. 8.19.b and n/n0 in Fig. 8.19.c.

Figs. 8.19.d-s show the transverse pro�le of the laser mode and Figs. 8.19.t-x show the

density plots for τ = 0.25ZR − 0.37ZR. This region of propagation is highlighted because it

focuses on the point where the laser transitions from a higher-order mode or Bessel pro�le

into multiple �laments. This transition is very rapid, and once �laments form they persist

over long distances.

A second example initialized with a0 = 1, r0 = 50 µ, n0 = 5 × 1018 cm−3, and uniform

plasma background, giving a critical power ratio of P/Pc = 27.6, can be seen in Fig. 8.20.
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Figure 8.19: Simulation with a0 = 1, r0 = 50 µm, R = ∞, n0 = 5× 1018 cm−3, rmax = 4r0,
and P/Pc = 13.8 on a 201 × 201 grid integrated up to τend = ZR over 2000 time steps and
maximum radius rmax = 4r0 with kp∆r = 0.42. In panel (a) is a 3D isosurface plot of the
laser intensity |a|. In (b) is an x− τ plot of the laser amplitude and in (c) the corresponding
density pro�le plot. In the following we have transverse color plots of the laser amplitude
|a|: (d) τ = 0.0ZR, (e) τ = 0.15ZR, (f) τ = 0.17ZR, (g) τ = 0.19ZR, and (h) τ = 0.20ZR,
(i) τ = 0.25ZR, (j) τ = 0.30ZR, (k) τ = 0.32ZR, (l) τ = 0.35ZR, and (m) τ = 0.37ZR, (n)
τ = 0.40ZR, (o) τ = 0.45ZR, (p) τ = 0.50ZR, (q) τ = 0.65ZR, and (r) τ = 1.00ZR. The
density plots at (s) τ = 0.25ZR, (t) τ = 0.30ZR, (u) τ = 0.32ZR, (v) τ = 0.35ZR, and (w)
τ = 0.37ZR.
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This was solved on a 25 × 251 × 2000 grid integrated longitudinally from τ = 0 to ZR and

transversely to rmax = 5r0 with ε = 0.1. In this example, by doubling the plasma density

we double the critical power ratio as well. As a consequence, the number of �laments has

also increased, from about 4 in Fig 8.20 to about 6. We had to increase the integration

space as enough energy was being leaked out to the boundaries, where the radiation �eld is

set to zero, that it was causing noticeable, unphysical depletion of said energy. In addition,

the critical self-focusing, self-channeling point, at which �laments arise, has decreased from

about τ = 0.4ZR in Fig. 8.19 to about τ = 0.3ZR.

Numerical results are presented in Fig. 8.21, with color plots of the intensity and density

pro�les with x (dashed white) and y-lineouts (dashed black) overlaid on top. Similar �la-

mentary structures arise as in Fig. 8.19, but given the much higher resolution we see much

stronger symmetry throughout the laser's evolution, precluding the possibility that �lamen-

tation is a consequence of the grid quadrature. This agrees with previous published results

on multiple �lamentation [142]. The entire laser propagation path has not been surveyed,

but rather speci�c points that highlight its evolution. Starting at τ ≈ 0.16ZR and �nishing at

τ ≈ 0.18ZR, the process of ponderomotive self-channeling is driven by self-focusing. Already

at τ ≈ 0.15ZR the laser mode starts taking on a Lorentzian distribution with longer wings

and a sharper peak than it originally did as a Gaussian. This focusing is what initiates the

ponderomotive forcing, as the transverse gradients increase the faster the channel deepens.

In order to investigate more speci�cally the excitation of higher-order modes and subse-

quent �lamentation it is necessary to go to very high resolutions. We use the same parame-

ters as in Fig. 8.19, that is, a0 = 1, r0 = 50 µm, R = ∞, i.e., uniform plasma background,

n0 = 5 × 1018 cm−3, rmax = 4r0, and P/Pc = 13.8. We introduce a random perturbation of

ε = 0.001 in the density and laser amplitude. However, we greatly increase the grid resolu-

tion up to 651×651 and integrate only up to the point of �lamentation, that is τend = 0.5ZR,

over 8 750 time steps and keep the previous maximum radius of rmax = 4r0. In this case

kp∆x ≈ 0.13, which means we are able to resolve even a fraction of the plasma skin-depth,

the smallest macroscopic length scale in the plasma.

At τ = 0.18ZR all the electrons near the axis have been evacuated and we e�ectively

have a hollow-channel structure, as seen in Fig. 8.21.n. Once self-channeling has occurred
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Figure 8.20: Simulation with a0 = 1, r0 = 50 µm, R = ∞, n0 = 1019 cm−3, rmax = 5r0,
and P/Pc = 27.6 on a 251 × 251 grid integrated up to τend = ZR over 2000 time steps and
maximum radius rmax = 5r0 with kp∆r = 0.42. In panel (a) is a 3D isosurface plot of the
laser intensity |a|. In (b) is an x− τ plot of the laser amplitude and in (c) the corresponding
density pro�le plot. In the following we have transverse color plots of the laser amplitude
|a| and density n: (d), (i) τ = 0.0ZR, (e), (j) τ = 0.17ZR, (f), (k) τ = 0.30ZR, (g), (l)
τ = 0.60ZR, and (h), (m) τ = ZR.
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Figure 8.21: High resolution simulation with initial parameters a0 = 1, r0 = 50 µm, uniform
background plasma of n0 = 5 × 1018 cm−3, kp∆r = 0.14, ε = 0.001, rmax = 4r0, and
P/Pc = 13.8. Grid resolution up to 651×651 and integrated over interval τ = [0, 0.5ZR] and
x× y = [−4.2r0, 4.2r0]× [−4.2r0, 4.2r0] over 8750 time steps. Transverse lineouts of |a| and
n/n0 in the x (white) and y-directions (black).
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the laser mode rapidly begins to evolve further and develops large sidelobes. This make

sense as the eigensolution to a hollow channel is a Bessel function, and so the laser begins to

evolve towards the lowest energy mode and a signi�cant amount of energy propagates away

from the axis in the form of a Bessel-fan, Figs. 8.21.m and 8.21.o. However, as the plasma

does not remain static with respect to the presence of sidelobes, the laser mode begins to

evolve again, this time taking place over a propagation distance of τ ≈ 0.35ZR to τ ≈ 0.4ZR.

Several studies have shown that ring beams are unstable in a plasma [142, 145, 146]. This

instability is driven by the ponderomotive force, as it prevents the plasma from remaining

stable with respect to the transverse laser pro�le. Of interest to us is how a modal description

would approach this evolution, as it seems that radial modes transfer energy to polar modes

under the in�uence of the ponderomotive force, Figs. 8.21.q and 8.21.s. Once �lamentation

has �nished, here at τ ≈ 0.5ZR, 8.21.ℵ, we have four stable �laments that will continue to

propagate on their own for several Rayleigh ranges. The outer beams will likewise continue

to propagate outwards away from the central axis.

8.7 Summary

In our investigations we have explored how higher-order modes may arise due to the nonlinear

contributions of self-focusing and the ponderomotive force. This is an important issue as

e�ective LPAs must operate in the quasilinear and nonlinear regimes and so initial Gaussian

modes are susceptible to higher-order mode content that may be generated in the plasma

even if it was not already present. Lastly, a better understanding of higher-order mode

excitation helps us better understand the onset �lamentation.

Several approaches have been taken in this study. Basic investigations into the transverse

modulation instability were made, reviewing the approaches taken by Max et al. [135] and

the well-known Bespalov-Talanov [136] instability analysis. These were extended to a highly

relativistic laser-plasma system as well as to the excitation of higher-order mode content

and their respective growth rates. Subsequently, the SDE was used in several approaches to

derive a spot size equation for higher-order modes a�ected by self-focusing, the critical power

for self-focusing, and the e�ective potential analysis with respect to higher-order modes. In
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addition, we were able to use the SDE to model the evolution of higher-order modes when

driven by a self-focusing Gaussian drive pulse, demonstrating that higher-order modes can

arise on their own. Lastly, we developed a pseudospectral code to study the evolution of

a transverse laser slice as it propagates through a plasma, not only leading to higher-order

mode excitation but also �lamentation.

There are many practical concerns that may lead one to further investigate higher-order

mode excitation and �lamentation. These modes not only may be di�cult to control but

also can more readily damage accelerator infrastructure as they are not as well con�ned as

the intended Gaussian mode. However, this study also allows us to better understand the

nature of light and how it interacts with matter from a more fundamental level. Further

work in this �eld should focus on understanding why certain symmetry structures, such as

the trefoil, repeatedly occur, and how they may be mitigated or even controlled.
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Chapter 9

Conclusion

The purpose of this work has been to study higher-order laser modes in the context of

laser-plasma acceleration. Much of the analysis is applicable to laser-plasma interactions

in general. Higher-order modes can technically encompass anything that is non-Gaussian,

but we have focused on the Laguerre-Gaussian and Hermite-Gaussian bases. While by no

means exhaustive, we have attempted to examine the matter from several perspectives and

in several contexts.

9.1 Summary

After surveying the basic principles of laser, plasma, and bunch physics, this dissertation

focused on four interrelated topics:

� Plasma Filtering: We discussed how realistic laser pulses are not perfectly Gaussian

in their tranverse pro�le and how the presence of higher-order modes can cause beat-

ing, compromising the LPA. We proposed a solution for the removal of higher-order

modes in the form of a leaky channel plasma �lter and analytically and numerically

characterized it.

� Geometric and Color Tuning: We used the fact that di�erent modes can have the same

phase and thereby will copropagate at the same group velocity without beating. Like-
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wise, it was shown how modes that are not geometrically matched can still copropagate

if their respective frequencies are matched via color tuning.

� Plasma Undulator: We considered color-tuning as a mechanism to improve upon the

plasma undulator concept. In addition, we demonstrated how longitudinal density

tapering can be used to optimize the undulator as well as introduce a controlled chirp.

� Higher-Order Mode Excitation and Filamentation: We studied how nonlinear e�ects,

such as relativistic self-focusing and ponderomotive forcing, can excite higher-order

mode content in an otherwise Gaussian laser pulse. We investigated multiple paths to

�lamentation and how those might relate to the onset of higher-order modes.

In short, the questions asked in this thesis were how can higher-order modes be removed,

how can they be controlled, and how can they be generated.

Filtering was discussed in Chapter 5. The initial motivation for this topic, in fact for this

thesis as a whole, is that the high-intensity laser pulses used at BELLA and in general are not

inherently Gaussian in their transverse pro�les and possess higher-order mode content. This

content causes beating as the laser pulse propagates through a plasma, causing �uctuations

in the on-axis intensity |a|2 and spot size rs, compromising the e�ectiveness of an LPA device.

Our proposal here was to use a leaky plasma channel to �lter out this higher-order mode

content. Two pro�les were proposed, a leaky channel with a sharp truncation and a channel

with an exponentially decaying truncation. For these channels we derived the WKB leakage

coe�cients, which were then heuristically incorporated into the wave operator of the paraxial

wave equation and used to model leakage in the SDE. These solutions were found to agree

reasonably well with PIC simulations if the truncation radius was not too small. Full PIC

simulations of leaky channels �ltering a jinc pulse were presented, the resulting pulse having

improved guiding properties.

While our �rst project highlighted the detrimental aspects of higher-order mode content

and how to remove it, in Chapter 6 we considered how higher-order mode content can be

incorporated into an LPA pulse in a controlled fashion. The basic insight motivating this

work was the observation that there exist families of modes of di�erent (mode) indices, (m,n)

in the Hermite-Gaussian basis and (µ, ν) in the Laguerre-Gaussian basis, that have identical
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phase velocities, leading to two ideas. The �rst was called geometric tuning, i.e., where

the mode numbers of di�erent modes are matched so that the phases in the cross-terms of

the intensity pro�le |a|2 cancel out. Not only is there no beating but the matched modes

will also propagate at the same group velocity. As an example, using the superposition of

modes H2H0 + H0H2, we showed that this creates a stable, asymmetric wake structure in

an otherwise parabolic plasma channel, which could then be used to guide and accelerate

elliptical electron bunches. This model was numerically veri�ed via particle tracking. The

second concept proposed was that of color tuning, in which we match the frequencies of two

pulses of di�erent mode numbers so that they propagate at the same group velocity. In this

case the modes will still beat, as the phases will not cancel out, but the beating can be avoided

by using modes of orthogonal polarizations or by staggering the pulses longitudinally. An

example was provided in which we used modes L00 +L10 to reduce the electric �eld gradient

near the axis, allowing for the guiding of wider electron bunches without signi�cant emittance

growth.

In Chapter 7 we extended the idea of color tuning to the plasma undulator. Much like

how higher-order mode content can be used in a constructive fashion, beating too can be

utilized to our bene�t, forming the basis of one rendition of the plasma undulator. In this

approach the beating of the modes causes high-frequency oscillations in a trailing bunch,

which in turn emits x-ray radiation. One problem with plasma-based undulators is that of

group-velocity slippage, which limits the plasma undulator to a characteristic slippage length

Ls. By color tuning our modes so that they propagate at the same group velocity, we are able

to completely avoid this limitation. Again using particle tracking, we explored a low-energy

example for which a test electron propagates at the same velocity as the drive laser and how

we can control the emitted radiation frequency as a function of mode number. A high-energy

bunch was then considered for which γ0 = 1000. In this case the bunch would eventually

outrun the accelerating/focusing bucket of the wake. To overcome dephasing, a longitudinal

taper to the plasma channel was implemented. We derived new equations for the tapering

and characteristic channel width so that the undulator frequency remains constant. Lastly,

we linearized the tapering equations and explored how we can also control the tapering to

induce a chirp in the emitted radiation.
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Finally, in Chapter 8 we discussed higher-order mode excitation and multiple �lamenta-

tion. In the previous chapters higher-order mode content was assumed to be initially present,

either as a parasitic feature or intentionally introduced. However, higher-order modes can

also be excited by nonlinearities in laser-plasma interactions. It was shown that self-focusing

can excite higher-order modes according to the transverse modulation instability. We analyt-

ically calculated the laser spot size equations and the e�ective potential wells for higher-order

modes, including nonlinear e�ects. The SDE was used to show how higher-order modes can

be excited by a Gaussian drive pulse and persist at a saturation value. In order to further

explore these e�ects we turned to numerical simulations. We wrote a pseudo-spectral code

which models a transverse slice of a laser pulse as it propagates through a plasma, including

self-focusing and nonlinear ponderomotive forcing. We explored the parameter space and

provided examples of �lamentation at P/Pc = 13.8 and P/Pc = 27.6. In these examples

it was particularly visible how a Gaussian pulse would transition to a Bessel-like structure

after self-channeling and how the ring-structure would subsequently break up into �laments.

9.2 Future Work

Our theoretical and computational work has primarily been pursued for the purpose of

supporting and proposing new LPA experiments. Of the work pursued in this dissertation,

the plasma �lter discussed in Chapter 5 is most readily applicable to ongoing experimental

work. The plasma �lter has the potential for being tested on the BELLA beam line as

it could be used to better optimize what is inherently a non-Gaussian pulse, as shown in

Fig. 1.6. Likewise, a plasma �lter would be a relatively simple modi�cation of preexisting

gas-jet-based plasma channels. At �rst glance, it makes the most sense to place the �lter

at the focus point, although there have been suggestions of inserting it into the CPA lattice

after ampli�cation but before compression to �lter out higher-mode content when the laser

is in the low-intensity, long-pulse regime. Before a plasma �lter could be implemented it

would make sense to further develop and calibrate the model. More exact leakage rates and

pulse evolution can be modeled by 3D PIC simulations. However, for such simulations to be

e�ective we would require a realistic plasma channel pro�le. This involves not only better
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diagnostics of experimental plasma channels and their characterization, but also reliable

MHD codes to model channel evolution. More theoretical work could be done with respect

to calculating mode excitation by the leaky channel boundaries, coupling between modes,

and the determination of other families of modes that may be more readily guided than

the standard Hermite and Laguerre solutions, for example, the modes generated via the

Gram-Schmidt process.

The application of higher-order modes to geometric and color-tuning is more far-o� with

respect to ongoing LPA experiments. A proof-of-concept plasma-based collider, for example,

is at least a decade into the future, and so the application of geometric tuning for the guiding

of elliptical bunches would have to wait even longer. The plasma undulator is a more likely

candidate for development in the near future, as is an LPA-based light source in general.

An important prerequisite for plasma undulators is generation of higher-order modes in a

highly controlled and a reliable way to combine them. Developments in �ber optics seem

to be a likely avenue for this, where there are already ongoing experiments considering how

lower-intensity pulses guided by �bers and with controlled pulse-front tilts may be combined

into one high-intensity pulse [147]. Theoretical work in this area could be pursued to better

understand how modes couple with one another and with the plasma. As in the previous

case, there would be opportunities to �nd new classes of orthogonal modes for geometries

not otherwise considered in the framework of plasma channels.

Higher-order mode excitation and �lamentation is still an open problem that has not

been thoroughly explored theoretically, as discussed in Chapter 8. Our work is not fully

comprehensive and there is much more that can be done. The instability growth rates need

to be corroborated by numerical simulations and compared to experimental observations.

More rigorous modeling of higher-order mode excitation by methods such as the SDE should

also be pursued. It would be bene�cial to determine saturation values for excited modes

as they seem to be long-lived once triggered. Of particular interest is to characterize and

understand how a higher-order radial mode seems to transition into an azimuthal mode just

before �lamenting, as characterized by the trefoil structure in Fig. 8.21.s. The numerical

work begun in this work also can readily be extended. Given that there are already other

fully 3D codes such as WARP and OSIRIS [148, 149], the code developed here would bene�t
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from remaining a 2D transverse Cartesian code. This would allow for much more rapid

exploration of transverse e�ects. However, it would make sense to eventually corroborate

results with a full 3D simulation. With respect to the code, we should introduce a �uid

solver so that we can accurately model the background plasma, as opposed to arbitrarily

preventing unphysical results. Likewise, this could be implemented as a 2D PIC solver to

further advance its capabilities. From a computational point of view the code can readily be

optimized and parallelized. Multithreading proved to be di�cult in the Julia framework but

the code could also be rewritten in C, where parallelization is well understood and supported.

9.3 Peroratio

Though the primary thrust in LPA physics has been and still is experimental in nature, I

have always felt that science is not fundamentally about observing or controlling nature, but

rather about understanding it. When asked about the potential applications of my work,

I often think back to a moment in the life of Robert R. Wilson. Being questioned by the

Senate regarding the utility of Fermilab to national defense, the national laboratory he would

come to found, he responded, �in that sense, this new knowledge has all to do with honor

and country but it has nothing to do directly with defending our country except to help

make it worth defending.� This quote has inspired me over the years and I hope others will

come to appreciate it too.

While applying knowledge and science can have noble intentions and reap swift pro�t,

and while �nding applications in the idiosyncrasies of the equations can be intellectually

satisfying, there seems to be a danger in confusing tèqnh and âpi� mh, particularly when

coupled with a neglect of frình	s and �fÐa. As Aristotle noted, �the carpenter and the

geometer ask di�erent questions with respect to the right-angle.� Likewise, it is important

to understand not only the power of knowledge but also its limitations, to appreciate and

respect realities that ultimately cannot be understood. In the end I appeal to the words of

an ancient monk dear to my heart, who, with a little Euclid but much wisdom, said:

It is said that on the gates of Plato's academy were inscribed the words, `Let

no man ignorant of geometry enter,' (�gewmètrhtos mhdeÐs âiÓtw). A person
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incapable of conceiving and discoursing about indiscernable matters as discernable

is in every respect ignorant of geometry. For there cannot be a limit without

something limited. But geometry is almost entirely a science of limits, and it even

de�nes and extends limits on their own account, abstracted from that which they

limit, because the intellect separates the inseparable. How, then, can a person who

has never learnt to separate in his intellect a physical object from its attributes be

able to conceive of nature in itself? For nature is not merely inseparable from the

natural elements in which it inheres, but it cannot even exist at any time without

them.

�Gregory Palamas, Capita physica, theologica, moralia et practica, 1351 A.D.
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Appendix A

Derivation of Transverse Laser Modes

A.1 Fundamental Gaussian Mode

In order to derive a solution to the paraxial wave equation, we consider a paraxial approxi-

mation of a well-known solution to the Helmholtz equation, i.e., a spherical wave:

exp(−ikr)
r

=
exp(−ik

√
x2 + y2 + z2)√

x2 + y2 + z2
=

exp(−ikz
√

1 + x2+y2

z2
)

z
√

1 + x2+y2

z2

≈
exp(−ikz) exp

[
−ik(x2+y2)

2z

]
z

.

Given the quadratic nature of this solution we can assume an axially symmetric solution of

the paraxial wave equation of the following form:

Ψ(r, z) = CG exp[−iP (z)] exp

[
− ikr2

2q(z)

]
.

Here r2 = x2 + y2. We can test our solution by inserting it into the source-free (j = 0)

paraxial wave equation, which gives us

2k
∂P (z)

∂z
+

2ik

q(z)
+

k2r2

|q(z)|2

[
1− ∂q(z)

∂z

]
= 0.

For arbitrary r this equation can be separated into two equations, i.e.,

2k
∂P (z)

∂z
+

2ik

q(z)
→ ∂P (z)

∂z
= − i

q(z)
,

k2r2

|q(z)|2

[
1− ∂q(z)

∂z

]
→ ∂q(z)

∂z
= 1,
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which give the following solutions

q(z) = z + q0, (A.1)

∂P (z)

∂z
= − i

q(z)
= − i

z + q0

= −i ∂
∂z

ln(z + q0)→ P (z) = −i ln(z + q0). (A.2)

From this we may write q(z) in terms of wavefront curvature α(z) and spot size rs(z),

1

q(z)
=

1

z + q0

=
1

rcz
− 2i

kr2
s(z)

.

In order to determine the constants of integration we assume a plane wavefront with an

arbitrary reference point z = 0, that is, 1/rc(0) = 0, giving us

− 2i

kr2
s(0)

=
1

q0

→ q0 =
ikr2

s(0)

2
=
iπr2

s(0)

λ
= iZR.

ZR = kr2
s(0)/2 = πrs(0)2/λ is the critical Gaussian beam scaling parameter, which is var-

iously known as the Fresnel length, di�raction length, or Rayleigh range. In terms of the

Rayleigh range we can rewrite Eq. (A.1) as

1

q(z)
=

1

rcz
− 2i

kr2
s(z)

=
1

z + iZR
=
z − iZR
z2 + Z2

R

(A.3)

matching real and imaginary components, we have

1

rcz
=

z

z2 + Z2
R

,

2i

kr2
s(z)

=
iZR

z2 + Z2
R

,

which give us the standard results of

rc(z) =z(1 + Z2
R/z

2), (A.4)

r2
s(z) =r2

s(0)(1 + z2/Z2
R). (A.5)

Eq. (A.2) can be written now as

P (z) = −i ln(z + q0) = i ln(z + iZR) = −i[ln(z2 + Z2
R) + i arctan(ZR/z)],

and

exp[−iP (z)] =
exp[−i arctan(ZR/z)]√

z2 + Z2
R

=
exp[−i arctan(ZR/z)]

z
√

1 + Z2
R/z

2
,
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to �nally derive the standard expression for a Gaussian beam propagating through a vacuum,

ΨG(r, z) = CG exp[−iP (z)] exp

[
− ikr2

2q(z)

]
= CG

r0

rs(z)
exp[−i arctan(ZR/z)] exp

[
− ikr2

2rc(z)

]
exp

[
− r2

r2
s(z)

]
. (A.6)

A.2 Hermite-Gaussian Modes

While the Gaussian pro�le is the standard description of a laser beam, it is also typical to

describes beams in terms of higher-order modes. When studying a beam in the Cartesian

basis we can start with the following trial solution:

ΨHG(r, z) = F (x, y, z)ΨG(r, z) = f

(
x

rs(z)

)
g

(
y

rs(z)

)
exp[−iΦ(z)]ΨG(r, z), (A.7)

which we insert into the paraxial wave equation to obtain

F (x, y, z)∇2
⊥ΨG(r, z, ω) + 2[∇⊥F (x, y, z) · ∇⊥ΨG(r, z, ω)]

+ ΨG(r, z, ω)∇2
⊥F (x, y, z)− 2ikΨG(r, z, ω)

∂F (x, y, z)

∂z
− 2ikF (x, y, z)

∂ΨG(r, z, ω)

∂z
= 0.

(A.8)

Since the sum of the �rst and �fth terms already satis�es the paraxial wave equation, Eq.

(A.8) reduces to

f ′′

f
+ 2ik

(
drs
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q

)
x
f ′

f
+
g′′

g
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From Eqs. (A.3) and (A.5) we can see that

drs
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=
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)
=
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,

so that Eq. (A.9) reduces to
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f
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f ′

f
+
g′′

g
− 4Y

g′

g
− 2kr2

s

dΦ

dz
= 0, (A.10)

where X = x/rs and Y = y/rs.
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A Hermite polynomial of order m has the following di�erential equation:

d2

dx̃2
Hm(x̃)− 2x

d

dx̃
Hm(x̃) + 2nHn(x̃) = 0.

Using a change of variables, x̃ =
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Here it becomes apparent that we may write the functions f and g as Hermite polynomials,

that is,
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If we require that 2kr2
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or

Φ(z) = −(m+ n) arctan(z/ZR).

Finally, we can write the general, source-free, vacuum solution for the paraxial wave equation

in Cartesian coordinates as

Ψm,n
HG(r, z, ω) = Cm,n
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. (A.11)

A similar solution can be derived in polar coordinates, where the transverse gradient is

now de�ned as ∇⊥ = 1
r
∂
∂r

(
r ∂
∂r

)
+ ∂2

∂θ2
. Following similar analysis as above will gives us the

Laguerre-Gaussian modes as the solutions to the paraxial wave equation.
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Appendix B

Source Dependent Expansion

A powerful technique for studying the paraxial wave equation is the source dependent ex-

pansion or SDE. This technique decomposes a laser pulse into a series of modes and �rst-

order di�erential equations, each individually describing the evolution of one mode driven

by the source term. The SDE can be performed in any basis that satis�es the paraxial wave

equation. In this study we will be focusing on two decompositions: Laguerre-Gaussian for

cylindrical coordinates and Hermite-Gaussian for Cartesian.

B.1 Derivation of the SDE in cylindrical coordinates

Following the derivation for Laguerre-Gaussian modes as provided in Ref. [150], Eq. (2.25)

can be expanded into all its relevant variables[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
+ 2ik

∂

∂τ

]
â = −4π

c
j. (B.1)

Representing the normalized vector potential in terms of Laguerre polynomials we have

â(x, y, τ) =
∑
µ

∑
ν

Cµ,ν(θ, τ)Dµ,ν(r), (B.2)

where µ = 0, 1, 2, ..., and ν = 0, 1, 2, ...,

Cµ,ν(θ, τ) = aµ,ν(τ) cos(νθ) + bµ,ν(τ) sin(νθ),
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and

Dµ,ν(r) =

(√
2r

rs(z)

)ν

Lµ,ν

(
2r2

r2
s(z)

)
e−[1−iα(τ)]r2/r2s(τ).

Lµ,ν(x) is the associated Laguerre polynomial of order µ and ν, and α(τ) is the wavefront

curvature, which is related to the radius of curvature rc of the laser beam. Substituting Eq.

(B.2) into Eq. (B.1) gives us the following expression:∑
µ,ν

(
∂Cµ,ν
∂τ
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{
∂
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Dµ,ν(ξ) = − i
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where ξ = 2r2/r2
s(τ). The derivatives on the left-hand side can be reduced using identities

of the Laguerre polynomials, giving{
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= Aµ,ν(τ)Dµ,ν(ξ)− i(µ+ 1)B(τ)Dν
µ+1(ξ)− i(µ+ ν)B∗(τ)Dν

µ−1(ξ), (B.4)

where

Aµ,ν(τ) = r′s/rs + i(2µ+ ν + 1)[(1 + α2)/(kr2
s)− αr′s/rs + α′/2], (B.5)

B(τ) = −[αr′s/rs + (1− α2)/(kr2
s)− α′/2]− i[r′s/rs − 2α/(kr2

s)]. (B.6)

The asterisk ∗ denotes the complex conjugate and the prime ′ the derivative with respect to

τ . Inserting Eq. (B.4) into Eq. (B.3) and integrating over θ from 0 to 2π results in

∞∑
µ=0

Dµ,ν(∂/∂τ + Aµ,ν)×
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}
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where δn,0 is the Kronecker delta function. Multiplying Eq. (B.7) by the complex conjugate

(Dµ,ν)
∗ and integrating ξ from 0 to ∞ yields(
∂
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+ Aµ,ν(τ)

)
×
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}
− iµB(τ)×
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where{
Fµ,ν
Gµ,ν

}
=

1

2πk

µ!

(µ+ ν)!

∫ 2π

0

dθ

∫ ∞
0

S(ξ, θ, τ)[Dµ,ν(ξ)]
∗ ×

{
(1 + δν,0)−1 cos(νθ)

sin(νθ)

}
. (B.9)

Here we used the orthogonality property of the Laguerre polynomials,∫ ∞
0

Dµ,ν(ξ)[D
ν
π(ξ)]∗dξ =

(π + ν)!

π!
δµ,ν .

B.2 Gaussian pulse evolution via SDE

The lowest order mode, µ = ν = 0, is a Gaussian pulse and its properties can be easily

studied using the SDE. The amplitude of the vector potential a at τ = 0 is given by

a(r, θ, 0) = a0,0 exp{−[1− iα(0)]r2/r2
s(0)}.

To model the evolution of a Gaussian pulse we will assume that the amplitude contributions

of higher-order modes become progressively smaller, i.e., |aµ,ν | � |aµ+1,ν |. In the case of the

Gaussian pulse, assume aµ,ν = 0 for µ ≥ 1 and ν ≥ 0. This assumption yields the following

pair of equations:

(∂/∂τ + A0,0)a0,0 = −iF0,0, (B.10)

Ba0,0 = F1,0. (B.11)

Substituting Eq. (B.6) into (B.11) gives equations for the spot size and inverse radius of

curvature,

r′s − 2α/(krs) = −rs=[F1,0/a0,0], (B.12)

α′ − 2(1 + α2)/(kr2
s) = 2{<[F1,0/a0,0]− α=[F1,0/a0,0]}. (B.13)

Assuming a source-free system, where Fµ,ν, = Gµ,ν = B = 0, one can solve for parameters

a0,0, b0,0, rs, and α, giving

rs(τ) =rs(0)(1 + z2/Z2
R)1/2,

α(z) =z/ZR,{
a0,0(z)

b0,0(z)

}
=

{
a0,0(0)

b0,0(0)

}
rs(0)

rs(z)
e−i(2m+n+1) arctan(z/ZR).

Here rs(0) is the minimum laser spot size at z = 0. These equations exactly describe vacuum

di�raction of a Gaussian laser pulse.
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