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Abstract

Interaction of Higher-Order Laser Modes with Underdense Plasmas
by
Blagoje Zoran Djordjevi¢
Doctor of Philosophy in Physics
University of California, Berkeley
Doctor Carl B. Schroeder, Co-chair
Professor Stuart D. Bale, Co-chair

Laser-plasma interactions have become a rapidly growing area of modern plasma physics
and an important subfield of it is laser-plasma acceleration. Using high-intensity lasers, one
can drive a plasma structure with electric-field gradients three orders of magnitude higher
than the gradients found in traditional, radio-frequency accelerators. This promises to enable
great technological advances in medicine, spectroscopy, and experimental particle physics,
as well as to open up new avenues of studying matter under extreme conditions.

An important aspect of laser-plasma acceleration is how the transverse electromagnetic
field of the laser affects and drives an accelerated particle via longitudinal waves in the
plasma. To understand how the laser interacts with the plasma, it is necessary to understand
that the transverse characteristics of the laser dictate its longitudinal propagation dynam-
ics. The transverse radiation field of the laser pulse can be described in various ways and
decomposed into bases of orthogonal modes. The presence of multiple higher-order modes,
copropagating through the plasma, leads to mode beating. Likewise, these modes propagate
at different velocities through the plasma and are susceptible to nonlinear interactions with
the plasma to varying degrees.

The primary objective of this thesis is to understand how higher-order laser modes in-
teract with the plasma and with one another. In this work, we discuss the detrimental
consequences that mode beating may have on a laser-plasma accelerator and how higher-
order modes can be filtered out using specially designed plasma structures. Also discussed
is how higher-order mode content can be controlled and utilized to shape and control the
wakefields. These ideas are extended to the concept of the plasma undulator as a plasma-
based light source. Lastly, we discuss how nonlinear effects can excite higher-order mode
content as path to understanding laser pulse break up into multiple filaments.
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Chapter 1

Introduction

1.1 Background and Motivation

The purpose of this dissertation is to explore how the transverse properties of the drive laser
can affect Laser Plasma Accelerators (LPAs) and how these properties may be controlled to
enable new possible avenues of research and applications of LPAs. The field of LPA physics,
also known as laser-plasma wakefield acceleration, was started by Dr. John M. Dawson and
his postdoc Dr. Toshiki Tajima in their landmark 1979 paper Laser Electron Accelerator [1].
In that work they proposed that an intense laser pulse propagating through an underdense
plasma would in turn generate a copropagating plasma wave in its wake that could be used
to accelerate an electron bunch. With the advances of laser technology in the late 1980s,
LPA research rapidly became possible.

Traditional accelerators use radio-frequency (RF) cavities to accelerate the guided parti-
cle bunch via an electric impulse. For example, the Large Hadron Collider (LHC) has 16 RF
cavities, each several meters in length, cooled with liquid Helium and powered by 400 MHz
klystrons. The acceleration gradients generated by traditional RF accelerators are strongly
limited by the RF or multipactor breakdown limit, on the order of 100 MV /m [2|. In this
limit, the electric field becomes sufficiently large that field emission of electrons from the
cavity wall is triggered, potentially causing a problematic Townsend avalanche. This cri-
terion can be heuristically described by the Kilpatrick criterion, w = 10.3E% exp(—8.5/F),

which gives the maximum possible frequency of an RF wave, where w is the radio-frequency
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measured in MHz and the electric field £ in MV /m [3]. Inverting this equation and making
additional experimental considerations, we obtain an expression for the maximum possible
field in an RF accelerator, F = 220[w(GHz)/27]'/3> MV /m. This implies a theoretical max-
imum of about 160 MV /m for the LHC cavity fields, while in reality they are only several
tens of MV /m.

Plasma-based accelerators are only limited by the cold wave-breaking limit, which, in
the nonrelativistic case, is characterized by a maximum possible field amplitude of Ey, =
cmewy/qe, where m, and g. are the electron mass and charge, respectively, and w, is the
plasma frequency [4]. Close to this limit the steepening nonlinearity of a plasma wave
eventually crosses a threshold after which mixing destroys coherent oscillations and generates
multistream flows of electrons [5]. For a typical, plasma-based structure, with background
electron plasma densities on the order of ny = 10" — 10 e¢m™3, we have acceleration
gradients on the order of Ey ~ 10 — 100 GV/m, which is approximately three orders of
magnitude greater than in a modern, RF-based accelerator [6]. With such strong accelerating
fields one could, in theory, build a table-top accelerator competitive with linear accelerators
(LINACs) such as those at SLAC [7] and XFEL [8], which are both on the order of several
kilometers long. A plot of electric field versus cavity frequency can be seen in Fig. 1.1,
comparing traditional accelerators to plasma-based ones. If achieved and perfected, plasma-
based acceleration would radically change and further advance all basic scientific research
that depends on electron acceleration.

Initially limited by the fact that laser technology in the late 1970s and early 1980s was not
powerful enough to generate the necessary laser amplitude intensities, early work looked at
alternative methods such as the beat wave accelerator concept [10]. However, the invention
of chirped-pulse amplification (CPA) opened up the possibility of a direct LPA scheme [11].
The CPA technique allows for the creation of high-intensity lasers, I > 10'® W/cm?, by
stretching a low-energy, ~mJ, ultra-short laser pulse from femtosecond to picosecond scales,
amplifying it, and then recompressing it with specialized gratings. After the introduction
of CPA technology, LPA research was pursued in earnest and relatively low-quality electron
beams with exponential distributions peaked at 100 MeV were produced with approximately

1 nC of accelerated charge [12]. In 2004 several groups were able to generate high-quality
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Figure 1.1: The field gradients of different LINACs and their relation to their respective
wavelength and frequency, taken from Ref. [9)].

beams with peak energies again on the order of 100 MeV, with >100 pC and low energy
spread |13, 14, 15]. The GeV threshold was eventually passed in 2006 [16] and the community
expects to produce 10 GeV beams, having just achieved 7.8 GeV in 2019 [17].

While LPA research continues to rapidly advance, it can be characterized by the following
state-of-the-art experiments. In 2019 the highest energy electron bunch generated via LPA
reached 7.8 GeV, with total peak charge of 420 pC and divergence of o, &~ 0.6 mrad rms [17].
This was achieved using a 20 cm long plasma discharge capillary with a plasma density of
no ~ 3.0 x 10'” ¢cm~3 and channel matched radius of ry, = 69 pm. Novel in this case was the
use of a preceding heater laser pulse that reduced the channel radius from approximately 101
pm to 69 pum. The Ti:Sapphire generated drive laser at A = 0.815 ym was approximately
850 TW in power, giving ap = 8.5 x 1071% A[um] ~ 2.2, and had a spot size of ry = 60 pum
and duration of L/c = 35 fs. In general, LPA generated bunches typically ranging 10 - 1000
pC in charge, possess a normalized emittance on the order of ¢ = 1 mm mrad, and a relative
energy spread of AE/E =1 - 10% [9]. However, even higher bunch charges and smaller
emittances have been achieved, e.g., ~ 1 nC and ~ 1 ym rad [18]. A note of comparison:
the Stanford Linear Collider (SLC) in 1990 readily produced bunches with 5 x 10'° particles

(~10 nC of charge) at about 120 Hz with emittances of ¢ < 1 mm mrad, energies around 50
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GeV, bunch duration ~ 10 ps, and energy spread AE/E < 1% [19].

The practical motivation for LPA research is primarily driven by three goals: medical
applications, next-generation light sources, and plasma-based colliders. Traditional radiology
uses x-rays to destroy tumors but, in the process, also irradiates significant areas of collateral
tissue outside the target area [20]. The beam-based radiological approach deposits energy in
a much more localized area described by a Bragg peak and a comparison of the various dosage
profiles can be seen in Fig. 1.2 [21]|. The second application is an advanced light source. The
generation of radiation can be achieved by either coupling an LPA-produced electron bunch
into a magnetic undulator (a schematic of which can be seen in Fig. 1.2), coupling an RF-
accelerated bunch into a plasma undulator, or a two-fold plasma-based system. Traditional
undulators, on a circular or linear beam-line, as well as Free Electron Lasers (FELs), have
been a great boon to the scientific community at large. A plasma-based system promises
to make such technology even more accessible and affordable [22|. The last and primary
motivation for the LPA community is the eventual construction of a plasma-based collider.
While there is a competing approach that uses a beam-driven wake to accelerate an electron
bunch for the same applications as an LPA, both laser-based and beam-based approaches
promise to greatly reduce the scale and costs of a future collider, where the only current plans
for a next-generation LINAC are the International Linear Collider (ILC) and Compact Linear
Collider (CLIC), which would be 10 to 50 km long |23]. Additionally, LPA research and the
basic physics of laser-plasma interactions have also been extremely fruitful in advancing our
understanding of how radiation and matter interact under extreme conditions.

Where historically most everyone has modeled the transverse profile of a laser as a Gaus-
sian, this is not the case in experiment and higher-order mode content is almost always
present. Typically higher-order mode content compromises the target goal of the LPA; how-
ever, it is shown in this work that higher-order modes can not only readily be removed but
also controlled and utilized. We also consider how higher-order modes may be used to model

laser beam distortion and eventual breakup via filamentation.
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Figure 1.2: (A) Percentage of on-axis depth-dose (PDD) curves of various types of radiation
in water phantom: (a) 6 MV photons, (b) Bragg peak of 147 MeV protons, (c¢) spread-out
Bragg peak, (d) 10 MeV electrons, (e) collimated 200 MeV electrons, (f) collimated 2 GeV
electrons, (g) 200 MeV electrons focused at 15 c¢cm, and (h) 2 GeV electrons focused at 15
cm. Taken from Ref. [21]. (B) depiction of the undulator mechanism for an FEL, taken
from Ref. [24].

1.2 Basic Principles of LPA Physics

Assuming a plane-wave model of the electromagnetic field, in the low amplitude limit |a|* <
1, the laser pulse propagates at a group velocity v, = cy/1 — wg/uﬂ and generates a plasma
wave of phase velocity of equal value, v, = w,/k, = v,, where c is the speed of light,
wp = \/W is the plasma frequency, k, is the plasma wave number, and w is the
characteristic mean frequency of the laser pulse [25]. The wake is most efficiently generated
if the laser pulse length is approximately half the plasma wavelength, i.e., L ~ \,/2 [26],
where A\, = 27 /k,. Not only does L ~ \,/2 resonantly excite the wake, but longer pulses,
L > ),, become susceptible to Raman instabilities. The electrons are displaced primarily
by the laser envelope as opposed to the high-frequency structure at the scale of the laser
wavelength A = 27 /k, creating a plasma cavity of length L and width 7, where r, is the
characteristic spot size of the laser pulse. The electrons are displaced by what is known as
the ponderomotive force, i.e., radiation pressure, which is the average force experienced by
a slow moving particle in a rapidly oscillating field and is proportional to the gradient of the
laser intensity, Fyona = —mec?*Va?/2 |27]. The ions move much more slowly with respect to

the laser given the mass ratio m;/m. = 1836, assuming hydrogen, and so form an effectively
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static background [6].
A depiction of the basic LPA laser-plasma interaction can be seen in Fig. 1.3. In Fig. 1.3.a
the dashed, orange circle symbolizes the laser envelope of dimensions L and ry propagating

< c¢. In this panel

Y

from left to right at a velocity slightly less than the speed of light, v,
we see the electron plasma density, which has characteristic peaks (red) and troughs (blue)
separated by the plasma wavelength A\, that propagate left to right at the phase velocity
v, = vg. In Fig. 1.3.b is shown the longitudinal wakefields that are created by the displaced
electrons, with alternating accelerating (red) and decelerating (blue) “buckets”. Likewise,
there are alternating transversely focusing and defocusing wakefields that are phase shifted
with respect to the longitudinal fields by A,/4 as depicted in Fig. 1.3.c. Lastly, the electron

bunch is depicted in pink and positioned in the accelerating and focusing field of the wake.
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Figure 1.3: A portrayal of the linear wake behind a laser pulse (dashed orange) and the
subsequent wakefields. In panel (a) is the density profile, in (b) the longitudinal wakefield
which accelerates the electron bunch (pink), and in (c¢) the transverse fields which focus the
bunch.

While LPA research is extremely promising, there are certain physical limitations that
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must be overcome in addition to engineering challenges. These limitations can be character-
ized in terms of three length scales: the Rayleigh range Zg, the dephasing length Lgepn, and
the energy depletion length Lgep. Zg = 773 /A describes the distance after which a Gaussian
pulse, starting with a flat phase-front at focus, will diffract in a vacuum, increasing in spot
size by a factor of v/2 and decreasing in intensity by a factor of 2, i.e., r,(Zg) = V/2r¢ and
a*(Zg) = a3 /2. Here r, is the spot size, a = q.A/m.c* is the normalized laser vector poten-
tial, both functions of propagation distance 7; ry is the spot size and ag is the normalized
laser vector potential, both at focus. Zg can be derived by starting with the paraxial wave
equation in cylindrical coordinates and assuming a solution of the form a = age™ " /817 2R

at r =0, i.e.,

r—0

0 —4 2k
2 DA e
VL+2zk82a (r3+ZR)a

Diffraction is the primary limiting factor for all laser-based acceleration schemes.
In a laser-plasma accelerator the diffraction limit can be overcome by using a plasma
channel that acts like an optical fiber for the laser pulse. The standard approach is to use a

parabolic plasma channel, where the density profile is of the form
n =no(1+r?/R?),

R is the characteristic channel radius, and it can be generated by various means. One
approach is to just use the prepulse of the drive laser itself to generate a preceding plasma
channel. Another way is to use a preceding laser like an axicon beam, whose main lobe
remains relatively constant over several Rayleigh ranges about the focus point, to ignite a
neutral gas flow via inverse bremsstrahlung heating and create a plasma column, as depicted
in Fig. 1.4.a. Yet another approach, that is preferred by the BELLA center, is to use a
discharge capillary channel to create a plasma column via a strong current passing through
a neutral gas, Fig. 1.4.b, offering more control than a gas jet. The basic evolution of
the plasma channel is shown in Fig. 1.4.c. Technically, plasma channels are continuously
evolving, but as the laser pulse evolves on the femtosecond time scale and propagates on the
picosecond scale, plasma channels appear to the laser as static structures as they evolve on

the nanosecond scale.
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Figure 1.4: Examples means for generating a parabolic plasma channel for the purpose of
guiding a laser pulse. (a) The axicon scheme where a Bessel beam generates a plasma column
over an extended length scale. (b) The discharge plasma capillary, where a current is run
between two electrodes through a neutral gas. (¢) Example evolution of the plasma column
into a parabolic channel structure.

The second limiting length scale is that of dephasing. It is customary to describe the
trajectory of the electron bunch with respect to the laser in terms of a phase ¢ = k,(,
where ( = z — ct is the comoving variable. An electron injected into the accelerating bucket
at a velocity v &~ ¢ will eventually outrun that bucket and then either lose energy in the
decelerating bucket, or leave the focusing region and be dispersed and lost in the defocusing
region of the wake. This length scale, in the low-intensity limit a? < 1 for a very relativistic
electron with v, ~ ¢, can be approximated by (1 — v,/¢)Laeph = A\p/2, 1.€., Laeph = 'ylf)\p. If
we assume 7, ~ w/w, > 1, then we can simplify the expression to Lgepn ~ A3/A? [1]. This
limit can be overcome by using a longitudinal density taper that effectively compresses the
wakefield in phase with the electron bunch, as shown in Fig.1.5.a.

The last limitation is that of energy depletion, in which the laser energy gets completely
converted to plasma wave energy. This is characterized by length Laey = A3 /(A?*|al?), where
la|> < 1. This length scale can be estimated by matching the initial laser energy and the
final wake energy, F? L = E? Lgep1, where the electric fields can be approximated by £, « wa

2

and F, oc wpa®, and the laser pulse length approximately L oc A,. The primary approach

proposed to overcoming this limit would be to use a staged setup, where a new laser pulse
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Figure 1.5: An example of how density tapering works can be seen in (a), with the laser
(red), electron plasma wave (blue), and electron bunch (black). By changing the plasma
density one changes the plasma wavelength and thereby the characteristic length scale of
the wake, allowing for the wakefields to contract in phase with the electron bunch, which is
moving at v,, i.e., faster than the group velocity of the laser, v, [28|. In (b) is presented an
example of an experiment for staging multiple drive lasers, taken from Ref. |29].
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would be coinjected right before the accelerated electron bunch enters a new plasma channel
once the previous laser is depleted, as shown in Fig.1.5.b.

In terms of the laser profile itself, research has generally been focused on the longitudinal
characteristics, as that is what drives the magnitude of the accelerating fields of the wake,
and assumes the transverse profile to be a simple Gaussian. This assumption, that the
laser pulse is transversely (Gaussian, is problematic for several reasons. However, relaxing
that assumption also allows for new potential avenues in LPA research. The primary issue
with the Gaussian assumption is that most laser pulses are inherently non-Gaussian as a
consequence of the lasing medium or inherent imperfections in components such as a Pockels
cell [30]. Unlike traditional laser systems, at the high-intensities and extremely short length
scales involved in CPA there is no easy way to correct for non-Gaussian features. The far-field
profile, i.e., far from focus, is super-Gaussian in profile, while the near-field, i.e., at focus,
is Bessel-like in profile with many sidelobes. Experimental examples of these can be seen in
Fig. 1.6. These sidelobes, which we describe as higher-order mode content, are ultimately
inherent to efficient laser pulse generation and significantly alter the dynamics of the laser
pulse as it propagates through a plasma and compromise the most direct approach to LPAs.
Removing the higher-order mode content would allow one to retrieve the Gaussian profile and
thereby allow for a return to the simplified assumptions previously held. However, higher-
order mode content does not necessarily need to be a hindrance to LPAs and if carefully

controlled can open new research directions. Some possibilities explored in this dissertation
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Figure 1.6: The intensity (a) and phase (b) of a laser pulse right after compression demon-
strating the super-Gaussian profile typical of CPA systems. With respect to the focus we
have the laser mode at (¢) z = —30 mm, (d) z = 0 mm, and (e) z = 30 mm. This is for a
BELLA-class laser with 7o = 53 pm and L/c = 33 fs; all figures have linear scaling [31].

use higher-order modes to control the wakefields, e.g., for controlling the transverse fields
independently of the longitudinal fields as well as using beating between modes to create a
plasma-based undulator for light sources. Lastly, higher-order mode content can be used to

describe more complex phenomena in LPAs such as self-focusing and filamentation.

1.3 Dissertation Outline

This dissertation focuses on the theoretical study of non-Gaussian transverse profiles of a
laser pulse in the context of LPA physics and its various applications. In Chapter 1 we
discussed the motivation and basic theory involved in this research. In Chapter 2, a brief

review of short-pulse laser physics is presented in the context of vacuum propagation and
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arbitrary source terms. In Chapter 3, the basic principles of plasma physics are surveyed
as they pertain to LPAs. In Chapter 4 we present the wakefield equations and discuss how
electrons and bunches behave in the wake generated by an LPA system.

Starting in Chapter 5, novel research pursued during these studies is presented by dis-
cussing the theory and application of leaky plasma channels. In this chapter, we discuss var-
ious approaches to filtering out higher-order mode content and propose a truncated plasma
channel as a solution. The effect of leakage is modeled using WKB theory for both a sharp
truncation as well as an exponentially decaying plasma channel. Through the decomposition
into Laguerre-Gaussian modes, the WKB calculations are used to analytically model leakage
via the Source Dependent Expansion. Lastly, the theoretical model is corroborated by PIC

simulations. Chapter 5 includes work published in:

Djordjevi¢, B.Z., C. Benedetti, C.B. Schroeder, E. Esarey, and W.P. Leemans, Filtering
higher-order laser modes using leaky plasma channels, Physics of Plasmas, 25, 013103

(2018).

In Chapter 6 we discuss how higher-order mode content can be used to shape and control
the wakefields behind the drive laser. Working in both Cartesian and cylindrical coordi-
nates, two approaches for modifying the wake are proposed. The first is called geometric
tuning, where a superposition of higher-order modes of equal mode-number sums copropa-
gate at the same group velocity and without beating. A superposition of two second-order
Hermite-Gaussian modes is presented as a means to modify the transverse wakefields asym-
metrically without modifying the longitudinal field. A second concept called color tuning is
also proposed, the essence of which is that a superposition of higher-order modes, that are
not geometrically tuned, are able to copropagate by using different laser frequencies for each
mode. Color tuning does not eliminate beating between modes. This can be overcome by
either longitudinally displacing the modes or by having them be orthogonally polarized with
respect to each other. Color tuning is then used to modify the transverse fields symmetrically
without altering the longitudinal field. In both cases particle tracking is used to study the

behavior of an electron bunch. Chapter 6 includes work published in:
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Djordjevi¢, B.Z., C. Benedetti, C.B. Schroeder, E. Esarey, and W.P. Leemans, Control
of transverse wakefields via phase-matched laser modes in parabolic plasma channels,

Physics of Plasmas, 26, 013107 (2019).

In Chapter 7 we apply color tuning to the plasma undulator concept. In this scenario,
beating is intentionally used to cause the electron bunch to oscillate and emit high-frequency
radiation. The first scenario explored is of a single low-energy electron that propagates at the
group velocity of the laser-driver. This allows us to explore the basic characteristics of the
color-tuned plasma undulator concept. This entails overcoming the group-velocity slippage
limitation of previous plasma undulator concepts while preserving tunability and control,
without the complication of dephasing. A second model is also presented which considers
a high-energy electron bunch. Since the electron beam will eventually outrun the drive
laser, we have to use a longitudinally tapered density profile to avoid dephasing. We present
results for various taperings but also present a new formulation that is specifically tailored
for maintaining constant undulator frequency. Likewise, tapering can be used to introduce a
controlled chirp into the emitted x-ray radiation for potential further compression. Chapter

7 includes work published in:

Djordjevi¢, B.Z., C. Benedetti, C.B. Schroeder, and E. Esarey, Chromatic matching in
a plasma undulator, Physics of Plasmas, 26, 113102 (2019).

Lastly, in Chapter 8 nonlinear effects such as self-focusing are considered as well as how
higher-order modes can be used to theoretically study the onset of filamentation. Traditional
instability analyses are presented as well as the spot size equation for higher-order modes with
self-focusing as well as higher-order mode excitation driven by self-focusing. Relativistic self-
focusing and pondermotive forcing are the primary drivers for filamentation and preliminary
results on numerically modeling multiple filamentation are presented.

In Chapter 9 our results are summarized and potential future work based on this research
is discussed. In Appendix A, example derivations for the transverse laser profiles used in
this work, i.e., the Gaussian and Hermite-Gaussian bases, are presented. In appendix B,
the derivation of the Source-Dependent Expansion (SDE) in the Laguerre-Gaussian basis is

provided.
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Chapter 2

Laser Mode Characterization

2.1 Basic Properties and Generation

The short-pulse laser is the primary driving technology in LPA physics. Lasers are tradi-
tionally characterized by three properties: monochromaticity, directionality, and coherence
[32]. Unlike a traditional light source, which has a wide spread of wavelengths with a band-
width of tens if not hundreds of nanometers, a laser will have a clearly defined wavelength A
with an extremely narrow, natural linewidth defined by the characteristic frequency of the
lasing material, Aw = cAN/\? = AE/h, where AFE is effectively the difference between the
atomic energy levels in consideration. There is additional broadening of the linewidth due to
homogeneous and inhomogeneous effects, such as collisional, thermal, dipolar, and Doppler
broadening [32], but these contributions are typically small in our case.

Lasers are highly directional and have very low or at least highly controllable divergences.
This is primarily a consequence of the fact that the laser beam is generated in a resonant
cavity and only photons propagating along the optical axis can be sustained and amplified.
For spatially coherent light, one can estimate a divergence angle as 0p = \/D, where D is
the characteristic aperture of the laser system. Another way to characterize the divergence
of a laser beam is the Rayleigh range, Zx. This is the characteristic length for a transversely
Gaussian pulse but is approximately valid for laser pulses of different profile types.

Lastly, a laser beam is said to be highly coherent. Coherence implies that the re-

lationship between the phases of the radiation field at different times and locations are
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clearly defined and in phase with one another. Coherence can be defined by a time scale,
t. =21 /Aw ~ \?/(cA)), where Aw and A\ are the frequency and wavelength bandwidths
of the light, respectively [33]. An incoherent light source, such as the sun, will have a very
small coherence time, while for a laser, ¢. will be larger, i.e., t.gun ~ 0.1 fs for visible sunlight
versus terisapph ~ 1 fs for a BELLA-type CPA laser at A = 815 nm and ¢.cw ~ 1 ps for
continuous wave laser at A\ = 405 nm. A laser can be characterized by both spatial coherence,
correlation of the phase transversely across the profile of the laser, and temporal coherence,
correlation along the length of the laser at different times. Temporal coherence entails a
temporal sinusoidal wave front and transverse coherence entails a flat transverse wave front.
Incoherence reveals itself when the light intensity is not constant, e.g., there is noticeable
‘speckle’ in the laser front. Coherence is a consequence of the resonator modes of the laser
cavity which for a simple system of parabolic mirrors and an optically homogeneous medium
are Hermite-Gaussian modes, the simplest of which is the Gaussian mode. These modes can
be defined by resonant frequencies w,, = 2wc/A = 2mme/(2L.), where L. is the length of the
resonator.

Laser light is generated as a lasing medium is pumped by an external radiation source.
The medium is capped by two carefully aligned mirrors that allow for a feedback loop as
stimulated radiation interacts with the lasing medium. The amplified radiation exits one
of the mirrors that is intentionally made only partially reflective. There are many types of
lasing mediums, such as gas, glass, solid-state, semiconductor, etc. There are also several
ways to pump the lasing material, either with traditional, high-intensity flash lamps, more
efficient diodes, or a secondary laser system. A distinctive feature of the lasers used in LPA
physics is that a very short pulse is used with high peak intensity [33].

In order to achieve short pulses, on the order of ten femtoseconds (or several microns in
length), LPA experiments typically use Chirped Pulse Amplification (CPA). In 2018 Gerard
Mourou and Donna Strickland were awarded the Nobel Prize in Physics for their development
of the CPA concept (along with Arthur Ashkin for his work on optical tweezers) [34]. The
concept is an extrapolation of an older method of chirped radar transmission because of a
similar challenge of tolerating peak powers [35|. Traditional optics have damage thresholds

that make the necessary peak powers for LPA physics impossible, with critical fluence for
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pulses longer than ~10 ps scaling as L'/? [36]. CPA works around these restrictions by
stretching the pulse, amplifying it, and then recompressing it.

Typically, a pulse is stretched from approximately 10 fs to 100 ps by adding relative phase
between different spectral components, where positive dispersion delays shorter wavelengths
relative to longer wavelengths (dv/dw < 0). This can be done by using a reflective diffraction
grating that does not suffer from intensity-dependent nonlinearities. A double-pass stretcher

adds a phase delay that is given by an expansion about the central frequency as

2weLe 2L,
P(w) = — Welelt cos 6.(cos b, + cosby,) — K

C

[1 4 cos(On — 0.)](w — we)

1 [ LegN3X3
( T C)(w—wc)2+..., (2.1)

2! \ mc? cos b,

where L is the effective separation of the gratings, 6. is the diffraction angle for the central
frequency w. = 2mc/\., N4 is the number of diffraction grooves per unit length, and 6;,
is the incoming angle |37, 38]. The stretching of the pulse decreases the peak power by
several orders of magnitude. The stretched pulse then passes several times through a gain
medium which is pumped by a secondary source. After the pulse is sufficiently amplified,
it is again reflected off a grating, but this time with a negative dispersion that causes the
frequency components to recombine into an intense short pulse. A depiction of this process
is visualized in Fig. 2.1. Final focus is achieved by an off-axis paraboloid mirror with a focal
length typically of several meters. An intuitive description of the CPA mechanism is that
stretching involves increasing the path length of lower frequencies over higher frequencies,
while compression reverses the process so higher frequencies propagate over a shorter path.

The most common approach to laser generation in current LPA experiments is to use a
Ti:Sapphire crystal, a tunable lasing medium that emits radiation in the red to near-infrared
range from 650 to 1150 nm. The medium is a sapphire crystal (Al,O3) doped with Ti%*"
ions. The Ti:Sapphire crystal is pumped by another laser source with a wavelength between
514 nm and 532 nm. The BELLA laser system at LBNL is pumped by Thales GAIA laser
systems that are Nd:YAG based and can deliver a 532 nm (frequency doubled from 1064
nm), 16 J laser pulse at 1 to 5 Hz repetition rate. There are now plans in motion to build
a new system in the kHz range [40]. An important characteristic of this laser system is

that the near-field, transverse profile of the laser pulse is super-Gaussian in shape, which
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Figure 2.1: A depiction of the process of chirped pulse amplification, taken from Ref. [39].

is an inherent consequence of efficient pumping of the lasing medium. This has important
consequences for LPA physics as the laser pulse in the far-field, where it interacts with the

plasma, is not Gaussian in its transverse profile.

2.2 Temporal and Spectral Characteristics

The temporal and spectral properties of a short laser pulse are strongly coupled, related to

one another via Parseval’s theorem [33],

/Oo| D2dt = —/ W) 2. (2.2)

E is the electric field and is characterized by the central or mean frequency w = w,, also
known as the carrier frequency. Inhomogeneities in the laser pulse or the propagation medium
can result in distortions to the spectral phase profile of the laser which can in turn distort the
temporal profile of the laser such as pulse-front tilt. Parseval’s theorem can also be coupled
with the Poynting theorem of electrodynamics to give a generalized pulse power in Watts in

a dispersionless material:

1 t+Tl/2
Pt:—/dS—/ F)dt! = /dS / N
) 7 - 7 T

where 7 is the index of refraction of the propagation medium, dS is the surface area differ-

ential, and T; = 27 /wy.
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The carrier frequency should be chosen so as to minimize variation of ¢(t), the phase in

a laser pulse [33]. Typically, one will find a time dependent carrier frequency of the form

w(t) =w+ %g@(t). (2.3)
For a time-dependent phase derivative dp/dt, the carrier frequency varies with time and
the corresponding pulse is said to be frequency modulated or chirped. For d?¢/dt* < 0 the
frequency decreases along the pulse and is said to be down-chirped, while for d*p/dt* > 0

the frequency increases and is said to be up-chirped.

2.2.1 Bandwidth

Since temporal and spectral characteristics are strongly coupled, the bandwidth Aw and
pulse duration 7, = L/c cannot vary independently of one another. The minimum duration-
bandwidth product is

AwTy, > 2mep, (2.4)

where cp is a numerical constant on the order of 1 [33]. A chirped pulse further enlarges the

minimum product. An example is a Gaussian pulse of complex, longitudinal profile
E(t) = EOQ*(HZ‘X)(l‘//TG)Q7 (2.5)

where x denotes a positive, linear downchirp (d¢/dt = —2xt/72), and 7¢ relates to the
pulse duration via 7¢ = 7,,/v/2In2. After taking the Fourier transform and calculating the
spectral phase and intensity, one can find a Full-Width Half-Maximum (FWHM) spectral
bandwidth of

Aw = i\/81I12(1—1—X2), (2.6)

TG
which gives a duration-bandwidth product of

Awt, =41In2+/1 + X2, (2.7)

which is larger than the Gaussian product of 41n2 by a factor of /1 + x2.
A standard metric for characterizing the shape of a laser pulse, both longitudinally and

transversely, is known as the M? factor. This is derived from the second moment of the



CHAPTER 2. LASER MODE CHARACTERIZATION 19

conjugate variables. For example, if k, is the Fourier-conjugate variable of x, or for ¢ it is

wy, it can be shown that
4

(2)R2) = () = > 7 (2.8
where

(Y7) = lim —Zfz )(Y; — YJ—/f(Y)(Y—Y)de. (2.9)

N—oo N

Here Y is an arbitrary variable, Y is its mean value, f; and f are the probability mass
and distribution functions, j defines the j-th moment, and N is the number of samples in
question. For a Gaussian pulse without any phase modulation, M2 = 1. For pulse structures
that diverge from a Gaussian, such as a Lorentzian or higher-order Hermite and Laguerre-
Gaussian polynomials, the M? factor will be greater. The general expression for the M?>

factor is
ff I(x y x — 7)%dzdy

M2
| f I(x,y)dzdy

: (2.10)

where I = ZL|E(t)|* is the intensity.

2.2.2 Group Velocity Dispersion

An important characteristic of finite-length laser pulses that propagate through a medium is
group velocity dispersion (GVD), defined as the second derivative of the wave number with

respect to the angular frequency,

Y A 0%
(@) = Ow <vg( )) ‘ _7_ Ow?

(2.11)

GVD is a way to determine how a medium will affect the length of a pulse traversing it [33].

Normally, in a medium like a plasma we expect a pulse lengthening of form

LGVD(T) = L\/ 1+ (T/Ldisp)2a (212)

TQN is the dispersive length. Chirp is also affected by GVD for a Gaussian

where Ldisp = p]

pulse and evolves according to the following:

8290 . i 2<7—/Ldisp)
ﬁ@—) a <L2) 1 + (T/Ldisp)z. (2.13)
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For extremely short pulses, ones which approach a single cycle, the spatial and temporal
profiles become highly coupled, but this is not typically a major concern in current LPA
experiments.

GVD is important in LPA physics because typically the laser pulse length is carefully
chosen to be at the resonant wavelength with respect to the plasma in order to maximize the
excited plasma wave amplitude, i.e., L = \,/2. If the pulse length changes noticeably during
propagation through the plasma then it will fall out of resonance and no longer efficiently
excite the wakefield. However, GVD is currently a negligible effect at the experimental length
scales currently in consideration, i.e., up to several tens of centimeters. For example, in the
case of a 30 fs laser pulse with wavelength of 0.8 ym propagating through air with &” = 0.2
fs?/cm, the GVD dispersion length is Lgis, = 75 c¢m [41]. More interestingly, GVD can be
used as a diagnostic for approximately determining the background plasma density [42, 43].
This works by measuring the auto-correlation of a laser pulse, i.e., the correlation of the laser
with a delayed copy of itself. Experimentally this involves one pulse propagating through
the medium and undergoing dispersion, i.e., reduced group velocity v,/c ~ 1 — k§/2k’2, while
the other pulse propagating through a vacuum does not undergo such dispersion. From the
interference fringes one can deduced the difference in group velocity, i.e., kz /k?, and thereby

determine the approximate plasma density on-axis.

2.2.3 Polarization

Laser light can be polarized in various ways depending on the application. One encounters
the following [44]|. Linear polarization - the electric field of the laser is confined to a single
plane perpendicular the direction of propagation. Circular - the electric field is composed
of two linear components of equal amplitude that are perpendicular to each other but with
a phase difference of 7/2, resulting in a rotation of the field about the axis of propagation.
Circular polarization can be left or right-handed. Elliptical - the combination of two linear
components that are either of unequal amplitudes or the phase difference is not equal to
7/2. Light can also be unpolarized, i.e., randomly polarized. The electric field of polarized
light is generally presented as a vector a = a, cos(kz — wt)& + a, cos(kz — wt + ¢g)y, where

a; = a, and ¢y = 0 for linear polarization, a, = a, and ¢y = 7/2 for circular, and a, # a,
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and /or ¢y # /2 for elliptical polarization.

For each polarization mode the intensity contribution, which governs the laser’s inter-
action with matter, varies as a? for circular polarization and a?/2 for linear. This can be
derived by considering a general potential wave vector of the form

1 )
a = §a00'e“"° + c.c.,

where o is the polarization vector and c.c. is the complex conjugate, such that

ey, linear polarization,
g =
1 . . . .
ﬁ(ey +iex), circular polarization.

The square of the vector potential, proportional to the intensity, gives
2
2 1 00 1 * % —1p0
a°=a-a=|—-aqoe"’ + —ayoe
2 2
1 , 1 1 _9
=—aio’e? + —qpaio - o + —ajto*ie 20

4 2 4
l 2 2i<p() l 2 l *2 —2i<,0() 1
106770 + 3laol® + jag’e , linear,

laol?, circular,

where the identities 02> = 0 and o - 0* = 1 have been used for circular polarization. The
linear case can be approximated by taking an average over a complete time cycle, i.e.,
(af,) = 3la|?, averaging over the fast oscillations. This is valid when the driving terms
evolve on a slow-time scale, e.g., the ponderomotive force for a low-intensity laser. Generally,
circular polarization is preferred in analytical descriptions given their tractability where the

expansion with respect to |al? is exact and does not require time averaging [44].
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2.3 Electromagnetic Waves in Vacuum

Electromagnetic waves in vacuum and matter are governed by Maxwell’s Equations, which,

for the microscopic formulation, can be written in differential form as [45]

Coulomb’s Law V-E =47Q), (2.14)
Gauss’ Law V-B =0, (2.15)
10B
Faraday’s Law VxE= e (2.16)
c
4 10E
Maxwell-Ampére’s Law VxB="_J + P (2.17)
c c

where E and B are the electric and magnetic fields, () is the charge density, and J is the
current density. From these equations we can derive the equations for electromagnetic waves
by substituting Eqgs. (2.14) and (2.17) into the curl of Eq. (2.16) and Eqs. (2.15) and (2.16)
into the curl of Eq. (2.17), respectively, and utilize the vector identity V x (V x E) =

V(V -E) — V?E, giving us the inhomogeneous, second-order partial differential equations

1 0°E 470 4w
—— = - VE=——— -V
2 Ot? 20t 2 @
1 9°B 9 4
gﬁ —V'B=—Vx1J
The fields can be expressed in terms of potentials via the relations
10A
E=-Vb+4+ — 2.18
B=VxA, (2.19)

where ® is the scalar potential and A is the vector potential. Potentials are not uniquely
defined on their own and so can be constrained by a gauge condition, such as the Coulomb
gauge, V - A = 0, or the Lorentz gauge, %%—f +V-A=0.

Wave equations can also be derived for the potentials, using the Coulomb gauge and
substituting Eqs. (2.18) and (2.19) into Eqgs. (2.14) and (2.16), respectively, we can write

the following wave equations in terms of potentials ® and A:

V2P = 47Q),

19°A  19(VP) A4r
2A o —— -
v c? Ot? c Ot c J
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These equations can be simplified further via normalization, giving

,» , 07
<VJ_ + @) ¢ =p, (2.20)
21 Vo) .
2 —_—— — pu—
(VL Tz e a#) =" T (221)

where ¢ = ¢.®/m.c?, a = q.A/m.c?, j = —(47/c)qT /mcc?, and p = 47wq.Q/m.c>.

Here
we have separated the gradient operator into its transverse and longitudinal components. In
addition, in LPA physics it is typical to study the propagation and evolution of a laser pulse
in the comoving frame of the laser itself. Therefore, we introduce a change of variables, with
comoving variable ( = z — ¢t and propagation variable 7 = ct, giving
), O

(VJ_ + 8—42) ¢ =p, (2.22)

20? 0? oV

oCor  0rt? or

While the full wave equation provides an exact description of a laser pulse, we will apply

+3. (2.23)

several approximations to facilitate calculations. The first assumption we make is that the
laser pulse can be described by the slowly varying envelope approximation (SVEA) or the
paraxial approximation, assuming that |0ca| < |ka| and |0;a| < |wa/c|, where w = kc is
the laser frequency in a vacuum and k the corresponding wave number. A linearly polarized
laser field is assumed with the form a — a(r, ¢, 7) exp(ik()/2+c.c., where c.c. is the complex
conjugate, giving

ar " or

a) 9 82} o= 2VO) o (2.24)

2 2) . e —
{VL - (Zk T = "o

This is a useful expression as we can clearly define the hierarchy of phenomena with respect
to their effect on laser propagation. In the brackets the V? term scales with 1/r2, k with
1/\, 9/0¢ with 1/L, 8/9t with 1/Zg, and 9%/07* with 1/Z%.

The second-order, partial derivative 9>/t on the left-hand side of Eq. (2.24) describes
non-paraxial effects, i.e., longitudinal effects along the length of the laser pulse. This is
normally important in LPA physics given the nature of a short-pulse, but it shall be neglected
in our studies as we are primarily focused on the transverse properties of the laser pulse.

The paraxial approximation is generally valid when k?rg > 1 and effectively assumes that
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all transverse slices along the length of the laser pulse propagate at the same velocity v,/c
[46]. An intuitive explanation of the paraxial equation is that the transverse length scale
of the laser beam is much less than the longitudinal length scales in consideration, i.e., rg
versus Zr. We assume that the background field ¢ is slowly evolving relative to the vector
potential, so that 9,V — 0, and that the % /972 term can be ignored since it is negligible for
forward-propagating waves (though important for backward-propagating waves, e.g., Raman
backscatter). These assumptions together give the final form of the governing equation for
laser mode propagation,

(V‘j + 2ik%) a=3j, (2.25)
which is known as the paraxial wave equation.

The paraxial wave equation is the most important equation in all following analysis in this
dissertation: it governs how light propagates through matter. The most basic assumption
is that the local propagation direction of energy is normal to the radiation wavefronts and
that this direction remains close to a constant reference axis. In this case the full wave
equation can readily be replaced by the paraxial wave equation. Mathematically it is a partial
differential equation governing diffusion, but unlike the heat equation it has an imaginary
contribution in the temporal term just like the time-dependent Schrédinger equation. When
the source term is linear then the paraxial wave equation can be classified as a linear,
parabolic, partial-differential equation. Given the strong monodirectionality and coherence
of laser light we are able to accurately model the propagation of Gaussian beams and other

families of solutions to the paraxial wave equation.

2.4 Transverse Laser Profiles

The paraxial wave equation, Eq. (2.25), allows several solutions depending on the coordinate
system and source terms involved. For our concerns the most interesting solutions are those
of the Hermite-Gaussian and Laguerre-Gaussian bases, of which the fundamental Gaussian

mode is the most basic example.
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Figure 2.2: Propagation of a Gaussian pulse in a vacuum. The wavefront curvature « is
negative before focus, zero at focus, and positive after focus. After a propagation distance
of Zg, the spot size increases by a factor of v/2 and the intensity decreases by a factor of 2.

2.4.1 Fundamental Gaussian Mode

The general expression for the fundamental laser mode in a vacuum, which is a Gaussian

pulse, is

. 2
To e—[l—za(T)} P oy
rs(2)

Here Cj is the complex amplitude coefficient, « is the wavefront curvature, related to the

aG(Tv T) = C'0

inverse radius of curvature, and for propagation through a vacuum the following relations

can be defined as [32]:

a(T) =7/Zg,
r2(m) = r3(0)(1+ 7%/ Z%).

The fundamental Gaussian mode has an M? factor of 1. The evolution of a Gaussian pulse

near the focus is depicted in Fig. 2.2 and a full derivation is provided in Appendix A.1.

2.4.2 Hermite-Gaussian Basis

While the Gaussian profile is the standard description of a laser beam, the paraxial wave

equation admits a simple set of solutions which depend on the geometry of the problem at
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hand. In the Cartesian coordinate system the source free solution (j = 0) for the paraxial

wave equation, Eq. (2.25), can be written as

(@242
amm(ra T) = Cmm@Hm (ﬁx> H, (ﬂy> Gi(m+N+1)arctan(a)e—(l—za)%7
r

S /r.S /r.S
where C,, ,, is the complex coefficient of mode (m,n). These are also known in the literature
as transverse electromagnetic modes, or TEM modes. The Hermite polynomial of order m
is defined as
2 dm 2
x

Hyp(z) = (=)™ —e=*
() = (~1)"e e

and satisfies the Hermite differential equation for arbitrary constant c,
9" —2zg +cg =0,

where x is an arbitrary variable, g(x) is an arbitrary function, and the derivative is taken
with respect to z. Individual Hermite-Gaussian modes can be seen in Fig. 2.3. A Hermite-
Gaussian mode (m,n) will have an M? factor of (2m + 1) in the a-direction and (2n+ 1) in

the y-direction. A derivation is provided in Appendix A.2.

2.4.3 Laguerre-Gaussian Basis

A similar solution can be derived in polar coordinates, where the transverse component of

the Laplacian is now defined as V| = 12 (7’%) + g—;:

T or

v 2 (22442
A (r,7) = CM,V@ (ﬁr> b (ZT ) emuﬂﬂ)ar“tan(a)e_(l_m)%a
T

K 2
S TS ,rs

where C,,, is the complex coefficient of mode (u, ). Here the Laguerre polynomial of order

1, v is defined by the Rodrigues formula as
5 x Ve d*
Lu(‘r) = T

w! dxr
and satisfies the general expression of the Laguerre differential equation,

(e,

rg" + (v +1—x)g +pg=0,

for non-negative integers 1 and v. These modes can be seen in Fig. 2.4. The M? factor for
a Laguerre mode is (2u + v+ 1). The derivation for the Laguerre-Gaussian modes is similar

to that for the Hermite modes except for the different coordinate system.
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Figure 2.3: Plots of the absolute value of the amplitude, |a|, for Hermite-Gaussian modes,
m =0, 1,2 from left to right, and n = 0, 1, 2, from top to bottom.

2.4.4 Orthogonality Principle

An important characteristic of the Hermite and Laguerre polynomials is that of orthogonality.
Two functions f and g are said to be orthogonal if their inner product with respect to a weight

function w over an interval [a, b] is zero [47], that is,

(. g = / f(@)g(x)w(x)dz = 0.
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where x is an arbitrary variable here. A set of functions {f; : i = 1,2,3,...} is said to be

orthogonal on interval [a, 0] if

For the Hermite polynomials the orthogonality relation corresponding to Eq. (2.26) is

/ Hi(‘l')Hj(l')eixle' = ﬁZ{]'(SW

T

where the weight function here is w(z) = e~ and the interval [—o0, oc]. For the generalized

Laguerre polynomials the orthogonality relation is

/Oo LF(2) L% (x)z*e "dx = Utk

) PR (2.27)

where the weight function here is w(x) = z¥Fe™

. The orthogonality principle allows one to
isolate individual modes, where the weight function is split between the two modes in both
cases of Hermite and Laguerre polynomials. Likewise, it is the cornerstone of the Source

Dependent Expansion technique, derived in Appendix B and applied in Chapters 5 and 8.

2.4.5 Super-Gaussian and Bessel Beams

After compression, in the near-field, the CPA generated laser mode is super-Gaussian in
transverse profile. This can be approximated by an intensity profile I(r) = Iye 20/mm "
where r); is the characteristic radius, and in the case of the BELLA-laser mode M = 10.
In Fig. 2.5(a) we have a comparison of the intensity profiles for super-Gaussians of M = 2
(Gaussian), 4, and 10. The experimental BELLA mode can be seen in blue in Fig. 2.5(b)
with the super-Gaussian mode M = 10 overlaid in red [48]. The super-Gaussian profile is
inherently a product of two characteristics of the laser generation process. First, in order
to most-efficiently utilized the lasing medium one needs to pump the entire medium, which
is cylindrical and outputs a corresponding cylindrical laser profile. This is exacerbated by
the CPA procedure and given the short-pulse nature of the system it is not possible to use
traditional optics to reshape the beam without either damaging the optics or introducing
strong temporal aberrations.

The super-Gaussian profile focuses down to form a Bessel-like profile near focus in the

far-field, resulting in many sidelobes. In the case of the BELLA laser, such laser pulses with
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33-2-10 1 2 3

Figure 2.4: Plots of the absolute value of the amplitude, |a|, for Laguerre-Gaussian modes,
p=20,1,2 from top to bottom, and v =0, 1,2, 3, from left to right.

many sidelobes may be described in terms of Bessel functions, defined as

Tulw) =D m!F(fv;i):: 1) @)QmM'

m=0

Bessel-type profiles can also arise due to diffraction through a small aperture. Bessel func-

tions can also be decomposed into an infinite sum of Laguerre-Gaussian modes via the

relation o
Jo(x) et Ly(x®/4t) t*
(x/2)" T(n+1) = (Fmy kY

where t is an arbitrarily chosen parameter. A standard model for a Bessel-like beam is that

of a jinc profile, thus named for its similarity in structure to a sinc function, for which the
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Figure 2.5: The super-Gaussian mode, (a) comparison of M = 2 (blue), M = 4 (orange),
and M = 10 (green) and (b) comparison of the experimental mode (blue) with an M = 10
super-Gaussian (dashed red) [48].

transverse profile takes the form of

jine(1) = 21(r /1) /(r/75), (2.28)

where r; = 0.36457 is chosen such that the Jinc has the same FWHM as the Gaussian.
The jinc is the Fourier transform of a super-Gaussian profile propagating through a perfect
lens, so it follows immediately from describing the laser pulse as a super-Gaussian in the
near-field. This is the typical model for a laser pulse at the BELLA center and at other

high-intensity laser facilities.

2.4.6 Controlled Generation of Higher-Order Modes

While higher-order mode content is always present when generating a laser to at least a small
degree, there are also several techniques for generating higher-order modes in a controlled
fashion. The most widely used example is that of an axicon lens, which allows one to turn
a Gaussian beam into a Bessel-like beam [49]. An axicon lens has a specialized conical
surface that focuses rays at different points in the forward propagation path of the incident
laser beam, as depicted previously in Fig. 1.4.a. Bessel beams are typically described by a
Bessel function of the first kind, J;(z). They are unique because a true Bessel beam is non-

diffractive, i.e., it does not diffract and spread out as it propagates. As no beam is perfectly
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Bessel-like, typically there is also a transverse, exponentially decaying envelope in the model
too, meaning there is always diffraction, but an axicon-generated beam is able to propagate
for extended distances with relatively constant on-axis intensity. As noted previously in Sec.
1.2, axicon beams are extensively used to create an initial plasma channel through which a
trailing laser beam would pass.

Hermite-Gaussian modes are the next most commonly used and can be generated in
several ways. One technique is known as “off-axis pumping,” which involves pumping the
gain medium off-axis with respect to the optical cavity. One such approach uses a fiber-
coupled diode laser to end-pump the lasing medium, e.g., Nd:YAG, at precise distances from
the optical axis with a reflective concave mirror on the other end of the cavity. An example of
this setup is depicted in Fig. 2.6.a. It is possible to generate very high-order modes of form
H,,0 and Hy,, up to even Hiyggp, though single-mode operation becomes more difficult [50].
In order to generate higher-order modes of mixed mode numbers, one can insert a highly
opaque wire into the resonator cavity in between the gain medium and the end-mirror of the

resonant cavity [51].

(b)

Figure 2.6: Techniques for generating higher-order modes. (a) Hermite-Gaussian genera-
tion via off-axis pumping of a lasing-medium. (b) Spiral phase plate to introduce orbital-
angular momentum into an incident plane wave, converting a Hermite-Gaussian mode into
a Laguerre-Gaussian mode.

In order to generate Laguerre-Gaussian modes a different technique is used. If one just de-
sires a radial Laguerre mode, i.e., axisymmetric, then one can just superimpose two Hermite-
Gaussian modes of opposite indices, i.e., Ly ~ Hio+ Hp1, and with the proper polarization.

If one seeks an azimuthally non-zero Laguerre mode, one can take a Hermite-Gaussian mode
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and pass it through a spiral phase plate, also known as a ¢-plate, which transforms the
Hermite mode into a Laguerre-Gaussian mode with azimuthal phase component [52]. The
generation of orbital momentum is a function of the refractive index of the phase plate and
its thickness, i.e., the ray path length. Such phase plates are typically composed of liquid
crystals, polymers, or sub-wavelength gratings, although there has been a proposal to use a
magnetized plasma to the same effect, which is of great interest for the high-intensity lasers
needed for LPA applications [53]. An illustration of the transformation of plane-waves into

a wave with orbital-angular momentum is depicted in Fig. 2.6.b.
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Chapter 3

Laser-Plasma Interactions

3.1 Basic Considerations of Plasma Physics

In this study we consider only quasineutral plasmas, in which there is effectively an equal
number of electrons and ions (n. &~ n; &~ ng). The majority of phenomena in LPA physics
is described by the relativistic, cold fluid model. We will introduce all parameters typically
relevant to plasma physics and discuss their relevance or lack thereof. Generally speaking,
in our LPA models we will neglect thermal and magnetic effects, as they are negligible with

respect to the high densities and frequencies typical in laser-plasma interactions.

3.1.1 Debye Length and Plasma Parameter

While quasineutrality is a strong assumption globally, locally it is constrained by the De-
bye length. Consider Poisson’s equation VZ¢ = —4n(gene — ¢in;) — 4mq:0(r), where n, =
no exp(—qed/kpT.) is the thermal distribution of the electron density at temperature Ty,
n; = noexp(—q;¢/kpT;) is the ion density distribution at temperature 7;, ¢, is the test
charge, ¢. = —¢;, kp is the Boltzmann constant, and §(r) = §(x)d(y)d(z) where 0 is the delta
function. Assuming q¢.p/kpT. < 1 and ¢;¢/kpT; < 1, we can expand Poisson’s equation to

obtain
2

2
20~ 4 9e 4 = \2
V2o~ g (o 4 15 ) 0= 30,
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where

4tnoq? 4mnog?

Al = AN = (?;q) + < kB;:jl) (3.1)
gives the Debye length A\p, which defines the boundary beyond which the field of a test
particle is shielded out by the surrounding cloud of electrons and ions. The theory of this
phenomenon was first formulated for electrolytes [54]. Debye shielding is effectively a di-
electric effect in that the polarization of the plasma and the accompanying redistribution of
space charge prevents the penetration of external electric fields. For a typical LPA plasma
of density ng ~ 10'7 — 10! em ™2 and temperature T, ~ T; ~ 10 — 100 eV, the Debye length
is approximately \p ~ 107% — 10~7 m, so significantly smaller than other characteristic LPA
length scales, e.g., L ~ 1o ~ 107° m. In most other experimental plasma environments, such
as tokamaks and gas discharges, the Debye length is more on the order of A\p ~ 10 m~,
while astrophysical plasmas can range from 107! m in the solar core to 100 m in the Earth’s
magnetosphere.

The average potential energy U of a particle of species s is given by U ~ né/ng and the
kinetic energy is approximately 7' = $m(v3,) for a species s, where vy, = \/m is the
thermal speed of the species. In most all cases, a plasma assumes that 7' > U, but as a note
of comparison, the physics of condensed matter assumes 7' < U and for warm-dense matter,
T ~ U . We can write a quantity known as the plasma parameter that is proportional to

the ratio of the kinetic and potential energies:
A = 4mng)\}, = 3Np,

where Np is the number of particles in a Debye sphere.

For an LPA plasma typically A ~ 10%, while in an arc discharge it can be approximately
A ~ 102, in a tokamak A ~ 108, and in the solar wind A ~ 10'°. In order for a species s of
particles to be considered a plasma, thermal effects must dominate over attractive ones, i.e.,
the number of particles within a cube defined by the Debye length must be much greater
than unity. A relates the electromagnetic and thermal properties of a plasma. A plasma for
which A > 1 is said to be weakly coupled, while A < 1 indicates a strongly coupled plasma,

such as warm dense matter and a quark-gluon plasma.
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3.1.2 Collisionless Plasma

Even in problems where collisions are important, e.g., nuclear fusion, collisions are still a
small contribution to the plasma dynamics. Likewise, collisions in a plasma behave differently
than molecular collisions in a neutral gas due to collective effects. Consider the change in
velocity of an electron colliding with an ion, Av = (Zq¢2/m.b*)(2b/v), where b is the distance
of closest approach [27]. The time average of the velocity change is zero, (Av) = 0, but the
change in the mean square velocity is nonzero. This quantity can be written out as

2 2 .
((Av)?) = // 2mbngu(Av)*dbdt = 8o 274 ln(bmax/bmm)t,

2
mzv

where by, = Ap, the Debye length, and by, = Zq?/m.v?, the classical distance of closest
approach. The ratio of impact parameters byay/bmin ~ 8Np/Z, where Np = gwno)\% is the
number of electrons in a Debye sphere.

The frequency of 90° collisions, when the rms change in velocity becomes as large as the
impact velocity, 1/((Av)2) = v, can be written out as

. 871'71022(]3 1n(bmax/bmin)
N m2uvy,

W

The ratio of sharp collisions to the plasma frequency is then expressed as

wi ZIn(bmax/bmin) InA
Wp N 1OND A ’

To zeroth order one can see that collisions are negligible given that A ~ Np > 1 for a
plasma. Likewise, collisional effects are much higher for electrons than for the ions, i.e.,
Wie ~ y/twii, meaning that the collision frequency is even lower for ions. In some ways,
collisions would help to simplify the plasma dynamics by driving the system towards sta-
tistical equilibrium which can then be characterized by Maxwell-Boltzmann distribution
functions. In the case of an LPA plasma, for densities ng < 10* ¢m™3 and temperatures
kpT 2 10 eV, the number of electrons in a Debye sphere is Np > 10* (assuming Z = 1 for
hydrogen). In this case the collisional frequency ratio of w, /w, ~ 1073, For magnetic fusion,
where collisions are important, it is even lower at w, /w, ~ 1077, Likewise, the collision time
is also much greater than the drive pulse duration, i.e., wll > L/c. This shows that, at

least for a typical LPA plasma, collisions are negligible.
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3.1.3 Cyclotron Frequency and Magnetic Effects

Another important quantity in plasma physics is the cyclotron frequency. Considering the

relativistic Lorentz force law [55],

_dp _ d(ymev)

Vv
F=222_ — ¢(E + — x B). 2
7 yr q(E + s ) (3.2)

We can eliminate the electric field by taking the above equation to an inertial frame, allowing

us to write v — vgyp = CEBXQB, which is the E' x B drift velocity. Under this transformation,

the Lorentz force law reduces to

d(yv)
dt

Me

:q%xB. (3.3)

Likewise, we can expand the left-hand side of Eq. (3.3) as

d B dv 5 (v-a)
me%(W") - me'ya + mey Vv c )

when the Lorentz factor is written as v = (1 — v-v/c?)"2 = [1 + p - p/(m.c)?]"/?, p being
the relativistic momentum of the particle [56]. In an isolated magnetic field the acceleration
a = dv/dt is always perpendicular to v, so v-a = 0. As a result, we can further simplify
Eq. (3.3) by extracting the Lorentz factor from the derivative.

Assuming a constant, uniform magnetic field, the magnitude of the velocity vector will
remain constant as the particle gyrates about the magnetic field line, therefore the Lorentz
factor will remain constant, i.e., v = v = (1 — v2/c?)""/2. From the Lorentz force we can

now write two coupled, first-order differential equations,

dv, qB dv, qB
= ’Uy, _— = — U.’E7
dt YoM dt YoTme
which can be combined to give the general harmonic oscillator result d;f; + w?v, /v = 0,
where
qB
We =
Mme

is the cyclotron frequency. The concept of the cyclotron frequency, while relatively simple
physically, played an important part in the development of the field of particle acceleration.

The idea of accelerating a particle confined to a magnetic field at the resonant frequency
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was first proposed experimentally by Rolf Widerde in 1928, though his model was for linear
acceleration [57]. Ernest O. Lawrence came upon the paper and from that formulated the idea
of the cyclotron and patented it in 1932, the first high energy particle accelerator, producing
0.5 MeV bunches of Hj ions [58]. From the idea of the cyclotron resonance principle came
the term cyclotron frequency.

While there have been proposals to use strong magnetic fields in experiments either to
control dephasing or for otherwise improving the accelerator scheme [59], typically magnetic
effects are neglected just like thermal effects. For example, for a plasma with density ng =

10'" em ™2 and the Earth’s magnetic field By = 3.2 x 1075 T, we have a frequency ratio of

we _ 1.6x106
wp  3.6x1010

~ 10~*. This demonstrates that at the very least natural magnetic effects are
negligible in current LPA schemes, for which magnetic fields typically scale as a fourth-order
effect, ~ O(a"). In the linear and quasilinear regimes this means that magnetic fields are
negligible but become important when a 2 1 and the wakefields transition from electrostatic
to electromagnetic fields [60].

For highly energetic scenarios where relativistic motion becomes important but still as-
suming that v = -, is constant, the cyclotron frequency scales as ;' while the plasma
frequency scales v, Y 2, further mitigating magnetic effects. In space plasma physics, where
the densities are much lower and bulk motion nonrelativistic, e.g., 10° cm™2 in the iono-
sphere or even 1 cm™ in the solar wind, magnetic effects play a much larger role. If one
wishes to observe noticeable magnetic effects in an LPA experiment, they would need to
apply strong magnetic fields on the order of 1 T or higher (some theoretical proposals are as
high as several hundred Teslas), the generation of which can be highly cumbersome on their
own, let alone to couple to current LPA experiments [61]|. For example, for the lowest plasma
density of interest to an LPA, ny ~ 10" ¢m™2, neglecting relativistic effects, for w. = w,
one would need a magnetic field of at least 10 T, while higher densities would require higher

magnetic fields.
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3.2 Plasma Descriptions: Particle, Kinetic, and Fluid

In order to describe the laser-plasma system macroscopically, we typically assume that ther-
mal effects and magnetic fields are negligible, i.e., vy, = 0 and w,. = 0 and that the plasma
is underdense, i.e., the oscillation frequency of the laser is much greater than that of the
plasma, w/w, > 1. Likewise, we only consider the envelope of the laser as it interacts with

plasma and not the small-scale structure of oscillations within the pulse.

3.2.1 Particle Description

The most basic description of a plasma in the classical regime can be derived from single
particle motion. We assume a microscopic distribution of particles of a single species s in

six-dimensional phase space 25|,

N
No(z,u,7) = dlx — o:(7)]6[u — w;(7)], (3.4)
i=1
where 7 = ct, u = 7B = p/msc is the normalized momentum. ;(7) and wu;(7) satisfy the
following equations of motion:

d.’L‘Z(T) . ’lLZ(T)

dr v
{Em[$i<7'), t] +

duz(T) _ ds
dr  mgc?

w(r)
v

>< Bm[:w),t]} |

where v = y(u) = /1 +u(7) u(r) and E™ and B™ are the microscopic electric and
magnetic fields experienced by each individual particle. By taking the time derivative of Eq.
(3.4),

ONy(x,v,7) 0 al
5T = g Y tle ot )
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we derive the microscopic, particle description of a plasma known as the Klimontovich equa-
tion [62]:

ONg(x,u,7) us(1t) ONg(x,u,T) qs
+ : +
or ¥ ox mec?

ONg(x,u,T)

7 =0.

(3.5)

While exact, the Klimontovich equation is not particularly useful as it is too compu-

x B(zc,T)} :

tationally expensive to be effective for any macroscopic plasma. For example, a modern
high-performance desktop computer processor clocked at 4 GHz will be able to operate at
about 100 GFLOPS, that is, 10! floating-point operations per second. For an LPA-relevant
problem, considering a laser pulse traveling though a plasma 500 ym by 500 pm wide and

10 cm long, i.e., a volume of 25 mm?, with a density of ng ~ 10'® ¢cm™3

, we would have to
calculate the trajectories of at least N > 106 particles. In order to do just a single floating
point calculation for every particle in consideration once on such a computer it would take
28 hours. In order to repeat just that single floating-point operation 10° times so that one
can resolve longitudinally the plasma on 1 pum resolution over a distance of 10 cm, con-
sidering typical LPA laser pulses are L ~ 10 um in length, although in reality one needs
cAt < A ~ 1um, it would take 300 years to finish such a simple numerical simulation for so
many particles. Supercomputer clusters such as Cori at the National Energy Research Scien-
tific Computing Center (NERSC) at LBNL are far more powerful than a desktop computer,
with a theoretical speed in the PFLOPS range, which would reduce the above calculation to
15 minutes. However, that is a very naive estimation which ignores the computational costs

of the necessary parallelization and overhead to use a supercomputing cluster as well as the

fact that no physical simulation is so simple as a single arithmetic operation repeated many
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times, as pushing a single particle a single time step in reality requires tens if not hundreds
of operations, rendering even modern supercomputers a moot option for large-scale Klimon-
tovich calculations. Not to mention, someone else might be waiting to use the computer as

well.

3.2.2 Kinetic Description

One solution to the computational challenge of a microscopic description of a plasma is
a kinetic description, which can be achieved by taking the ensemble averages of Ny, E™,
and B™. Assuming a perturbative description of the microscopic dynamics, i.e., N, =
fs + 0N, E™ = E + /E™, and B™ = B + 0B™, and taking the ensemble average over

phase-space, i.e., (x) = [ fed*zd*u, we then have,

<Ns> = fsv <Em> = Ev <Bm> = B7
GN) =0,  (SE™ =0,  (SB™ =0.

Taking the ensemble average of Eq. (3.5), we can write what is known as the Boltzmann

equation:

Df, Ofs  us Of; ds Us dfs
= Ze E+ 2xB)-
Dt or v Oz + mC? * 0 % ou
N,
A 3 S BRAACA W I (3.6)
’ym502 Y ou oT isi

Here D /DT is the material or macroscopic time derivative from continuum mechanics. The
Lorentz force can be replaced with a generalized force in different circumstances, and the
perturbative contribution that was not averaged out describes collisional effects.

If we assume that the contribution from collisions is zero, we can then reduce Eq. (3.6)

to the well-known Vlasov equation [63]:

Ofs | Ws g g4 (E+%><B)-vuf:o. (3.7)

or y mC>

The Vlasov equation is one of the most important in plasma physics and is quite power-

ful in its application and description of laser-plasma interactions when coupled to Maxwell’s
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equations. This is especially pertinent with respect to computation. In the Klimontovich for-
mulation, we have the real number of particles, so O(N?) interactions are computed. Using a
particle-in-cell (PIC) approach with rapid Poisson solvers as well as the use of macroparticles
extrapolated from the Vlasov formulation, where a single computational particle represents
several physical particles, computational complexity goes down to at least O(NN log N) [64].
However, the Vlasov formulation is limited by the fact that a kinetic description cannot

account for single particle physics, particularly the emission of radiation.

3.2.3 Fluid Description

One may describe the plasma from an even more macroscopic perspective than the Vlasov
equation by deriving the fluid equations. While the kinetic approach is powerful, a fluid
description further simplifies the description of the plasma and more readily allows for ana-
lytical descriptions.

We can rewrite Eq. (3.7) and Maxwell’s equations as

aS S
fo U g p e (BB . Vas =0, (3.8)
or v mec? y
and
V-E—irY a [ fd v-B=0,
0B 1 47 OF
E:—— B:4 - sst YR
VX ot’ VX Wz&;qs/wu‘f u+08t

We then proceed to extract the macroscopic properties of the plasma by taking the moments

of the previous equations, that is, the density of species s,

nie.r)= [t (3.9)

the bulk momentum of species s,

us(x,7) = i/uf8al3u, (3.10)

s

and the pressure tensor
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The pressure tensor will be neglected in our calculations as thermal effects have a minute
effect on the laser-plasma interactions we will be considering.

By taking into consideration Eqs. (3.9) & (3.10), we take the zeroth- and first-order
moments of Eq. (3.8) to generate the cold fluid equations of a plasma. From here on we will
only be considering one species, the electrons, and drop the s subscript, i.e., f; — f. The

zeroth moment is

Of g +/9-fod3u+/i E+ 2 xB)-V,fdu
ar y me? ~y

/ Y Byt v, - /(%f) d3u+%{/E-vufdi‘m/(%xB)-vufdi‘u}

fd?’ + Ve / —fd%u

ot
/ -(fE)d u+/V (—xB)d%—/fV (;xB)d:‘] (3.11)

The integral with respect to E in Eq. (3.11) vanishes as a Maxwellian-like distribution f

q
+ i
mc?

falls off faster than u=2 as u — oo, as is necessary for a finite energy distribution. The first
integral with respect to B can be turned into a surface integral by the divergence theorem,
[[[(V-F)dV = [[(F -n)dS, and again for a Maxwellian-like distribution f falls off faster
than any power of v, causing the integral to vanish. The second integral with respect to B
vanishes because u x B is perpendicular to d/0u. The final solution to the zeroth moment

of the Vlasov equation, assuming a cold plasma such that f; = ng(x,7)0(u — u,s) with

vs = /1 + u?, is the continuity equation,

ong Uy
V-(n—|)=0. 3.12
or + <n Vs ) ( )
The first order moment of the Vlasov equation with respect to u is
fd3u+/3(u.vw)fd3u+i/u E+ 2 xB) Vafdu, (3.13)
Yor y mc? v

where v = v/1 + u2. The first integral gives

of 5 0 3 0
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The second integral gives

/%(u V) fdPu = /Vm . (%fuu) du=V- /%fuudgu =V- (%dsds> )

When considering thermal effects, i.e., ¥ = v + vy, this leads to a more complicated result

including the pressure tensor, but as v/c ~ a > vy, /c, it simplifies to

V. <ﬁfasﬁs) =u,V - (n&> +n <E . V) Usg.
Vs Vs Vs

The third integral in Eq. (3.13) results in

/u(E+3 xB) -Vufd3u=/vu- {fu (E+3><B)] du
vy v
—/quu- (E+3 x B) d3u—/f <E+ g B)  Vaudu. (3.14)
v v

As in Eq. (3.11), the first integral in Eq. (3.14) on the right-hand side vanishes as the
distribution f goes to zero faster than w. The second integral vanishes because the fields
are only a function of space, i.e., Vy - (2 x B) = 0 and V,E(z) = 0. The third integral
simplifies via the identity tensor, V,u = du/0u = I. The resulting equation is now

0 U Us q Us

—(nsus) +usV-(ns— | +ns|— -V]us+—ns( E4+ — X B .

87— ’YS 73 m02 fyS

Expanding the first term as 2 (nu) = w2 +n

taking advantage of Eq. (3.12), and dividing through by n, our equation now reduces to the

u

5=, combining that with the second term,

standard relativistic, cold-fluid momentum equation:

ou, s s
S (B v)u+-L(E+2xB) =0 (3.15)
or s mc? <

If we distinguish between species, we can account for a multi-fluid flow, such as separate
dynamics for the electrons versus the protons as well as for heavier species such as helium
versus hydrogen. However, on the time scale of a femtosecond pulse, heavier molecules are

considered to be part of the static ion background versus the dynamic electron fluid, i.e,

2

e Henceforth, the fluid momentum of species s will assumed to be

w2 = dmneg; /m; < w

just that of the electrons and the subscript will be dropped, i.e., uy — u.
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3.3 Conservation of Canonical Momentum

An important assumption frequently used in LPA physics is the conservation of canonical
momentum as an electromagnetic wave propagates through the plasma. The Lagrangian for

a relativistic free particle is
Lo = —mc* /1 —v2/c2 (3.16)

Through the Euler-Lagrange equation,
d (0L _ 0L 0
dt \ 04 oq

where q and q are the generalized spatial coordinate and velocity, one can retrieve the

free-particle equation of motion,

d0Lvee . _ d d

TR —p=E(vmq):E(vmV)~

The interaction contribution between a charged particle and the electromagnetic field is
defined as
Lt = 9y . A — q®. (3.17)
c

Combining Eqgs. (3.16) & (3.17), we have the complete Lagrangian for a single particle in

an electromagnetic field,

fz—mczx/1—02/02+%v-A—q<I>. (3.18)

The canonical momentum p; conjugate to the position coordinate ¢; is derived from the
expression

—— =p=7mv+ 14, (3.19)
c

The relativistc energy is E = [(mc?)?+p2,c?]+¢®, where the first term in the square brackets
is the relativistic rest mass and p,, = ymv is the mechanical momentum. Replacing the
mechanical momentum using Eq. (3.19), i.e., p,, = p — ¢A/c, the relativistic Hamiltonian
for a charged particle can be written as

1/2

0L
%”:Zqi%—f:mg + q®.

i

A 2
1+Cg_17)
mc mc
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This can be normalized as
. 1/2

H =1+ u—-a)]"" +0¢.

Assuming a plane-wave for the vector potential that varies as a function of (, i.e, a =

e a(C¢) and ¢ = ¢((), we can then write

PL_ v, # =0 (3.20)
mc
be O L, 02 _09 (3.21)

me  OC oc  oC

Here v = \/1+ (u — a)?. Eq. (3.20) implies that the transverse momentum is a constant of
motion and Eq. (3.21) describes the energy gain of a particle being driven by the laser and
the wake. Since J7 is constant, prior to the arrival of the laser pulse we can assume that

pi/(me) = [ V | #rdr = const. = 0, which means that we can assume, in 1D, that
u, =a, (3.22)

This result can also be intuited by examining Eq. (3.18), in which it is evident that for
a variation in any coordinate on which the Lagrangian does not depend, i.e., q = x, the
canonical coordinates associated with that Lagrangian, Eq. (3.18), also do not depend on x.
So in whichever direction the fields do not vary, the canonical momentum in that direction
remains equal to its initial value plus the vector potential contribution in that direction at
that coordinate. This always holds true in the 1D nonlinear regime and is approximately
true in the 3D nonlinear regime to the leading order quiver motion. The degree to which this
holds in 3D assumes that a laser pulse propagating through a plasma does not appreciably

vary in the transverse direction compared to the longitudinal oscillation, i.e., (krg)? > 1.

3.4 Electrostatic Waves and the Plasma Frequency

The most important quantity for characterizing a plasma is the plasma frequency, w,, which
describes motion in an unmagnetized plasma. We assume a steady-state plasma in which
we only consider high frequency oscillations and assume a fixed ion background which is in

charge density equilibrium with the electrons, i.e., n;, = n.. Assuming charge densities of
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the form Q = ¢.(n —ng) and J = g.nocu /vy, we can write Coulomb’s law and Ampére’s law,

Eqgs. 2.14 and 2.17, as

V-E :47qu(n - n0>7

OE
V x B — — =4ng.nou/7,
or

where here u is the fluid momentum for the electrons.

These two equations, along with the continuity and fluid momentum equations, Egs.
(3.12) & (3.15), assuming a static state in which the electron fluid is initially at rest, can
be linearized with respect to small parameters n = ng+n, u =u, a = ay+ a, B =0, and

E = E, where we are only considering the wake contribution to the fields only, to write to

first order
afL Un -
—+ —(V-u) =0 3.23
5.+ 70( a) =0, (3.23)
ou Ge =
— E =0 3.24
or + Mec? ’ ( )
V - E — 471q.n =0, (3.25)
E  4mg.n .
OF _ dmgenog (3.26)
or 70

where 79 = /1 + a2 is derived from the Taylor expansion of the Lorentz factor
0

]_N]_ CLO'CNI,

Y Y %?)’

(3.27)

Here we assumed purely electrostatic wake excitation, i.e., B &~ 0. We can combine the Eqgs.

(3.23) - (3.25) to write

0*n 47noq> o* k
€ n = —_— —_— n = O 328
or? - (’Yome02> " (572 - ’Yo) " ( )

An effectively identical equation can be derived by taking the time derivative of Eq. (3.25)
and combining it with Eq. (3.24), assuming a cold plasma.
Eq. (3.28) is a simple harmonic oscillator equation for which we can define the charac-
teristic frequency as
2 o Amging

2
W=kt = =
P P me
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which is known as the plasma frequency [65]. The relativistic contribution in Eq. (3.28) is
typically neglected in most subfields of plasma physics but it plays an important role in laser

plasma interactions.

3.5 Electromagnetic Waves in a Plasma

A laser pulse can be approximated as an electromagnetic plane-wave propagating through a
medium. Electrostatic oscillations are longitudinal in nature for which oscillating magnetic
fields vanish. A plasma, however, can sustain oscillations from an external electromagnetic
wave.

Starting with the full wave equation, Eq. (2.21), now that we have specified our medium
explicitly as plasma, we can define the source term as 73 = kg%uL ~ kf,V"TOaL, where we
have applied the principle of conservation of canonical momentum from Eq. (3.22). Likewise,
the scalar potential of the wake ¢ evolves slowly with respect to the laser potential a and so

can be neglected. We linearize Eq. (2.21) with respect to n = ng +n and a; = a¢ + @, to

? L, w
(@‘C@*%)“O:O’

where the same Taylor expansion of the Lorentz factor is used as in Eq. (3.27). By simple

give:

Fourier analysis of this equation, whereby 9%/0t> — —w? and 0*/92® — —k?, we can derive

the dispersion relation for a relativistic light wave:
w? = k¢ + w? /0. (3.29)
We can express dispersion relation (3.29) in the following form:

ke w2
77 = — = 1 —_ —p2’
w Yow

where 7 is the index of refraction and which in the language of general plasma physics
corresponds to an ordinary wave or O-wave. There is a critical threshold frequency, i.e.,
critical plasma density, when w,. = w, such that electromagnetic radiation will no longer
propagate through the plasma. This threshold is reduced in a relativistic plasma as w, scales

instead with /yow. Circumstances for which w, < w are known as underdense plasmas,
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e.g., laser-plasma acceleration of electrons, magnetic confinement fusion, and radio-wave
propagation through the lower atmosphere. When w, > w the plasma is known as overdense
and electromagnetic waves exponentially damp out as they propagate through the plasma
and are reflected, as in laser-driven ion acceleration, inertial confinement fusion, and radio
wave reflection by the ionosphere [66].

When thermal effects are to be considered the dispersion relation changes. In this case,
where 0p = kpT./m.c? is the normalized plasma temperature, the dispersion relation takes

the form [67]

WQ—M_?’ (1+§a2923 _59_3) +3k2029—B (1_§6L_2+a2k‘202)
B 2 A2 2 ~2 2 9 ~2 2,2 |-
i gl gl gl 7

Thermal effects are often ignored in short-pulse laser plasma interactions. This is the case for
laser propagation, where the quiver velocity v,/c is proportional to a, which is much larger
than vy, /c [6]. The thermal velocity is already a perturbation relative to the laser oscillation,
so generally it is a second-order perturbation to the plasma oscillation. Another perspective
is the energy considerations involved, where relativistic effects scale as m.c*y, ~ mec* ~ 1
MeV, but thermal effects %mevtzh ~ 10 eV. However, thermal effects do play an important
role in trapping electrons in the wake [68], but this phenomenon is not considered in this

work.

3.6 Governing Equations

The governing equations that we will be considering in this work are based on the following
assumptions: (1) Conservation of canonical momentum, i.e., u; = a,, and where we will
be considering only the transverse field henceforth unless otherwise noted, i.e., a; — a. (2)
The scalar potential ¢ is slowly varying relative to @ and so can be neglected in the wave
equation. (3) Thermal, collisional, and magnetic effects are negligible, i.e., v ~ a > vy, and
Wp > Weol > we. (4) Microscopic and single particle motion does not affect the macroscopic
fluid dynamics of the plasma. (5) The paraxial approximation, that the vector potential a is

Pal < k2.

or
Given these assumptions, the basic governing equations we will be considering for LPA

a slowly varying variable with respect to the propagation distance 7, i.e., that

physics are the normalized cold fluid equations, i.e., the continuity and momentum equations
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derived in Eqs. (3.12) and (3.15), setting us — u, considering only the electron species, as
well as the normalized Poisson’s and the reduced paraxial wave equations, Eqs. (2.22) and

(2.25), i.e. [6],

on nu
— {—1]=0 3.30
or v ( v ) ’ ( )
Jd u da u
— 4. = — = 3.31
<8T+'y V)u V¢—|—8T (V)X(an), (3.31)
2 0 2
(Vl + _3C2> ¢ =k, (n —ng)/no, (3.32)
0 na
2 o O _2nna
(Vl + 22]{:87_) a k:pno o (3.33)
To reiterate, 7 = ct, u = yv/c = p/mec is the normalized electron fluid momentum,

v = V1+u?2 = V1+a? is the Lorentz factor, ¢ = ¢.®/m.c?® is the normalized scalar
potential, @ = g, A /m.c? is the normalized vector potential, and ¢ = z — ct is the comoving

variable.

3.7 Propagation Velocity in a Plasma

For a plane wave, the dispersion relation defines the phase velocity as v, = w/k and the
group velocity as v, = Ow/0k. For a Gaussian laser pulse governed by the paraxial wave

equation (2.25) [69], we can write the radiation field and phase as

a(r,z,t) = ag(ro/rs) exp(—r?/r +iyp),
o(r,z,t) = k(z — ct) + ar?/r? — arctan(a) — kirga/él,

S

where « is related to the wavefront curvature (o = z/Zg in vacuum) and the axial wave
number k, = 0¢/0z. Assuming constant « and 7, k, can be defined in terms of the total
phase w = —0p/0t, i.e.,

1 s 4 r?

In this case, the phase velocity is given by v, = w/k, and the group velocity by v, =

(0k./0w)~'. Assuming that v,/c = (1 +¢,)"' = 1 —¢,, where ¢,, proportional to the
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expression within the brackets in Eq. (3.34), is a small parameter given that k2 /k* < 1 and

Vg 1 ., 4 r?

S

1/k*r? < 1, we have

This reduces to vy/c = 1 — (2k*)7' (k2 — 4/7’0) on axis where r = 0, assuming r, = rq is
constant.

While the transverse gradient of a Gaussian pulse gives a geometric contribution of 4/72, a
Hermite-Gaussian pulse gives 4(m+n+1)/r2 and a Laguerre-Gaussian pulse 4(2u+v+1) /7.
With this in mind, we can write the group and phase velocities for a laser pulse of finite

spatial length as

v 1
?p =143 (k2 + k7). (3.36)

Here k3 = 4(m + n + 1)/r2 for Hermite-Gaussian modes and k% = 4(2u + v + 1)/r2 for
Laguerre-Gaussian modes (the zeroth-order contribution is the same for both, i.e., k3 = 4/rZ,

which is the Gaussian pulse).

3.8 Energy Depletion and Redshifting

The normalized energy content of a laser can be readily described by taking the integral of

the laser field intensity, |a|? ~ |E|?, over all space [42, 70],

=i ff U(l‘za—c)“

In physical units the energy is equal to Upser = [(m*c'k?)/(4¢°k})]E. Using the paraxial

2 2
da

or

1
2k?

] dcdr.

wave equation, we can approximate it as

da 9. 10 20 9
5 _ﬂ {k na —Via+i Ea—c(k VLa)} :

where 7 = n/ (vng), and we can determine the normalized energy evolution via

da da*
87’ ~52 //r—\a] dCdr+z4k3 // {Ea —a— } dddr. (3.37)
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This formulation is valid at early times of the laser pulse’s propagation through a plasma
for any laser intensity.

Assuming a Hermite or Laguerre-Gaussian basis for our laser pulse, the second integral
n (3.37) vanishes, since @ = a* and (0,a)a* = a(0d,a*). The initial rate of change for the

laser energy can then be written as

2
87 2 / / 0% W2dcdr. (3.38)

For a short laser pulse we have O;p > 0 in the region of the laser driver so that 0:€ < 0,
thus we are extracting energy from the laser. The laser-induced perturbation to n = ng + n,
assuming circular polarization, satisfies the following relation:

02 2
(— + kQ) n=—(kX— vi)%.

The Green function solution to this equation has the form

=5 (L= 5292 a0 [ hysinlhy (¢ — Ol (3.39)

where we have separated out the contributions of the vector potential, |a| = |ay(r)]g({),
where g is the longitudinal profile of the laser.

The mean laser wave number, normalized to the initial value, can be expressed as a
function of the normalized energy £ and wave action A, i.e., (k/ko) = £/ A, where kg is the

initial mean wave number of the laser and A, an adiabatic invariant, which can be written

A= k3// {|a|2+zl< Oa” g(g)]dgdr

such that 9,4 = 0. From conservation of action, the frequency shift of the mean laser wave

as

number can be expressed as A0, (k/ko) ~ 0.€. Normalizing by the Gaussian energy,

E ~ fk Lao(kio) ,

an explicit expression for the frequency shift, inserting Eq. (3.39) into Eq. (3.38), can be

written out as

Eo 2/€2/ |a’l|2 VQL|CU_|2) |aJ_|2~7:d$dy, (3.40)
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and
T

F =k, /oo /:O cos[k,(¢ — (N]g*(¢)g*(¢')d¢d¢ ~ Z(ka)ze—pr)%,

and ¢(¢) = exp[—(¢ — {p)?/L?] is the longitudinal profile of the laser mode.

The characteristic length scale for energy depletion is Laept ~ A3/A?/(2a3) for o < 1
and Lgep ~ )\2 /A% for a® > 1, assuming a fixed Gaussian pulse length near linear resonance
[71]. Laep is typically one or two orders of magnitude longer than the diffraction length
scale, Zr. For quasilinear-regime LPA systems, redshifting of the laser pulse is insignificant
on the primary length scale, the dephasing length, Laepn ~ A2/A%. The leading proposal for
overcoming depletion would be to use a staged setup, as shown previously in Fig. 1.5, which
would use a new laser pulse at every stage, essentially ignoring any detrimental effects due

to depletion and redshifting.

3.9 Relativistic Self-Focusing

The concept of self-focusing arises in several ways in laser physics. Self-focusing is a nonlinear
effect, involving an effective change in the refractive index of the medium through which the
laser pulse propagates. In our case the index of refraction is a function of the intensity of
the laser field. For example, Kerr-induced self-focusing is driven by the Kerr effect, in which
the action of the electric field causes the dipole moments of the medium to align with the
polarization of the laser [72]. Thermal self-focusing involves a change in refractive index due
collisional heating [73].

In LPAs, the dominant mechanism for self-focusing are relativistic effects. The basis for
this is the relativistic mass increase of the electrons as they approach the speed of light [74].

This is known as the quiver motion of the plasma and it modifies the index of refraction as,

where the above has been Taylor-expanded assuming a? < 1. The physical mechanism
behind this is that the electrons in the immediate vicinity of the laser “quiver” with a velocity
vg/C ~ ap, which in turn causes their momentum to relativistically increase where the laser

pulse is more intense. This increase in mass causes the background density near the laser
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(a)

Figure 3.1: Example of the relativistic self-focusing effect. (a) the electrons near the laser
peak undergo stronger quiver motion than those by the wings, with redness corresponding to
the relativistic mass increase. (b) The quiver motion causes a change in the overall density
profile, example cases of uniform plasma (dark blue) and parabolic plasma channel (light
blue), for ap = 0.5 and k,ro = 5.

to increase, as visualized in Fig. 3.1.a., causing an effective decrease in the density profile
locally. The decrease occurs regardless of the initial background plasma, as visualized in Fig.
3.1.b for both a uniform plasma as well as a parabolic plasma channel. In the low-intensity
limit, we can estimate a critical power ratio at which relativistic self-focusing will cancel out
diffraction:

P/P, = (kyroa)?/16. (3.41)

This is for circular polarization, the power ratio is a factor of two smaller for linear po-
larization, i.e., P/P. = (k,roa)?/32. Here P. ~ 17(w/w,)* GW is the critical power for
self-focusing |75].

This expression for the critical power ratio can be derived in several ways. For example,
if we assume a Gaussian pulse of transverse profile a = agexp(—r?/r3) = ao(1 — r?/r2),
expand the source term of the paraxial wave equation, i.e., k2n/(yno) = k2n/no(1 — a®/2),

and assume no evolution (Ja/0z = 0), then by matching second-order terms in r we have
472 ai2r? P kjagrg

n
Viam k2l 2 2%t
“ Png re P2 rd P. 4

This result is off by a factor of 1/4 but the proper result Eq. (3.41) can be derived via the
variational approach [76]. Another derivation uses the moment of the relativistic perturba-

tion, 1/ = 1/4/1+ |a|> & 1 — a*/2, where critical power comes from the a? term. This can
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be derived from the first order moment of the source term (see Appendix B), thus:

P k2T0 = 2 —2r2
— o~ 2= —2ri/ropq 3.42
~ a(r)|“e rdr, .

B~y [ a0 (3.42)
where we assume a uniform plasma background, n = ng, and Gaussian mode a(r) = age /7.
For a Gaussian pulse this gives us the exact solution for low-intensity relativistic self-focusing,
i.e., Eq. (3.41).

An exact determination of relativistic self-focusing is possible for a single laser mode, and

is exact and does not suffer from catastrophic self-focusing as well, i.e., |a| — 0. Assuming
a source term kﬁ#a, where v = /1 + |a|? is the full Lorentz factor, we can calculate the

contribution due to relativistic self-focusing as follows. Taking the first moment with respect

to the weight function e~"*/7¢ in cylindrical coordinates, we have

00 /{32 n —7”2/7"3
/ e "o dr. (3.43)

/1 + CL2€—2r2/r0

Collecting terms and making a change of variables £ = 272 /r2, we can rewrite Eq. (3.43) as

o0 €_£
aoC —d
" /o V1+ade¢ <

k2r2 . . . . .
where C' = 2% assuming a uniform background plasma, n = ng. This can be simplified

further by another change of variables, Z = ¢""/70 and noting that d= = —=d¢, which we

can now readily integrate:
0
1 C
—agC | —F/—=d= = —-2—; 1+ a2 — 1) . 3.44
0 [ mE= g (i (3.44)

This is the exact solution for the source term for a relativistic plasma with respect to its mo-
ment. The Taylor expansion of Eq. (3.44) gives us the same solution as the approximations
of Egs. (3.41) and (3.42), that is

()RR (o
2a3 0 4 4 )7

where the first term in the parenthesis corresponds to diffraction and the second term to

relativistic self-focusing.
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3.10 Ponderomotive Force

What ultimately drives wakefields in an LPA is the ponderomotive force. In the nonrelativis-
tic regime, linear limit, a® < 1, the ponderomotive force can be derived from the momentum
equation,

ou

E%—U-Vu:—g—i—ux(an),

where we are neglecting the scalar potential contribution. In the linear limit the leading
order contribution to the electron fluid momentum is the quiver momentum p, = meca, i.e.,
u; = a,. Assuming a second-order perturbation w = wg + u, where @ is a second-order

perturbation with respect to first-order perturbations ag and ug, we can write

ou
E—F’U,O'VU,O:—U,O X (V X a,()).

Setting uy = ag throughout and using the vector calculus identity V(a?/2) = (a-V)a +a x
(V X a), we can rearrange terms to write
(Z—"T‘ = —V(a3/2). (3.45)

This is the standard expression for the linear ponderomotive force and is valid when a? < 1
[25, 6].

The nonlinear ponderomotive force is also relatively straightforward to derive [77]. Again,
starting with the momentum equation, but now relativistic and retaining the scalar potential
contribution, we have

0 0
(E+%-V)UZV¢+8—Z—<%)X(VXG)- (3.46)

Using the vector identity [(u/v) - V]u = Vv — (u/v) x (V x u), where v = v/1 + u? and
Vv = V(u?/2)/v, we can rewrite Eq. (3.46) as

837 (u—a)= <%) X [V X (u—a)]+ Vo — V7. (3.47)

Taking the curl of Eq. (3.47) gives a vorticity equation of the form [78|

%[Vx(u—a)]zvx{(%)X[Vx(u_a)]}’ (3.48)
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where the gradient terms have vanished given the vector identity V x Vf = 0.
The vorticity can be defined as 2 =V x (u — a) and Eq. (3.48) can be expressed as

@—VX(%) x Q=0 (3.49)

This expression says that the flux of generalized vorticity through an arbitrary surface
bounded by a comoving constant is constant, i.e., {2 remains constant regardless of how
u and a vary. This is Kelvin’s theorem in a barotropic ideal fluid, in which € is transported
by the flow. If the plasma is at rest before the laser pulse arrives, then @ =V x (u—a) =0
both before and for all time thereafter, given Eq. (3.49). From this and Eq. (3.47), the

momentum equation can be written as

0 ou
5, (u—a)=—--=V(p—7), (3.50)
where V¢ = —F/m.c? is the space-charge force and V+ corresponds to the generalized

nonlinear ponderomotive force |6]
Fon = —mec* V7.

Eq. (3.50) reduces to Eq. (3.45) when a? < 1 and v ~ 1. Using this we can also derive the
equivalence between normalized momentum and laser potential. Considering a time-scale
separation, i.e., w = us + Uy, ® = @5, and 7 = v, where f denotes the fast time-scale and s

slow, we can write 0.(uy —ay) =0, and so uy = ay [79)|.

3.11 Multimode Beating

Due to the fact that Maxwell’s equations are linear, it is possible to superimpose fields.
However, the physical aspect of the laser that is observed and which interacts with the
plasma is not the fields themselves but rather the intensity, i.e., the square of the field
contributions, through the ponderomotive force. When two different modes overlap they
inherently beat, causing an oscillation in intensity.

Beating has been an important tool in past experiments, where the beating of lasers of

different frequencies allowed one to achieve a laser envelope closer to the plasma resonance
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than was otherwise possible at the time. The beat wave between two beating lasers will

generate a field of the form
Ey(r) cos[(kair/2)T — (wairr/2)t] cos(ksumT — Wsumt), (3.51)

where wgig = w1 — wo and wgum = wi + we, creating a plasma wave with a phase velocity
vp R 1 —w?/(2wiws) [80]. The time average of Eq. (3.51) will in turn create a ponderomotive

potential,
g Ey(r)’

I cos?[(kaigr/2)T — (wWain/2)t],

(I)beat = -

which will beat at a frequency wgig ~ wp, though this mechanism also works without a
plasma. In addition, beating has also been considered as an injection mechanism [81] and
radiation source [82].

While standard approaches to LPA physics generally only consider a single mode, the

superposition of two or more modes introduces a cross term of the form
2 2 2 2
a® = |ay + as|” = aj + a5 + ajas + aja;.

The cross term will be zero for laser modes of the same geometric mode numbers, i.e.,
my = me, i.e., a single mode. However, when m; # ms, in the case of Hermite-Gaussian
modes, or p; # e for Laguerre-Gaussian modes, the phase contributions of the two modes

will create a beating contribution [83]. For a,, = C,, exp(iw,t), the cross terms give
ajas + aray = C1Co{expli(wy — wa)t] + exp[—i(w1 — we)t]} = 2C1Cy cos|(wy — we)t]. (3.52)

This means that, whenever there is more than one mode present in a system, except under
very particular conditions, there will always be beating and the intensity will always vary
with propagation distance.

The cross term described Eq. (3.52) is an important factor in the study of higher-order
mode propagation through a plasma. Beating occurs whenever the phases of the two laser
modes differ, including in vacuum in the case of the vacuum beat-wave accelerator concept
[84]. Eq. (3.52) applies to all nonlinear phenomena in LPA physics as well, wherever there is a
term proportional to |a|?. This introduces a beat term into the Lorentz factor v = \/T\a]?,

affecting self-focusing, and the ponderomotive force, F, ~ V|a|?.
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Chapter 4

Waketfields and Particle Dynamics

In the linear limit, when a? < 1, we consider the fluid continuity and momentum equations,
Eqgs. (3.30) and (3.31), simplified with the linear ponderomotive force, Eq. (3.45), and
Poisson’s equation, Eq. (3.32):

AL ) (4.1)
or

— =V¢-— 2 42
5 = Vo - Va'/2, (4.2)
V3¢ = k2in. (4.3)

We make use of the quasistatic approximation, which assumes that individual plasma par-
ticles are passed over by the laser pulse and its associated wake in a relatively short time
compared to the evolution time of the laser pulse and wake themselves. This approximation

allows us to make the following change of variables with respect to the derivatives [44],
0 0 0 0 0 0
— ==, — =C¢c— — =~ —Cc=,
dz OC ot or a¢ ¢
and
o> 0 0> 2 0?
022 ¢’ o2 oc
The propagation distance 7 is considered to be slowly varying during the transmission of the
pulse, essentially setting /07 = 0 in the comoving frame. The quasistatic approximation
can be physically understood as assuming that a rigid photon propagates abruptly through a
static, undisturbed plasma but then leaves a wake behind it, i.e., we do not consider forward

propagating effects.
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4.1 Linear Plasma Wakefield Equations

Egs. (4.1) - (4.3) can be combined to write an expression for a plasma wave driven by the
ponderomotive force. By considering the relation between the plasma density, the electric
field, and the scalar potential, 4mp = V-E/E; = —V?2¢, we can write the following for small

perturbations to the electron density, electric field, and scalar potential:

0? N 1,

(6(2 t kp) no 2V (44)
0? 2\ E 1 o o
0? 1

(0_42 + kz) ¢ = —gka” (4.6)

Here Ey = mecw,/e represents the cold, nonrelativistic wave breaking field. Wake breaking
corresponds to when nonlinearities saturate the electric field to the maximum extent a linear
plasma wave can sustain before the nonrelativistic fluid description loses its validity [85].
Eq. (4.4) - (4.6) are driven Helmoholtz equations and can be solved via Green functions.

The Green function solution for a driven harmonic oscillator is readily known and allows
for an explicit expression for the scalar potential:

L ¢
o= [ sinlkylc = O alr, )P

o0

from which the density perturbation and electric field can be derived, namely n/ny =
—k,*V?¢ and E/Ey = —k,'V¢. For a Gaussian pulse, a = agexp(—r?/rg) exp(—(¢*/L?),

the density perturbation and wakefields can be written as [86|

n T 8 2r2 27"2 .
n_ 7w 140 (127 e L 4.
iy (1 %) e () oo o
EL T r 2T2 .
7 ot (i) o (T ) 0 Y
E m 27’2
EZ = —Zag exp (_T_(Q)) COS(’%O; (4‘9)
T 4 27"2 .
¢ = —ag exp - Sln(kpg)- (410)
4 g

Here we assume we are examining the wake behind the laser pulse where a ~ 0, i.e. [(—L| >

L. We also assume a resonant laser pulse length of L = A,,. For a longitudinal Gaussian pulse
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Arb. Units

Figure 4.1: Plotted are the laser intensity (red), the wake scalar potential (blue), the longi-
tudinal electric wakefield (dashed green), transverse electric wakefield off-axis (dashed cyan),
and the density perturbation to the background plasma (dot-dashed black).

the linear solutions are plotted in Figure 4.1. From Fig. 4.1 it is clear that the numerical
integration of the Green function solution can be well approximated by sinusoidal functions,

(4.7)-(4.10), particularly when we are outside the laser envelope in the wake.

4.2 Electron Bunch Propagation

The primary intent of an LPA is to manipulate the dynamics of an electron bunch trailing
behind the driving laser. From a single particle perspective, assuming a linear wake, each

individual particle’s trajectory is governed by the equations of motion for the position and

momentum:
v _us dy _uy ac _ue g
dr v’ dr v’ dr v 0
g :_%’ %:_%7 %:_%? (4.11)
dr ox dr dy dr oC

where we assume that the particle is only interacting with the wake and not directly with the
laser field. The longitudinal displacement is initialized with respect to the comoving frame
of the particle, ( = z — y7, explaining the presence of fy, the initial electron bunch velocity.

The transverse position and the linearized forces equations can be combined to write the
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following for the transverse electron coordinate r = (x,y):

d’r A dr
P—i_ 5 d +/€5 =0. (4.12)

Here the betatron wave number can be expressed as

1 1 E,— B
kﬁ = lim a¢ = k‘ lim M
x%O’yaﬂjx P 250 vEq

9

1
x

which describes characteristic motion of an electron focused by linear fields, assuming small-
amplitude betatron oscillations near the propagation axis [87|. For example, for a Gaussian
pulse the transverse field equation (4.8) can be linearized to give

2

FO ~ 5% Sin(kpC)k?pT = Kikp’f’,

which gives us a betatron frequency of wﬁ = kjﬁc = Kiwﬁ/v.

4.2.1 Bunch Envelope Equation

The purpose of an LPA is to accelerate not just a single charged particle but rather a
beam of particles, typically known as a bunch. An electron bunch can be described by a
distribution of values both with respect to position z and momentum p, i.e., f(x,p). It is
typical to work in trace-space when studying bunch dynamics, i.e., (z,2') and f(z,2), where
' =dx/dT = (dx/dt)/(dr/dt). The centroid of an electron bunch will behave the same as a
single electron if the forces in consideration are linear.

To characterize the general behavior of the bunch we take the second moment of the

distribution, o;; = [ @;x; f(x)d?x. The rms ellipse of a beam distribution in space is charac-

011 012
o= ,
021 022

where the bunch width is described by

terized by the matrix
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The beam divergence, i.e., the angular measure of increase in beam radius with propagation

distance, is described by
-
n=ol= ) = [~ WP = 3 3 - 6
and the correlation factor,
|
1=0on =0 = ) = [0 @)~ WD = 3o~ @D @)

If we are studying a bunch centered on axis, (z,y) = (0,0), then the average positions and
momenta are zero, i.e., (z) = (z/) = 0. An important characteristic of an electron bunch is

its un-normalized rms or geometric trace space emittance, defined in the z-direction as

&, = /@) (@?) — w2}, (4.13)

and in the y-direction €, = \/(y2)(y2) — (yy')2. The emittance roughly describes the area
or volume of a bunch in trace space.
The transverse dynamics of an electron bunch can be described by the rms envelope

equation, derived by taking the second derivative of the spot size:

o0 = /) R o (') _ <xx/>7

v \/<I> Oy

) @) - ) i)

* o o3

We can simplify the previous equation by taking Eq. (4.12) and defining the second order
derivative of coordinate z as 2" = —y'a' /v — k%x This reduces the first term on the right-
hand side of Eq. (4.14) to k3o,. The numerator of the second term is the emittance,

simplifying Eq. (4.14) further to

d*o, ' do €
T s z ]{32 . — n__
dr? v dr + ka0 203

which is the rms envelope equation for an electron bunch, where ¢, = e is the normalized

emittance. In order to have matched propagation, i.e., d*c,/dr? = do,/dT = 0 or

0r = |en/(vks)|Y? = const., (4.15)
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Figure 4.2: An electron bunch undergoes emittance growth and fills out phase space if
exposed to nonlinear fields.

one likewise needs a bunch that is properly initialized with respect to the momentum distri-
bution to have constant emittance. For example, in the x-direction one needs a momentum
distribution with o, , = mecyoks, 040 and o, , = mecyoks, 0,0 in the y-direction with respect
to 0,0. This comes directly from the expression for matched rms spot size, Eq. (4.15), where,

for a (z2')? < 0202, then yokso? =€, ~ /o202

205 = 0,0, where o,/ is equivalent to o, in

trace space.

An important problem inherent to all accelerators, magnetic and plasma-based, is that
of emittance growth, as described by Eq. (4.13). All of the previous analysis in this chapter
assumed that the fields experience by the bunch are linear. However, in a realistic experiment
one cannot have perfectly linear fields, in particular far away from the propagation axis.
When a bunch experiences nonlinear fields then it starts to undergo emittance growth and

fill out phase space. A depiction of this can be seen in Fig. 4.2.

4.3 Dephasing

As a laser pulse propagates through a plasma it moves at a velocity less than the speed of
light, ie., 8, = 1 — k2/(2k?), as expressed by Eq. (3.35). Unless the electron is injected
with an energy vy = 1/\/1—763 and experiences no acceleration, i.e., if it is located at the
zero-acceleration phase of the focusing bucket at k,{ = (4n + 1)7/2, where n =0,1,2,3, ...,
it will eventually leave the focusing bucket and either lose energy or be completely ejected
from the wake. This is assuming that the bunch is located outside the laser envelope. This

particle loss, as the bunch transitions from one phase to another, is known as dephasing.
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Figure 4.3: An example of how longitudinal tapering and dephasing work. The thick blue
line defines the normalized plasma wave number l%p = k,/ky < \/n/ng necessary to keep an
electron bunch in phase with the wakefields. Also depicted are example wakefield structures
for l%p =1 and I%p = 3.5, i.e.,, n = 12ny. The singular point at which the plasma wavelength
goes to zero is demarcated by the black vertical line. The laser pulse is several pulse lengths
ahead of the singular point at k,{ = 117/2 in this case, where k,L = 1.

A bucket within a wake is approximately A, in length, as seen in the linear wakefield
expressions, e.g., B = Enyax sinfw,(7/v, — t)], where v, is the phase velocity of the plasma
wave. In the one-dimensional limit, the linear dephasing length Lgepn can be defined as the
length an electron must travel before its phase slips by one-half of a period with respect to
the plasma wave. For a highly relativistic electron, v ~ ¢, the linear dephasing length is
given by (1 —v,/¢)Laeph = 7> = Ap/2, i€, Laeph ~ YAy, and describes the distance for a
particle to slip 7 in phase from an accelerating/focusing region to a decelerating/defocusing
region. Here v, =1/ \/1—7@7 corresponds to the Lorentz factor for its phase velocity and is
equal to v, = 1/\/1—759, where the phase velocity of the plasma wave, (3, is equal to the
group velocity of the laser, §3,, assuming linear wakes a® > 1. The Lorentz factor can be
approximated as 7, >~ v >~ w/w,, which allows for the approximation Laepn =~ A3/A*. The
primary solution to dephasing is to use a longitudinal taper in the plasma profile to cause the
plasma wave to compress in phase with electron bunch propagation, up to a singular point
as the plasma wavelength approaches zero. A visualization of the dephasing and tapering
scheme can be seen in Fig. 4.3.

We start with the governing equations for a cold plasma and laser envelope, Egs. (3.30)

- (3.33), following the analysis provided in Ref. [28]. These equations can be combined to



CHAPTER 4. WAKEFIELDS AND PARTICLE DYNAMICS 65

give [8§]

02 ) d Va3
{w"—kp(T,T)—Fv XV:| u__ET. (416)

If the longitudinal taper is sufficiently slow, then the quasistatic approximation can be used,
meaning that the laser does not evolve much over a pulse duration L ~ )\,. Assuming
axisymmetric geometry, the radial and axial components of Equation (4.16) can be combined
to yield ) )
{£3+@—vi—%%égé%}wqﬁ—v@%p, (4.17)
where U = ¢ — a is the effective potential. The longitudinal and transverse forces are given
by

E¢/Ey = k0,0, (4.18)

(E, — Bg)/Ey = —k 3 0,0. (4.19)

To the lowest order in transverse scale length and assuming a broad channel kyrg, > 1,
Equation (4.17) can be simplified to (92 + k2)¥o = k2ag/2, which is identical to (4.6). The

solution for the scalar potential is given as

L ¢
w, =" / sinfk, (¢ — ¢)]a*(¢')dC,

where the variable comoving with the laser centroid can be more exactly defined as

‘= l/ Bd()} T

as opposed to just ¢ = z —ct. Here 3, is the linear laser group velocity. The solution for the

scalar potential in the wake of a laser propagating through a quiescent plasma is given by
Wy = —A(r)sinlk,(7,7)¢ + wol, where A(r) = Aok, L exp(—2r?/r — k2L?/2). Substituting
this equation into Equations (4.18) and (4.19) yields

Ee _ky
B prA(r) cos(kpC + o),
% _ kiwagy(f) \/HTMsin(kpC + ¢o + Pa),

where tan(¢) = AC%]Z)//S:'




CHAPTER 4. WAKEFIELDS AND PARTICLE DYNAMICS 66

4.3.1 Phase Velocities of the Plasma Wave

A caveat of a tapered plasma channel is that the phase velocity of the transverse wakefields
is slightly different than the phase velocity of the longitudinal wakefield, which comes from
the fact that near the axis the forces Fy and F, can be expressed as F; o exp(i)¢) and
F, x exp(it),) 28], where

P = kpoC, (4.20)

2
Yy = poc( 2}) +g. (4.21)

For a phase of the form ¢ = k,(7)f(7)(, the phase velocity in a uniform plasma can
be written as 8, = —9,¢/0:¢ or By(1) = [C(kpof) '0c(kpof) + 1/B,(7)]"". In a nonuni-
form plasma, e.g., a plasma channel, there are now two different phase velocities for the

longitudinal and transverse wakefields, i.e.,

k2 k2 r? ¢ Ok
=1 14 -0 ) > =0 4.22
Fuc +2k2( +k505) ko OT (4.22)
k2 ¢ Ok k212
=1 0 5 Thpo 1 L 0 4.23
& * (%2 kyo OT ) ( * k22 ) (423)

where k2 = 4(m + n + 1)/r2 for Hermite-Gaussian modes and k? = 4(2u + v + 1)/r2 for
Laguerre-Gaussian modes.

In an axially uniform plasma channel, i.e., one without tapering, the d:k,) terms are
zero and 3, = f3,, i.e., the wake phase velocity equals the laser group velocity. A highly

relativistic electron bunch with velocity 8, = vy/c differs from the phase velocity by G, —

By ~ 5tz (1 + k; %) In order for the particle to remain in phase with the wake, the phase
velocity must approximately equal the bunch velocity, i.e., 8, ~ 8, ~ 1. In general, when

Yo = kyo(7) f(7)¢ and when 3, ~ 3, ~ 1, we can write

ar(kp(Jf) _ p-1 -1 ~ ’fﬁo 2
RAw i ROl A o 2

Here 9 is assumed to be a constant to eliminate slippage. For a phase given by (4.20), we
have f =1, and for (4.21), we have f =1 —r2(7)/2R*(7).
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4.3.2 Longitudinal Plasma Density Taper

If a laser pulse is to propagate down a channel with a varying plasma density, then the
channel radius needs to vary as R(7) = k,(7)r3/2. For longitudinal phase matching, i.e.,
having the longitudinal wakefields copropagate with the bunch, the phase of the accelerating
force is ¢, = ky(, and Eq. (4.24) can be expressed, with f =1, as

~

d]%p k}% 7.2 2
= k2 + 4.25
dr 2!w0’( p ) (425)

where &, = k,/ky, 7 = k37 /k* and & = 2/(kyoro). Eq. (4.25) has the general solution

%(Ap) = QW;O| {1 — /%p_l + k1 arctan(ﬁ_l) [1 — —arctan(k:p/:)l)] } . (4.26)

K arctan(k

Using Eq. (4.26) we can determine the singular point at which the electron bunch finally

outruns the laser beam, assuming k, — oo:

- 2rwo|

{1 — s Yr/2 — arctan(x1)]}. (4.27)

Transverse phase matching, when the transverse wakefields copropagate with the bunch, is

similarly determined, with X
di{p kz% 7 2

2 4.28

e L alC)] (1.28)

%(l%p) = 21l {A;I -1+ \/75 arctanh <g> — arctanh (@kp>] } :

(2) /=20

122
One hindrance to this method is that in a longitudinally tapered channel the transverse

and

S
K2 K

- _ 20l {an
K

fields move at a different phase velocity than the longitudinal fields, as noted in Eqs. (4.22)
and (4.23). In order to overcome this discrepancy we can also vary the channel width as
a function of propagation distance. In prior studies this has been done by making the

substitution kK — /7 [28], where 7 = ry(7)/ro = R(7)/R(0), such that
dl%p ]%2 o K
= k> + — 4.29
d,]A_ 2|¢0| ( p + 722 )7 ( )
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and coupling lz:p to a laser spot-size equation that governs matched propagation, i.e.,

PP (2 1 -
= ( P ) —(1— k). (4.30)

dr? kk ) 73
In this case both transverse and longitudinal wakefields will copropagate with the electron

bunch, preserving the initial focusing and accelerating fields up to the singularity point,

approximately the same as Eq. (4.27).
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Chapter 5

Plasma Filtering of Higher-Order Modes

5.1 Introduction

As noted in Section 2.4, realistic laser pulses are typically not Gaussian with respect to their
transverse profiles. This is true for continuous wave and pulsed lasers but is an even more
strict reality for short-pulse lasers. The propagation lengths of Gaussian laser pulses can be
greatly extended when a pulse is guided by a parabolic plasma channel, typically generated
using either a laser-ignitor scheme or a gas-filled discharge capillary as described in Sec. 1.2.

A properly tuned parabolic channel of the form

n(r) r?
— =14+ = 5.1
n =t g (5.1)

for which the channel radius is equal to the initial laser spot size, i.e., R = k,rg/2, will allow
for matched guiding of the laser pulse.

Despite best efforts, matched guiding will be compromised by experimental realities.
For example, channel characteristics, e.g., the channel radius, density, etc., may not be as
optimally matched to the pulse at focus as expected and also may not be constant along the
propagation length, leading to poorer guiding. Likewise, realistic laser pulses, which are often
super-Gaussian in the transverse direction, as shown in Fig. 1.6 for an experimental BELLA
laser pulse, develop Bessel-like sidelobes at focus, which cannot be guided perfectly in a
parabolic channel. These oscillations, due to mismatching and non-Gaussian laser profiles,

can be deleterious to LPA applications and lead to non-optimal acceleration and often total
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electron bunch loss. This is due to the fact that as the spot size oscillates so too does the
on-axis intensity |a|>. In the linear and quasilinear regimes, this weakens the focusing forces
as well as potentially shifts the electron bunch to a defocusing phase. The presence of higher-
order laser modes will exacerbate the problem of mismatching. Likewise, all laser content
will leak out of the parabolic plasma channel to a certain degree, as it is ultimately finite in
the transverse direction. Higher-order modes leak out even faster than the Gaussian mode
and this energy content can compromise the guiding structure itself, typically sapphire-based
optical wave guides in the case of discharge capillaries which can be difficult to machine and
replace.

To guide an unmodified, non-Gaussian pulse in a parabolic channel perfectly is effectively
impossible or at least difficult to achieve experimentally. One possibility would be to use a
specially shaped plasma channel that is better matched to the transverse profile of the laser
pulse. Starting with the paraxial wave equation and assuming a solution of the form a =
ay (r,¢,7)f(C)expli(¢(r,C,7)], where a, describes the transverse profile, f the longitudinal
profile, and ¢ the phase, we can separate Eq. (3.33) into two coupled equations according

to its real and imaginary components [70]:

Viar — (0rp)’ar — 2k(0rp)ar = k.pay (5.2)

ay V3o 4 2(0,0)(0a1) + 2k(0ra,) = 0. (5.3)
For a matched laser profile, one seeks d,a; = 0, simplifying Eq. (5.3) to (0,¢)a? = const.
Considering that ¢ is an even function of r near the axis, we can then write (0,¢)|,—o.
Assuming that a, (r = 0) is of finite value, then 0,0 = 0 for all » and the wavefronts of the
matched laser pulse are flat. Eq. (5.2) then reduces to

V3a, — 2k(0-9)a, = kf)pcu.

In the low-intensity, low-power regime, one could theoretically guide a non-Gaussian pulse

using a plasma channel defined by the following expression:

oy =) L (M _ 2ka£> | (5.4)

g k2 \ ai(r) or
For a Hermite-Gaussian mode the phase is ¢ = —g-[k2 + 4(m + n 4+ 1)/rf]7, and for a
Laguerre-Gaussian mode it is p = — 5 [k2+4(2u+v+1)/r§]7. Inserting a Laguerre-Gaussian

or Hermite-Gaussian mode into this expression retrieves the parabolic plasma channel.
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Such a non-standard guiding scheme has been experimentally demonstrated for tradi-
tional fiber optics when attempting to guide an Airy-type pulse [89]. However, this exper-
iment was at much lower laser intensities, there is also the flexibility of manipulating the
refractive index of a glass-based fiber optic that is currently not possible for an analogous
plasma channel. Experimentally, there have been attempts to use a ceramic aperture to cut
off the sidelobes in the far-field |[31]. While this is relatively easy to do, this mechanism
not only strips energy from the Gaussian contribution but also fails to limit non-Gaussian
features as the mainlobe alone is still not Gaussian. The difference between the modal con-
tent is directly evident from the M? calculation: a Gaussian has M? = 1, an L; 5 mode has
M? = 3, while a jinc beam according to Eq. (2.28) integrated to r» = 10ry has M? ~ 10, and
for r — oo, M? = co. The objective of reference [90] is to use a leaky plasma channel to
filter out higher-order mode content while still guiding and preserving the Gaussian mode.

Tailored plasma structures for the purpose of guiding and controlling a laser pulse can
come in several forms. Leaky channels may be generated using either the hydrodynamic
shock (hydroshock) technique or clustered gas-jets [91, 92, 93|. In both cases, an axicon-
formed pump laser, as depicted in Fig. 1.4, is used to ionize a gas stream and a plasma
channel is formed after several nanoseconds of evolution. The channel is approximately
parabolic near the central axis and is truncated beyond several pulse-widths. Leaky channels
have previously been studied for other applications such as the minimization of instabilities

such as forward Raman scattering [94].

5.2 Non-Gaussian Pulse Propagation

Standard approaches to LPA physics treat the laser beam as being Gaussian in the transverse
direction, i.e., ay(r) = agexp(—r?/r2). However, the high-intensity laser pulses used are
always initially super-Gaussian and at focus can be approximated by a jinc profile, that is,
jinc(r) = 2J4(r/r;)/(r/r;), where r; = 0.3645r, is specified so that the jinc profile has the
same FWHM as a Gaussian with spot size ry. As noted in Section 2.4, Bessel functions
can be exactly described by a Laguerre-Gaussian decomposition, but they require an infinite

number of terms.
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Figure 5.1: (a) Comparison of a Gaussian pulse with 7o = 53 pm, a jinc-type profile, and
a superposition of three LG modes. For the jinc profile, r; = 0.36457¢ and for the LG3
profile, 3% _ Cp L (202 L3 o) exp(—12/r2), where the mode amplitudes are Cy = 0.729,
Cy; = 0.418, and Cy = —0.146 and the LG3 matched radius is rpg = 1.1444ry. (b) The
evolution of the normalized laser amplitude a for a non-Gaussian pulse in a parabolic channel
with R = 7. The blue line corresponds to a for a Gaussian pulse, the red line to a jinc
pulse, and the green line to an LG3 pulse, i.e., 320 _ Cp L (202 /13) exp(—12 /1)

In order to preserve analytical tractability we instead decompose the Bessel function
into a finite number of Laguerre modes, L, (2r%/r}.) exp(—r?/r}), where riq is a modified
spot size we employ in order to match the superposition of modes to the FWHM of a
Gaussian. A useful truncation is to use the first three modes, which we call an L.G3 profile,
with Lo(z) = 1,Li(z) = 1 — z, and Ly(z) = 1 — 2z + $22. We will be neglecting the polar
contribution v for the rest of this chapter. The characteristic spot size is set to r.q = 1.1444r,
for these three modes, which matches the LG3 to both the jinc and the Gaussian profiles. A
comparison of these three profiles, the jinc (red), Gaussian (blue), and LG3 (green) profiles
can be found in Fig. 5.1.a. It would be better to have r ¢ = 7, the true matched radius, but
we choose to match instead the FWHMSs since that is the practice in experiment. An LG3
pulse is a useful model since it very accurately models the mainlobe, the first zero, and the
first sidelobe. Likewise, our simulations will be tailored to match experimental setups, where
the plasma only extends to about 250 — 500 um in radius, which is typical for a capillary
discharge channel [95], and allows us to account for 94% of the power content of a realistic
jinc profile.

To demonstrate the behavior of a realistic pulse we will compare the evolution of a

Gaussian, jinc, and LG3 pulses in a matched parabolic channel given by Eq. (5.1). The
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evolution of these three profiles is shown in Fig. 5.1.b and these lineouts were generated
using the PIC code INF&RNO [96, 97]. These results demonstrate that for non-Gaussian
pulses, characterized by a Rayleigh length of Zp = 7r3 /) ~ 1 cm, i.e., the Gaussian Zg, and
initial amplitude ay = 0.1, such that nonlinear effects do not significantly contribute, the
presence of higher-order mode content in the form of sidelobes leads to significant oscillations
in the on-axis amplitude. This is due to beating between the superimposed modes, giving a
contribution of the form 2C)(7)Cay(7) cos[pi(T) — ¢2(7)]. For linearly polarized LG modes,
the difference between the phases can be defined in terms of a beat wave number ¢,, —
Gy = Kbeat T, Where kpeay = 2(pt1 — p12)/Zpg. Likewise, the comparison of these three profiles
demonstrates the relative effectiveness of the LLG3 profile in describing the general behavior
of the jinc profile.

In order to ameliorate the detrimental effects of beating generated by higher-order modes,
we propose the use of leaky plasma channels. A leaky plasma channel will not be able to
perfectly guide all the modes in an exact and matched fashion as would a solution to Eq.
(5.4), however it is matched to each mode individually. The finite nature of the leaky channel
will preferentially leak out higher-order mode content first, leaving the Gaussian contribution
relatively undiminished. Likewise, there are several options for leaky channels depending on
how one generates the channel and at what point in the plasma channel’s evolution one

injects the laser pulse we wish to be filtered.

5.3 Characterization of Leaky Plasma Channels

Leaky channels are proposed to offset the detrimental effects of higher-order mode content.
A leaky channel is essentially any channel whose finite width is greater than but on the order
of the laser spot size, i.e., reyy 2 70, Which is distinguished from the characteristic channel
radius R. Likewise, we will assume that all channels are parabolic near the central axis,
though alternatives such as hollow channels have also been proposed [98]. In this work we
consider two possibilities for leaky channels, one which has a sharp truncation and the other

which exponentially decays.
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A sharp truncation is simply a parabolic channel modified by a Heaviside function, i.e.,

nelr) _ (1 n 7“—) O — rew), (5.5)

no R?
where 7.y determines the truncation width. This simple formulation is analytically appealing
since it just entails a truncation in the source term integral and well approximates the later
stages in the evolution of both hydroshock and capillary discharge channels.
An exponentially decaying channel is somewhat more complicated but still analytically

tractable. It is described by

2
ne(r) — (1+ T_) 6—7’2/7“3)(})7 (56)

No R2

where rey, is an arbitrarily chosen constant. The effective characteristic radius near the axis

Rt ~ R [1 _ ( 1 )] o (5.7)

2
Texp

in terms of R and 7ey, is

where 7e, > R. These leaky channel models are visualized in Fig. 5.2, with a sharp
truncation (solid blue), shallow exponential decay of effective radius Reg = 49 pm (dot-
dashed blue), steep exponential decay with effective radius Reg = 27 pum (dashed blue),
and a jinc profile as a point of reference (solid black). The shallow exponential decay, i.e.,
Reg =~ 50 um was chosen to give a profile matched to a potentially injected laser pulse of
radius rp = 50 pm increasing the filtering rate. It is important to note that exponential
channel matching requires R.g = 79 and not R = r, although intentional mismatching can
allow for greater control of the filtering process.

One benefit of the models described by Egs. (5.5) and (5.6) is that they are analyti-
cally tractable. This will allow us to derive analytical expressions for the leakage rates of
higher-order modes via the WKB method as well as incorporate our results into the Source
Dependent Expansion. However, numerical integrations of the non-standard density profiles

would technically allow for the inclusion of any physical model.

5.4 Leakage Rates Calculations via WKB

In order to determine the effect of a leaky channel we will first calculate the characteristic

leakage rates, i.e., the amount of power leaking out of such a channel as function of propa-
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Figure 5.2: Examples of theoretical models used in simulating truncated plasma channels
relative to a Gaussian pulse with ry = 53 pm: sharp truncation at 7., = 2ry (solid curve), ex-
ponentially decaying walls with matched effective radius, i.e., Reg & 19 (dash-dotted curve),
and exponentially decaying walls with mismatched effective radius (dotted curve).

gation distance. This can be done by the Wentzel-Kramers-Brillouin (WKB) method. We

do this by first heuristically assuming a modal power loss given by [99]
P, = —T,P,dr,

where P, is the power contribution of mode p, I', = T),/Z,, where T}, is the transverse leakage
rate per mode 1, and Z, is the characteristic propagation distance of mode p. In the case

that I', does not depend on propagation distance 7, we can write
P,(7) = P,(0) exp(—T",7).

In order to calculate 7, and Z,, we make use of the WKB formalism [100]. We will assume

that the generalized laser potential field W satisfies a Helmholtz wave equation of the form
(V2 + K*(r)]2(r) =0, (5.8)

where K?(r) ~ w?/c* — k2(r) — kZ is the square of the general laser mode wavenumber in a
— k2 )

leaky channel. We assume that the plasma wavenumber varies transversely as k2(r) = k2, vt

The axial wave number of Laguerre mode p is k, ~ w?/c® — kZy — 4(2uu + 1)/r§. For the
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Helmholtz equation (5.8), we can write down the WKB solution for an arbitrary density

U(r) = [C(’(r) exp [z /np’2 |K(r’)]d7"/] 7

profile as

where C'is a coefficient to be determined. Integration takes place between the turning points
of K2.
On axis, the turning points are determined by the zeros of K2. For a parabolic channel
with
s P

K2 — 2 [4(2,“ +1) r? ]

k2rg R

we have a turning point 74, ; = 2¢/2m + 1 R/(k,r). The upper bound and turning point ry, -
is the leaky channel cutoff radius, i.e., 74,2 = 7y, otherwise Laguerre-Gaussian modes are
always confined in a parabolic channel. For an exponentially decaying channel the turning
points are more complex. In this case the square of the channel mode number is

2
K2 = |2 {—4(2“ L PR (1 + T—)] .

¢ » k:g 2 R?

In this case there is now an explicit dependence on density. By expanding the expression for

K? with respect to r we can estimate the lower turning point as

1
Ty R 57”sz [1 — R/}, — \/r(;j; + R —16(2m + 1 4 k213 /8)/ (kprorexp R)?

The wavenumber K2 for the sharply truncated channel is shown in Fig.5.3.a, where we
have plotted modes © = 1,2, and 3 and have also shown how the leakage rate can be tuned
by mismatching the channel radius R, where R = 0.95r (green dashed) has a lower turning
point radius than R = 1.05ry (green dotted). We can also modify the turning points by
varying the density via k,ry, where k,ro = 6 (dotted blue) has a lower turning point radius
than k,ro = 5 (solid blue) or k,ro = 4 (dashed blue). Fig.5.3.b plots the wave number for
the exponentially decreasing channel. The baseline values used for this plot are k,ry = 6,
Texp = 1.5719, and R = 79. One immediately observes that there are conditions for which
certain modes will never be contained, for example the baseline curve of = 2. To change
the leakage rate we can vary k,ro as has been done for the 1 = 0 mode, where k,ry = 6

(solid red), k,ro = 8 (dotted red), and k,ro = 5 (dashed red). In addition we can vary the
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Figure 5.3: (a) Leaky channel wave number for a sharp truncation: p = 0 (red), u = 1 (blue),
and p = 2 (green). The normalized spot size can be varied, such that k,ro = 5 for p =1
(solid blue), k,ro = 4 (dashed blue), and k,ro = 6 (dotted blue). The channel radius can be
varied, such that R = ry (solid green), R = 0.95r¢ (dashed green), and R = 1.05r (dotted
green). (b) Leaky channel wave number for exponential truncation. Solid lines correspond
to u =0 (red), p =1 (blue), and p = 2 (green) with k,rg = 6, rexp, = 1.57¢, and R = ry. For
the © = 0 mode (red) we vary the normalized spot size k,ro, i.e., the density, with k,ro = 6
(solid), kpro = 5 (dotted), and k,ro = 8 (dashed). For the ;1 = 1 mode (blue) we vary the
exponential radius rexy, With 7ex, = 1.57¢ (solid), 7ex, = 1.5757 (dashed), and ey, = 1.425r
(dotted). For p = 2 (green) we vary the channel radius R, i.e., R = rg (solid), R = 0.95r
(dashed), and R = 1.05r (dotted).

exponential radius, such that re, = 1.5r¢ (solid blue), rey, = 1.575r¢ (dashed blue), and
Texp = 1.4257¢ (dotted blue). Lastly, we can also control the channel radius, i.e., R = 1 (solid
green), R = 0.95r (dashed green), and R = 1.057 (dotted green). While more complicated,
the exponential channel gives one much greater control over the leakage rates than a simple
truncation.

In the WKB formalism, we describe the transverse profile in terms of incident (7), reflected
(r), and transmitted (¢) local plane waves, which are distinguished, respectively, by different
coefficients C;, C,., and C}. These plane waves are also distinguished with respect to their
integration limits: r < 1y, for the incident/reflected waves, where r, is a turning point for
]K]Q = 0, and r > 7r¢y; for the transmitted waves. In the region ry, < r < rey, the field is
evanescent and decreases exponentially with . This decay is characterized by C;. Using the

standard connection formulas for WKB theory, by which we write C; = C; exp(— [ T‘;“t | K |dr),

Tt
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the transmission coefficient [99] for the transverse laser profile can be written as

W> |G /
T = = =exp [ —2 |K|dr | . (5.9)
|\Ijz’2 ’CZP Ttp,1

The propagation distance between turning points along a ray path is written as

Ttp,1
Zuzgk;z/ |K| Ydr ~ 7 Z5.
0

While T, is an accurate calculation of the leakage rate for sharp truncation, it neglects the
effect of multimode interference and internal reflection, which has been explored in other

fields [101].
For the p-th order LG mode propagating in a sharply truncated parabolic channel, we

integrate Eq. (5.9) from ry1 = 24/(2u+ 1) /(kpro) R t0 r4p2 = Teus, giving us the leakage
rate [93]

9 2(2u+1)
T — Tcut + T(}ut o 1
TV IR\ (V2r + IR)?

2 1/2
Tcut Tcut
—24/2 1 —_— 1 . 5.10
Xexp[ e (( = ) ] (5.10)

In Fig. 5.4.a we show T, for modes p = 0, 1, and 2, and channel radii R/ro = 0.95, 1.0, and

1.05. Higher-order modes leak out at a faster rate than the fundamental mode for all cutoff
radii and higher-order modes are more sensitive to deviations in the characteristic guiding
radius of the channel. In addition, all tunneling coefficients saturate to a value of unity
below a certain cutoff radius, i.e., the vacuum diffraction rate. The channel parameters can
be selected using Fig. 5.4.b, where the white line governs the maximum leakage coefficient
T for the 4 = 1 LG mode for varying channel parameters. Higher-order modes will have a
shallower slope since they will leak out even faster. Wider truncation radii allow for a lower

To/T: ratio but slower overall leakage.

5.5 Modeling Leaky Modes via SDE and WKB

The Source Dependent Expansion (SDE), see Appendix B, is well suited to describing the

propagation and evolution of near-Gaussian pulses since it requires only a few LG modes.
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Figure 5.4: Leakage coefficients (7),) estimated with WKB method for the first three modes
in (a) with 4 = 0 -red, g = 1 - blue, and u = 2 - green, for varying channel radii, R/ro = 0.95
- dashed, 1.0 - solid, and 1.05 - dotted. (b) Coefficient ratio Ty /T for varying re,/ro and
R/To.

This is the case for an idealized (infinite) parabolic channel. For a leaky channel with sharp
2 n(r)

truncation and modifying the source term as j = kj~~a(7) — k2, ”éz)@(rcut —r)a(7) in Eq.

(2.25), the SDE method becomes problematic, since a significant portion of the laser power
will tend to propagate outside of the channel. This results in a laser profile consisting of a
near-Gaussian core with low amplitude wings that extend to large radii and represent the
leaked power. In order to describe the low amplitude wings of the leaked laser field, the SDE
method would require the retention of hundreds of LG modes.

Alternatively, one can modify the SDE equations by heuristically including a power loss
damping coefficient, as determined previously with the WKB method, in the wave operator
of the paraxial wave equation. In this approach, we equate the power for the LG modes,
which conserve energy over all space, to a separate solution with an exponentially decaying

component, which is a,(7)* ~

a,(7)? exp(—I',7), and insert that expression into paraxial
wave equation Eq. (3.33), giving us an additional term proportional to I',a,. In this case
the source term is that of the infinite channel, i.e., no Heaviside function, and for which the
LG modes are the proper eigenfunctions.

In the low-power limit, a? < 1, analytical solutions can be derived for pulse decompo-
sitions of a few lower-order modes. Integrating the paraxial equation (3.33) with respect to
variable & = 2r? /r? gives a series of decoupled equations for each of the LG modes by taking

advantage of the orthogonality principle of the Laguerre polynomials, Eq. (2.27). Using the
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SDE formalism described by Egs. (B.5), (B.6), (B.8), and (B.9), we can write the following

hierarchy of equations for an LG3 pulse:

(0- + T+ Ag)ag — iB*ay = — iFy,

(8, +T1 4+ Ay)ay — iBag — 2iB*ay = — iFy,
(0 +Tg + Ag)ag — 2iBay = — iFy,

—3tBas = — i F}.

The Eqgs. (5.11) — (5.13) govern the evolution of the amplitude coefficients and phases.
Using the relative smallness of the highest order terms, i.e., m > 3, such that a3 < as, etc.,
we obtain a fourth equation, Eq. (5.14) to provide closure for an initially over-determined,
three-mode system. The above system of equations effectively describe the evolution of r;
and a. The SDE is a powerful tool and by modifying it to account for power leakage we
can effectively model a multimode pulse in a leaky channel. Next we will turn to numerical
results to provide a fuller description of laser pulse dynamics in a leaky channel and compare

those results to the SDE to verify the validity of our analytical calculations.

5.6 Numerical Verification of Leaky Channel Model

Since we have established an analytical approach to leaky channels, we will use particle-in-
cell (PIC) simulations to verify our models. First, it is important to verify whether the LG3
pulse is a good approximation of a jinc in a leaky channel as it was in an infinite channel.
This can be seen in Fig. 5.5, which overlays INF&RNO PIC calculations for the jinc (red)
and LG3 (green) pulses. In our calculation the pulses propagate through a plasma channel
of on-axis density ng = 10'7 em™3, truncation radius 7.y = 27y, and pulse spot size 79 = 53
pm. The numerical parameters involved are propagation step size k, A7 = 1, plasma grid
kpoArplasma = 1/10, kpoAlplasma = 1/20, laser grid kpoAriaser = 1/20, and kpoAQager = 1/15.
In the simulation we have r1,q = rg so that the individual modes are matched to the channel.
We have chosen to match the jinc and LG3 pulses with respect to the on-axis amplitude a,

which means that there is a difference in energy content between the two pulses as the jinc
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Propagation Distance 7/Zg

Figure 5.5: PIC modeling results comparing the evolution of a jinc pulse with r; = 0.3645r,
and rp = 53 pm in a matched, truncated parabolic channel with r. = 2ry, Zg = 1.083
cm, and ng = 107 ¢cm™3, to three LG modes of amplitude C, = 0.729, C; = 0.418, and
Cy = —0.146, for which we normalize the initial sum such that a, (0) = 0.1.

has larger wings. Despite this difference, it is evident that the L.G3 is an effective model for
a jinc pulse, even more so in a finite channel than in an infinite channel.

In Fig. 5.6 we compare the results of the SDE model of an LG3 pulse to PIC simulation
results. We consider three different cutoff radii: (a) & (b) rews = 3ro, (¢) & (d) reys = 2.25r¢,
and (e) & (f) reur = 1.757¢. This is for a sharply truncated parabolic channel with ny = 107
cm ™ and matched channel radius. In addition, we implemented an exponential numerical
filter near the boundaries of the simulation to absorb emitted radiation and minimize numer-
ical reflection back into the channel. This is also a low intensity simulation which, for a < 0.3
and 7o = 53 um, gives a critical power ratio of P/P. < 0.06. Therefore, self-focusing is not
a significant contribution to pulse evolution. It is clear that, as the cutoff radius decreases,
the SDE is less able to model the evolution of the pulse in a leaky channel. However, the
greatest discrepancy is near pulse injection As the pulse propagates, the higher-order modes
leak out faster and the SDE and PIC begin to agree again. We believe the discrepancy at
the beginning of pulse evolution, most noticeably in Fig. 5.6.c, is the result of the coupled
excitation of different modes due to back reflection from the sharp truncation, which is not

accounted for in this model.
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Figure 5.6: Comparison of PIC results with the SDE, including transverse transmission
coefficients calculated via WKB theory. Three injected modes with equal initial amplitudes
Cy = Cy = C5 = 0.1, with a pulse radius of rp = 53 um and a matched parabolic density
profile R = rg, Zr = 1.083 cm, with cutoff radii of (a) & (b) 7wy = 3.0rg, (¢) & (d)
Tewt = 2.2579, and (e) & (f) rews = 1.757.

5.7 Leaky to Guiding Channel Coupling

While a leaky channel may be used to guide a laser pulse as an LPA on its own, a more
effective approach is to couple a leaky channel to a very wide channel to maximize the
effectiveness of both filtering and guiding separately. That way the leaky channel can be
optimized for filtering out the higher-order modes while the second channel can be tailored
to maximize LPA guiding. This can be seen in Fig. 5.7, where a sharply-truncated parabolic
channel is used to filter a jinc pulse. Using the same numerical parameters as before, we filter
the pulse for a length of 27.57r = 30 cm before the pulse is injected into a wide parabolic
channel r.; = 8rg. In Fig. 5.7.a, we plot the normalized amplitude a in red and compare

it to an identical pulse injected only into an infinite parabolic channel in black. We can see



CHAPTER 5. PLASMA FILTERING OF HIGHER-ORDER MODES 83

once again how the jinc pulse will undergo much more severe oscillations if the higher-order
modes are not removed. The energy content of the pulse is plotted in dashed-blue and falls
to about 75%, which is a significant loss. However, the Gaussian mode accounts for 68%
of the initial pulse energy and so most of this loss can be attributed to leaked higher-order
modes.

In Fig. 5.7.b we provide a modal decomposition of the pulse during filtering, focusing
primarily on p = 0,1, and 2, and can see how the higher-order modes leak out, leaving what
is effectively just the zeroth and first order modes. We can extract the individual mode

content numerically by exploiting the orthogonality property of the LG modes,

a,(7) = / " (72 €) L, (€) exp(—€) e

where a,., is the transverse lineout of the PIC-generated pulse at peak field intensity and
&=2r?/r.

A comparison of the transverse lineouts of the initial (red) and filtered (black) pulses can
be seen in Fig. 5.7.c. In addition to filtering, the sharp cutoff of the filter leads to strong
internal reflection and mode excitation, which means that, even for a perfect Gaussian pulse
on entry, there will be modest but noticeable generation of higher-order modes. This can be
seen in the transverse profile of the filtered pulse, where there are small but long lived wings.
Likewise, the sharp truncation requires significantly longer filters, on the order of 20 Zg, for
higher-order mode content to be filtered out. This can be challenging in present experiments,
as gas-jet-generated leaky channels thus far are at most 5-7 centimeters in length and even
that only by concatenating several jets. However, if one uses a discharge capillary channel
that was designed and prepared for the leaked energy, then such long leaky channel filters
could be realized.

A solution to the problem of mode excitation and slow filtering of the truncated channel
is to use a channel that is tailored to leak out higher-order modes faster. A simple analytical
candidate that is also experimentally tenable is an exponentially decaying leaky channel.
This naturally occurs in the earlier stages of a hydroshock-generated channel, which is vi-
sualized in Fig. 5.2. An implementation of this model can be seen in Fig. 5.8.a, where
a parabolic channel with exponentially decaying walls is used to guide a laser pulse (red).

Comparing it again to a jinc pulse directly injected into a matched parabolic channel (black),
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Figure 5.7: A truncated leaky channel (rey = 2.25r0, nger = 1017 cm ™3, and length of 27.5
cm), acting as a filter, precedes a parabolic capillary discharge channel with ng = 3 x 1017
cm™3 and R = 1.1y pm. (a) The laser amplitude as it propagates through the filter into
a parabolic channel is in red, an unfiltered jinc pulse propagating just through a matched
infinite channel (black), and the energy content of the filtered pulse (dashed-blue). (b) Modal
decomposition of intensity. The color lines represent the fundamental (red), 1st (blue), and
2nd (green) higher-order modes in the basis of a LG decomposition. (c¢) The initial pulse
profile (red) and filtered pulse profile (black), where a,(0) = 0.5, ro = 53 pm, Zr = 1.083
cm, and r; = 0.36457¢.

we can see the stark difference due to beating. The laser energy depletion is similar to that
of a sharp truncation (blue). We also used the same numerical parameters as before, except
now the filter length is 6Zz = 6.5 cm and is characterized by kyr. = 3.86 and a slight
channel mismatching of R = 0.8567.

It was found that leaky channels with steeper walls, i.e., channel radii smaller than
matched, e.g., Reg = 27 pum for ro = 53 pm, both guide the main lobe and leak out higher-
order modes more efficiently. Likewise, the lack of a sharp boundary mitigates higher-order

mode excitation. The fact that the effective radius is mismatched causes the laser pulse to
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Figure 5.8: An exponentially decaying leaky channel (rey, = 1.22r¢, R = 1.357r0, Ngier =
10'" ¢cm™3, and length of 6.2 cm), acting as a filter, precedes a parabolic capillary discharge
channel with ng = 3 x 10’ ¢cm™ and R = 30 pm. (a) The laser amplitude propagating
through the filter into a parabolic channel (red), an unfiltered jinc pulse propagating just
through a approximately matched infinite channel (black), and the energy content of the
filtered pulse (dashed-blue). (b) Modal decomposition of intensity. The color lines represent
the fundamental (red), 1st (blue), and 2nd (green) higher-order modes in the basis of a LG
decomposition. (c) The initial pulse profile (black) and filtered pulse profile (red), where
ai(0) = 0.5, 79 = 53 pum, Zp = 1.083 cm, and r; = 0.36457.

focus. With Rz < rg leakage rates are higher for all modes, which leads to faster filtering,

although steeper density profiles are more difficult to achieve in experiment.

5.8 Summary

It has been demonstrated that the presence of higher-order modes in realistic laser pulses
is problematic but can be addressed by using leaky plasma channels, part of a growing

field of plasma-based optics [102]. Higher-order mode content, often described as a jinc
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profile, can accurately be modeled using a superposition of LG modes, which are the inherent
eigenfunctions of a parabolic channel in cylindrical coordinates. Using the WKB method
and the SDE we were able to show that one can analytically model the evolution of a realistic
LG3 pulse in an infinite and finite plasma channel. Numerical examples were provided that
demonstrated the viability of leaky channels in a realistic simulation given by PIC codes.
Two models were tested: sharp truncation of a parabolic channel as well as exponentially
decaying walls. Both models are experimentally tenable, depending only on when the laser
is injected into the plasma channel, typically generated using hydroshock expansion but also
realizable in a discharge capillary.

The implementation of plasma filter structures has the potential to greatly improve on-
going LPA research that relies on laser guiding in parabolic plasma channels. For the two
examples explored, we proposed placing the plasma filter directly before the idealized plasma
channel intended for actual LPA applications in order to improve guiding (reduce laser mis-
match, reduce spot size oscillations, and improve pulse evolution). In the first example,
a 27.5 cm long leaky channel with sharp truncation was used. Guidance in the parabolic
channel was greatly improved due to the preferential loss of higher-order mode content and
approximately 75% of the initial laser power was coupled into the second parabolic plasma
channel. In the second example, a 7 cm leaky channel with exponentially decaying walls was
used. This provided even greater filtering at a shorter length.

Leaky plasma channels have been generated experimentally in the past using gas jets but
strictly for the purpose of guiding the laser. These were on the order of a few centimeters
in length at most. Longer plasma channels can be generated using a capillary along with
laser-assisted heating [103, 17]. A secondary issue not considered in this work is the potential
damage by and containment of leaked energy, as several joules of laser energy (for a GeV
LPA) would be leaked into the walls of a capillary. A better solution is to use an axicon
generated plasma column in a gas jet. Another prospect is to incorporate a plasma filter
earlier in the CPA process altogether. Placing a leaky channel immediately after the power
amplifiers, but before compression, can take advantage of the long pulse and low fluence
properties of the laser pulse at this point. Here the laser pulse can be focused to a very

small spot size, ~ 1 pum without inducing self-focusing, thereby shortening the Rayleigh
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length Zx and also shortening the length of the filter while also without strong wake effects.
This would have the advantage that the filtered pulse would then put a smaller strain on the
compression gratings used in the amplification process as well as resulting in a more Gaussian
pulse in the end. However, the effect of long-pulse laser-plasma instabilities (e.g. Raman

back-scattering) during uncompressed laser propagation would need further investigation.
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Chapter 6

Wakefield Tuning via
Higher-Order Modes

6.1 Introduction

Higher-order mode content, while detrimental to LPA research if unwanted and uncontrolled,
can provide new opportunities to advance the field. Higher-order laser modes have already
been proposed for several advanced LPA concepts, such as plasma undulators [104, 105, 106|,
higher harmonic generation [107], ring-shaped electron bunches [108, 109], and independent
control of the focusing fields [83]. Cormier et al. [83] in particular explored the use of two
modes to modify the transverse wakefields.

In this chapter we extend that concept and propose the use of higher-order Laguerre-
Gaussian and Hermite-Gaussian modes to control the wake properties in an LPA. One can
choose geometric mode numbers such that the different modes have the same group and phase
velocities, which results in a superposition of modes without beating. This technique is here
called geometric tuning and will be used to create a wake profile that can be used to guide
elliptical bunches. Modes, for which the sum of their geometric mode numbers are not equal,
will always beat if they overlap in space and time. However, it is still possible to overcome
mode slippage. This can be done by carefully choosing the frequency of each individual mode
so that they propagate at the same group velocity. However, in this case there will still be

mode beating, which can be overcome by either having the modes copropagate a specific
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distance apart from one another or having two modes with orthogonal polarizations.

6.2 Copropagation of Multiple Modes

An individual laser mode of the proper basis with matched spot size will propagate without
intensity variation down a plasma channel. However, if one were to inject two or more
overlapping Laguerre-Gaussian or Hermite-Gaussian modes they would interfere and induce
beating, affecting the wakefields. As noted in Sec. 3.11, the superposition of modes a;
and ay will create a cross term of the form 2ajas cos|[(k; — k2)7] in the intensity profile
la]? = a? + a3 + ajay + aa}. For the superposition of Hermite-Gaussian modes we expect a

beat wave number kpeay = k1 — ko of the form

Fbeat,r = [(Mm1 +n1) — (M2 + n2)|/ZR,

and for Laguerre-Gaussian modes,

kbeat,, = [(2011 +11) — (2p2 + 1))/ Zk.

If the sums of the mode numbers for each individual mode are not equal, then there will be a
beating term with a characteristic wavelength Apeay = 27/ kpear. However, if mi+n; = mao+no
for HG modes or 2, + v; = 2us + v for LG modes then there will be no beating.

This behavior is visualized in Fig. 6.1, in which have been plotted several examples of
copropagating modes in a matched parabolic channel. The base line is that of two Gaussian
pulses (black) which propagate without oscillation in amplitude or spot size, since this is
essentially just a single mode. When propagating two modes of different mode numbers
we see oscillations, for example L1y + Log, Log + Loo, and Los + Loy and several things can
happen. First, as the total sum of mode number indices increases, e.g., Lig + Lgg versus
Log 4+ Log, the frequency of the oscillation increases. Second, when the sums of the mode
numbers are equal they oscillate at the same frequency, e.g., Log+ Loy versus Los+ Log, where
(2p20+1v20) — (200 +v00) = (2x2+40)—(0) = 4 and (204 +v04) — (200 +v00) = (2Xx0+4)—0 =
4. However, the difference between the individual sum of mode numbers is nonzero, i.e.,
(24120 + v20) — (21200 + v00) = (2004 + Yo4) — (21000 + v00) # 0, therefore there is beating. Most

importantly, when the sums of the individual mode numbers are equal and their combined
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Figure 6.1: Comparison of the on-axis intensity of copropagating modes. The black line corresponds
to two Gaussian modes, blue line to a1g and Cyg, red line to Cog and Cyg, dashed cyan line to Cyg
and agq, and dashed orange line to ajp and Cps.

sum is zero, as in the case of (2u19 + v10) — (202 + v02) = (2x140) — (2 x 0+2) =0, the
modes will copropagate and do so without beating.
The group velocity differs depending on the mode number, as discussed in Sec. 3.7. For

the Hermite-Gaussian mode the group velocity can be expressed as

v 1 [ 5 4m+n+1)
L= — |k 7 1
¢ 2]{2[”+ re 7 (6.1)

and the group velocity for the Laguerre-Gaussian modes as

v_Lzl_L{
C

2
572 k +

p

- (6.2)

42n+v + 1)}
As noted before, a laser mode always propagates at less than the speed of light as long as it
propagates through a plasma or is noticeably finite in transverse width. More importantly,

higher-order modes propagate slower than lower-order modes.

6.3 Geometric Tuning

The wakefields for the superposition of multiple modes can be calculated directly from the
scalar potential ¢ via E/Ey = —k‘p’1V¢. Any superposition of modes can be used, but in order
to have on-axis acceleration one needs to select either even mode numbers in the Hermite-

Gaussian basis or radial modes for the Laguerre-Gaussian basis. For example, we will be
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using a superposition of two Hermite-Gaussian modes of mode numbers (m; = 2,n; = 0)
and (mg = 0,ny = 2) as depicted in Fig. 6.2, which is equivalent to a Laguerre-Gaussian
mode (u = 1,v = 0). The intensity of the superposition of these modes can be expressed as

22\ 2 y2 2 72 y2
3y (1 - 4?) +C3, (1 - 4?) + 205 Cos (1 - 4—2> (1 - 4§) cos(Ayp)

la* =
0 0 T 0

1
2
X 6_2(552“1‘:1/2)/7’(2)e_z(C—CO)2/L2 ,

(6.3)

where Ay is the difference between the initial phases of the modes. The dependence of
la|> on A can be seen in Fig. 6.3 and can be fairly sensitive. A phase difference of
Ay = 7 can extinguish the on-axis peak intensity completely if Cyy = Cpo. The phase needs
to be carefully controlled, either by careful controlling individual phase contribution, e.g.,
orthogonal polarization between the modes, or by temporally separating the modes. That

way the modes can interact with each other via the wake but not directly overlap.

x/ro

Figure 6.2: Comparison of |a|? for higher-order Hermite-Gaussian modes (a) (m; = 2,n; = 0)
and (b) (mg = 0,ny = 2). Color denotes the amplitude intensity |a|?.
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Figure 6.3: Comparison of |a|? for the superposition of higher-order Hermite-Gaussian modes
my; = 2,n; = 0 and my = 0,12 = 2 with equal amplitudes Cyy = Cpa. (a) Ap = 0, (b)
Ap =7/2, and (c¢) Ap = 7. Color indicates the intensity |a|>.

6.3.1 Wakefield excitation by HyHy + HyHy and Ly + Ly laser

modes

The wakefields for the superposition of HyH, + HyHy modes derived from the intensity |a|?
in Eq. (6.3) for Ap =0 and |¢ — (o| > L, can be written as

2 2 2
e o5 )] oo ) )
Ey U 7o 700 To

e REL? /8 =2 +y?) /7 sin[k,(¢ — Co

N

2 2 2
5 -t (1) oo ) o (1 5) o (0-12)
Ey o rH 5 7“0

Xe_kzLZ/g —2(z?+y?) /7] Sln[k‘ (C €0

)],
(6.4)
)]
(6.5)

These modes are matching given the condition my +mn; = my+ns. In Fig. 6.4 are portrayed
the intensity profile described by Eq. (6.3), i.e., Figs. 6.4.a, 6.4.d, and 6.4.g, and the
corresponding transverse wakefields by Eqgs. (6.4) and (6.5) in Figs. 6.4.b, 6.4.e, and 6.4.h.
This is done for three instances of varying modal amplitude contributions, i.e., Cyo = Cy = 1
in Figs. 6.4.a, 6.4.b, and 6.4.c, Cy = 1 and Cyp, = 0.5 in Figs. 6.4.d, 6.4.e, and 6.4.f, and
Uy = —1 and Cpy = 5 in Figs. 6.4.g, 6.4.h, and 6.4.i. The variation in mode contributions

allows for significant asymmetries between the horizontal and vertical planes. Lineouts of
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the electric fields plots can be seen in Fig. 6.4. In addition, considering the slopes of the z
and y wakefields, we can choose the relative value of the asymmetry using these modes just
as a function of modal amplitude contributions, as seen in Fig. 6.5.

Similar calculations can be done in the cylindrical basis of the Laguerre-Gaussian modes
with the matching condition 2y + v = 2us 4+ 5. An example of this can be seen in Fig. 6.6,
where we have plotted the real and imaginary components of the amplitude a, the intensity
la]?, and the transverse electric fields E; /Ey for a superposition of modes (y; = 1,1, = 0)
and (ue = 0,19 = 2), i.e., Lig, + Lg2. The expression for the intensity and transverse electric
fields can be written out as

laf? = % [2032% + 2\/5010002:—2 (1 - i—f) cos(Ap + 2¢) + C%, (1 — i—f)}

0 0 0

_902/02 _9.2/72
e 2r/r0€ 2z/L7

E,
F - \/Ek'p[/

8 2 4 4 6 3 4 5
0120; (3 — Lz + %) + C19Co2 (rL — LS + %) cos(Ap + 2¢)
0 0 0

L) 7o To 7o

7’3 7“2 —k2L2/8 _—2r2/r2 _.
—4Cp—= |1 — = | e /e 0 sin[k,(¢ — (o)l
r

and

ﬁ;—i = —\/ﬁkaCmClorio (1 - 277;) cos(Ap + 280)67%2/7“3 coslk, (¢ — o).
These cylindrical representations can be easily converted to Cartesian coordinates using
E,=E.(x/r)— Ey(y/r) and E, = E,.(y/r) + Ey(x/r), where r* = 22 + 3. In this example,
we again can have asymmetric focusing fields, with near-zero focusing along the vertical axis

and strong focusing along the horizontal axis.

6.3.2 Electron bunch propagation in an HyH, + HyH, wake

Near the axis of propagation of the laser, where x,y < ry and where we expect the electron
bunch to travel, we can consider only the linear contribution of the wakefields. We will also
only consider the phase when the transverse field is at its maximum and the longitudinal

field is zero, i.e., k,(¢ — (o) = (4l + 1)7/2, where [ = 0, 1,2, ... is a non-negative integer. The
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Figure 6.4: Comparison of the superposition of higher-order Hermite-Gaussian modes (m; =
2,n1 = 0) and (my = 0,ny = 2), visualized in density plots of the laser intensity |a|? as well
as density plots and lineouts of the transverse electric field £, /Ey. In subfigures (a) , (b),
and (c) Cy = Cpe = 15 in (d), (e), and (f) Cy = 1 and Cpe = 0.5; and in (g), (h), and (i)
Cy = —1 and Cyp = 5. The color denotes the amplitude and field intensities and the arrows
the transverse direction of the field.



CHAPTER 6. WAKEFIELD TUNING VIA HIGHER-ORDER MODES 95

100, :

() 9 Ey :

10 '

. oy Ey .

1 :

0.10 1 5

. ao2>0 | ap2<0,

' 0.01 4. e -

00 04 08 1.2 -02 00 02 04 06 08 10 1.2

C
20 asol/(azo+aoz)

Figure 6.5: Ratio of the slopes for 0, F, and 0,FE, with constant longitudinal field £,, where
(b) corresponds to the red line in (a). There is freedom in picking the asymmetry of the

wakefield just by modifying the amplitudes of the individual modes. For Hog and Hys, there
are poles at Cy/(Co + Cpg) = 1.25 and -0.25.

Figure 6.6: Example of matched Laguerre-Gaussian modes Ly and Ly with a;p = 1 and
Co2 = 3/2. (a) the real component of mode Ljg, (b) the real component of mode Lgs, (c)
the overall intensity profile |a|> = |a1o + Coz|?, and (d) the corresponding transverse electric
wakefield, where the color denotes the strength of the field and the arrows the direction.

purpose of this is just to simplify particle tracking and decouple the focusing effect from
acceleration, which can otherwise be accounted for. Taking the Taylor expansion of Egs.

(6.4) and (6.5) near the axis we have

E, L k3 )

f ~ V 87Tﬁ€_T|(002 + CQO)(COQ + 502())|£E = —kapl’, (66)
0 0

E L _wr

Ey ~ V 871'736_7‘(002 + Cgo)(5002 + CQO)ly = —Kskpy, (67)
0 0

where

K2 = /87[L/(kyr2)] exp[—k2L?/8]|(Cos + Cao)(Coa + 5Ch0),
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and

K? = /8n[L/(kyr3)] exp[—k2L?/8]|(Coz + Cao) (5C02 + Cap)|.

From the linear fields we can compute the betatron frequency of a particle in the wakefield:

Whe = K22 /7, (6.8)
and
wh, = Kjw /7, (6.9)

where ~ is the relativistic Lorentz factor.

In order to understand the effect of higher-order modes on an electron bunch we will
numerically calculate the individual electron orbits as described in Sec 4.2 via particle track-
ing. All the fields in question are inherently nonlinear except near the axis and the use of
higher-order modes further constrains the region of linearity. This can be seen in Fig. 6.7,
where in Fig. 6.7.a we have a bunch with 0,9 = 0,9 = 0.03rg and in Fig. 6.7.b, where we
have 0,0 = 040 = 0.1rg. The relevant laser-plasma parameters are |a| = 0.1, pulse length
L/c = 33 fs, density ng = 3 x 107 ecm™2, and spot size ry = 50 um. For this and all
subsequent particle-tracking examples in this section we solve Eqgs. (4.11) using the electric
fields defined by Eqs. (6.4) and (6.5) to push the particles. Numerically this was done with
the 4-th order Runge-Kutta algorithm (RK4) for six, first-order coupled differential equa-
tions with time step At = @51/50, where ng = K?w,/vo is the larger of the two betatron
frequencies defined by Eqs. (6.3.2) - (6.9). Scaling the simulation with respect to betatron
frequency is important as that is the smallest physical feature we wish to resolve. In Fig.
6.7.b we can see emittance growth due to the wings of the bunch sampling the nonlinear
region of the wakefields. In order to avoid this the electron bunch typically must be much
smaller than the width of the drive laser where the fields are linear.

Assuming a bunch with matched spot sizes, o,, = 0, = 0.0037¢ but with emittance ratio
of €,/€, = 10, we can show that the wake generated by higher-order modes can guide such a
bunch. In this particle tracking example, the initial parameters are |a| = 0.1, ng = 3 x 107
cm 3, and 79 = 50 pum. Since the fields are approximately linear near the axis, there will
be no emittance growth, though the spot size might still evolve. In Fig. 6.8.a we inject a

symmetric bunch into a matched wakefield of a laser driver composed of HyH, and HyH,



CHAPTER 6. WAKEFIELD TUNING VIA HIGHER-ORDER MODES 97

1.1 L
(a) 1.1
EX/EXO

1.0 o . e £yj¢€x0 1.0
S S
% """""" Ox/Ox0 E

0.9 o-y/o'yo 0.9

0.8 - . ; - " ' 0.8

0 2 4 6 8 10

r1.75
-r1.50

r1.25 Q
o

r1.00

0.8

Figure 6.7: Comparison of a bunch guided by the full, nonlinear wakefield of Hyy and Hyg
modes for an initial bunch size of (a) 0,0 = 0.03r and (b) oy = 0.1r.

modes. This gives the trivial solution of constant emittance €, = ¢, = 0.01 pm and relatively
constant spot size. If we increase the emittance €, by a factor of 10 by increasing o, by a
factor of 10 we can see in Figure 6.8.b how the bunch is matched in the y direction but not
the z direction, such that ¢, = 0.1 pm and €, = 0.01 pm. A mismatched bunch will undergo
betatron oscillations and we will have emittance growth. However, if we keep the asymmetric
electron bunch but tune the amplitude coefficients of the laser driver, i.e., Cyy = 0.0235 and
Cy = —0.1235, which still gives an on axis amplitude of |a| = 0.1, we obtain the result
shown in Figure 6.8.c, with a larger bunch spot size o, = 0, = 0.0115r, giving us similar
emittances as before of ¢, = 0.1 pm and ¢, = 0.01 pum. In this plot we see two distinct
emittances but equal spot sizes.

A potential application of higher-order modes such as these is when one wishes to guide a
bunch with asymmetric emittances, e.g., the final focus of a collider. As higher energies were

reached in colliders the problem of beam-beam interactions became and remains a dominant
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Figure 6.8: Comparison of bunch guided by the fields of an Hyy and Hy wake. (a) Initially
matched bunch with €,;/e, = 1 in a symmetric wake. (b) Initially mismatched bunch with
€;/€, = 10 with matched bunch spot sizes in a symmetric wake. Due to the mismatch strong
betatron oscillations can be observed. (c) Initially mismatched bunch with €, /e, = 10 with
matched spot sizes in an asymmetric wake with coefficients Ciyo = 0.0235 and Cyy = —0.1235.
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limiting factor. An important parameter in accelerator physics is the luminosity,

. N2Nbfc o NQNbfc

 dmo,o, dme e, B50;

14

where N is the total number of particles, N, is the number of bunches per beam (as in an

accelerator you typically collide many bunches in sequence), f. is the collision frequency, €,

is the emittance, and J;  is the optical amplitude function (S-function) at the interaction

point, where we used the relation o, , = \/E:ryTy [110]. The luminosity effectively tells one

the ratio of events N, detected in a time period ¢ to the interaction cross-section o;, i.e.,
~ 0, 'dN,/dt. Accelerators seek to maximize the luminosity.

Another important parameter is the linear beam-beam parameter,

Nrefy, Nref;,

- 21Y04 (02 + 0y) N 2104402 (1+ 0, /0,)

x?y

where 7. = ¢?/m.c? is the classical electron radius. B quantifies the strength of the beam-
beam interaction. By controlling the shape of the bunch we can limit beam-beam interactions
to a certain extent, i.e., B,, can be reduced, for fixed luminosity, by using flat beams with
o,/0, > 1 at the interaction point. Flat beams at the interaction point can be achieved by

accelerating beams with asymmetric emittance ratios €, /e, < 1.

6.3.3 Limitations due to dephasing and efficiency

Possible limitations to using higher-order modes in this context are the effect of dephasing
and the energy efficiency with respect to electron bunch acceleration. Dephasing between
the accelerated electron bunch and the wake is a well known problem that is present in all
LPA experiments. In the weakly-relativistic limit, the dephasing limit for a higher-order
mode in the Hermite-Gaussian basis can be approximated as Lg =~ %i—‘z’ [1 + %]1.
In current LPA systems a tapering of the background plasma density profile alongpthe path
of acceleration is often proposed as a means to overcome dephasing [28]. Another option is
the implementation of multiple stages [29]. The same applies for higher-order laser modes,

except that the group velocity is lower for higher-order modes than in the case for a Gaussian

laser driver, so the effective acceleration length would be reduced.
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The efficiency — the amount of laser energy contributing directly to electron acceleration
— of using of higher-order modes can be simply estimated by the ratio of the integrated laser
intensity of the Gaussian mode, i.e., HyHy, relative to that of a superposition of higher-order
modes, e.g., HyHy + HyHs, assuming equal on-axis intensity, C3, = |Cy + Coa|?, i.e., for
an equal accelerating gradient. For any two arbitrary, Hermite-Gaussian modes, this can be

expressed as

B 2 2 B 2 2
_2(7«' Ey ) _2(1' J;y )
By ox // (1020 e 0 dxdy / \a1Hpp Hyy + aoHyy Hy|” € o dxdy,
-0 — 0

where we assume the same longitudinal profile for both modes. For example, the superpo-
sition of second-order modes as seen in Figure 6.4.a, where Cyy = Cye = 1, would give an
effective efficiency loss of E.;; = 1/4. However, if we want to guide or accelerate an electron
bunch with an asymmetry ratio of €,/e, = 10, we need a laser profile as seen in Figure
6.4.c, which also approximately corresponds to the setup for particle tracking in Figure 6.8.
This would lead to greater efficiency loss with E.;r ~ 1/13. The relative decrease in energy
efficiency with respect to the Gaussian mode is intuitive as more energy content is located

away from the axis, which is an important consideration for a collider [111].

6.4 Frequency tuning of the wakefield

Color tuning is the ability to select different frequencies for each of the independent modes.
However, since the phase velocity is a function of the laser wavenumber k as well, it is not
possible to select different, lower-order modes that propagate at the same group velocity and

do not beat. This can be seen from the following expression,
|a|? = |ay + as|* = a2 + a2 + ayage’Fr it gmilhezmat) 4 6 o

as having different wavenumbers to have equal v, terms and thereby equal group velocities
would result in a new beating contribution from the (k; — k)2 term. In order to prevent
beating, one can either use two modes of orthogonal polarization or modes that are tempo-
rally separated and do not overlap, which are equivalent situations in terms of the interaction

between the modes in the linear regime. Using orthogonal polarization limits one to only
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x/ro

Figure 6.9: Amplitude intensity profiles of Laguerre-Gaussian modes Lgg, Lgi, and their
superposition Loy + Lqp.

two modes in a single instance as opposed to an indefinite number of arbitrary modes with
temporal separation. However, temporal separation may be more difficult to achieve experi-
mentally, as each mode needs to be injected exactly A, apart and would be more susceptible

to longitudinal effects.

6.4.1 Wakefield excited by L)+ Ly laser modes

For two Laguerre-Gaussian modes of indices uy = v; = 0 and py = 0,5 = 1 and orthogonal

polarization, the intensity profile can be written as
2
la]? = 2 <C§0 + 27"_2031) e~ 2?2 12
T r§

This is a superposition of the intensity profiles of a simple Gaussian and a first-order ring
mode, as seen in Figure 6.9. In order for the two modes to copropagate, it is necessary for
them to have the same group velocity, and that can be done by solving for k = w/c in Eq.
(6.2). The general expression for matching the frequency of two Laguerre-Gaussian modes

for copropagation is

k202 +4(2u9 + 15 + 1
wy = 1\/”0 (2uptvs + 1) (6.10)

k2rg + 42 + 1 + 1)

For example, in the case of an LPA system, with ng = 3 x 10" cm™3 and ry = 50 um, for
Aoo = 0.815 pum we have \g; = 0.766 pm.

When considering positions in the resonantly driven plasma wave far behind the laser

driver, where |( — (o| > L and we have orthogonal polarization, the transverse electric fields
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Figure 6.10: Lineouts of the transverse profiles of Laguerre-Gaussian modes Loy and Ly, for
(a) the amplitude intensity |a|? and (b) for the transverse electric field F| /Ey. The blue line
is for Cpo/Cp1 = 100, effectively just the Gaussian, the yellow line is for Cyo/Co; = 1, green
for Cyo/Co1 = 1.25, and red for Cyy/Cp; = 0.8.

for Log and Lg; can be written as

ET_\/fL
Ey, V7

EZ ka 2 2 7"2 —k2L2 8 —92 2 /.2
== O3 4202 = | e Bem T cos[ky (C — Go)).
EO \/8_7T < 00 01 rg [ ’p(C CO)]

The linear expressions on axis for these fields, i.e., when r/ry < 1, can be written as,

[\

2
ciy- i 1- 2_>] TR sinlly (¢ = o),
0

E, 2 L _K2L2/8 -
By \/;ﬁ(cgo — Co)e " sinlk, (¢ — o)lr
0
E, k, L
Ey ~ VA

From the linear equations one can conclude that the longitudinal field depends primarily on

Cloe™ /% coslky(¢ — Go)).

the Gaussian mode and the higher-order mode Ly; can be used to independently modify the
transverse fields. A lineout of the intensity profile and the corresponding transverse electric
field can be seen in Figure 6.10. The thin blue, solid lines correspond to just a Gaussian
driver. The thick, yellow solid lines correspond to Cyg = Cp; and electric field equal to zero
near the axis. The dashed, green line corresponds to a modified Gaussian wake and the

dot-dashed, red line to a strongly modified wake.
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6.4.2 Bunch propagation in an Ly, + Ly; wake

By using two modes we can tailor the focusing forces of the wakefields. Considering a bunch
with emittance ratio €, /¢, = 1, propagating in the full, nonlinear wakefields, we demonstrate
that higher-order modes can be used to reduce the focusing gradients and ensure matched
propagation. Initial parameters are |a| = 0.1, ng = 3 x 10" cm~3, and ry = 50 ym. Likewise,
we are only considering the focusing forces in this simulation, so k,(¢ — (o) = I7/2, where [
is a non-negative integer. Numerical results can be found in Fig. 6.11.

In Fig. 6.11.a we have an electron bunch with matched spot sizes, o, = o, = 0.1 in the
wake of a Gaussian pulse, i.e., Loy mode. This is the trivial result with constant emittance
€z = €, = 1.3 pm and relatively constant spot size. In Fig. 6.11.b we have a wider bunch with
o, = 0y = 0.2ry. We can see that the bunch begins to experience the nonlinear contributions
of the field and both emittance, initially €, = €, = 5.3 pm, and spot size grow. Keeping
ap = 0.1, we introduce an Lo; mode with amplitude Cy; = 0.08 such that Coy/Co; = 1.25,
which corresponds to the dashed lines in Fig. 6.10. In this case, we still have the wider,
initial bunch spot size o, = 0, = 0.2r, but relatively constant emittance ¢, = ¢, = 3.2 um
and spot size evolution, shown in Fig. 6.11.c. Just as in the case for geometric tuning,
frequency tuning is also limited by issues of dephasing and energy efficiency loss.

A potential application of this focusing force control is to the problem of ion motion and
positron acceleration [112]. The same analysis used for the case of a beam-driven wakefield
accelerator scheme also applies to a laser-driven problem [113]. The problem of ion motion
in a future plasma-based collider project is not typically associated with the drive laser, for
which one normally would need a ~ y/m;/m. = 42.85 to see significant ion motion on the
length scale of the laser. What causes potentially problematic ion motion is actually the
trailing electron or positron bunch. For a bunch we assume a transverse bunch wakefield
OE, = (4n/c)J . = 4mwen;Z;3; 1, where Z; is the ion charge state, n; is the ion charge
density, and 3; is the ion fluid velocity, which we assume is nonrelativistic, i.e., 5; < 1. The
amplitude of the transverse wakefield due to the trailing bunch can then be expressed as

E,  kyr me npo (kpC)? 7
Rt NN Al G , 6.11
EO 2 + m; Mo 2 20_b,L2 ( )

where G(¢) = (1 —e79)/q and o, is the transverse spot size of the trailing bunch. The
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first term in the square bracket of Eq. (6.11) describes the static ion background, while the

second term can be approximated by an ion motion parameter

e nb,o (kpC)Qa

I, = Z——=(k,()* = Z;

2
m; Mg m; oy, 1Ly

me Ny /g

where NNV, is the total charge number in the bunch and L, is the length of the bunch. Assuming
an ete™ collider-like bunch with Z; = 1 for a Hydrogen ion background, N, = 10°, L, =
30 pm [114], and using the previous plasma parameters, we have I'; = 0.03 for a bunch width
of o, = 0.1rg and I'; = 0.007 for o0, = 0.2ry5. This example takes a small perturbation and
makes it completely negligible, but if we use an even smaller bunch size of o, = 0.0165r¢ =
0.825 pum, which is normal for an LPA experiment, we reach the threshold for ion motion,
I'; = 1, when the bunch wakefields become strong enough to strongly perturb the background
ions during bunch transit, results in degraded bunch emittance. This also holds true for
positron bunches in the quasilinear regime, and so by mitigating the transverse focusing forces
using color tuning we can accelerate the development of an LPA-based positron accelerator

as well.

6.5 Summary

In this chapter it was shown how higher-order modes can be utilized in laser-plasma accel-
erators to control and shape the transverse wakefields via the two mechanisms of geometric
tuning and color tuning. With geometric tuning it was shown that two laser modes with the
same laser frequency but of different mode indices will copropagate at the same group veloc-
ity and without beating if the sum of the modes numbers is equal, i.e., m; +n; = mg + ns
for Hermite-Gaussian modes and 2u; + v; = 2us + 15 for Laguerre-Gaussian modes. This
was shown for two examples, HoHy + HoHs and Lo + Lge. This principle can be used to
control the shape of the wake and more specifically to create asymmetric wakefields. More
specifically it was shown that the superposition of HyHy+ HyH, could allow for the guiding
of an asymmetric electron bunch with an emittance ratio of €, /¢, = 10, which allows for the
possibility of a plasma-based final focus in a linear collider.

In addition, it was demonstrated that two different modes, which would normally propa-

gate at different group velocities given the dependence of the group velocity on mode number,
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Figure 6.11: Comparison of a bunch guided by the nonlinear wakefields of an Ly, and L
laser driver. (a) Initially matched bunch with o, = 0, = 0.1 in a symmetric wake with
Coo = 0.1 and Cp; = 0. (b) Initially matched bunch with o, = ¢, = 0.2ry in a symmetric
wake with Cyp = 0.1 and Cy; = 0. The bunch feels the nonlinear field and emittance grows.
(c) Initially matched bunch with o, = o, = 0.27¢ in a symmetric wake with Cpy = 0.1 and
Co1 = 0.08. The softening of the transverse gradients reduces the effect of the nonlinear
fields on the bunch and emittance remains effectively constant.

can copropagate if they have different frequencies. One potential deficiency of this approach
as opposed to geometric tuning is that the modes still beat and so must either be of orthog-
onal polarizations or temporally separated in the wake. It was shown that with Loy + Lo we
were able to alter the transverse gradient of the wake near the axis and allow for the guiding

of a larger bunch than normally feasible. This has potential applications to positron beam
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acceleration as well as for mitigation of ion motion.



107

Chapter 7

Application of Color-Tuning

to Plasma Undulators

7.1 Introduction

One of the most promising applications of LPA technology is next generation advanced light
sources. These devices generate highly energetic soft (1 - 10 nm or 1 - 10 keV) and hard ( < 1
nm or > 100 keV) x-ray beams with very high spatial and temporal resolution [115]. The
high energies and high resolutions in turn make it possible to resolve very small structures
on the sub-nanometer scale as well as to effectively “film” molecular activity in real time,
e.g., the folding of a protein, with promising pharmaceutical applications [116]. Modern
light sources of note are the Advanced Light Source (ALS) at LBNL in Berkley, CA, the
National Synchrotron Light Source (NSLS) at Brookhaven, NY, the LINAC Coherent Light
Source (LCLS) at SLAC in Stanford, CA, and FLASH and XFEL at DESY in Hamburg,
Germany [117, 118, 119, 120]. The ALS is a circular accelerator while LCLS and XFEL are
both LINACS. A comparison of various light sources can be found in Table. 7.1

Most modern light sources are effectively accelerators. Originally the radiation emitted
by the bending of a beam around a curved lattice or from betatron oscillations was considered
parasitic, it was lost energy that was intended to accelerate particle beams for the purpose of a
collider [121]. This originally arose in second generation accelerators known as synchrotrons,

where the relativistic nature of the highly energetic beam modified the cyclotron frequency
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Date | Type Length | A\nin Energy | Peak Brill.
ALS 1993 | Circular | 198 m | 0.035 nm | 1.9 GeV | 1 x 10%
NSLS-II | 2015 | Circular | 792 m 0.1 nm 3 GeV 1 x 10%?
LCLS 2019 | Linear 3 km 0.05 nm | 15 GeV 3 x 1033
XFEL 2016 | Linear 34km | 0.05nm | 17.5 GeV | 5 x 1033

Table 7.1: Comparison of modern light sources.

as ws = w./v. Therefore the emitted light has come to be known as synchrotron radiation
and is typically generated through use of an alternating magnetic structure known as a

wiggler for broad spectra and an undulator for narrow spectra. The synchrotron wavelength

2re Ay K?
As o 2 ( + 5 ) ) (7.1)

where )\, is the characteristic length-scale and K is the strength parameter of the undulator,

is typically defined as

which varies depending on the approach taken and additional phenomena in question such
as betatron oscillations.

Synchrotron radiation is effectively a consequence of Doppler shifting of the emitted
radiation due to the highly relativistic velocities of the electron bunch. The classical radiating
dipole model of an oscillating electron in its own frame gives a radiation frequency of W' =
2me _ 2mec

- = -3+, where the prime () denotes the electron frame, as opposed to the lab frame. For

a highly relativistic electron we have

w' 2mc

- 7(1 - Bz COs 9) )‘u(l - ﬁz cos 6)’

w

where 6 is the observation angle [122]. Assuming a Taylor expansion for small angles, cos§ =

1—0%/2+..,aswellas 3, ~ 1 and 1 — 3. ~ 1/(2v?), we can write

w— 2me/ Ay N (2177_6_@) _ 4ryie/ Ay
1 _52(1_92/24—) 1_|_ 2(%—6622) 1+,-y292 ’

which gives us the observed wavelength A\, = 27¢/f, which to first order in 72 6% reads
A
As = —=(1+60%7). 7.2

Henceforth we will only be consider the transverse component to the Lorentz factor, replacing

v, with . At very high, relativistic speeds the radiation pattern is dominated by a cone
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defined by the angular width of 20 ~ 1/(vy/N,), where N, is the number of undulator
oscillation periods.
In a realistic undulator the emitted radiation deviates from Eq. (7.2) according to what

effects predominate, often incorporated into what is known as the strength parameter K.

For a traditional accelerator, starting with the Lorentz force equation, Z—‘;’ =q(E+v/cxB),
and background focusing forces of E ~ 0 and B, = —Bgsin(27rz/),), where z is in the
direction of propagation, we can approximate the particle velocity as
dvug dz 21z
meyYy—— = qu, B, = —q— By sin , 7.3
Tar 1Ty g (Au) (7.3)

where we also assume v =~ v, given the relativistic nature of the particle. Integrating Eq.

(7.3) and slightly rearranging the constants, we have

vy qBoAy 21z K 21z
- = CcOSs = — COS
¢ 2mmec Ay ol M )

where K = (qBy\,)/(2mmec) is the strength parameter for a magnetic undulator.

By considering separate velocity components, such that v = (1 —v?/c?)™"/2 = [1 — (v? +

v?)/c?|7Y/2 and therefore v2/c? =1 — 1/+? — v2 /c?, we can solve for v.:

Expanding to first order in small parameter K /-, the average axial velocity is then

U, _q 1+ K?/2
c 292

which gives us an effective Lorentz factor of v* = v/4/1 + K2/2. Replacing v with v, in Eq.

(7.2), we have
by K2 72
A= (e 2y (1 g2
’ 272( i 2)( TIT R )

which reduces to Eq. (7.1) for radiation near the axis, i.e., 6 =~ 0.

In traditional light sources, synchrotron oscillations are driven by conventional magnets
with undulator length scales on the order of a millimeter at the smallest but with very
energetic electron bunches with vy ~ 10,000 [123]. In this case the strength parameter, a

function of By, can be varied simply by changing the gap between the magnets, as depicted in
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Figure 7.1: Representation of a traditional synchrotron magnetic undulator.

Fig. 7.1. Recent advances in undulator technology have involved the use of superconducting
magnets, allowing for higher magnetic fields on the order of 1 T [124]. Despite the relative
simplicity, static undulator technology is limited by the fact that it cannot be dynamically
tuned on the time scales of the electron bunch and that it is difficult to build a magnetic
lattice structure with A, < 1 cm. This requires very energetic electron bunches to compensate
for the large undulator wavelength A\, and means that the prerequisite LINAC structures
must be very large and built with such energies in mind. One proposed alternative is to
use an RF-based undulator, which would allow for fast, dynamic control of \, and K as
well as a larger aperture size of cm versus mm scale for static undulators [125]. In this
case the strength parameter is now a function of both the electric and magnetic fields, i.e.,
K = [q¢(BL + E )]/ (2mm.c?). For RF-based undulators there is no concern of permanent
magnet damage due to radiation and magnetization reversal as there is for a static undulator
[126]. However, the RF-undulator would require immense power and would be prohibitively

expense to operate given current conditions.

7.1.1 Plasma-Based Undulators

An alternative to traditional, magnetic-based undulators is the plasma undulator. The first
proposals for a plasma-based undulator used betatron oscillations, which in the bubble regime
scale as wg = w,/v/27 [127]. This has already been proposed and tested as a backlight prober
for several applications, such as the study of high-density plasmas at the National Ignition
Facility (NIF) [128]. Another approach is to use oscillations in the drive laser centroid to
cause oscillations in the electron bunch [104, 105]. In this approach a laser is injected off-axis

into a parabolic plasma channel and oscillates at a frequency inversely proportional to the



CHAPTER 7. APPLICATION OF COLOR-TUNING TO PLASMA UNDULATORS 111

Rayleigh range, i.e., w, = 2mc¢/Zg, which creates a snaking wakefield structure and in turn
causes the trailing electron bunch to oscillate at w,,.

Yet another approach is to use the superposition of two laser pulses of different mode
numbers which cause beating and in turn create the oscillating wakefield structure [106].
Unlike betatron oscillations or off-axis injection, which are limited to their characteristic
frequencies, beating allows for greater flexibility in controlling the frequency of the output
radiation as the undulator frequency is a function of the difference between mode numbers.
One potential limitation of this approach is that laser pulses of different mode numbers prop-
agate at different group velocities, extinguishing the effect after several tens of oscillations
[83]. For example, the group velocity for a Hermite-Gaussian mode of index (m,n) is

1 k2+4(m+n—|—1)
o A

Y _
C

where k,, ,, is the wavenumber of the mode in question. The characteristic slippage length

between two modes of the same color, i.e., kpy ny = Ky, = K, 18
Lis i i mang A L(/{:T%)/[Z‘(ml +n1) — (ma + no)|]. (7.4)

Higher-order mode content at several Watts of power can be readily generated using off-axis

pumping, as discussed in Sec. 2.4.6 [51, 52, 129|.

7.1.2 Color-Tuned Plasma Undulator

One solution to group-velocity slippage is the use of color-tuning as proposed in Sec. 6.4,
where two modes of different laser frequencies propagate at the same group velocity [130].
By setting the group velocities of two different modes equal to one another, we can define a
simple relation betwen the wave numbers, i.e., colors, of the modes:

1+H2(m2 + ng + 1)
ko =k , 7.5
? 1\/1 + w2(my +ny + 1) (7:5)

where k = 2/(kyoro) and £ < 1 and this is identical to Eq. (6.10). From this we can deduce
that a higher-order mode requires a higher frequency in order to propagate at the group

velocity of a lower mode. Using two colors modifies Eq. 6.2 to read

kpear = 2 |ka[K* (M +n1) + 1] — k1 [°(m2 + n2) + 1]| /(K*kikar). (7.6)
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Henceforth we will only be considering the beating between a mode (m,n) and the Gaussian
mode (0,0), i.e
kbeas = 2 | ko[> (m + 1) 4+ 1] = k| /(K kokmnt?),

where we modify Eq. (7.5) to

Y

\/1+/<:2(m+n+1)
km n — RO
1+ K2
which is the wave number of higher-order mode (m,n) with respect to the Gaussian mode
ko.
It is worth noting that such color-tuning is relatively sensitive and so one only has a
margin of error of a few percent Ak/k,,, before significant slipping occurs again. This can

be seen in Fig. 7.2, where we have plotted the relative sensitivity to slippage,

G — 1 — e [vo.00=v9.mo(R)PLE ,0/(2L7)

’

where v is the group velocity of the Gaussian mode, v, is the group velocity of higher-
order mode (m,0), and L 0 = Lsm,0,0,0 is the group-velocity slippage length defined in Eq.
(7.4). This quantity gives us a sense of the relative copropagation between modes, that is,
the sensitivity to slippage of the beating term between a Gaussian and a mode (m,n) over
the characteristic slippage length, if the color & of mode (m,0) is off relative to its expected
color-tuned value of £, . The higher the mode the less sensitive the beating term is to
slippage.

Another possible detractor from color tuning is that of energy depletion, which causes
the frequency of the laser light to red-shift as it propagates through a plasma, which can
potentially detune the laser mode. Using the analysis discussed in Sec. 3.8, we can modify

Eq. (3.40) to account for a mode dependent wave number k,,, that is,

Ok,
o =gt [ (0l 428 s PPy (.7

where k,, = kp0. The variation of 0k,,/OT as a function of mode number is shown in Fig.
7.3 for k/k, = 0.025. For typical parameters, very little energy is depleted over a Rayleigh

range. Therefore, red-shifting is not a serious concern for color-tuning.
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Figure 7.2: Plot of the slippage sensitivity factor S between a Gaussian mode and a mode
m =1 (red), m = 3 (blue), and m = 5 (green) as a function of relative wavenumber k/k,,,
assuming n = 0 for all modes.
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Figure 7.3: A plot of 0k, /ky, as a function of mode number m over a distance Z,, for k,/k =
0.025 and ro = 5/k, = 25 pm (blue), ro = 10/k, = 50 um (orange), and ry = 20/k, = 100 pum
(green), each normalized to their corresponding Rayleigh range 7, = mri\,,.
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7.2 Wakefield Calculations of Color-Tuned Modes

Following the prescription given in Sec. 4.1 we can calculate the wakefields of two superim-
posed, color-tuned modes. The comoving variable will be with respect to the lowest order
mode, the Gaussian, ¢ = z — vgoot. For the superposition of a Gaussian with a Hermite-

Gaussian mode of arbitrary number m, but n = 0, we have

2 _ | o 2ezssm? 21*% \ CHessn? 27" 2 Hezon’
la|* = | Cje WCOCmHm(m)e co8(kymT) + — C’ H,,(7)%
Xe*(i2+§2)’
(7.8)
B = 2 @] G2 sin(k 2 o (3) | 2mH 1 (3) — #Hou() | sinfky (6
== e SNy )+ O H() | 2mH s () — £H(3) | sinfhy (387 — )
2 m/2 5522
\/_COCme 2r7 [2mHm 1(Z) — 22H,, (2 )] cos(kymT) sin[kp(éﬁT—ZC)/2]},
m!
(7.9)
Ey (#2+ 2 27" 2 172 :
oA = Ce @150 2 sin( kyQ) ——C H: (%) sinfk,(d5T — ()]
0
2 G H() conln, ) sinlhy (35— 20)/2)
'me 2.7 Hp,(7) cos(wg,t) sin T —
T k
(7.10)
and
E_ —Ce™ @+ 1oL C2 cos(k,C) + 2;02 HZ (%) cos[k, (08T — ()]
EO p' 0 0 P m! mm P
21 m/2 55272
+ CoCrnHm(Z)e 27 co8(ky mT) coslk, (05T —2¢) /2] ¢, (7.11)
vm!

where Cy = Coo, Cry = Cing, C = e 518k, L)\/7/2/ (kyro), & = /2 /10, § = v/2y/T0,
0B = 590 - 69777.7 and

Kum = |km (K> + 1) — ko[r*(m + 1) + 1| /(knZr) (7.12)
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Figure 7.4: Lineouts of the transverse electric field E,/FEy for the superposition of m = 0
and m = 1 modes with Cy = 0.1 and ( = —x/2. Four cases: only Gaussian field m = 0
(red); two modes m = 0 and m = 1 with coefficient ratio C;/Cy = 1/10 (blue); modes m = 0
and m = 1 with coefficient ratio C;/Cy = 1/v/2 at k, 17 = 0 (solid green); and modes m = 0
and m = 1 with coefficient ratio Cy/Cy = 1/v/2 at k, 17 = 7/2 (dashed green).

is the undulator frequency. The Rayleigh range here is defined with respect to the color, that
is, the wave number k, of the Gaussian mode, i.e., Zr = kr2/2, and k,, is the wavenumber
of m-th higher-order mode, i.e., k,, = £y, 0.

In Fig. 7.4 we have plotted E, /E, for four differenct circumstances of the superposition of
the m = 0 and m = 1 modes with Cy = 0.1 and { = —7/2, when C; = 0 (red), C,/Cy = 1/10
(blue), C1/Cy = 1/+/2 at k, 17 = 0 (solid green), and C,/Cy = 1/+/2 at k, 17 = 7/2 (dashed
green). C1/Cy = 1/10 corresponds to a modest perturbation of the transverse field while
C1/Cy = 1/+/2 corresponds to electric field with zero gradient on axis, i.e., kg, = 0. Here
kg, is the betatron wave number in the z-direction. In Fig. 7.5 we have density plots of
the intensity (color) and direction (vectors) of the m = 1 fields when C1/Cy = 1/v/2, at
six instances in the modes’ evolution: (a) k, 7 = 0, (b) ky 17 = 7/4, (¢) ky17 = 37/8, (d)

kuam =1/2, (€) ky1T = 57/8, and (f) k,17 = 37 /4.
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Figure 7.5: Electric fields F| /Ey of modes HyHy + HoH;, where the color corresponds to
the intensity of the field and the vectors to the direction, at several instances of their time
evolution: (a) k,17 =0, (b) ky17 = /4, (¢) ky 17 = 37/8, (d) ky 17 = 7/2, () ky 1T = 57/8,
and (f) k, 7 = 3n/4.

The field equations (7.9)-(7.11) can be linearized for particles near the axis of propagation
of the laser. For example, for the superposition of a Gaussian (m = 0) and an odd-numbered

Hermite-Gaussian mode, i.e., m = 1, 3,5, ..., the linear wakefields are

B4 ([, .
i ~ EC{x Ca sin(k,C) — g(m)*Cf sinlk, (687 — ()] | +
VIC,Cre™ 55 cos(kumt) sinfky (587 — 20) /2]}, (7.13)
e~ CCRisin(ky0). (7.14)
% =~ —4CC§([€pT0) COS(k‘pC), (715)
Ey

where g(m) = 2™2mI(m/2)sin(rm/2)/v/7m!, e.g., g(1) = /2, where Euler’s reflection

formula T'(z)I’(1 — 2) = 7/ sin(7wz) has been used. Analogous expressions can be generated
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for the m = 2,4, 6, ... modes but such modes have a beating term in both E,/E, and E,/E,
that is linearly dependent on the transverse coordinates x, y in the linearized field equations.
This would cause electrons to beat with different strengths as a function of z, y, which would
be undesirable for an undulator and lead to emittance growth.

Eqgs. (7.13)-(7.15) can be used to derive the betatron frequencies of the trailing bunch as
well as the undulator strength and betatron parameters, a, and ag, which are equivalent to

the traditional K strength parameter. The betatron wave numbers for mode m are

ke ~ 2V2C[CF — g(m)*CF sin(ky (¢ — 057)]k; /0, (7.16)
k3, ~ 2V2CCkL Yo, (7.17)

and the betatron strength parameters are

agz = Yokpgz o, agy = YoksyYv,

where x;, and ¥, are the amplitudes of the betatron oscillation. The undulator strength

parameter for mode m can be written as

8 Kypkum _ (1
Ay ~ \/jﬁ—’CCOClg(m)e 552T2/(2L2)kp7"0 co8(kym7)sin | =k, (05T —2¢)| . (7.18)
T kﬁI - k?%,m ’ 2
The undulator and betatron strength parameters modify the emission frequency as
Ws = 2YowWum/ (1 + a2 /2 + a%/Q),

where wy, ,, = ky mnc. For simplicity, we will neglect motion in the y-plane in the following
analysis, i.e., ag = ag,.

From Eqgs. (7.16) and (7.17) it is possible to control not only the strength of the undu-
lation but also the betatron oscillations. For example, Cy = v/2C, will minimize betatron
oscillations in the z-plane for the m = 1 mode. The same approach can be taken in the
y-plane by including a second n = 1 Hermite-Gaussian mode or by working in the cylindrical
basis with Laguerre-Gaussian modes, both of which will produce circularly polarized radia-
tion. Being able to control k5 independently of k, would best be used as a means of matching
an undulator channel to the injected electron bunch. However, in both Egs. (7.16) and (7.17)
there is a time dependence that decays on a length scale \/§L/55, which corresponds to the
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slippage length Ly ,,,. As soon as the modes slip apart, the bunch will then oscillate be-
tween betatron frequencies of \/2\/§C(C§ — 2C%) /70w, and \/2\/5(?(03 +2C%) /70w, and

undulator radiation at the resonant frequency will be suppressed.

7.3 Low-Energy, Color-Tuned Synchrotron Source

We first present a proof-of-concept model of a single, low-energy electron for which vy =
1/4/1—wv2/c?. That is, the energy of the electron bunch corresponds to the velocity of the
lowest-order, fastest, Hermite-Gaussian mode in consideration, i.e., the Gaussian. In this
example we are not limited by dephasing between the accelerated electron and the laser
mode, assuming that the electron is sitting at a phase in which it does not experience any
longitudinal acceleration. With the fields described in Eqgs. (7.9) - (7.11) we can determine
the trajectory of a test electron and the emitted radiation.

This and subsequent calculations in this chapter are numerically executed in a similar
fashion as the particle tracking done in Secs. 6.3.2 and 6.4.2. To reiterate, we solve Eqgs.
(4.11) but here using the full, nonlinear electric fields defined by Eqs. (7.9) and (7.11) to
push the particles using the RK4 algorithm. However, now we use an adaptive-step RK4
algorithm, which operates by making sure the difference between one full step and two
half steps is within a tunable error tolerance. Unlike Secs. 6.3.2 and 6.4.2, computation
for this problem is more challenging, as we seek trajectories on length scales on the order
of the Rayleigh range as opposed to the characteristic distance of betatron motion, where
Zr/As ~ 0.05. In order to resolve undulator motion then we need AT < Zp.

In Fig. 7.6 are plotted three example trajectories of single particle motion. For one
trajectory the modes are the same color but different mode numbers and thereby propagate
at different group velocities with the electron initialized at xo = 0 (dashed red). The second
is similar, with the electron initialized at xy = a,(ko)/(70kw1) (solid red). In the final case,
the modes are color tuned and initialized at xo = a,(k1)/(70ku,1) (solid blue). In all three
cases, the on-axis density is ng = 10*® em~3, the laser mode amplitudes are C, = 0.003 and
C) = Cy/V/2, laser spot-size kporo = 5, centroid position k,o(p = —m/2, and 79 = 37.83. In

Fig. 7.6 it can be seen how the electron driven by non-tuned modes initially oscillates at the
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undulator frequency but eventually the oscillations decay into simple betatron motion. As the
two modes slip apart, the wake effectively becomes that of two independent, superimposed
wakes moving in and out of phase with one another. In the case of color-tuned modes,
the modes never slip apart and we have simple oscillatory motion. At 7 = 817 we have
demarcated the slippage length L, ;. The trajectories have different amplitudes but the laser
energy is the same in all cases. To initialize the non-tuned modes at x(0) = z( so that they
have the same amplitude as the color-tuned case would require four times as much power.
The ultimate purpose of calculating these trajectories is to determine the radiation spec-
trum emitted. Assuming that the emitted radiation does not significantly perturb the tra-
jectories, we consider first only the trajectories up to the slippage length and calculate the
emitted radiation via the far-field approximation of the Poynting vector according to the
Liénard-Wiechert fields:
d*I B @
dwd)  4m?c

N . 2
Z/ [s % (s x B,)] e @t=sxn/gy|
n=1" ~>

Here d?I/dwdS2 is the energy radiated per frequency dw per solid angle d2, N is the number
of electrons in consideration, s = [0, sin(f), cos()], @ is the polar angle with respect to the
axis (we only consider radiation emitted in a single plane), 3, = (8., 8y, 8:) are the velocity
components of particle n, related to the momentum via u = 75, and x, = (z,y,2) is
the position of particle n. We solve for the radiation field numerically by appropriately
discretizing the time integral accordingly.

In studying the spectra we also consider the m = 3 mode trajectories in addition to the
m = 1 trajectories depicted in Fig. 7.6. The wavelengths used are A = 815 nm for the
Gaussian mode and A\; = 764 nm and A3 = 685 nm for the color-tuned mode. The spectra,
normalized to Iy = ¢2/(47%c), are integrated up to Ls; ~ 81Zp for the m = 1 trajectories
and Ly ~ 27Zg for m = 3, all initialized at 90 = a,/(Y0kum). These are all plotted
in Fig. 7.7.a as a function of w/272w;. Integrating over the same propagation distance,
the spectrum is more intense, though at a lower frequency for a color-tuned pulse (blue) as
opposed to a non-tuned pulse (red). The lower frequency can be compensated for by going to
a higher-order mode. For example, the m = 3 superposition has higher frequency radiation

outputted than for m = 1. A color-tuned m = 3 pulse (green) has the same intensity as
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an m = 1 pulse (blue). Increasing the mode number decreases the slippage length of non-
tuned modes, leading to even lower intensities (purple). The ability to arbitrarily control the
output frequency is one of the many benefits of the color-tuned scheme. This can be seen
in Fig. 7.7.b where we have integrated up to 200Zr = 53 cm and the color-tuned modes
greatly increase in intensity.

In all of these examples, the emitted radiation is of relatively long wavelength. For
m = 1 we have 5.9 pym for non-tuned and 12.2 pum for color-tuned modes; for m = 3 we
have 1.97 pum for non-tuned and 2.5 pum for color-tuned modes. This is infrared radiation
and a plasma undulator is not very useful or practical for the generation of radiation of
such long wavelengths, when a standard semiconductor laser could more readily produce
the same wavelengths. The real benefit of a plasma undulator comes from the generation
of short wavelength radiation in the x-ray regime, which can be achieved by using higher

energy electrons.
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Figure 7.6: Plot of the trajectories of an electron propagating in the wake of an m = 0 and
m = 1 laser driver. Three trajectories in the wake of non-tuned modes (dashed red) initialized
at zo = 0; in the wake of non-tuned modes (solid red) initialized at xy = K/(7oky1); and in
the wake of color-tuned modes (blue) that are properly initialized.

7.4 High-Energy, Color-Tuned Synchrotron Source

The primary objective of a light source is to generate high-frequency radiation. To achieve

this it is necessary to use high-energy electron bunches with at least 79 = 1000, both with
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Figure 7.7: The spectra corresponding to the trajectories in Fig. 7.6. Panel (a) presents an
integration of the energy up to slippage lengths L, = 81Z; for m = 1 and Ly = 277y for
m = 3, while panel (b) presents an integration up to 200Zg for both. The spectra are for:
non-tuned m = 1 wakefield (red); color-tuned m = 1 wake (blue); non-tuned m = 3 wake
(purple); and m = 3 color-tuned wake (green).
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traditional and plasma-based undulators. Unlike the low-energy case, in which the electron
velocity is the same as the group velocity of the laser, in the high-energy case the electron
bunch will dephase and either be lost or outrun the drive laser. This process is known as
dephasing.
In general the dephasing length for a Hermite-Gaussian mode can be expressed a
3

1A
Lgepn = 5)\—5[1 +RY(m 4 n+ 1)

3
and similarly for Laguerre-Gaussian modes, Lqepn & %%[1—1—;@2(2@—#%1— 1)]~%. This dephasing
length is on the order of the slippage length L, when operating at the plasma resonance, i.e.,

L ~ ry~ \,/m, such that,

L - _
L_ ~ ]{7207“3[/{27T|(m1 + nl) — (mz + HQ)H 1— 4[7T|(m1 + Tll) — (m2 + TLQ)H 1.
d

Therefore, dephasing cannot be ignored even for a moderate energy electron bunch, i.e.,
Y S 100. Tt can also be deduced that higher-order modes will be less impacted by dephasing
than lower-order modes, which is desirable since higher-order modes can be used to generate
higher synchrotron frequencies. Dephasing for a high-energy bunch can be addressed using
the transverse field synchronization of Eq. (4.28) and the channel radius dependence of
Eqgs. (4.29) and (4.30). In this case, the evolution equations for the normalized plasma

wavenumber k, and channel radius 7 are

dlz:p ]%2 ~y 1 K2
drp _ 2 1n 1
& o P 27 (7.19)
and ,
Pr 2o\ L, ey

A comparison of these expressions for /%p and 7 can be seen in Fig. 7.8.

Using a channel profile with tapered channel radius, which corresponds to laser spot
size for matched propagation, i.e., rs/rg = R/Ry, we can model an electron bunch of 1000
particles injected into the wake of a color-tunned, multimode laser pulse. Since the spot size
is changing we must also modify the modal contributions so that energy is conserved, i.e.,

Co — Cy/7 and C,, — C,,/7. In this example, we use an m = 0 mode with \g = 815 nm



CHAPTER 7. APPLICATION OF COLOR-TUNING TO PLASMA UNDULATORS 123

13
— k, only
1.2] == k- fixed fields
— s - fixed fields
w 117 o kp - const. wy
& 1o | — rs -const. wy
0.8
0 5 10 15 20 25 30 35 40

T/ZR

Figure 7.8: Plot of the normalized plasma wavenumber lg:p and channel radius 7 for various
longitudinal tapering profiles. Density tapering of Eq. (7.19) with 7# = 1 (red). Tapering
of density (dashed purple) and radius (solid purple) such that the bunch is fixed in phase
with both the transverse and longitudinal fields, as described by the coupled system of Egs.
(7.19) and (4.30). Tapering of density (dashed blue) and radius (solid blue) so that bunch is
fixed with respect to the transverse fields and the undulation frequency w, remains constant,
Egs. (7.19) and (7.20).

and an m = 7 mode with A\; = 581 nm and a bunch of initial energy o = 1000, zero energy

spread AE/E = 0 so that all particles start with the same longitudinal velocity, and the

bunch has an rms spot size o, = (r?)1/2 = 0.1 um with corresponding rms momentum o, =
mecyoks, (). This gives a normalized transverse emittance of €, = ——/(22)(p2) — (xp,)? =

0.32 pm. Similar numerical parameters are used as in the case with the low-energy electron
except now the modes are initialized with Cy = 0.1 and C; = 0.43C,, where we allow
for minor betatron oscillations for a more realistic bunch. The bunch is also initialized at
kpoCo = —217/2 and x¢ = a,/(Yoks,7). The undulator strength for this case is a,, = 0.34 and
there will be a small contribution due to betatron motion, ag = yoks, xp, = 0.02, where z;, is
the average oscillation amplitude of the electron trajectory (oscillations in the y-plane are
neglected).

Trajectories for the high-energy case can be seen in Fig. 7.9 for four different conditions,
where the average orbits are plotted in black. For a longitudinally uniform parabolic channel
the bunch will pass through different phases of the wake and beat between two different

frequencies (red) until expelled from the wake by the defocusing phase of the wake, shown
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in Fig. 7.9.a. Simple tapering of the density, described by Eq. (7.19) with constant channel
radius 7 = 1, is not sufficient to have a properly radiating bunch, resulting in increasing
undulator wavelength until the particles are eventually lost (green) as in Fig. 7.9.b. One
can use density tapering in addition to fixing the phase of the transverse fields to the bunch
via the spot size evolution equation Eq. (7.20) to initially guide the bunch at the proper
frequency. Eventually the wavelength will begin to decrease until the particle is lost again
(purple), Fig. 7.9.c.

Lastly, one can use density tapering, as described by Eq. (7.19), with a spot size equation
specifically chosen to keep the undulator frequency constant. This tapering scheme can be
derived by simply taking the derivative of Eq. (7.6) and setting it to zero such that the
undulator frequency remains constant. We differentiate k, and r, with respect to 7, replacing
ro with g, and set k; = k and my = n; = 0. Likewise we will assume that k; and £y remain

constant, even though they are technically functions of r4(7) and k,(7). This gives

1 4 1 4
—(— 1] — —[(——
kl[(/@gr3<m1+”1)+ ] kQ[(k:grg(

(ks — k)l (T)KL(T) — 4lka — Ky (ma + na + D))l (7) /ré(1) = 0,

dkbeat o d |:k§

dr dr |2

m2+n2)+1]H =0,

where " denotes d/dr. The above equation can be reduced to a first-order differential equation

by replacing k;, with a density taper solution for fixing the transverse fields, Eq. (7.19). After

dr Km \ 3.3 (9 1K
— = - o 7.21
a7 (M) a ( 272 ) (2

where k., = (kp, — ko)/k*/[km — ko(m + 1)]. Eqgs. (7.19) and (7.21) will prevent dephasing

rearranging terms we get

and result in constant undulator frequency at w,, as shown in Fig. 7.9.d. Such an electron
bunch will propagate until the particles reach the following limit,

]

Rl R S
The spectra for these four cases can be seen in Fig. 7.10. Using proper tapering allows for

K

a narrow and intense peak at a wavelength of A, 7 = 3.12 nm (solid blue line).
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Figure 7.9: The trajectories of a bunch of 1000 test electrons in the wake of an m = 0
and m = 7 laser driver with various channel taperings: (a) no channel tapering, (b) only
density tapering, (c¢) tapering of the channel density and radius so that the bunch is fixed
with respect to the phase of both the transverse and longitudinal fields, and (d) tapering of
density and radius such that the bunch is fixed with respect to the transverse fields but also
so that the undulator frequency w, remains constant.

7.5 Chirped Synchrotron Pulses

While in many cases one seeks to have an undulator that produces radiation at a constant
frequency, there are other applications for which a chirp may be beneficial [131]. A chirped
radiation pulse can be achieved by using a slight mismatched, tapered channel to slowly
modify the undulator frequency and thereby introduce a controlled chirp to the generated
synchrotron radiation, specifically using Eqs. (7.10) and (7.19) and modifying them slightly.

First, they are linearized with respect to a small parameter €, i.e., /%p = 1+e/%p1 and 7 = 14-€ry,
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Figure 7.10: The spectra corresponding to the trajectories in Fig. 7.9.

and parameters ay, and a, will be introduced via € = oy, € and K,,, = (o /g, ) Ko, yielding

kp(7) = 1+ ag, (1 + K2 (7/Zg), (7.22)
(1) =1+ a,Kp(1+ & (7/ZR), (7.23)

where € is set to unity and we are assuming that 7 < 7,. These equations are valid on the
length scales in consideration and allow us to vary and tune the tapered plasma channel via
ag, and a,.

As a test case we will use Gaussian mode m = 0 and higher-order mode m = 11 with
Ao = 815 nm and A\j; = 513 nm and again an electron bunch of initial energy vy = 1000. This
bunch will be initialized at k(o = —417/2, o = a,/(Y0ku11), and og, = 0.1 pm. The laser
will be initialized with Cy = 0.1 and C; = 0.387Cy. The undulator and betatron strength
parameters for this case are a, = 0.207 and ag = 0.04. This is done for 1000 particles. The
results for this numerical example can be seen in Fig. 7.11, where again the average orbit per
bunch is plotted in black. In Fig. 7.11.a we have plotted the full numerical solution for Eqgs.
(7.19) and (7.21) (red). In Fig. 7.11.b we have the linear taper described by Eqs. (7.22) and
(7.23) (orange) with ay, = a, = 1. Fig. 7.11.b effectively demonstrates that a linear taper
is a good approximation. In Fig. 7.11.c we have oy, = 1 and «,, = 5 for the linear taper
(pink), causing the wavelength of the undulator to rapidly decrease. In Fig. 7.11.d we have
ay, = 1.2 and a, = 0 (turquoise), causing the undulator wavelength to increase. Fig 7.12

shows the energy spectra and the time-frequency spectra for the four trajectories. The peak
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is at wy = 29gwy,11/(1 4 a2 /2 + a3/2). The a, = 1,a, =5 case yields a negatively chirped
spectrum while o, = 1.2, ;. = 0 yields a positive chirp. The slope and width of the chirp
can be tuned by varying the initial parameters. The peak wavelength in all three cases is

Ay = 2.25 nm.

0 10 20 30 40 50

] 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

T/ZR

Figure 7.11: The trajectories of a bunch with N=1000 test particles in a channel linearly
tapered with respect to density and radius: (a) a nonlinearly tapered channel Eqgs. (7.19)
and (7.21), (b) a linear taper, Egs. (7.22) and (7.23), with ay,, = 1 and a,, = 1, (¢) oy, = 1
and o, = 5, and (d) a, = 1.2 and o, = 0.

7.6 Summary

In this chapter we have sought to utilize the principle of color-tuning developed in Sec. 6.4
and to apply it to the plasma undulator concept. These calculations will further enable

the idea of a plasma undulator as an alternative to traditional, magnetic-based synchroton
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Figure 7.12: The energy spectra corresponding to the trajectories in Fig. 7.11. In (a) we
compare the spectra from an optimal, numerically-determined, density taper according to
Eqgs. (7.19) and (7.21) versus a linear taper, Eqs. (7.22) and (7.23). The energy spectrum
in (b) corresponds to a positive chirp in frequency while (c) corresponds to a negative chirp.
The corresponding time-frequency spectra: (d) the trajectory from the linear tapering, (e)
positive chirp, (f) negative chirp.

systems. A limiting factor in previous conceptions of the plasma undulator has been slippage
between modes that propagated at different group velocities. In the examples anaylzed,
we used the Hermite-Gaussian basis. However, an identical analysis can be made in the
Laguerre-Gaussian basis, particularly if one wished to generate circularly polarized radiation
as opposed to linearly polarized.

Several examples were explored. The first example was of a low-energy electron whose
energy corresponded to the group velocity of the laser, meaning that it would propagate along

in phase with the plasma wave. This was done for the superposition of the Gaussian, m = 0,
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mode, with m = 1 and m = 3 modes for both non-tuned and color-tuned scenarios as well as
various initial conditions. In order to generate soft x-rays a higher-energy electron bunch was
used with 79 = 1000. At higher energies dephasing becomes an issue and a longitudinally
tapered plasma channel needed to be used. In the provided case a superposition of m = 0
and m = 7 modes was chosen and a particular plasma tapering derived that allowed the
radiation emitted to be of constant frequency. Our last example explored linear tapering
with tunable parameters for the purpose of introducing a chirp into the generated radiation.
This was done for the superposition of m = 0 and m = 11 modes.

Experimental implementation of a color-tuned undulator depends on several factors. Tt is
important to have fine control over the phase and polarization of individual laser modes. A
potential technological impediment is that one needs to generate higher-order modes at high
intensities, although this can be relaxed if additional radiation from betatron oscillations is
not a concern. Control and tuning is also necessary as one must be able to select modes that
correspond to laser frequencies that can be readily generated using modern laser technology.
Ti:Sapphire lasers typically have a wide wavelength range from 650 nm - 1150 nm, allowing
for a single system to generate the necessary mode content. Alignment and combination of
multiple modes will be a potential complication, but advancement in fiber optics and pulse-
front-tilt control will ameliorate this. Lastly, it will be necessary to have greater control over
the longitudinal and transverse properties of the plasma channel.

Advanced light sources are a promising application of LPA technology. They can be
realized by coupling an LPA to either a traditional magnetic undulator or to a plasma-based
undulator as proposed in this manuscript. While magnetic based systems are currently well
understood, a plasma-based system will be far more compact, allowing for advanced x-ray
spectroscopy in a university laboratory as well as new possibilities for medical applications.
An additional application would be XUV lithography, as a plasma based light source would
provide a cheap and compact means of optical etching [132].

Future work could include exploring a more rigorous formulation, without assumptions
with respect to the transverse scale lengths. This may be important since higher-order
modes have much steeper gradients that may contribute nonlinearly to the evolution of the

wakefields and particle trajectories. Likewise, a more rigorous description of redshifting
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could be incorporated into plasma undulator studies as well as the three-wave interactions

between two modes of different colors and the plasma.
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Chapter 8

Nonlinear Excitation of Higher-Order

Modes and Filamentation

8.1 Introduction

All of our work up to now has assumed the preexistence of higher-order modes, either as
an accidental or intentional aspect of the laser pulse. However, higher-order modes can
also be excited naturally through the interaction of a laser with the plasma. Throughout
our analysis of higher-order mode propagation so far we have assumed the validity of linear
wakefield theory. While it is difficult, if not impossible, to find analytical solutions that
fully describe nonlinear effects, it is possible to introduce such effects perturbatively. The
two primary phenomena neglected so far are relativistic self-focusing and the full, nonlinear
density perturbation due to the ponderomotive force. These phenomena were introduced in
Secs. 3.9 and 3.10.

Self-focusing and ponderomotive effects, while closely related, can be somewhat decoupled
depending on the parameters considered. According to Eq. (3.41), self-focusing dominates
when P/P. = (k,roa0)?/16 > 1, in the case of circular polarization. This power ratio inher-
ently assumes a2 < 1. The ponderomotive effect, Eq. (3.50), drives a density perturbation
of the form k, *V?y = aj/(yk;rg), where for a Gaussian pulse V ~ 1/rg. The boundary
determining whether ponderomotive effects or self-focusing dominates scales approximately

as Nsg/pa = (P/P.)/(dn/ng) o< yokyrg, where k> oc ng. This means that ponderomotive effects
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will dominate when the system is less relativistic, the plasma is tenuous, or when there are
very sharp gradients in the transverse laser mode profile, i.e., the presence of higher-order
modes or a very small spot size, and vice versa for self-focusing.

In what follows we will also demonstrate that the appearance of higher-order modes can
describe the onset of filamentation, the process by which a laser pulse breaks up into smaller
beamlets. Filamentation is relatively poorly understood from a theoretical point of view but
has an important impact on broad, k,ro > 1, and high-power, P/P. > 1, laser pulses. The
term filamentation can be somewhat misleading as originally it described the focusing of a
laser beam into a single, narrow filament, which at lower power ratios, e.g., P/P. ~ 1 — 10,
does predominate. However, when P/P. 2 10, the main laser beam will break up into several
smaller beamlets, also known as multiple filamentation. Henceforth we will be assuming a

laser wavelength of A = 27/k = 0.815 pm, i.e., a TiAl,O3 laser system, such as BELLA.

8.2 Growth Rate of Tranverse Modulations due to

Nonlinearities

One way to characterize the excitation of higher-order modes and the onset of filamentation
is to calculate the relevant growth rates. Instability analysis is commonly used to study how
a perturbation may grow over time. Important examples in LPA physics are self-modulation
[133], stimulated Raman scattering [27], and the laser-hose instabilities [134]. Here we will
explore what is known as the transverse modulation instability (TMI). First we will explore
early examples and then derive new growth-rates more specifically tailored to higher-order

mode excitation and filamentation.

8.2.1 Early Work on Transverse Modulation Instability:

Dispersion Analysis

According to an early study of TMI [135], the instability due to self-focusing can be derived

from the perturbed wave equation,

H? a n n
2 7 P 2 (7 1 o o
(7= gm)a=s 5 (i) ol
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where 7 is the second-harmonic density perturbation. Coupling this equation to the first-
order perturbation of the continuity and momentum equations, Eqgs. (3.12) and (3.15), we

can write the following dispersion relation:
(W2 — K2?)? — Awgw — ks - k)2 + agwics(wy — kJc*) =0,
where wy and kg are the frequency and wave number of the excited instability and
¢ =3/4— (W —w))/(4w® — ).

If we assume k || ks, we can derive the maximum growth rate for the self-modulation
instability, i.e., longitudinal perturbations along the length of the laser pulse, I'symax =
(w? /4w)ages which occurs for ky < (w/c)agcs’®. 1f instead we take k - ky = 0, we obtain the

case for self-focusing. Assuming wy ~ adw and k ~ ag(w/c), we obtain
1
W iﬁiksc[(k:sc/w)Q — adcs(wy/w)?)V2.

The first term in the brackets describes diffraction and acts as a stabilizing factor. The
maximum wave number for instability is k& < (w,/ c)aoci/ ? and the maximum growth rate is

the same as for self-modulation,
(2 2
st,max - (wp/4w)a0057

but occurs at a kg = (wy/w)ksm, Where kg, = (w/c)ag(cs/2)Y2.

8.2.2 Bespalov-Talanov Theory of TMI

We can also model the perturbation when longitudinal variation is slow, i.e., at the scale of
the laser envelope as opposed to the response of the plasma to the small-scale oscillations
at the laser wavelength. We start with the nonlinear transverse diffusion equation, i.e., the

paraxial equation with a cubic nonlinearity [136, 137, 138|,

O ky
2~ o 2~ Upiaios
VLa—QZE—kpa+3|a| a=0.

Here we only consider one transverse direction, i.e., V| = 0/0z, and assume circular polar-

ization for the laser. If we break up the vector potential into real and imaginary components,
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a — a, +ia;, and let a, ~ expli(k,x + k,7)], we can write the longitudinal wave number as

1
2 2 2\ 7.2 2\ 1.2
The growth rate is defined as the imaginary component of the longitudinal wave number,
i.e.,, I' = Qlk;], leading to exponential growth in the exponent of the wave amplitude, i.e.,

~ikrm ~ eI, The imaginary component in Eq. (8.1) arises when ag > 1, however this is

e
unphysical given our original assumption regarding a low intensity laser. While a cubic non-
linearity may be an appropriate description of self-focusing in a standard dielectric medium,
it does not fully describe the effect due to relativistic self-focusing in a plasma. Nonetheless,
this instability analysis suggests that a plane wave will be destabilized by smaller wave num-
ber perturbations rather than larger ones, as can be seen in Fig. 8.1.a, where A = 0.815 um

and ng = 1.5 x 10'® cm™3.

8.2.3 Relativistic Transverse Modulation Instability

To further our analysis so that it better complements our problem, we can modify the Lorentz
factor in the paraxial wave equation using Eq. (3.27) such that 1/ &~ 1/ — a2/~3, where
Yo = m. We also assume that the perturbation to the laser vector potential is driven
not by a plane-wave but by a Gaussian pulse, i.e., aGg = agexp(—z?/r2). Given this, the

paraxial wave equation 3.33 now reads

da Kk K
Via— Qia—z - 7—1;@ + ,y—gaga =0. (8.2)

The dispersion relation for Eq. (8.2) can be derived for a = ag + a by solving for @ = u + iv,
giving
2

kz:_%k?{km%(l_ag)km% (1_ag)k3_%(5_ag)]}. (8.3)
This relation allows physical results for small interaction distances since the assumption
a® < 1 no longer constrains the drive pulse, but only the seed instability a. However, we are
still assuming that we are exciting only plane-wave instabilities. Example growth rates can
be seen in Fig. 8.1.b - ¢, where the laser spot size varies as (a) o = 10 pm, (b) ro = 50 pm,
and (c) ro = 200 pm. The corresponding maximum growth rate for Eq. (8.3) as a function

of both ay and ng is plotted in Fig 8.2.
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Figure 8.1: Example growth rates as function of transverse wave number £, assuming ny =
1.5 x 10" cm™ and A = 0.815 um. (a) Growth rates for plane-wave instabilities (o & 00).
Growth rates assuming a Gaussian drive pulse with (b) 7o = 10 pm, (¢) ro = 50 pm, and
(d) 7o =200 pm.
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Figure 8.2: The maximum growth rate as a function of ny and ag, corresponding to Eq.
(8.3).

8.2.4 Tranverse Modulation Instability of Higher-Order Modes

It is possible to estimate the TMI growth rate of a higher-order, Laguerre-Gaussian mode

driven by a Gaussian drive pulse. Starting with Eq. (8.2) and using a seed of the form
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2 /n2 . . . . .
L,(2r?/r¥)e " /m6e=%T we can write the dispersion relation as

1 |32 2
B=—{Z1+2 1 —— (4 —a?)(2 1)k?
T 4k2 { Tﬁ [ + ,U(,U + )] + 7,27[5)( aO)( K + ) P

6~ e

where 1, is the spot size of the excited mode. Plotted in Figs. 8.3 and 8.4 are the growth
rates for different values of ag and ny. From these plots we can deduce that the excitation
of higher-order modes is significantly more sensitive to variations in ay than in ny. Larger
values of ag not only excite higher-order modes but also increase the total number of modes
excited for a given choice of parameters. It also appears that higher background densities ng
will allow for simultaneous excitation of more modes, while lower densities allow for greater
differentiation between which modes are excited.

Filamentation is a fundamentally three-dimensional phenomenon and a highly intractable
problem, particularly given the fact that it is induced by two similar but distinguishable
phenomena, the ponderomotive force and self-focusing, that perturb both the laser mode
a and the background plasma n. Likewise, these growth rates only characterize the initial
onset of filamentation and do not describe the long-term evolution of filamentary structures.
This prevents decisive determination of growth-rates as the filamentation process evolves
over several steps. Still, it is possible to gain some intuition from these growth rates. For
example, the onset of instabilities and the appearance of higher-order modes is a function of

drive pulse amplitude ag, spot size ry, and background plasma density ng.

8.3 Higher-order mode spot size and critical power

A useful way to characterize laser pulse evolution is to write a spot size equation, the general

form introduced in Ref. [139], which reads:

0%r, 4 4

This comes directly from the SDE, where we have differentiated Eq. (B.12) and substituted
Eq. (B.13) for the o/ term. Here F' is the source term determined by the SDE, Eq. (B.9).
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Figure 8.3: Growth rates for higher-order Laguerre-Gaussian modes as a function of density
ng, considering mode numbers m = 0 (blue), 1 (orange), 2 (green), 3 (red), 4 (purple), and
5 (brown), assuming spot sizes ro = r, = 50 um. In these figures the drive laser vector
potential is varied as (a) ap = 1.1, (b) ag = 1.3, (¢) ag = 1.5, and (d) ao = 1.7.

F' can include any and all effects of interest as long as they are perturbative or analytically

integrable, i.e., self-focusing and parabolic channel guiding. The full equation for a Laguerre-
Gaussian mode L, of spot size 7, is

Fr, 4 k—ri s SR 0
or2 ks {1 T 4+ 1) [(R[F] [Fu]) + 7 (S[F)? = 0. [FH])]} (8.5)

The source term has an imaginary component only if there exists a dissipative mechanism,

e.g., leakage or heating of the plasma. Ignoring J[F),], we have

82@ 4 F
or2 kQTfL Ha,(p+1) (8.6)

In order to consider the effect of self-focusing we assume a mode that is driven by itself

alone, ie., v7' = (1 +a2L2()e )™ = 1 — ja,L2, (§)e”® for circular polarization, where
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Figure 8.4: Growth rates for higher-order Laguerre-Gaussian modes as a function of ay,
considering mode numbers m = 0 (blue), 1 (orange), 2 (green), 3 (red), 4 (purple), and 5
(brown), assuming spot sizes 1o = 7, = 50 pum. In these figures the background density
varies as (a) ng = 3 x 101" ecm™3, (b) ng = 6 x 10" cm™3, (c) ng = 1 x 10'® cm™3, and (d)
no =2 x 10'® em 3.

& =2r?/r2. Assuming also a matched plasma channel, the source term can be written as

/{2 00
B Gt [ (14 ) [1 - 58007 | L)Lt (67

Here we are accounting for both self-focusing and parabolic channel guiding, but not pon-

deromotive forcing. Inserting Eq. (8.7) into the spot size equation Eq. (8.6) and collecting

2 “op
or (1 T———“+&>, (8.8)

terms yields

or? ~ 723\ R P R,
where R = R/ro, Zr = mro/ A, and each mode’s spot size is normalized to the characteristic

spot size, i.e., Ty = T's.m/T0-
The first term in the parentheses of Eq. (8.8) describes vacuum diffraction, the second
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channel guiding, and the third term the effect of self-focusing, which is

P (kptC)?

¥§:'ﬁ?ITTK:LM49LA®%*%§ (8.9)

The critical self-focusing power ratio P,/P. can be approximated by the following relation:

P, _ P/ P,

P. ™ 16T ()220 pu(pp — 1))

where P,/ P, is the critical self-focusing power ratio for a circularly-polarized Gaussian pulse
and I'(x) is the gamma function. The critical power, P,, normalized to F, is plotted in Fig.

8.5, where higher-order modes require more power in order to self-focus. The fourth term in

Eq. (8.8) is
RM A402 / 3 —2¢
_— = e d bl

Re 4R (u+1) L (€ Eul0) ¢

which describes the coupling between the channel and relativistic self-focusing.
For the first four Laguerre-Gaussian mode numbers, ;= 0,1, 2, and 3, we can write the

following s