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Abstract The study of the stationarity of hydrologic time series is a common method to detect
climate change and the influence of anthropogenic activities on hydrologic variability. The
power of different stationary tests is herein investigated with generated hydrologic time series.
This study also combines a standard unit root test and an alternative stationary test to yield a
new hybrid statistical analysis (HSA) model. The HSA model is implemented to study the
effect of climate change in the Hamun Lake basin, Iran. The implementation results demon-
strate that there is evidence of climatic change in the Lake Hamun basin.

Keywords Unit-root test .Stationary test .Hybrid statisticalanalysis (HSA)model .Stationarity.

Longmemory . Climate change

1 Introduction

Hydrologic time series have various components such as trends, seasonality, auto regressive
persistence, long memory, outliers and others. The characteristics of hydrologic time series
may vary due to climate change and human activities. Therefore, the study of the properties of
hydrologic time-series is a common method of detection of climate change and of the influence
of anthropogenic activities on hydrologic variability.
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The stationarity of hydrologic time series is commonly assumed for historic time series in the
evaluation of water systems (i.e. Farhangi et al. 2012; Ahmadi et al. 2014; Bozorg-Haddad et al.
2013, 2014, 2015a, b; Fallah-Mehdipour et al. 2013a, b, c, Fallah-Mehdipour et al. 2014; Shokri
et al. 2013; Bolouri-Yazdeli et al. 2014), yet, several studies have considered climate change and
land-use change in hydrologic studies (i.e. Ahmadi et al. 2015; Ashofteh et al. 2013a, b; Ashofteh
et al. 2015a, , c; Jahandideh-Tehrani et al. 2015). Several studies have evaluated the stationarity of
hydrologic time series to detect climate change and the variability of hydrologic phenomena (i.e.
Milly et al. 2008; Delju et al. 2013; Cheng et al. 2014; Yilmaz et al. 2014; Abdul-Aziz et al. 2013;
Ashofteh et al. 2016). These studies have demonstrated that the condition of stationarity is not
satisfied under a changing environment. Also, Estrada and Perron (2014) presented a literature
review of application of stationary tests to detection of climate change.

Hitherto, many stationarity tests have been developed inmany fields of inquiry, especially those
dealing with economic data (see, Estrada and Perron 2014, for example). A standard unit root
(SUR) test was presented byDickey and Fuller (1979) that ensures that the null hypothesis of a unit
root is accepted unless there is strong evidence against it. Kwiatkowski et al. (1992) developed a
stationary test that carries out a test of the null hypothesis of stationarity against the alternative of a
unit root and it is herein called the alternative stationary (AS) test. Although the power of these tests
has been assessed primarily with economic time series (i.e., Becker et al. 2006; Sephton 2008;
Khedhiri and El Montasser 2012), they differ from hydrologic time series in many respects.

This work examines the power of the standard unit root (SUR) and the alternative stationary
(AS) tests in evaluating the stationarity of hydrologic time series and detection of climate
variability using artificial time series. Also, a hybrid statistical analysis (HSA) model is herein
developed as a combination of the SUR and AS tests. The HSA model is applied to evaluate
the effects of climate change and human activities on precipitation, evaporation, and stream
flow time series in the Hamun Lake basin.

2 Methodology

The main goal of a stationarity test is to ascertain whether or not the statistical characteristic of a
time series changes over time. Therefore, stationary tests are suitable methods for investigating
climate change. This study employs the SUR and AS tests, which are based on linear regression
and require the normality assumption for statistical inference. Therefore, normalizing of time series
is discussed in this section. Thereafter, the SUR and AS tests are described and subsequently, the
HSAmodel is developed based on the SUR and AS tests. Lastly, the SUR and AS tests as well as
the HSAmodel are implemented to detect stationarity and long memory of hydrologic time series.

2.1 Normalizing Time Series

This study employs the logarithmic transformation on original time series (OTS) of precipi-
tation, evaporation, and streamflow. It is known that the logarithmic transformation converts
an exponential trend present in data into a linear trend as follows:

yt ¼ Ln xt þ að Þ t ¼ 1; 2; :::;T ð1Þ
in which yt = normalized time series (NTS) at time t, xt = OTS, t = time step, a = shift constant,
and T = number of time steps in a time series. The shift constant (a) in Equation (1) assures that
all data in the time series to be transformed are larger than 1 (Osborne 2010).
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2.2 The Standard Unit Root (SUR) Test

The standard unit root (SUR) tests are conducted through Ordinary Least Square (OLS)
estimation of regression models (Dickey and Fuller 1979; Said and Dickey 1984). Consider
the AR(1) model:

yt ¼ ρ:yt−1 þ εt t ¼ 1; 2; :::; T ð2Þ
in which ρ= an autoregressive coefficient of first order, εt= a real valued sequence of
independent random variables with mean zero and variance σ2, at time step t. First, ρis
estimated, if |ρ| < 1, the process yt is stationary, otherwise it is non-stationary. Maximum
Likelihood method may be used to estimateρ (Wang et al. 2005), as follows:

ρ ̂ ¼
XT
t¼2

y2t−1

 !−1

�
XT
t¼2

yt⋅yt−1 ð3Þ

in which ρ ̂ = the estimator ofρ. The SUR test statistic is calculated with Equation (4):

t ̂ ¼ ρ ̂−1
σ ̂
ρ ̂

ð4Þ

in which σ̂ρ ̂ = the usual OLS standard error for the estimated coefficient, which is calculated
with Equations (5) and (6):

σ̂ρ̂ ¼ Se
XT
t¼2

y2t−1

 !−1
2

ð5Þ

Se ¼ 1

T−2

XT
t¼2

yt− ρ ̂ yt−1

� �2
ð6Þ

Dickey and Fuller (1979) derived the limiting distribution of the statistic t under
the null hypothesis of non-stationary. The null hypothesis is accepted if tis greater
than a critical value of t with significance level α. Otherwise, the null hypothesis is
rejected. The basic autoregressive unit root test has been generalized to accommodate
the general AR (p, q) models (Said and Dickey 1984). Said and Dickey (1984)
showed that the Dickey-Fuller procedure, which was originally developed for
autoregressive representations of known order, remains valid asymptotically for a
general ARIMA (p, 1, q) process in which p and q are of unknown orders. The
critical values of t at significance levels α=1, 5, and 10 % are −3.44, −2.836, and
−2.57, respectively (Fuller 1976).

2.3 The Alternative Stationary (AS) Test

The alternative stationary (AS) test was introduced by Kwiatkowski et al. (1992), and can be
applied to test stationarity about a fixed level (AS-L) or a deterministic trend (AS-T). Let yt,
t = 1, 2,…, T, be the time series in interest whose stationarity of yt is evaluated. Assume that yt
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can be decomposed into the sum of a deterministic trend, a random walk, and a stationary error
with the following linear regression model:

yt ¼ rt þ βt þ et ð7Þ
in which rt. = a random walk, i.e., rt. = rt.-1 + ut, ut = independent and identically
distributed (iid) normal process with zero mean and varianceσ2

u, respectively, or

(N 0;σ2
u

� �
),β t = a deterministic trend with slope β, and et = a stationary error at time

step t. The null hypothesis is β = 0 when the series is stationary about a fixed value.
Trend stationarity is another type of stationarity in which the series is stationary about
a deterministic trend. In this case the null hypothesis is σ2

u = 0, against the alternative

of a positiveσ2
u. In this case the intercept is a fixed value. In the case of level

stationarity, the residuals et are from a regression of y on the intercept only, that is
et ¼ yt−y (y= mean of normalized time series). The mean is usually a fixed level in
the AS-L test. In the case of trend stationary (the AS-T test) the residuals et are from
the regression of y on an intercept and time trend, thus, et = εt. Let the partial sum St
of et be defined by Equation (8):

St ¼
Xt

j¼1

e j ð8Þ

Let σ2 be the long-run variance of et, which is defined as σ2 ¼ lim
t→∞

t−1E S2t
� �

. A consistent

estimator of σ2 is calculated from the residuals et by Equation (9) provided by Newey andWest
(1987):

σ̂2 lð Þ ¼ 1

T

XT
t¼1

e2t þ
2

T

Xl

j¼1

wj lð Þ⋅
XT
t¼ jþ1

et⋅et− j ð9Þ

in which σ2 lð Þ = estimated long-run variance, l = truncation lag, and wj(l) = an optional
weighting function in time step of j, that corresponds to the choice of a special window,

in this study Bartlett (1950) window used: wj lð Þ ¼ 1− j
lþ1. The AS test statistic is given

by Equation (10):

η ¼ 1

T2

XT
t¼1

S2t
σ̂2 lð Þ ð10Þ

in which η = the AS test statistics. The null hypothesis of the AS test is H0 : η < 1,
which represents stationarity. Critical values of the AS test were tabulated by
Kwiatkowski et al. (1992). Critical values of the AS test statistics for the AS-L test
for 1, 5, and 10 % significant levels are 0.739, 0.463, and 0.347, respectively. The
critical values for the AS-T test for significance levels 1, 5 and 10 % are 0.216,
0.146, and 0.119, respectively.

An important practical issue for implementation of the SUR and AS tests is the
specification of the truncation lag values of l. Kwiatkowski et al. (1992) state that the
AS test statistics are fairly sensitive to the choice of l, and for every series the value
of the test statistics decreases as l increases. If l is too small then the remaining serial
correlation in the error biases the test towards rejecting the null hypothesis. If l is too
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large then the power of the test will suffer. The larger the l, the less likely the null
hypothesis will be rejected. The lag length is chosen according to Equation (11)
(Schwert 1989):

l ¼ int c⋅
T
100

� 	1
4

" #
ð11Þ

in which int[] = the nearest integer of the calculated expression and c = a constant. Schwert
(1989), Kwiatkowski et al. (1992), and Wang et al. (2005) considered the value of c to be 4 or
12. The stationarity test is herein performed for lags ranging from 1 through 24 in addition to
those calculated with Equation (11). The range of 1 to 24 was chosen because the lag
calculated with Equation (11) places it within this range. This allows an evaluation of the
capacity of this well-known equation to choose a proper lag. Moreover, the lag range 1 to 24
permits conducting a sensitivity analysis of the stationarity tests in hydrologic time series.

2.4 The Hybrid Statistical Analysis (HSA) Model

The HSA model combines features of the SUR and AS tests. Figure 1 shows the pseudo code
of the HSA model.

The AS-L and AS-T tests can be used with the HSA model. The HSA-L and HSA-T refer
to HSA models about a fixed level and about a deterministic trend, respectively. To satisfy the
SUR and AS assumptions the OTSs are transformed to NTSs using Equation (1). The HSA
model is unable to ascertain stationarity in the presence of seasonality due to the weakness of
the SUR and AS tests, as reported by Becker et al. (2006) and Khedhiri and El Montasser
(2012). The seasonality of hydrologic time series is removed by monthly standardization or
using Fourier analysis. Subsequently, the NTSs are standardized using monthly means and
variances to remove the annual seasonality and achieve standardized time series (STS). Trend
detection and slope estimation of NTSs and STSs were carried out in the HSA model with the
Mann-Kendall test and Sen slope estimator, respectively. The Mann-Kendall test and Sen slope
estimator were implemented in MATLAB (MATLAB 1998) in this work.

Begin 
Normalize time series 
Remove the trend and seasonality 
Conduct the SUR test 
Conduct the AS test 
If the null hypothesis of the SUR test is rejected

If the null hypothesis of the AS test is rejected
Time series has long memory 

Else  
Time series is stationary 

End if 
Else 

If the null hypothesis of the AS test is rejected 
Time series has unit root  

Else 
There is not conclusive result 

End if 
End if 
End

Fig. 1 Pseudo code of the HSA model
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2.5 Analysis of the Power of the SUR and AS Tests

This work relied on 1000 artificial time series (ATS) each with length of 500 values
for the analysis of the power of the SUR and AS test. The artificial time series were
generated randomly with a standard normal distribution (zero mean and unit variance).
Subsequently, the three cases including monotonic trend of mean; monotonic trend of
variance; and outliers were added to the ATSs.

A random number in the interval of 0.001 to 0.01 was generated to represent the
trend slope in assessing the power of the SUR and AS test in the presence of a
monotonic trend in the mean. A plus sign (increasing trend) or a minus sign
(decreasing trend) was assigned to the trend slope randomly. This signed number is
a trend slope, and by multiplying this signed number times the time steps (1 through
500) the trend component was produced. By adding the trend component to the ATS
an artificial time series with monotonic trend in the mean (ATSM) is calculated. The
trends of ATSMs were analyzed with the Mann-Kendall test. The Mann-Kendall test
established that 888, 66, and 46 series have a significant trend at significance levels
equal to 10, 5 and 1 %, respectively.

Another 1000 ATSs were generated to analyze the power of the SUR and AS tests in the
presence of a monotonic trend in the variance. A uniform random numbers in the range 0.0021
to 0.0039 for each ATS was generated. Artificial time series with a monotonic trend in the
variance (ATSV) for each time steps (1 through 500) were calculated by multiplying the
generated series of uniform random numbers times the ATSs and times the time steps. The
Mann-Kendall test was employed to evaluate whether or not the trends of all the 1000 ATSVs
were significant. The Mann-Kendall results show that 952 ATSVs were trend free and 48
ATSVs had a significant trend at the 5 % significance level. These 48 ATSVs were de-trended
by using the Sen slope estimator. This assured that all the ATSV have zero mean and
pronounced non-stationary variance. In other words, ATSVs have first order stationarity and
second order non-stationarity.

An additional set of 1000 ATSs was generated and employed to analyze the power of the
stationarity test in the presence of outliers. In the STSs of precipitation, evaporation, and
streamflow it was calculated that the occurrence probability of outliers is about 0.0056 (the
probability of a value larger than 3 times the variance of a time series with 336 time steps is
0.0023 according to the normal distribution). Also, the magnitude of outliers in the STSs is
about 3 to 4.5 times the variance. The occurrence of outliers, as it can be seen in the analyzed
time series, is considered to be random. Based on this observation, outliers 3 to 4.5 times the
variance, that is, with a probability of 0.0056 (uniform distribution) and random occurrence,
were added to ATSs and 1000 artificial time series with outliers (ATSO) with length of 500
each were generated.

2.6 Study Area and Data

The HSA model was implemented to detect stationarity and long memory (persistence) of
hydrologic time series, which include standardized precipitation, evaporation, and streamflow
time series of the Lake Hamun basin. Hamun Lake lies in southeastern Iran. Monthly time
series of precipitation, evaporation, and streamflow for the period 1982–2009 were analyzed in
this study. Table 1 lists the geographic locations and data for the hydrometric and synoptic
stations within the Lake Hamun basin.
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3 Results

3.1 Results of Analyzing the Power of the SUR and AS Tests with Artificial Time
Series

The power of a statistical test in classic statistics is defined as the probability of rejecting the
null hypothesis of the test when the null hypothesis is true. The null hypothesis of SUR test is
that the time series is non-stationary whereas the null hypothesis of AS test is that the time
series is stationary.

Results of the stationarity test for the artificial time series are shown in Fig. 2. Figure 2(a)
shows that the power of the SUR test increases as the lag increases. The AS test, on the other
hand, is effective in testing stationarity in the presence of monotonic trend in mean. This is so
because the stationarity of the ATSMs are firmly rejected with the AS-L test, and the AS-T test
accepted the stationarity of the majority of the ATSM series about a deterministic trend. Thus,
if a monotonic trend in the mean exists in a time series it is suggested that the longest
significant lag be selected for the SUR test, or, that proper de-trending method be applied
on a time series prior to applying the SUR test. Another feature which can be inferred from
Fig. 2(a) is the long memory of the ATSMs. It is seen in the HSA flowchart of Fig. 1 that if the
null hypotheses of the SUR and AS test are rejected then the time series has a long memory.
Figure 2(a) shows the null hypothesis rejection of most ATSMs by the SUR and AS-L tests for
small lag. This indicates long memory of the ATSMs. A long memory occurs when there is a
trend in the mean of the ATSMs. This is why the long memory vanishes as the lag increases.

Figure 2(b) depicts the low power of the stationarity tests in assessing the ATSVs’ non-
stationarity of variance, given that the majority of the ATSVs reported stationarity when they
were, in fact, non-stationary. Results achieved by analysis of the power of the SUR and AS
tests under the presence of monotonic trend in variance show that they are ineffective in testing
such non-stationarity.

Figure 2(c) portrays the percent of ATSOs reported as stationary at a significance level
equal to 5 %. It is seen in Fig. 2(c) that the SUR test rightly reported all of the 1′000 ATSO
stationary. Therefore, the SUR test is powerful in testing stationarity in the presence of outliers.
The AS test, on the other hand, reported some ATSO as non-stationary. Specifically, the AS-T
test is less powerful than the AS-L test in testing the stationarity of time series with outliers
because the latter test reported, correctly, more stationary series than the former. The same
phenomenon was observed in daily stream flow time series by Wang et al. (2006). Otero and
Smith (2005) showed that the AS test power is sensitive to outliers’ values and locations.
Similar results were obtained in this section. The trend component of the AS-T test is adversely
affected when outliers are present at the beginning and end of a time series, which may lead to
considerable errors. This makes the AS-T test a questionable choice to test time series when
outliers are present. So it is recommended the AS test not be used for stationarity testing when
outliers are present.

Table 1 Data about Hamun Lake basin’s stations

Station name Station type Longitude Latitude Altitude (m)

Zabol Synoptic 61° 29´ 31° 20´ 489

Sistan river Hydrometric 61° 44´ 30° 51´ 490
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3.2 Results of Testing Stationarity of Hydrological Time Series of Hamun Lake
Basin Using the HSA Model

First, the time series are normalized to generate NTSs. The NTSs may have trends, seasonality,
and outliers, but it was mentioned that the HSA model is unable to ascertain stationarity in the
presence of seasonality due to the weakness of the SUR and AS tests. So the NTSs were
standardized with the monthly mean and standard of deviation and the STSs were calculated.
The ACF of NTSs and STSs are plotted in Fig. 3 that reveals that unlike NTSs, seasonality is
deleted from STSs.

Fig. 2 Results of the SUR and AS tests power analysis in (a) presence of monotonic trend in the mean; (b)
monotonic trend in the variance; and (c) outliers
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The trends of the STSs were investigated using the Mann-Kendall test and the
results are listed in Table 2. Rejection of the null hypothesis of the Mann-Kendall test
means that the trend is significant. Mann-Kendall statistic in Table 2 is the calculated
statistic of the Mann-Kendall test. The null hypothesis is rejected at a 5 % signifi-
cance level if the Mann-Kendall statistic is smaller than −1.96 or larger than +1.96.

Fig. 3 ACF plots related to NTSs and STSs of Hamun Lake basin

Table 2 Mann-Kendall test results of Hamun Lake basin’s STSs with 5 % significance level

Time series

Parameter Precipitation Evaporation Streamflow

Null hypothesis Rejected Rejected Rejected

Mann-Kendall statistic -2.7 3.3 -5.21

Sen slope -1.8 × 10−3 1.8 × 10−3 -3.8 × 10−3
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Sen slope denotes the Sen slope estimator in Table 2, whose positive values indicate
an increasing trend and negative values indicate decreasing trends.

The HSA model was employed to test the STS of precipitation, evaporation, and
streamflow of the Hamun Lake basin and the results are reported in Table 3.

3.2.1 Results of Testing Stationarity of Precipitation STSs of Hamun Lake Basin Using
the HSA Model

The Mann-Kendall test results of precipitation STS at a 5 % significance level are
listed in Table 2. It is worth mentioning that the observed trend in STS of precipi-
tation is a combination of the trends in the mean and in the variance. Also results of
the precipitation STS stationarity HSA-L test at 5 % significance level are reported in
Table 3.

It is evident in Table 3 the long memory of precipitation STSs. The main reason for this
long memory is the significant trend reported by the Mann-Kendall test in Table 2. In general,
all the precipitation time exhibit a significant decreasing trend.

Table 3 Results of the HSA model for Hamun Lake basin’s STSs with 5 % significance level

Precipitation Evaporation Streamflow

Lag HSA-L HSA-T HSA-L HSA-T HSA-L HSA-T

1 Long memory Long memory Long memory Long memory Long memory Long memory

2 Long memory Long memory Long memory Long memory Long memory Long memory

3 Long memory Long memory Long memory Long memory Long memory Long memory

4 Long memory Long memory Long memory Long memory Long memory Long memory

5 Long memory Long memory Long memory Long memory Long memory Long memory

6 Long memory Long memory Long memory Long memory Long memory Long memory

7 Long memory Long memory Long memory Long memory Long memory Long memory

8 Long memory Long memory Long memory Stationary Long memory Long memory

9 Long memory Stationary Long memory Stationary Long memory Long memory

10 Long memory Stationary Long memory Stationary Long memory Stationary

11 Long memory Stationary Long memory Stationary Long memory Stationary

12 Long memory Stationary Long memory Stationary Long memory Stationary

13 Long memory Stationary Long memory Stationary Long memory Stationary

14 Long memory Stationary Long memory Stationary Long memory Stationary

15 Long memory Stationary Long memory Stationary Long memory Stationary

16 Long memory Stationary Long memory Stationary Long memory Stationary

17 Stationary Stationary Long memory Stationary Long memory Stationary

18 Stationary Stationary Long memory Stationary Stationary Stationary

19 Stationary Stationary Long memory Stationary Stationary Stationary

20 Stationary Stationary Stationary Stationary Stationary Stationary

21 Stationary Stationary Stationary Stationary Stationary Stationary

22 Stationary Stationary Stationary Stationary Stationary Stationary

23 Stationary Stationary Stationary Stationary Inconclusive Inconclusive

24 Stationary Stationary Stationary Stationary Inconclusive Inconclusive
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3.2.2 Results of Testing the Stationarity of Evaporation STSs of Hamun Lake Basin Using
the HSA Model

The trends of evaporation STS were investigated using the Mann-Kendall test and the
results are listed in Table 2 that shows that there is a significant increasing trend. The
results of HSA-L model for STS of Evaporation are listed in Table 3. It is worth
mentioning that the trend of the STS of evaporation is significant by the Mann-
Kendall test, and the HSA-L model also reports long memory.

The HSA-T model was employed with the evaporation STS, in order to investigate the
effect of trends on long memory. Our results indicate that the main source of long memory of
the evaporation STS was the presence of a trend. For example, the long memory of the
evaporation STS was reduced from lag 19 to 7.

3.2.3 Results of Testing Stationarity of Streamflow STSs of Hamun Lake Basin Using
the HSA Model

The results of the Mann-Kendall at the 5 % significance level are reported in Table 2.
A pronounced decreasing trend is evident in all streamflow STSs. The HSA-L model
results for the streamflow STS are listed in Table 3. Long memory arises in these
series because of the trend. In order to investigate the impacts of trend on long
memory, the HSA-T model was also applied to stream flow STS, with results
tabulated in Table 3 which shows that the long memory of the streamflow STS
decreases dramatically.

3.3 Climate Change and Long Memory in the Hamun Lake Basin

This study applied the developed HSA model for testing the non-stationarity of
precipitation, evaporation, and streamflow time series searching for evidence of
climatic change effects in the Hamun Lake basin. It is concluded that the precipitation
time series are non-stationary. Also, the evaporation time series were found to be non-
stationary, due to significant trend, but the trends do not follow similar patterns. On
the other hand, severe non-stationarity of stream flow time series was observed, which
does not correspond with precipitation and evaporation non-stationarity. The main
reasons of observed trends in stream flow time series are: crop- pattern changes,
increase in the cultivated area, and increase in urbanization in the Hamun Lake basin,
which have encouraged water withdrawal from rivers and increase the dependence on
surface water bodies. Some non-stationarity was reported in the precipitation and
evaporation time series, provide a strong evidence of significant change towards drier
conditions. Therefore, it is concluded that climate change has affected the hydrology
of the Hamun Lake basin.

One key advantage of the HSA model is its ability to detect long memory. Our results show
that by removing of trend and seasonality the long memory of hydrologic time series falls
dramatically. Also, it was observed that the long memory in stream flow STS is stronger than
in precipitation and evaporation STS. The main reason for this difference is the complex
underlying mechanism in streamflow production in basins. Storage is mainly responsible for
the long memory in streamflow STS. Storage in streamflow processes may arise from springs,
snow cover, and groundwater recharge.
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4 Concluding Remarks

This study investigated the power of the standard unit root (SUR) and alternative stationary
(AS) tests in assessing the stationarity of hydrologic time series and detecting climate variability
using artificial time series. The hybrid statistical analysis (HSA) model was developed as a
combination of the SUR and AS tests and it was employed to investigate the effects of climate
change and human activities on precipitation, evaporation, and streamflow flow time series in
Hamun Lake basin. The results showed that the power of the SUR test to study climate change
which cause monotonic trend in mean of hydrologic time series depends on the lag length while
the power of the AS test is sensitive to outliers’ values and locations. The AS test, on the other
hand, is effective for testing stationarity in the presence of monotonic trend in mean. It is also
concluded that although these tests are effective in testing first- order stationarity of hydrologic
time series, they do not provide any information about climate change which causes second-
order non- stationarity. In addition, one advantage of the HSA model is its ability to detect long
memory. Lastly, it was concluded that Lake Hamun basin is affected by climate change and
streamflow time series also exhibit non-stationarity caused by human activities including crop-
pattern changes, increase in the cultivated area, and urban growth.
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