
UC Irvine
ICS Technical Reports

Title
Functional abstraction of programmable embedded systems

Permalink
https://escholarship.org/uc/item/09n3s84p

Authors
Mishra, Prabhat
Astrom, Jonas
Dutt, Nikil
et al.

Publication Date
2001-01-29

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/09n3s84p
https://escholarship.org/uc/item/09n3s84p#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may protected
by Copyright Law
(Title 17 U.S.C.)

Functional Abstraction of
Programmable Embedded ystems

Prabhat Mishra, Jonas Astrom, Nikil Dutt, and Alex Nicolau
{ prnishra, astrom, dutt, nicolau}@ics.uci.edu

http://www.cecs.uci.edu/-aces

UCI-ICS Technical Report #01-04
Dept. of Information and Computer Science
University of California, Irvine, CA 92697

January 29, 2001

Functional Abstraction of Programmable Embedded Systems

Prabhat Mishra Jonas Astrom Nikil Dutt Alex Nicolau
pmishra@cecs.uci.edu astrom@cecs.uci.edu dutt@cecs.uci.edu nicolau@cecs.uci.edu

Architectures and Compilers for Embedded Systems (ACES) Laboratory
Center for Embedded Computer Systems, University of California, Irvine, CA 92697, USA

Technical Report #01-04
Dept. of Information and Computer Science

University of California, Irvine, CA 92697, USA

January 2001

Abstract

1 5 2002

Rapid Design Space Exploration (DSE) of a processor-memory architecture is feasible using au
tomatic toolkit (compiler, simulator, assembler) generation methodology driven by an Architecture
Description Language (ADL). While many contemporary AD Ls can effectively capture one class
of architecture, they are typically unable to capture a wide spectrum of architecture and memory
features present in DSP, VLIW, EPIC and Superscalar processors. The main bottleneck has been
the lack of a functional abstraction underlying the ADL covering a diverse set of heterogeneous
architectures. We present in this report the functional abstraction needed to capture such wide
variety of programmable embedded systems. We demonstrate the power of this approach by speci-
fying two very different processor-memory architecture using functional abstraction approach. We
outline the automatic software toolkit generation from the given ADL description using functional
abstractions. We show initial results of rapid design space exploration of architectures specified
using functional abstraction based ADL approach.

Contents

1 Introduction

2 Our Approach

3 Survey of Contemporary Processor-Memory Architectures
3 .1 MIPS R4000 .
3.2 Intel Itanium
3.3 MIPS RlOOOO
3 .4 MPC7 450: Power PC Microprocessor
3.5 TI C6x
3.6 Summary of Architectures Studied
3.7 Similarities and Differences .

4 Functional Abstraction
4.1 Structure of a Generic Processor
4.2 Behavior of a Generic Processor
4.3 Generic Controller
4.4 _Interrupts and Exceptions
4.5 Structure of a Generic Memory Subsystem .
4.6 DMA Controller .
4. 7 Coprocessor

5 Contemporary Example Architectures
5.1 MIPS RlOK Architecture .
5.2 TI C6x Architecture .

6 Experiments
6.1 Experimental Setup
6.2 Results

7 Conclusion

8 Acknowledgements

2

4

5

5
6
6
9

11
13
13
16

18
18
25
26
28
28
28
29

29
29
32

35
35
36

36

38

List of Figures

1 The Flow in our approach
2 R4000 processor internal block diagram
3 Intel Itanium Processor Block Diagram
4 Rl 0000 Microprocessor Block Diagram
5 MPC7450 processor block diagram
6 TI C6x processor block diagram
7 TI C6x CPU data paths
8 Example of distributed control
9 Simplified RI OK architecture
10 Simplified TI C6x architecture
11 Simplified TI C6x architecture with novel memory organization
12 Cycle counts for the memory configurations

List of Tables

Procesor-Memory features of different architectures. R4K: MIPS R4000, SA: Stron
gAnn, 56K: Motorola 56K, c5x: Tl C5x, c6x: Tl C6x, MA: MAP JOOOA, SC: Star
core, RIO: MIPS RJOOOO, MP: Motorola MPC7450, U3: SUN UltraSparc lli,

5

7
8

10
12
14
15
26
30
33
34
37

a64: Alpha 21364, IA64: lntel!A-64, PS2: Sony PlayStation 2000 . 17
2 The list of common sub-functions . . . 20
3 Control table for RIOK architecture . . 31
4 The memory subsystem configurations . 36

3

1 Introduction

Contemporary processor architectures vary widely in terms of their architectural features. Pro
gram address generation and instruction dispatch features are widely used in DSP processors.
VLIW processors use strong compiler support to ensure correct execution of long instruction
words. Superscalar processors on the other hand, use hardware scheduling techniques, register
renaming etc. Multimedia processors support SIMD operations. Furthermore, each architecture
has a different type of branch prediction, different execution style - in-order/out-of-order, different
ways of detecting hazards , different way of handling interrupts/exceptions and last but not the
least different memory subsystems[l6]. Emerging architectures have combined features of classi- ·
cal architectures (DSP, VLIW and Superscalar). For example, the Intel Itanium combines features
of VLIW and superscalar; the TI C6x family combines features of DSP and VLIW. In order to
allow rapid design space exploration of such heterogeneous processor-mem<?ry architectures, we
need the ability to capture a wide variety of such architectural features. Moreover, during design
space exploration using customized IP cores designers may want to add certain architectural fea
tures (some superscalar features to a VLIW processor core for example) to see how it impacts area,
power, performance and other important design parameters. Similarly, to find the best match be
tween the application characteristics and the memory organization features (caches, stream buffers,
access modes, SRAM, DRAM etc.), the designer needs to explore different memory configurations
in combination with different processor architectures, and evaluate each such system for a set of
metrics (such as cost, power and performance) [16]. To enable this, designers need (i) a way of
specifying wide variety of processor-memory features and (ii) automatic software toolkit genera
tion to enable rapid design space exploration.

In this report we present a functional abstraction based specification technique using the EX-.
PRESSION ADL [4], which is capable of capturing a wide variety of processor-memory archi
tectures. The previous ADL-based approaches have, in general, been targeted towards a specific
class of architectures, with limited descriptive facilities for complex memory organizations. EX
PRESSION [4], on the other hand, is an ADL designed to capture a wide range of programmable
architectures, including DSP, VLIW, and Superscalar, together with their distinct architectural fea
tures. This is possible due to the functional abstractions we have developed to support such an
ADL-driven approach. Indeed, an ADL such as EXPRESSION critically needs the power of reuse
in composing heterogeneous architectures using functional abstraction primitives; this facilitates
rapid generation of software toolkits for a wide range of architectures, thus allowing effective
design space exploration of heterogeneous processor-memory architectures.

The rest of the report is organized as follows. Section 2 outlines our approach and the overall
flow of our environment. Section 3 surveys the contemporary processor-memory architectures.
Section 4 presents the functional abstraction needed to capture the wide variety of architectural
features and memory configurations. Section 5 illustrates how contemporary example architectures
can be described using this functional abstraction. Section 6 shows initial results of design space
exploration using this approach. Section 7 concludes the report.

4

2 Our Approach

Figure 1 shows the flow in our approach. In our IP library based Design Space Exploration
(DSE) scenario, the designer starts by specifying the design using the functional abstractions using
EXPRESSION ADL.

Section 3 surveys contemporary processor-memory architectures from each architecture domain
viz., VLIW, DSP, Superscalar, EPIC, and RISC etc. We have studied the similarities and differ
ences of each architectural feature in different architecture domain. Based on our observations
we have defined the necessary generic functions, sub-functions and computational environment
needed to capture wide variety of architecture and memory features. These parametric functions
and sub-functions are described in a pseudo language. It is important to note that the genera
tion of generic simulation models (our case in C++) is a one-time activity and independent of the
processor-memory architecture. Section 4 describes the functional abstractio~ in detail.

The software toolkit including compiler, simulator, and assembler can be automatically gener
ated from the ADL description using generic simulation models. The input application program is
compiled and simulated and the feedback is used to modify the architecture specification.

I:!
0

:,:: I
Cl

1 Feedback

________ / -------Generic
Simulation

Models

.~ I

§: I I

~ ~ Design Space Exploration 1 _____________________________ /

Figure 1. The Flow in our approach

3 Survey of Contemporary Processor-Memory Architectures

We have studied contemporary processor-memory architectures from each architecture domain
viz., VLIW, DSP, Superscalar, EPIC etc. In this section we describe in detail the processor and
memory features of the Intel Itanium, MIPS R4000, MIPS RlOOOO, TI C6x and PowerPC. Sec
tion 3.6 summarizes the processor-memory features for different architectures. We conclude this
section by summarizing the similarities and differences of the architectural features available in
wide a variety of processor-memory architectures.

5

3.1 MIPS R4000

The MIPS R4000 [14] is a RISC microprocessor. It contains 32 general purpose 64-bit reg
isters. When operating as a 32-bit processor, the general purpose registers are 32-bits wide. All
instructions are 32-bits wide. The superpipeline design of the processor results in an execution rate
approaching one instruction per cycle. Pipeline stalls and exceptional events are handled precisely
and efficiently. The floating-point unit (FPU) is located on-chip and implements the ANSI/IEEE
standard 754-1985. The processor block diagram is shown in Figure 2. The processor has eight
pipeline stages:

1. IF - Instruction Fetch, First Half

2. IS - Instruction Fetch, Second Half

3. RF - Register Fetch

4. EX - Execution

5. DF - Data Fetch, First Half

6. DS - Data Fetch, Second Half

7. TC - Tag Check

8. WB - Write Back

The R4000 processor uses an on-chip TLB that provides rapid virtual-to-physical address trans
lation. The primary instruction and data caches reside on-chip, and can each hold 8 Kbytes. Ar
chitecturally, each primary cache can be increased to hold up to 32 Kbytes. An off-chip secondary
cache (R4000SC and R4000MC processors only) can hold from 128 Kbytes to 4 Mbytes. All
processor cache control logic, including the secondary cache control logic, is on-chip.

3.2 Intel Itanium

The Intel Itanium [6] belongs to the EPIC category. It has combined features of VLIW and
Superscalar processors with out-of-order execution. It maximizes performance via hardware and
software synergy. Advanced features, e.g., prediction, speculation etc., enhance instruction level
parallelism. It has 6-wide EPIC hardware under precise compiler control. It fetches upto six in
structions per cycle and has hierarchy of branch predictors. It has dispersal of upto six instructions
on 9 ports and has support for register remapping and register stack engine. It uses register read
and bypasses to get the data, uses scoreboard and predicated dependencies. Figure 3 shows the
processor block diagram. It has 10-stage in-order pipeline:

1. IPG - Instruction pointer generation.

2. FET - Fetch

6

£34-bit System Bus

System S-cnche Daw Cache 41111- P~cact1e ~ lnstructian
Control Control Control Cache

~i l J I ·-~ • ! J'
,,,.,.

CPO ~· CPU FPU 'i'

Exception/Control
CPU Registers FPU Registers

Registers

ALU Pipeline Bypass

Memory r·.fonagernent
Registers Luad Aligner/Store Driver FP Multiplier

-1 ransla!,on lri!eger M uHipllerlDMder FP Divider
Lc0kasice
Buffers

• Address. Uni1

FP Add, Convert

PC lncrementer
Square Ruot

! _!

fJ1pe.:ine Control

Figure 2. R4000 processor internal block diagram

7

3. ROT - Rotate

4. EXP- Expand

5. REN - Register rename

6. WLD - Word-line decode

7. REG - Register read

8. EXE - Execute

9. DET - Exception detect

10. WRB - Write back

Figure 3. Intel Itanium Processor Block Diagram

It has 128 General registers, 128 Floating-point registers, 64 Predicate registers, 8 Branch reg
isters, 128 Application registers and Instruction Pointer (IP) register. It has separate LI caches for
data and instruction. L2 cache is a combined one. Floating-point units interact directly with L2
cache.

8

3.3 MIPS RlOOOO

The MIPS RlOOOO ([17], [20], [21]), is a dynamic, superscalar microprocessor that implements
the 64-bit Mips-4 instruction set architecture. It fetches and decodes four instructions per cy
cle and dynamically issues them to five fully-pipelined, low-latency execution units. Instructions
can be fetched and executed speculatively beyond branches. Instructions graduate in order upon
completion. Although execution is out of order, the processor still provides sequential memory
consistency and precise exception handling. With speculative execution, it calculates memory ad
dresses and initiates cache refills early. It's hierarchical, nonblocking memory system helps hide.
memory latency with two levels of set-associative, write-back caches. To cope with the complexity
of out of order superscalar processing, the RI 0000 uses a modular design that locates much of the
control logic with in regular structures, including the active list, register map tables, and instruction
queues.

RlOOOO fetches and decodes four 32-bit instructions per cycle. If one of these is a branch,
its target address is calculated, the branch path is predicted, and instructions are speculatively
fetched along the predicted path. Decoded instructions are put into a 32-entry Active List and three
16-entry instruction queues. The Active List keeps track of the original instruction order. The
instruction queues dynamically issue each instruction to the appropriate execution unit after all
its operands have become available. The Floating-point Queue issues instructions to the floating
point multiplier and adder. The Integer Queue issues instructions to two AL Us. The Address Queue
issues instructions to the Load/Store unit (Address Calculation Unit and TLB) and the Data Cache.
The Address Calculation Unit calculates 44 bit virtual memory addresses and TLB translates them
to 40-bit physical addresses. Instructions graduate in order upon completion. Although execution
is aggressively out-of-order, the processor still provides sequentia!'memory consistency and precise
exception handling.

Figure 4 shows the major blocks in the RI 0000 processor. Integer and floating-point register
files each contain 64 physical registers. The integer register file has seven read ports and three
write ports. The floating-point register file has five read and three write ports.

The instruction pipeline continues to fetch and decode instructions as long as there is room in
the Active List and queues. When resource conflicts or operand dependencies prevent the queues
from issuing instructions in their program order, the queue's dynamic scheduling._ hardwire. tries
to find other instructions that can be issued instead. For frequent operations, each execution unit
is fully pipelined with a single-cycle repeat rate. The ALUs execute simple integer operations
with single cycle latency, so that dependent instructions can be issued on consecutive cycles. The
floating-point units has 3-stage pipelines, but special bypass logic reduces latency to only two
cycles. Integer operands are loaded from the Data Cache with two cycle latency. Floating-point
loads take an extra cycle of latency, because these units are physically farther from the Data Cache.

During instruction decode, integer and floating-point registers are renamed using separate map
ping tables. This hardware handles almost any sequence of four instructions, including sequences
with dependencies and instructions destined to the same functional units. Renaming maps 32 log
ical register numbers into 64 physical registers. The physical registers contain both committed
and speculative values. When each instruction is decoded, its result is assigned to a physical reg-

9

::t!

£
i
B
~

0 ...
~ .s

CIJ iB -c
C-
""E :a -; () +'""

:.0 c ... I

- u N
u 1;

.11 .:!
..;:,£"

~ () .c - 0

0 .t::
.c
cb

g
"O
.t::
.c

"'" r,o

&i
:::J
C)

E
41

~
fJ.)

Up to 4 R1oooo Mcroproc£1GSCrs may oo diroctty connoctoo.

Sy.stem Interface Secondary Cache Ct Ir

128-ot mfill 128-blt rg.fill orwrltg.00.Ck

Instruction Cache Data Cache
32 Kbytoo 32 Kbytoo

2-way Sftt Assocta.tiV9 2-way Sftt Assccta.trvtt

2 Banks 16-wo rd blocks
Unali;;int!d acooos B-WO rd bloc ks

.t=
c

::J
.c
u
c
!

'°

RlOOOO

Figure 4. RlOOOO Microprocessor Block Diagram

10

19+Wa

Tag

W+7

l:lata

ti- Secondary Cache

SC.AddrQSS

Secondary Cache
(512 Kbytoo to 16 Mbvtoo)
Synchronous State RAM

(4-Mbyttt cachtt mquiroo
tg.n :256 Kx1 B- bit

RAM chips)

ister from a Free List of currently unused registers. At graduation, this register contains a new
committed value, and the previously assigned physical register is returned to the Free List. Thus,
each physical register is uniquely associated with just one value; dependencies can be determined
simply by comparing physical register numbers.

The direction taken by a conditional branch is predicted using a 2-bit algorithm, based on a
512 entry Branch History Table. Each prediction is verified as soon as its branch condition is
determined. if its prediction was incorrect, all instructions fetched along the mis-predicted path
are immediately aborted, and the processor state is restored from a 4-entry Branch Stack. This
allows rapid recovery for up to four mis-predicted branches. Fetching along predicted paths may .
have initiated unneeded cache refills. However, the cache is non-blocking, and the correct path can
be fetched while these refills are completed.

The integer queue issues instructions to the two integer arithmetic units: ALUl and ALU2. The
integer queue contains 16 instruction entries. Up to four instructions may be· written during each
cycle; newly decoded integer instructions are written into empty entries in no particular order.

The floating-point queue issues instructions to the floating-point multiplier and the floating
point adder. The floating-point queue contains 16 instruction entries. Up to four instructions may
be written during each cycle; newly decoded integer instructions are written into empty entries in
no particular order. The adders and multiplier are each fully pipelined with single-cycle repeat rate
and latency of just two cycles.

The address queue issues instructions to the load/store unit. The address queue contains 16
instruction entries. Unlike the other two queues, the address queue is organized as a circular First
In First-Out (FIFO) buffer. A newly decoded load/store instruction is written into the next available
sequential empty entry; upto four instruction may be written during each cycle. The FIFO order
maintains the program's original instruction sequence so that memory address dependencies may
be easily computed. Instructions remain in this queue until they have graduated; they cannot be
deleted immediately after being issued, since the load/store unit may not be able to complete the
operation immediately.

RIOOOO implements a nonblocking memory hierarchy with two levels of set-associative caches.
It finds cache misses early, and begins refills in parallel with other useful work. The on-chip
caches provide concurrent access for instruction fetch, data load and ·store, and refill. All caches
least-recently-used(LRU) replacement algorithm. The Data Cache is 2-way interleaved with inde
pendent tag and data arrays for each bank. These four arrays operate under shared control of the
Address Queue and the External Interface. The queue concurrently processes up to 16 load and
store instructions in four separate pipelines. The primary cache consists of 2K doublewords. The
secondary cache consists of 512K doublewords.

3.4 MPC7 450: Power PC Microprocessor

MPC7450 [9] microprocessors feature a high-frequency superscalar PowerPC core, capable
of issuing four instructions per clock cycle (three instructions + branch) into eleven independent
execution units:

1. Four integer units (3 simple + 1 complex)

11

2. Double-precision floating-point unit

3. Four Altivec [10] units (simple, complex, floating, and permute)

4. Load/Store unit

5. Branch processing unit

..
Interface

to.Memory
Sub-System

Figure 5. MPC7450 processor block diagram

Figure 5 shows the block diagram of the processor. It has separate 32KB, physically addressed
instruction and data caches. Both Ll caches feature cache way locking and are eight-way set
associative. The L2 cache is on-chip with 256-bit interface to Ll. This L2 cache is fully pipelined
with 256 KB eight-way set-associative. It supports off-chip L3 cache up to 2MB.

12

3.5 TI C6x

The TI C6x ([19], [12]) has combined architectural features of VLIW and DSP processors.
Figure 6 shows the block diagram of the TMS320C62x/C67x DSPs. It has separate program and
data memory. The CPU contains:

1. Program fetch unit

2. Instruction dispatch unit

3. Instruction decode unit

4. Two data paths, each with four functional units

5. 32 32-bit registers

6. Control registers

7. Control logic

8. Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight
32-bit instructions to the functional units every CPU clock cycle. The processing of instructions
occurs in each of the two data paths (A and B as shown in Figure 7) each of which contains
four functional units (.L, .S, .M, and .D) and 16 32-bit general purpose registers. It has on-chip
configurable SRAM and off-chip DRAM with page/burst access modes. It can have upto 2 level
of cache hierarchy.

3.6 Summary of Architectures Studied

Table 1 summarizes the processor-memory features for different architectures. Each row of the
table corresponds to a architectural feature. Each column represents a architecture. We have used
processors from different architecture domains - the MIPS R4000 [14] and StrongArm [7] are
RISC processors; Motorola 56000 and TI C5x are DSP processors, TI C6x [12], MAPlOOOA [1],
and Motorola StarCore [8] are VLIW DSP processors; MIPS RlOOOO [11], Motorola MPC7450
[9], Sun UltraSparc Ili [18], and DEC Alpha 21364 are superscalar processors; Intel IA-64 [6] and
Sony Playstation [2] are hybrid processors. The Intel IA-64 architecture has combined features of
VLIW and Superscalar processors with out-of-order execution. The Sony Playstation 2000 has
a superscalar CPU core with VLIW co-processors. An entry in this table, TAB [F, A], represents
the behavior of an architecture A towards an memory feature F. If an entry is marked x then that
feature is supported by that architecture. If an entry is blank then the feature is either not supported
or not applicable (or not known) to that architecture. An entry containing an integer number, n,
means that features is supported n times. An entry containing a series, n-m, implies that the feature
is supported for i times, where (n <= i <= m). Similarly, an entry containing a set, n,m, means
that the feature is supported either n or m times. For example, the table entry with memory feature

13

'CG2x/'C67.x ·de-vke

Pro~jrnm r:1i.ct1eii:n:f;_'}mrn rm:~mort
32 bt.:1t:XJre!:iS
:2!:6 btd;.'J!l!

~ ~

'C62x1C~!x CPU
y_

[Powe! PrCYJflli:ll rmch
d:.v.'in !ft!>itur:lion cbpald1 Co11lrct

in!ltn.t.:ti:m d~
reg~&s

~

~
DataJ p.-iihA Data p:ilh a. Conlrd

OMA, DJW
[Regi~er file A] [Rt!l}~t!r 11~ 13 J lc-;_t~~

I 1 1 14---+ 1 1 1 Te!..1 • • Emulati:m ~ [.u I .s1I .ti.nimJ [.02I .M?J s2I cL2 j
lrf!!flUj."~ ~ ~ ~-

1
..
I"" /vJc;ta:ma

T._ _I_ j
J:t.~ripht.-<ar1,;

Data c;i;:f~t.".'t!.:lf~ in~:n:11·~·
·ri:~1~. H

'.!2 tilaJ:.:ir~.
t>L"fial pi:.in!i,

B . 1£ , :12 tf. dala
t!lr.:.

Figure 6. TI C6x processor block diagram

14

Data path A

Data path B

Figure 7. TI C6x CPU data paths

15

ReQlslf!r
me A

(AO-A15)

2X

iX

Register
fileB

(B0-815)

Control
register

file

Levels of D-Cache and processor name IA64 has value 3, this implies IA-64 has 3 levels of data
cache. The row corresponding to operand read in has four types of values depending on where in
the pipeline the operands are read. The values are - (D: Decode stage), (R: Read stage), (I: Issue
stage), and (E: Execute stage). The row corresponding to Branch Prediction has values which
indicate what method of branch prediction is employed in the respective architecture - (2b: 2-bit
algorithm using branch history table), (BT: BTB based prediction), and (MA: dynamically choose
among multiple algorithms based on local predictor table, global predictor table and branch history
table).

3. 7 Similarities and Differences

Broadly speaking, the structure of a processor consists of functional units, connected using ports,
connections and pipeline latches. Major functional units are the PC unit, fetch unit, decode unit,
branch prediction unit, issue unit, load store unit, TLB, execute unit and completion or writeback
unit. Similarly, the structure of a memory subsystem consists of SRAM, DRAM, cache hierarchy
etc. Although, a broad classification makes the architecture look similar, each architecture differs
in terms of the algorithm it employs in branch prediction, the way it detect hazards, the way
it handle exceptions etc. Moreover, each unit has different parameters for different architectures
(e.g., number offetches per cycle, levels of cache, cache line size etc.). Program address generation
and instruction dispatch features are widely used in DSP processors. VLIW processors use strong
compiler support to ensure correct execution of long instruction words. Superscalar processors on
the other hand, use hardware scheduling techniques, register renaming etc. Multimedia processors
support SIMD operations. The contemporary EPIC architectures uses predication and speculation
to increase instruction level parallelism.

Depending on the architecture a functional unit may perform the same operation at different
points in time. For example, read-after-write(RAW) followed by operand read happen in the de
code unit for some architectures (e.g., DLX [5]), whereas in some others these operations are
performed in the issue unit (e.g., MIPS RIOK [20]). Some architectures even allow operand read
in the execution unit. On the other hand, some architectures do not isslie operations if RAW hazard
is detected while others issue the operation in spite of RAW hazard (use snooping to read the data
at execution stage using feedback paths). In other words, the same functionality is used at different
point in the pipeline for different architecture.

We can observe some fundamental differences from the study above; the architecture may use:

1. the same functional or memory unit with different parameters

2. the same functionality in different functional or memory unit

3. new architectural features

The first difference can be eliminated by defining generic functions with appropriate parameters.
The second difference can be eliminated by defining generic sub-functions which can be used by
different architectures at different point of time. The last one is difficult to alleviate since it is

16

Arc hi tee tu res RISC DSP VLIWDSP l Superscalar Hybrid
I

Processor-Memory R4K l SA 56K C5x C6x I MA SC I RlO MP U3 I a64 IA64
Features I

#of fetches/cycle 2 I I I 8 4 8 4 4 4 4 6

#of fetch stages 2 I 1 1 4 3 1 2 1 1 2
#entries in fetch RS
#of decodes/cycle 2 I I 1 8 4 4 3 4 4

#entries in decode RS 12 8
#of issue units 3 3 1 3 3
#of issues/cycle 6 5 6 4 6 6

entries in issue RS 48 12 35
#operations/instruction I 1 1 1 8 4 I I I 1
#of parallel exec units 8 4 6 5 11 6

Branch Prediction 2b BT MA
Feedback paths x x x
Operand read in D D E R E E E I I I R I
SIMD support x x x x

#entries in completion Q 32 16
Register Renaming x x x x

Dynamic Scheduling x x x x x
Speculation x x
Predication x x

#register files 2 1 3 1 3 3 2 2 3 3 5
#Coprocessors 3 1

#pipeline stages 8 5 3 4 3 5 5-7 7 9 6 10

Levels of D-Caclze 1-2 I 0-2 l 0-2 2 3 2 2 3
cache pre/etch x x x

cache hints x
On-chip SRAM x x x x x

configurable SRAM x
Off-chip DRAM x x x x x x x x x x x x
page/burst mode x x

Write Buffer x x x
Read Buffer x
Victim Buffer ·X

Stack x x x
FIFO x

Z Buffer
On-chip DRAM

DMA x x x x x
parallel mem transfers l 2 2 2 l 2 2

mem pipelining x x

Table 1. Procesor-Memory features of different architectures. R4K: MIPS R4000, SA: StrongArm,

56K: Motorola 56K, c5x: TI C5x, c6x: TI C6x, MA: MAP JOOOA, SC: Starcore, RIO: MIPS RJOOOO,
MP: Motorola MPC7450, U3: SUN UltraSparc Ili, a64: Alpha 21364, IA64: Intel IA-64, PS2: Sony

PlayStation 2000

17

PS2 J

6
1-2

6

6

1-16
12
BT

E
x

x
x

4

2
6,9
l

x

x
x
x

new, unless this new functionality can be composed of existing sub-functions. Section 4 presents
the functional abstraction needed to capture the wide variety of architectural features and memory
configurations.

4 Functional Abstraction

Functional abstraction allows the system designer to describe a wide variety of architectures in a
hierarchical fashion. In this section we present functional abstraction by way of illustrative exam
ples. We first explain the functional abstraction needed to capture the structure and behavior of the.
processor and memory subsystem, then we discuss the issues related to defining generic controller
functionality, and finally we discuss the issues related to handling interrupts and exceptions.

4.1 Structure of a Generic Processor

Broadly speaking, the structure of a processor consists offunctional units, connected using ports,
connections and pipeline latches. Major functional units are the PC unit, fetch unit, decode unit,
issue unit, execute unit and completion or writeback unit. Although, a broad classification makes
the architecture look similar, each architecture differs in terms of the algorithm it employs in branch
prediction, the way it detect hazards, the way it handle exceptions etc. Moreover, each functional
unit has different parameters for different architectures (e.g., number of fetches per cycle etc.).

We capture the structure of each functional unit using parameterized functions. However, generic
functions are not sufficient since each functional unit will perform a different function at different
points of time depending on the architecture. For example, operand read and RAW hazard detec
tion happens in the decode unit for some architectures whereas in ·?Orne others these operations are
performed in the issue unit. Some architectures even allow operand read in execution unit. On
the other hand, some architectures do not issue operations if RAW hazard is detected while others
issue the operation in spite of RAW hazard (use snooping to read the data at execution stage using
feedback paths). Hence, there is a need for parametric sub-functions. Based on the observations
made in Section 3 we have defined the key set of common functions, sub-functions and appropri
ate parameters from our study of wide variety of processor-memory architectures. In the following
paragraphs we describe briefly some of the generic functions and sub-functions used in functional
abstraction.

The program counter latch in the PC unit can be updated in three ways viz., initialization,
through the branch unit or by a normal increment operation. Any functional unit may occupy
single or multiple pipeline stage. For example, the fetch unit uses four pipeline stages for TI C6x
whereas, it uses single stage for the Intel Itanium, MIPS RlOK and other processors. The fetch
unit may or may not have support for branch prediction. It may or may not have a reservation
station. Depending on the architecture it will read a different number of operations per cycle. The
number of operations it delivers to decode unit per cycle is also architecture dependent. We capture
the structure of each functional unit using parameterized functions. The fetch unit functionality as
shown below contains several parameters, viz., number of operations read per cycle, number of
operations written per cycle, reservation station size, branch prediction scheme, number of read
ports, number of write ports etc. While connecting the units these ports will be used.

18

In the following specific example, the fetch unit reads n operations from instruction cache using
current PC address and writes them to the reservation station. It reads from reservation station
m operations and writes them to the output latch (fetch to decode latch). It uses a BTB based
prediction mechanism.

FetchUnit(......)
{

address = ReadPC{)
Instructions = ReadinstMemory(address, n)
WritetoReservationStation(Instructions, n)
outinst = ReadFromReservationStation(m);
WriteLatch(decode_latch, outinst)

pred = QueryPredictor(address)
IF pred
{

nextPC = QueryBTB(address)
SetPC (next_PC)

ELSE
IncrementPC(x)

As shown above, the fetch unit is described using sub-functions. Each sub-function is defined
using appropriate parameters. The notion of generic sub-function allows the flexibility of specify
ing the system in finer detail. It also allows reuse of the components. These components can be
pre-verified. So the task of verification will reduce to mainly performing interface verification at all
levels. The concept of sub-function is necessary because the same functionality can be performed
in different units of different architectures as described earlier.

We have defined sub-functions for all common activities e.g., ReadLatch, WriteLatch, Read
Operand, RenameRegister etc. Table 2 provides the list of common activities we have identified ..
The first column represents the name of the common function, the second column describes the
activity, and the last column describes the input and output parameters of the function.

We have defined parameterized functions for all functional units viz., fetch unit, branch unit,
decode unit, issue unit, execute unit, completion unit, PC Unit, Latch, Port, Connection etc. using
sub-functions:

DecodeUnit(number of entries i the reservation station,
number of input instructions,
number of instructions decodable per cycle,
number of operations read each cycle,)

Data=ReadLatch(fetch_latch)
Data=Reorder branch(Data)
CompletionQinsertOperations(Data)
RSinsertOperations(Data,m)
RSReadOperand(r)

UNTIL (e) instructions are issued or until queue is empty

Operation=RSReadOperation
Resource=Unit_receive(Operation)
IF Resource

19

Table 2. The list of common sub-functions

Function Name Description Parameters

ReadLatch Read a latch for n operations Latch X, n, Data

WriteLatch Write data to a latch Latch, Data

Query Predictor Query prediction status Branch address, status
QueryBTB Query predicted address Branch and memory address
UpdateBTB Send address to branch unit ID, target address

UpdatePredictor Update branch predictor ID, prediction type
Branch Other Other branch address ID, Address
IncrementPC Increase PC with X X, New PC

SetPC New PC address X X, New PC
Read PC Get PC PC address

RSinsertOperation Add one operation to RS Operation
RS InsertOperati o ns Add X operations to RS Operations, X
RSDeleteOperation Dequeue operation from RS ID

RS Read Operation Read one operation from RS Operation
RS Read Operand Read n's operations operands RS, n, RS

Read Operand Read one operand Address bus, Reg name, Data
Read Operands Read all source operands Operation X

WriteResult Write operand Data/ Addr bus, Reg name, Data
MarkDestB usy Mark Register busy Register name

ReleaseDest U nrilark Register busy Register name
CheckRAW Check for RAW Register name, status
CheckWAW Check for WAW ID, status
Check WAR Check for WAR ID, status
IsUnitBusy Is unit X busy X, status

IsUnitStalled Is unit X stalled X, status
IsOperandRead Is operand X read ID, X, status
IsOperandsRead Are all operands read? ID, status

MarkOperandRead Mark the operand as read ID,X
HasUnitRS Does unit X have RS? X, status

SetUnitStalled Set Stall bit for unit X X, True/False
SetUnitBusy Set Busy Bit for unit X X, True/False

CompletionQDeleteOperation Remove from completion queue ID
ReadPredi cate Check predicate register X Pred reg. X, status
WritePredicate Set predicate register X to Y Pred reg., value

ExecuteOperation Execute an operation Srcl, Src2, func, Result
ExecuteBranchOperation Execute branch Src 1-2, func, Result, Cmp_reg

MarkOperationDone Mark operation done in comp queue ID
IsOperationDone Query if operation done ID, status

CompletionQinsertOperation Add operation to comp queue Operation
CompletionQinsertOperations Add operations to comp queue Operations
CompletionQDeleteOperation Delete an entry from comp queue ID

FlushCompletionQ Remove all operations above ID ID
IsOperation Valid Query if operation is valid ID, status

SetValidBit Set valid bit to X for operation ID,X
IsBranchAhead Is there a branch ahead? ID, status
CheckPredicate Query ID's predicate ID, status

IsBranchOperation Is operation a branch? ID, status
IsS toreOperati on Is operation a store? ID, status

IsMapped Is X in mail@ng table Reg X, status
GetPhysicalRegister For a logical register Logical, physical reg

GetFreeRegister Return a free physical reg Register number
MapRegisters logical to physical Logical, physical reg

ComputeBusybit check if unit is busy Incoming operations,
free entries, cycles left

IF (IsBranchOperation(ID))

UpdateBTB(ID, dst)

RSDeleteOperation(ID)
Add Read bit to instruction (true in case of immediate type)
Generate ID for instruction

IF register_renaming
{

RenameRegister(ID);

WriteLatch(Operation,Resource)
ComputeBusybi t ()

ExecuteUnit(....)
{

Data=ReadLatch(Decode_latch,m)
IF (n>O)

{

RSinsertOperations(Data,m)
RSReadOperand(r)
Operation=RSReadOperation
RSDeleteOperation (ID(operation))

}ELSE
Operation=Data

IF predication
IF ReadPredicate(Pred_reg)

ExecuteOperation (Operation(OP code), Srcl,Src2))
ELSE

ExecuteOperation (Operation(OP code), Srcl,Src2))

MarkOperationDone (ID)

~- writeback
IF ! (CheckWAR) AND ! (CheckWAW)

WriteResult(Result, Dst)
ReleaseDest(Dst)

ELSE
WriteLatch(output_latch,Result)

ComputeBusybit

AddressCalculationUnit(....)
{

Data=ReadLatch(Decode_latch,m)
IF (n>O)
{

RSinsertOperations(Data,m)
RSReadOperand(r)
Operation=RSReadOperation()
RSDeleteOperation (ID(operation))

}ELSE
Operation=Data

21

result = AddMe::nAddressAndOffse'::. (Operatio:--~l;
WriteLatch(outpu::._latch,result)
ComputeBusybit.()

BranchUni t ()
{

Data=ReadLatch(Decode_latch,m)
IF (n>O)
{

RSinsertOperations(Data,m)
RSReadOperand(r)
Operation=RSReadOperation
RSDeleteOperation (ID(operation))

}ELSE
Operation=Data

Dst,Cmp_reg=ExecuteBranchOpertion (Operation(OP code), Srcl,Src2)

B_result = UpdateBTB (ID, Cmp_reg(OP code))
MarkOperationDone (ID)
CornputeBusybit()

CornpletionUnit(....)
{

Traverse completion queue until s or b
{

IF CheckPredicate(ID)
SetValidBit=True
IF IsOperationDone(ID) and IsOperationValid(ID)

IF IsBranchOperation(ID)
IF branch flag

Flag Flushing
ELSE

Activelist_writeback(ID)
Corr.pletionQDeleteOperation (ID)
Branch_rernove(ID)

}ELSE
stop traversing

IssueUnit (...)

Data=ReadLatch(Decode_latch,rn)
RSinsertOperations(Data,rn)
RSReadOperand(r)

UNTIL (n) operations are read
{

op=RSReadOperation
ReadOperands(op)

Until y instructions are tried to be issued

Operation=RSReadOperation
Resource=Unit_receive(Operation)
IF ! ! (resource)
{

WriteLatch(Resource_latch, operation)
RSDeleteOperation(ID)

22

Compu teBusybi t ()

WriteBackUnit(....)
{

Data=ReadLatch(Decode_latch,m)
IF (n>O)
{

RSinsertOperations(Data,m)
RSReadOperand(r)

}ELSE
Operation=Data

Until y instructions processed
{

Operation=RSReadOperation

IF ! (CheckRAW) AND ! (CheckWAW)

WriteResult(Result, Dst)
ReleaseDest(Dst)
RSDeleteOperation(ID)

ComputeBusybit()

MemoryController (no. of entries in the RS (Reservation Station) (n),
no. of input instructions (m),
no. of load/store per cycle (s)/(l))

Read latch for (m) entries
Push entries into a list, initialize to _NEW.
For each entry in the list evaluate the state machine until
(s) or (1) has been reached:

_NE\'J:

I? store operation

send write request to memory (value and address)
IF acknowledged

Next state is _Done
ELSE

Next state is _NEW

IF load operation
{

send read request to memory (address)
IF acknowledged

Next state is _RETRIEVE
ELSE

Next state is _NEW

RETRIEVE:
If data is ready

Next state is WRITEBACK -
ELSE

Next state is _RETRIEVE

23

_vn~:::::':'EBACK

Check for WAW
Write received data to appropriate Register (i.e. bank and register)
Release destination register

We have also defined a few sub-functions e.g., RenameRegister, GraduateOperation using sub
functions to allow a finer granularity of architectural exploration. We present few sub-functions
which are modeled using sub-functions.

RenameRegister(Instruction ID)
{

II Rename Srcl
RenameReg(srcl);
II Rename Src2
RenameReg(src2);

II Rename dest
if (store operation)

RenameReg (des t) ;
else if (not branch operation)
{

p_dest = GetFreeRegister();
MapRegisters(p_dest,dest);
MarkDestBusy(p_dest);

RenarneReg(Register src)
{

IF IsMapped(src)
p_src=GetPhysicalRegister(src)

p_src = GetFreeRegister();
MapRegisters(p_src,src)

ReadOperands(Instruction I)
{

FOR all source operands S in I
{

IF S is not already read and no RAW hazard
{

ReadOperand(S)
MarkOperandRead(I, S);

ReservationStationReadOperand(RS)
{

UNTIL (n) operations are read in RS

Read one operation I from RS
ReadOperands(I);

24

Now, we discuss few specific points pertaining to defining generic abstractions of different units.
The execute unit can be single cycle or multi- cycle. Each execute unit can support different opcode
functionalities. The list of opcode functions (described later) supported by a particular execute unit
is passed as a parameter for the execute unit function.

Data hazard detection is done using sub-functions e.g., RAW _detect, WAR_detect and WAW _detect.
These sub-functions are used by appropriate functional units depending on the architecture. For
example, decode unit functionality uses these three sub-functions for DLX architecture whereas
in certain architectures read-after-write(RA W) hazard occurs during operand read in issue units,
WA W and WAR hazard detection happen in completion or write back stage using program order
buffer. For architectures with register renaming, only RAW hazard is possible.

Branch unit uses branch mis-prediction handler sub-function which specifies the actions to be
performed viz., which are the operations to be allowed to graduate and which ones to flush.

The completion unit functionality along with program order completion queue can perform wide
varieties of actions depending on the parameters values. Normally, completion queue maintains
program order during out-of-order execution. During in-order or out-of-order execution this queue
can be used to perform WAW and WAR checks. This program order information can be used for
flushing the instructions selectively during branch mis-prediction or interrupts. This queue can
further be used for enforcing in-order completion of branches. This may also be used for servicing
synchronizing events, e.g., all memory writes are completed, all pending exceptions are reported
etc.

The reservation station used in different functional unit can behave differently. For example,
during in-order execution FIFO buffers are adequate whereas, for out-of-order execution linked
list implementation is needed. This is because when an instruction is deleted, it creates space
inside the reservation station. The next incoming instruction is inserted in that place. Now buffer
has no order and it needs priority logic for deciding next outgoing instruction. Load Store issue
unit or memory controller reservation station buffers are generally cyclic queues since the state of
a load/store operations gets modified every cycle. Possible states are issued, address calculation
done, TLB accessed, miss, retry etc.

4.2 Behavior of a Generic Processor

The behavior of a generic processor is captured through the definition of opcodes. Each opcode
is defined as a function with generic set of parameters which performs the intended functionality.
The parameter list includes source and destination operands, necessary control and data type infor
mation. We have defined common sub-functions e.g., ADD, SUB, SHIFT etc. The integer addition
function is shown below.

int
IADD(int x, int y)
{

return (x + y);

25

The opcode functions use one or more sub-functions. For example, the MAC (multiply and
accumulate) uses two sub-functions. As mentioned in previous section. these opcode functions are
used as a parameter for the functional units.

4.3 Generic Controller

We define control in both distributed and centralized manner. While an instruction gets decoded
the control information needed to select the operation, the source and the destination operands are
placed in the output latch as shown in Figure 8. These decoded control signals pass through the
latches between two pipeline stages unless they become redundant. For example, when the value ·
for source 1 is read that particular control is not needed any more, instead the read value will be in
the latch. We have shown here only the control information of the latch. The latch contains data
values and predicate registers (if applicable) as well.

opcode src1 src2 dest

I I I I
I I I I

i-r--r=----=1=--t-i
I I - I I
I I I I
I :---~ 1 I
I I I : r~-----~ :
I Execution Unit :

L-----------------
Figure 8. Example of distributed control

The centralized control is maintained by using a generic control table. The number of rows in the
table is equal to the number of pipeline stages in the architecture. The number of columns is equal
to the maximum number of parallel units present in any pipeline stage. Each entry in the control
table corresponds to one particular unit in the architecture. It also contains information specific to
that unit e.g., busy bit (BB), stall bit (SB), list of children, list of parents, opcodes supported etc.

The control table captures all the necessary details to perform selective or complete stalling of
the pipelines. Stalling happens due to three kinds of hazards viz., structural hazards, data hazards
and control hazards. In the following sections we briefly describe how we handle these three kinds
of hazards using the control table.

1. Structural Hazard: Each unit marks the busy bit in the control table when the following
conditions occur.

• If it does not have sufficient space in reservation station to accommodate the number
of incoming instructions possible in next cycle.

e If it does not have a reservation station and executes a multi-cycle operation which is
yet to complete.

26

In other words, a unit marks itself busy when it can not take any instruction from its parent
unit in pipeline. A unit sets its stall bit (which means it will not be executed in the next cycle)
when it does not have a reservation station and one of its children is busy or stalled.

2. Data Hazard: The detection of different data hazards viz., RAW, WAR and WAW occurs
in different functional unit depending on the architecture as described in Section 4.1. The
hazard detection sub-functions set the appropriate bits in control table.

3. Control Hazard: The branch unit sets the appropriate bits in control table when branch mis
prediction is detected. The sub-function for mis-prediction handling performs the necessary -
actions as described in Section 4.1

Pipeline stalling happens at the end of the cycle by the control unit in a bottom-up fashion,
starting with the leaf level units and proceeding up to the fetch unit. This algorithm terminates
when it reaches the fetch unit or when it reaches any stage where none of the units are busy or
stalled. The same stalling algorithm resets the stall bit to zero for a particular unit when the stall
condition does not hold anymore. A simplified version of the generic controller is shown below.

Control unit (...)
{

IF startup
{

Write initial PC address to PC

-- Stall and unstall mechanism--

Start at the leafs and traverse the tree upwards
{

IF no reservations station

ELSE

IF any child is stalled or busy
Stall unit

Not stall

-- Stall mechanism END--

--Flushing

IF flushing flag is TRUE
{

II i.e. a branch is mispredicted

Query branch unit for other Branch address
Update PC to other branch address
Reset Busybit RF
Reset Control table

IF register_renaming
Reset Mapping table

IF free_list
Add all registers to free list

IF memorystore_buffer
Reset memory buffers

Update buffered memory

27

4.4 Interrupts and Exceptions

In this section we briefly describe the abstraction needed to capture the wide varieties exceptions
and interrupts possible. Each exception is captured using appropriate sub-function. Opcode related
exceptions (e.g., divide by zero), are captured in opcode functionality. Functional unit related
exceptions (e.g., illegal slot exception), are captured in functional units. External interrupts (e.g., .
reset, debug exceptions), are captured in control unit functionality.

The interrupt handler unit services these exceptions. It has information regarding the priority
of interrupts and which exceptions generate what interrupt. The generic in~errupt handler has a
parameterized priority table. The interrupt handler unit generates one particular interrupt based
on priority. Before execution of that particular interrupt service routine, context saving and com
plete/partial flushing occurs. The specific types of flushing is decided by the semantics of that
interrupt. Complete flushing clears the entire pipeline. Partial flushing means flushing only the
instructions behind the interrupted instruction and allowing the previous instructions to continue
using the program order information available in completion queue. Again, these actions are part
of parametric sub-functions that allow a finer grain of microarchitechtural exploration.

4.5 Structure of a Generic Memory Subsystem

The memory represents a major bottleneck in modern embedded systems. Each type of memory
module viz., SRAM, cache, DRAM, SDRAM, stream buffer, victim cache etc., is modeled using a
function with appropriate parameters. For example, the cache function has parameters: cache size,
line size, associativity (zero associativity implies direct cache), word size, replacement policy,
write policy, read/write access times etc. These functions also have parameters for specifying
pipelining, parallelism, access modes (normal read, page mode read, burst read etc.) etc. Again,
each function is composed of sub-functions. For further details on generic memory subsystem,
please refer to [15].

4.6 DMA Controller

The direct memory access (DMA) controller transfers data between regions in the memory map
without intervention by the CPU. The DMA controller allows movement of data to and from inter
nal memory, internal peripherals, or external devices to occur in the background of CPU operation.
DMA controller function has following generic parameters:

• Block transfer: For each block transfer starting address of source memory, starting address
of destination memory and the size of the block. Each block transfer can consist of multiple
frames of a programmable size. Once a block transfer is complete, a DMA channel can
automatically reinitialize itself for the next block transfer.

28

• Number of channels: The number of independent block transfers. Each channel can be one
way or can be used to perform both the receive and transmit element transfers from or to
a peripheral simultaneously, effective acting like two DMA channels. Each channel can
be independently configured to transfer data values of different width (e.g., bytes, 16-bit
halfwords, 32-bit words etc.)

• Programmable priority: Each channel has independently programmable priorities versus the
CPU.

• Programmable address generation: Each channel's source and destination address registers -
can have configurable indexes for each read and write transfer. The address can remain
constant, increment, decrement, or be adjusted by a programmable value. The programmable
value allows an index for the last transfer in a frame distinct from that used for the preceding
transfers.

• Events and Interrupts: Each read, write, or frame transfer may be initiated by selected events.
On completion of each frame transfer or block transfer as well as on various error conditions,
each DMA channel can send an interrupt to the CPU.

4. 7 Coprocessor

The coprocessor is used to perform certain functionality which processor is is not able to handle
or coprocessor might be optimized for that. The coprocessor function has similar parameters as
generic execution unit function e.g., opcodes supported, single cycle or multi-cycle, single stage or
multistage, instruction format supported, etc. It has few parameters which are unique to coproces
sor. For example, it may have local memory. As a result before any computation the necessary data
needs to be brought in using DMA controller and external memory interface (EMIF). Similarly,
at the end of the computation the result needs to be written back to main memory using DMA
controller and EMIF. The coprocessor can operate on local or main memory.

5 Contemporary Example Architectures

Using the functional abstraction approach outlined above, we have been able to describe the
DLX, TI c6x, MIPS R4000, MIPS RlOK, Itanium and PowerPC architectures representing a di
verse set of processor-memory styles. In this section we describe how we capture two architectures
having different processor and memory styles using our functional abstraction approach. MIPS
RlOK is a superscalar processor with two level of cache hierarchy. TI C6x is a hybrid processor
containing both DSP and VLIW features with a novel memory organization (partitioned register
file, cache hierarchy and configurable scratch pad SRAM).

5.1 MIPS RlOK Architecture

The MIPS RlOOOO is a dynamic, superscalar microprocessor that implements the 64-bit Mips-
4 instruction set architecture. It fetches and decodes four instructions per cycle and dynamically

29

issues them to five fully-pipelined, low-latency execution units. Instructions can be fetched and ex
ecuted speculatively beyond branches. Instructions graduate in order upon completion. Although
execution is out of order, the processor still provides sequential memory consistency and precise
exception handling. With speculative execution, it calculates memory addresses and initiates cache
refiIIs early.

Figure 9 shows a simplified version of the RIOK architecture. For illustration, we do not show
control unit, completion queue (Active List), memory hierarchy and interrupt handler, branch pre
dictor and few connections for clarity. Small rectangular boxes are pipeline latches. Each large
labeled box is a functional unit, register file or memory. Small square boxes are ports and lines are
connections. In this section we outline how we specify MIPS RlOK using the functional abstrac
tion described in Section 4.

PC UNrT

DECODE

Figure 9. Simplified RlOK architecture

The fetch unit function is invoked with three connections initialized viz., input from PC Latch,
input from instruction memory and output to decode latch. Both the number of instructions fetched
per cycle and number of instructions sent to decode stage per cycle are set to four. The number of

30

entries in reservation station is set to zero. The number of entries in completion queue (Active List
in RIOK terminology) is set to 32.

The decode functionality is instantiated with read connection from fetch latch and write con
nections to Mernlssue, Intissue and Floatissue units. It uses the register renaming sub-function
while decoding instructions. It inserts the decoded instruction in the completion queue (ActiveList)
which maintains the program order. The decode logic decides where to dispatch (Memissue, Intis
sue or Floatissue) a particular instruction based on the opcode supported by those issue units. As
mentioned in Section 4, the control table has the information regarding the supported opcodes by a
particular unit. Table 3 shows the control table for a simplified MIPS Rl OK architecture as shown_
in Figure 9, where the rows indicate the pipeline stages and columns represent parallel functional
units. For example, the table entry for the third row and the second column corresponds to Intissue
unit with both busy bit and stall bit value zero.

Table 3. Control table for RlOK architecture

Fetch
BB:O SB:O

Decode
BB:O SB:O

Mernlssue Intissue Floatissue
BB:O SB:O BB:O SB:O BB:O SB:O
AddrCalc ALUl ALU2 FADDl FMPYl

BB:O SB:O BB:O SB:O BB:O SB:O BB:O SB:O BB:O SB:O
TLB FADD2 FMPY2 SQRT FDIV

BB:O SB:O BB:O SB:O BB:O SB:O BB:O SB:O BB:O SB:O
FADD3 FMPY3

BB:O SB:O BB:O SB:O

The Intissue, Floatissue and Mernlssue functions are instantiated with a reservation station size
of 16 entries. Each issue unit performs operand read and RAW hazard detection (using appropri
ate sub-functions) before performing out-of-order issue. The reservation stations are of different
nature for the different functional units. The Memissue unit uses a circular buffer as its reservation
station whereas the Intlssue and Floatissue uses a buffer where instructions are inserted in empty
slots (not in any order) and retrieved using priority logic.

Execution units are instantiated using appropriate opcode functionalities. The Address Queue
(Memissue unit) reads data and tag using virtual address while the physical address is computed.
It checks whether load is a hit or miss once the physical address is available. This is different
than the conventional way of hit or miss detection. In conventional architectures the load request
is done using physical address and hit or miss detection is done inside the memory subsystem.
Due to our sub-function based abstraction approach, we are able to re-use the hit or miss detection
sub-function in the processor side (this remains conventionally in the memory).

31

The integer and floating-point register files are instantiated using generic register file with data
widths and data type parameters. The memory hierarchy consists of two levels of cache. The
parameters for the primary cache are: associativity - 2, cache size - 2K double-words, line size
- 4 , word size - 64 bits, replacement - LRU, write policy - write back, number of lines - 512.
access time - 1 cycle. Similarly secondary cache functionality is instantiated with the appropriate
parameters viz., associativity - 2, cache size - 512K double-words, line size - 16, word size - 64
bits, replacement - LRU, write policy - write back, number of lines - 32K, access time - 2 cycles.

Each functional unit invokes the appropriate sub-functions to capture exception conditions. The
interrupt handler function captures the priority table of 19 interrupts. In this manner we are able to.
concisely capture a state-of-the-art dynamic superscalar architecture using functional abstraction
approach.

5.2 TI C6x Architecture

We now demonstrate the ability to capture a hybrid VLIW /DSP architecture using our functional
abstraction technique. Figure 10 shows a simplified model of the TI C6x architecture. Small
rectangular boxes are pipeline latches. Each large labeled box is a functional unit, register file or
memory. Small square boxes are ports and lines are connections.

The fetch functionality consists of four stages viz., program address generation, address send,
wait, and receive. Each of the four stages is modeled using respective sub-functions with appro
priate parameters. The architecture fetches one VLIW instruction (eight .parallel operations) per
cycle.

The decode function decodes the VLIW word and dispatches upto eight operations per cycle
to eight execution units. Each execution unit performs operand read and hazard checks (using
sub-functions). At the end of computation each execution unit writes back (using sub-function)
the result to register file. Each execution unit is instantiated with appropriate opcode functions as
parameters. For example, L unit (LI and L2) uses 32/40-bit arithmetic and compare operations for
fixed-point mode, and arithmetic and conversion operations for floating-point mode.

The functional units, L 1, S 1, M 1 and DI are connected to the "A" part of the partitioned register
file whereas the remaining functional units viz., L2, S2, M2, D2 are connected to the "B" of the
register file. Two cross paths, viz., IX and 2X, are used for transferring data fro~ the other part
of the partitioned register file. Each register file is instantiated using generic register file with 16
32-bit registers.

The TI C6x architecture has a novel memory organization (Figure 11, comprised of a 2-level
cache hierarchy and a programmable SRAM space. The Ll program cache is 4K bytes, direct
mapped with line size 64 bytes. The Ll data cache is 4K bytes, associativity 2 and line size 32
(bytes). The L2 cache is 64K bytes and depending on the mode of configuration, the memory
space is divided between SRAM and associative cache. Memory modules are instantiated with
appropriate parameters for capturing the memory subsystem.

Each functional unit invokes the appropriate sub-functions to capture exception conditions. The
interrupt handler function captures the priority table of 14 interrupts. Reset and NMI has higher
priority than INT4 to INT15 interrupts. Thus we are able to capture a hybrid DSPNLIW architec
ture using our functional abstraction approach.

32

PG GJ J
---·-···----··--···-······--1--·-·-·----------------------·----------·--------·-----------·----------···---··---·--:---···

PS ~ J
-----------·---------·-------------·--·------------------------------·--l-·······-------------·----------------·-----------·-----·------------------·----------·------

PW' T J
GJ .

--·------··--·------·--------·---------------------·----·--------------]---·-·---··------------·---·---·-·--------·-·

PR ~ J
. ------------- -- -- -- --. --------- -- ---- -- --- ----. ---- ----. --- --- -- --- .. --1------- --- -- -- -- ---------------- ---------- --- ------- -------------. -. ---- --------------------.

DP ~ J
---------··-··---------------·--------·-----------------·------------·--f---·------·--·--------------·---·-------------·

~DC _GJ GJ GJ CJ • GJ GJ GJ GJ

C6XREGfllE ii[l l1J lil 1i llillilli Liu Ui 11 re· li u lli

i • .. J

Figure 10. Simplified TI C6x architecture

33

ADDA

ADDA

DATA

MemCtrl_E2

DATA

Register
File

RFA

L1 CACHE

I DATA I

I TAGS I
SRAM

I DATA I SRAM
CTRL

l2 CACHE

UJ
CJ
CI:
~
I
u
UJ
CI:
a.

l2_CTRL

NR

FPMR NPMR NBA

NR - Normal Read
FPMR - First Page Mode Read
NPMR - Next Page Mode Read
NBR - Next Burst Read
LPMR - Last Page Mode Read

DRAM_CTRL

Figure 11. Simplified TI C6x architecture with novel memory organization

34

LPMR

6 Experiments

In this section we show the utility of the functional abstraction scheme by performing design
space exploration of a TI C6x based architecture. We vary several architectural features. including
memory configurations. We describe our initial design space exploration results by generating a
retargetable software toolkit from using the functional abstraction approach. Based on feedback
from design space exploration results, designers can modify the original specification to reduce
bottlenecks. These modifications can be quite drastic, for instance the original VLIW-like archi
tecture can become superscalar after few iterations. This is possible only due to the fact that an_
ADL such as EXPRESSION can capture wide spectrum of processor-memory architectures using
functional abstractions.

Using the functional abstraction approach and the generic simulation models as shown in Sec
tion I we have generated a software toolkit, including a compiler and simulator, for the TI c6x
architecture. In this section we demonstrate the design space exploration capability using different
memory configurations, starting from the base TIC62I1 processor architecture, with the goal of
studying the trade-off between cost and performance.

6.1 Experimental Setup

The memory organization of the TIC62I I is varied by using an LI cache, L2 cache, an off-chip
DRAM module, and an on-chip SRAM module. The LI cache is a 2-way set associative cache
with line size of 4 words and word of 4 bytes. The L2 cache shares a total of 2K on-chip SRAM
memory with the direct mapped on-chip SRAM.

We used a set of benchmarks from the multimedia and DSP domains, and compiled them using
the generated EXPRESS compiler[3]. We collected the statistics information using the generated
SIMPRESS [13] cycle-accurate structural simulator, which models both the TI62I I processor and
the memory subsystem.

The configurations we experimented with are presented in Table 4. The numbers in Table 4
represent: the size of the memory module (e.g., the size of LI in configuration I is I28), the
cache/stream buffer organizations: num_lines x num_ways x line_size x word_size, the latency (in
number of processor cycles), and the replacement policy (LRU or FIFO). .

The configurations m Table 4 are presented in increasing order of the cost in terms of area. The
first configuration contains the LI cache and an on-chip direct mapped SRAM of 2K. Some of
the arrays in the application are mapped to the SRAM. Due to the reduced control necessary for
the SRAM, it has a small latency (of I cycle), and the area requirements are small. The second
configuration contains LI and L2 caches with FIFO replacement policy. Due to the control neces
sary for the L2 cache (of size 2K), the cost of this configuration is larger than the configuration 2
containing the SRAM. Configuration III is the same as configuration 3, but with LRU replacement
policy for the LI and L2 caches. Due to the more complex control required by the LRU policy, the
cost of this configuration is larger than configuration II. Configuration IV contains an LI cache, an
L2 cache of size IK and a direct mapped SRAM of size IK. Due to the extra busses to route the
data to the caches and SRAM, this configuration has a larger cost than the previous one. All the
configurations contain the same off-chip DRAM module with a latency of 20 cycles.

35

Table 4. The memory subsystem configurations

Config LI L2 SRAM DRAM
Cache Cache

I 4x2x4x4 - 2K lat=20
lat=l (LRU) lat=l cycle

II 4x2x4x4 16x4x8x4 - lat=20
lat=l (FIFO) lat=4 (FIFO) cycle

III 4x2x4x4 16x4x8x4 - lat=20
lat=l (LRU) lat=4 (LRU) cycle

IV 4x2x4x4 32xlx8x4 IK lat=20
lat=l (FIFO) lat=4 (FIFO) lat=l cycle

6.2 Results

Figure 12 presents a subset of experiments we ran, showing the total cycle counts (including
the time spent in the processor) for the set of benchmarks for different memory configurations
attached to the TIC6211 processor. From the experiments we performed, we chose a representative
set of benchmarks, which show the different trends in the cost versus performance trade-off. Even
though these benchmarks are kernels, we observed a significant variation in the trends shown by
the different applications.

For instance, in FirstMin and Linear the first configuration even though has the lowest cost per-
forms the best (lower cycle count means higher performance), dtie to the fact the most frequently
used data fits in small SRAM. The expected trend of higher cost - higher performance was appar
ent in the applications 2DPartPusher, compress, and lowpass. In this manner, we are able to use
our functional abstraction based Design Space Exploration approach to obtain design points with
varying cost and performance. The designer is also able to explore the effects of employing hybrid
architectural features.

7 Conclusion

This report proposed a functional abstraction based design space exploration methodology which
is capable of capturing a wide variety of processor and memory architectures. Rapid design space
exploration can be performed by generating the software toolkit automatically. Functional abstrac
tion can be extracted from an ADL description as well. Generic function based design space ex
ploration allows designers to make fast design decisions and reuse the generic components. Hence
the problem of design verification in this methodology reduces to interface verification, since each
generic function can be pre-verified.

Our ongoing work targets the use of this functional abstraction based design space exploration by
generating synthesized hardware automatically. Furthermore, we plan to extend this specification
technique to generate FSM automatically and perform property checking during rapid design space
exploration driven by EXPRESSION ADL [4].

36

-+- 50000 -t-------~·F:
= -"'
0
~ 40000 +---------E

13
>i
u 30000

20000

10000

Figure 12. Cycle counts for the memory configurations

37

o Config I

B Config II

o Config Ill

o Config IV

8 Acknowledgements

This work was partially supported by grants from NSF (MIP-9708067), DARPA (F33615-00-C-
1632) and a Motorola fellowship. We would like to gratefully acknowledge Ashok Halambi, Peter
Grun, Srikanth Srinivasan, and all other EXPRESSION team members for their contribution to the
functional abstraction work.

References

[l] J. S. 0. Chris Basoglu, Woobin Lee. The MAPIOOOA VLIW Mediaprocessor,2000.

[2] K. Diefendorff. Sony's emotionally charged chip. Microprocessor Report. 13(5): 1-7, 1999.

[3] A. Halambi, N. Dutt, and A. Nicolau. Customizing software toolkits for embedded systems-on-chip. In DIPES 2000, 2000. ·

[4] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. EXPRESSION: A language for architecture exploration through
compiler/simulator retargetability. In Proc. DATE, Mar. 1999.

[5] J. Hennessy and D. Patterson. Computer Architecture: A quantitative approach. Morgan Kaufmann Publishers Inc, San Mateo. CA, 1990.

[6] http://developer.intel.com/design/ia-64/architecture.htm. IA-64 Architecture.

[7] http://developer.intel.com/design/strong/sal I 00.htm. StrongARM Processors.

[8] http://www.Iucent.com/micro/Starcore. Starcore, Next Generation DSPs.

[9] http://www.motorola.com/SPS/PowerPC. MPC7400 PowerPC Microprocessor.

[IO] http://www.motorola.com/SPS/PowerPC/Altivec. Altivec: Motorola's high-peiformance vector parallel processing e.\J7m1sio11 to the
PowerPcTM architecture.

[11] http://www.sgi.com/processors/rl Ok. MIPS RI 0000 Microprocessor.

[12] http://www.ti.com/sc/docs/products/dsp/C6000/index.htm. TM S320C6000TM Highest Peiformance DSP Platform.

[I 3] A. Khare. N. Savoiu, A. Halambi. P. Grun. N. Dutt, and A. Nicolau. V-SAT: A visual specification and analysis tool for system-on-chip
exploration. In Proc. EUROMICRO, l 999.

[14] MIPS Technologies, Inc. MIPS R4000 Microprocessor User's Manual, 1994.

[15] P. Mishra. P. Grun. N. Dutt. and A. Nicolau. Memory subsystem description in EXPRESSION. Technical Report UCl-ICS 00-31, University
of California. Irvine, 2000.

[16] P. Mishra, P. Grun. N. Dutt. and A. Nicolau. Processor-memory co-exploration driven by an architectural description language. In Intl. Conj
on VLSI Desifill 2001, Bangalore. India, 200 l.

[17] SGI - MIPS RlOOOOSuperscalarMicroprocessor. http:llwww.sgi.com/processors/rlOk.

[18] SUN Microsystems. UltraSPARC lli User's Manual, 1997.

[19] Texas Instruments. TMS320C6201 CPU and Instruction Set Reference Guide, 1998.

[20] N. Vasseghi, K. Yeager. E. Sarto. and M. Seddighnezhad. 200-mhz superscalar rise microprocessor. IEEE Journal of Solid-State Circuits.
31 (11):1675-1686, November 1996.

[21] K. Yeager. The mips rlOOOOsuperscalarmicroprocessor. IEEE Micro, 16(2):28-40.April 1996.

38

