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Abstract 

1 5 2002 

Rapid Design Space Exploration ( DSE) of a processor-memory architecture is feasible using au
tomatic toolkit (compiler, simulator, assembler) generation methodology driven by an Architecture 
Description Language ( ADL). While many contemporary AD Ls can effectively capture one class 
of architecture, they are typically unable to capture a wide spectrum of architecture and memory 
features present in DSP, VLIW, EPIC and Superscalar processors. The main bottleneck has been 
the lack of a functional abstraction underlying the ADL covering a diverse set of heterogeneous 
architectures. We present in this report the functional abstraction needed to capture such wide 
variety of programmable embedded systems. We demonstrate the power of this approach by speci-
fying two very different processor-memory architecture using functional abstraction approach. We 
outline the automatic software toolkit generation from the given ADL description using functional 
abstractions. We show initial results of rapid design space exploration of architectures specified 
using functional abstraction based ADL approach. 
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1 Introduction 

Contemporary processor architectures vary widely in terms of their architectural features. Pro
gram address generation and instruction dispatch features are widely used in DSP processors. 
VLIW processors use strong compiler support to ensure correct execution of long instruction 
words. Superscalar processors on the other hand, use hardware scheduling techniques, register 
renaming etc. Multimedia processors support SIMD operations. Furthermore, each architecture 
has a different type of branch prediction, different execution style - in-order/out-of-order, different 
ways of detecting hazards , different way of handling interrupts/exceptions and last but not the 
least different memory subsystems[l6]. Emerging architectures have combined features of classi- · 
cal architectures (DSP, VLIW and Superscalar). For example, the Intel Itanium combines features 
of VLIW and superscalar; the TI C6x family combines features of DSP and VLIW. In order to 
allow rapid design space exploration of such heterogeneous processor-mem<?ry architectures, we 
need the ability to capture a wide variety of such architectural features. Moreover, during design 
space exploration using customized IP cores designers may want to add certain architectural fea
tures (some superscalar features to a VLIW processor core for example) to see how it impacts area, 
power, performance and other important design parameters. Similarly, to find the best match be
tween the application characteristics and the memory organization features (caches, stream buffers, 
access modes, SRAM, DRAM etc.), the designer needs to explore different memory configurations 
in combination with different processor architectures, and evaluate each such system for a set of 
metrics (such as cost, power and performance) [16]. To enable this, designers need (i) a way of 
specifying wide variety of processor-memory features and (ii) automatic software toolkit genera
tion to enable rapid design space exploration. 

In this report we present a functional abstraction based specification technique using the EX-. 
PRESSION ADL [4], which is capable of capturing a wide variety of processor-memory archi
tectures. The previous ADL-based approaches have, in general, been targeted towards a specific 
class of architectures, with limited descriptive facilities for complex memory organizations. EX
PRESSION [4], on the other hand, is an ADL designed to capture a wide range of programmable 
architectures, including DSP, VLIW, and Superscalar, together with their distinct architectural fea
tures. This is possible due to the functional abstractions we have developed to support such an 
ADL-driven approach. Indeed, an ADL such as EXPRESSION critically needs the power of reuse 
in composing heterogeneous architectures using functional abstraction primitives; this facilitates 
rapid generation of software toolkits for a wide range of architectures, thus allowing effective 
design space exploration of heterogeneous processor-memory architectures. 

The rest of the report is organized as follows. Section 2 outlines our approach and the overall 
flow of our environment. Section 3 surveys the contemporary processor-memory architectures. 
Section 4 presents the functional abstraction needed to capture the wide variety of architectural 
features and memory configurations. Section 5 illustrates how contemporary example architectures 
can be described using this functional abstraction. Section 6 shows initial results of design space 
exploration using this approach. Section 7 concludes the report. 
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2 Our Approach 

Figure 1 shows the flow in our approach. In our IP library based Design Space Exploration 
(DSE) scenario, the designer starts by specifying the design using the functional abstractions using 
EXPRESSION ADL. 

Section 3 surveys contemporary processor-memory architectures from each architecture domain 
viz., VLIW, DSP, Superscalar, EPIC, and RISC etc. We have studied the similarities and differ
ences of each architectural feature in different architecture domain. Based on our observations 
we have defined the necessary generic functions, sub-functions and computational environment 
needed to capture wide variety of architecture and memory features. These parametric functions
and sub-functions are described in a pseudo language. It is important to note that the genera
tion of generic simulation models (our case in C++) is a one-time activity and independent of the 
processor-memory architecture. Section 4 describes the functional abstractio~ in detail. 

The software toolkit including compiler, simulator, and assembler can be automatically gener
ated from the ADL description using generic simulation models. The input application program is 
compiled and simulated and the feedback is used to modify the architecture specification. 

I:! 
0 

:,:: I 
Cl 

1 Feedback 

________ / -------Generic 
Simulation 

Models 

.~ I 

§: I I 

~ ~ Design Space Exploration 1 _____________________________ / 

Figure 1. The Flow in our approach 

3 Survey of Contemporary Processor-Memory Architectures 

We have studied contemporary processor-memory architectures from each architecture domain 
viz., VLIW, DSP, Superscalar, EPIC etc. In this section we describe in detail the processor and 
memory features of the Intel Itanium, MIPS R4000, MIPS RlOOOO, TI C6x and PowerPC. Sec
tion 3.6 summarizes the processor-memory features for different architectures. We conclude this 
section by summarizing the similarities and differences of the architectural features available in 
wide a variety of processor-memory architectures. 
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3.1 MIPS R4000 

The MIPS R4000 [14] is a RISC microprocessor. It contains 32 general purpose 64-bit reg
isters. When operating as a 32-bit processor, the general purpose registers are 32-bits wide. All 
instructions are 32-bits wide. The superpipeline design of the processor results in an execution rate 
approaching one instruction per cycle. Pipeline stalls and exceptional events are handled precisely 
and efficiently. The floating-point unit (FPU) is located on-chip and implements the ANSI/IEEE 
standard 754-1985. The processor block diagram is shown in Figure 2. The processor has eight 
pipeline stages: 

1. IF - Instruction Fetch, First Half 

2. IS - Instruction Fetch, Second Half 

3. RF - Register Fetch 

4. EX - Execution 

5. DF - Data Fetch, First Half 

6. DS - Data Fetch, Second Half 

7. TC - Tag Check 

8. WB - Write Back 

The R4000 processor uses an on-chip TLB that provides rapid virtual-to-physical address trans
lation. The primary instruction and data caches reside on-chip, and can each hold 8 Kbytes. Ar
chitecturally, each primary cache can be increased to hold up to 32 Kbytes. An off-chip secondary 
cache (R4000SC and R4000MC processors only) can hold from 128 Kbytes to 4 Mbytes. All 
processor cache control logic, including the secondary cache control logic, is on-chip. 

3.2 Intel Itanium 

The Intel Itanium [6] belongs to the EPIC category. It has combined features of VLIW and 
Superscalar processors with out-of-order execution. It maximizes performance via hardware and 
software synergy. Advanced features, e.g., prediction, speculation etc., enhance instruction level 
parallelism. It has 6-wide EPIC hardware under precise compiler control. It fetches upto six in
structions per cycle and has hierarchy of branch predictors. It has dispersal of upto six instructions 
on 9 ports and has support for register remapping and register stack engine. It uses register read 
and bypasses to get the data, uses scoreboard and predicated dependencies. Figure 3 shows the 
processor block diagram. It has 10-stage in-order pipeline: 

1. IPG - Instruction pointer generation. 

2. FET - Fetch 
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3. ROT - Rotate 

4. EXP- Expand 

5. REN - Register rename 

6. WLD - Word-line decode 

7. REG - Register read 

8. EXE - Execute 

9. DET - Exception detect 

10. WRB - Write back 

Figure 3. Intel Itanium Processor Block Diagram 

It has 128 General registers, 128 Floating-point registers, 64 Predicate registers, 8 Branch reg
isters, 128 Application registers and Instruction Pointer (IP) register. It has separate LI caches for 
data and instruction. L2 cache is a combined one. Floating-point units interact directly with L2 
cache. 
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3.3 MIPS RlOOOO 

The MIPS RlOOOO ([17], [20], [21]), is a dynamic, superscalar microprocessor that implements 
the 64-bit Mips-4 instruction set architecture. It fetches and decodes four instructions per cy
cle and dynamically issues them to five fully-pipelined, low-latency execution units. Instructions 
can be fetched and executed speculatively beyond branches. Instructions graduate in order upon 
completion. Although execution is out of order, the processor still provides sequential memory 
consistency and precise exception handling. With speculative execution, it calculates memory ad
dresses and initiates cache refills early. It's hierarchical, nonblocking memory system helps hide. 
memory latency with two levels of set-associative, write-back caches. To cope with the complexity 
of out of order superscalar processing, the RI 0000 uses a modular design that locates much of the 
control logic with in regular structures, including the active list, register map tables, and instruction 
queues. 

RlOOOO fetches and decodes four 32-bit instructions per cycle. If one of these is a branch, 
its target address is calculated, the branch path is predicted, and instructions are speculatively 
fetched along the predicted path. Decoded instructions are put into a 32-entry Active List and three 
16-entry instruction queues. The Active List keeps track of the original instruction order. The 
instruction queues dynamically issue each instruction to the appropriate execution unit after all 
its operands have become available. The Floating-point Queue issues instructions to the floating
point multiplier and adder. The Integer Queue issues instructions to two AL Us. The Address Queue 
issues instructions to the Load/Store unit (Address Calculation Unit and TLB) and the Data Cache. 
The Address Calculation Unit calculates 44 bit virtual memory addresses and TLB translates them 
to 40-bit physical addresses. Instructions graduate in order upon completion. Although execution 
is aggressively out-of-order, the processor still provides sequentia!'memory consistency and precise 
exception handling. 

Figure 4 shows the major blocks in the RI 0000 processor. Integer and floating-point register 
files each contain 64 physical registers. The integer register file has seven read ports and three 
write ports. The floating-point register file has five read and three write ports. 

The instruction pipeline continues to fetch and decode instructions as long as there is room in 
the Active List and queues. When resource conflicts or operand dependencies prevent the queues 
from issuing instructions in their program order, the queue's dynamic scheduling._ hardwire. tries 
to find other instructions that can be issued instead. For frequent operations, each execution unit 
is fully pipelined with a single-cycle repeat rate. The ALUs execute simple integer operations 
with single cycle latency, so that dependent instructions can be issued on consecutive cycles. The 
floating-point units has 3-stage pipelines, but special bypass logic reduces latency to only two 
cycles. Integer operands are loaded from the Data Cache with two cycle latency. Floating-point 
loads take an extra cycle of latency, because these units are physically farther from the Data Cache. 

During instruction decode, integer and floating-point registers are renamed using separate map
ping tables. This hardware handles almost any sequence of four instructions, including sequences 
with dependencies and instructions destined to the same functional units. Renaming maps 32 log
ical register numbers into 64 physical registers. The physical registers contain both committed 
and speculative values. When each instruction is decoded, its result is assigned to a physical reg-
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ister from a Free List of currently unused registers. At graduation, this register contains a new 
committed value, and the previously assigned physical register is returned to the Free List. Thus, 
each physical register is uniquely associated with just one value; dependencies can be determined 
simply by comparing physical register numbers. 

The direction taken by a conditional branch is predicted using a 2-bit algorithm, based on a 
512 entry Branch History Table. Each prediction is verified as soon as its branch condition is 
determined. if its prediction was incorrect, all instructions fetched along the mis-predicted path 
are immediately aborted, and the processor state is restored from a 4-entry Branch Stack. This 
allows rapid recovery for up to four mis-predicted branches. Fetching along predicted paths may . 
have initiated unneeded cache refills. However, the cache is non-blocking, and the correct path can 
be fetched while these refills are completed. 

The integer queue issues instructions to the two integer arithmetic units: ALUl and ALU2. The 
integer queue contains 16 instruction entries. Up to four instructions may be· written during each 
cycle; newly decoded integer instructions are written into empty entries in no particular order. 

The floating-point queue issues instructions to the floating-point multiplier and the floating
point adder. The floating-point queue contains 16 instruction entries. Up to four instructions may 
be written during each cycle; newly decoded integer instructions are written into empty entries in 
no particular order. The adders and multiplier are each fully pipelined with single-cycle repeat rate 
and latency of just two cycles. 

The address queue issues instructions to the load/store unit. The address queue contains 16 
instruction entries. Unlike the other two queues, the address queue is organized as a circular First
In First-Out (FIFO) buffer. A newly decoded load/store instruction is written into the next available 
sequential empty entry; upto four instruction may be written during each cycle. The FIFO order 
maintains the program's original instruction sequence so that memory address dependencies may 
be easily computed. Instructions remain in this queue until they have graduated; they cannot be 
deleted immediately after being issued, since the load/store unit may not be able to complete the 
operation immediately. 

RIOOOO implements a nonblocking memory hierarchy with two levels of set-associative caches. 
It finds cache misses early, and begins refills in parallel with other useful work. The on-chip 
caches provide concurrent access for instruction fetch, data load and ·store, and refill. All caches 
least-recently-used(LRU) replacement algorithm. The Data Cache is 2-way interleaved with inde
pendent tag and data arrays for each bank. These four arrays operate under shared control of the 
Address Queue and the External Interface. The queue concurrently processes up to 16 load and 
store instructions in four separate pipelines. The primary cache consists of 2K doublewords. The 
secondary cache consists of 512K doublewords. 

3.4 MPC7 450: Power PC Microprocessor 

MPC7450 [9] microprocessors feature a high-frequency superscalar PowerPC core, capable 
of issuing four instructions per clock cycle (three instructions + branch) into eleven independent 
execution units: 

1. Four integer units (3 simple + 1 complex) 
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2. Double-precision floating-point unit 

3. Four Altivec [10] units (simple, complex, floating, and permute) 

4. Load/Store unit 

5. Branch processing unit 

.. 
Interface 

to.Memory 
Sub-System 

Figure 5. MPC7450 processor block diagram 

Figure 5 shows the block diagram of the processor. It has separate 32KB, physically addressed 
instruction and data caches. Both Ll caches feature cache way locking and are eight-way set
associative. The L2 cache is on-chip with 256-bit interface to Ll. This L2 cache is fully pipelined 
with 256 KB eight-way set-associative. It supports off-chip L3 cache up to 2MB. 
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3.5 TI C6x 

The TI C6x ([19], [12]) has combined architectural features of VLIW and DSP processors. 
Figure 6 shows the block diagram of the TMS320C62x/C67x DSPs. It has separate program and 
data memory. The CPU contains: 

1. Program fetch unit 

2. Instruction dispatch unit 

3. Instruction decode unit 

4. Two data paths, each with four functional units 

5. 32 32-bit registers 

6. Control registers 

7. Control logic 

8. Test, emulation, and interrupt logic 

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight 
32-bit instructions to the functional units every CPU clock cycle. The processing of instructions 
occurs in each of the two data paths (A and B as shown in Figure 7) each of which contains 
four functional units (.L, .S, .M, and .D) and 16 32-bit general purpose registers. It has on-chip 
configurable SRAM and off-chip DRAM with page/burst access modes. It can have upto 2 level 
of cache hierarchy. 

3.6 Summary of Architectures Studied 

Table 1 summarizes the processor-memory features for different architectures. Each row of the 
table corresponds to a architectural feature. Each column represents a architecture. We have used 
processors from different architecture domains - the MIPS R4000 [14] and StrongArm [7] are 
RISC processors; Motorola 56000 and TI C5x are DSP processors, TI C6x [12], MAPlOOOA [1], 
and Motorola StarCore [8] are VLIW DSP processors; MIPS RlOOOO [11], Motorola MPC7450 
[9], Sun UltraSparc Ili [18], and DEC Alpha 21364 are superscalar processors; Intel IA-64 [6] and 
Sony Playstation [2] are hybrid processors. The Intel IA-64 architecture has combined features of 
VLIW and Superscalar processors with out-of-order execution. The Sony Playstation 2000 has 
a superscalar CPU core with VLIW co-processors. An entry in this table, TAB [F, A], represents 
the behavior of an architecture A towards an memory feature F. If an entry is marked x then that 
feature is supported by that architecture. If an entry is blank then the feature is either not supported 
or not applicable (or not known) to that architecture. An entry containing an integer number, n, 
means that features is supported n times. An entry containing a series, n-m, implies that the feature 
is supported for i times, where (n <= i <= m). Similarly, an entry containing a set, n,m, means 
that the feature is supported either n or m times. For example, the table entry with memory feature 
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Levels of D-Cache and processor name IA64 has value 3, this implies IA-64 has 3 levels of data 
cache. The row corresponding to operand read in has four types of values depending on where in 
the pipeline the operands are read. The values are - (D: Decode stage), (R: Read stage), (I: Issue 
stage), and (E: Execute stage). The row corresponding to Branch Prediction has values which 
indicate what method of branch prediction is employed in the respective architecture - (2b: 2-bit 
algorithm using branch history table), (BT: BTB based prediction), and (MA: dynamically choose 
among multiple algorithms based on local predictor table, global predictor table and branch history 
table). 

3. 7 Similarities and Differences 

Broadly speaking, the structure of a processor consists of functional units, connected using ports, 
connections and pipeline latches. Major functional units are the PC unit, fetch unit, decode unit, 
branch prediction unit, issue unit, load store unit, TLB, execute unit and completion or writeback 
unit. Similarly, the structure of a memory subsystem consists of SRAM, DRAM, cache hierarchy 
etc. Although, a broad classification makes the architecture look similar, each architecture differs 
in terms of the algorithm it employs in branch prediction, the way it detect hazards, the way 
it handle exceptions etc. Moreover, each unit has different parameters for different architectures 
(e.g., number offetches per cycle, levels of cache, cache line size etc.). Program address generation 
and instruction dispatch features are widely used in DSP processors. VLIW processors use strong 
compiler support to ensure correct execution of long instruction words. Superscalar processors on 
the other hand, use hardware scheduling techniques, register renaming etc. Multimedia processors 
support SIMD operations. The contemporary EPIC architectures uses predication and speculation 
to increase instruction level parallelism. 

Depending on the architecture a functional unit may perform the same operation at different 
points in time. For example, read-after-write(RAW) followed by operand read happen in the de
code unit for some architectures (e.g., DLX [5]), whereas in some others these operations are 
performed in the issue unit (e.g., MIPS RIOK [20]). Some architectures even allow operand read 
in the execution unit. On the other hand, some architectures do not isslie operations if RAW hazard 
is detected while others issue the operation in spite of RAW hazard (use snooping to read the data 
at execution stage using feedback paths). In other words, the same functionality is used at different 
point in the pipeline for different architecture. 

We can observe some fundamental differences from the study above; the architecture may use: 

1. the same functional or memory unit with different parameters 

2. the same functionality in different functional or memory unit 

3. new architectural features 

The first difference can be eliminated by defining generic functions with appropriate parameters. 
The second difference can be eliminated by defining generic sub-functions which can be used by 
different architectures at different point of time. The last one is difficult to alleviate since it is 
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Arc hi tee tu res RISC DSP VLIWDSP l Superscalar Hybrid 
I 

Processor-Memory R4K l SA 56K C5x C6x I MA SC I RlO MP U3 I a64 IA64 
Features I 

#of fetches/cycle 2 I I I 8 4 8 4 4 4 4 6 

#of fetch stages 2 I 1 1 4 3 1 2 1 1 2 
#entries in fetch RS 
#of decodes/cycle 2 I I 1 8 4 4 3 4 4 

#entries in decode RS 12 8 
#of issue units 3 3 1 3 3 
#of issues/cycle 6 5 6 4 6 6 

# entries in issue RS 48 12 35 
#operations/instruction I 1 1 1 8 4 I I I 1 
#of parallel exec units 8 4 6 5 11 6 

Branch Prediction 2b BT MA 
Feedback paths x x x 
Operand read in D D E R E E E I I I R I 
SIMD support x x x x 

#entries in completion Q 32 16 
Register Renaming x x x x 

Dynamic Scheduling x x x x x 
Speculation x x 
Predication x x 

#register files 2 1 3 1 3 3 2 2 3 3 5 
#Coprocessors 3 1 

#pipeline stages 8 5 3 4 3 5 5-7 7 9 6 10 

Levels of D-Caclze 1-2 I 0-2 l 0-2 2 3 2 2 3 
cache pre/etch x x x 

cache hints x 
On-chip SRAM x x x x x 

configurable SRAM x 
Off-chip DRAM x x x x x x x x x x x x 
page/burst mode x x 

Write Buffer x x x 
Read Buffer x 
Victim Buffer ·X 

Stack x x x 
FIFO x 

Z Buffer 
On-chip DRAM 

DMA x x x x x 
parallel mem transfers l 2 2 2 l 2 2 

mem pipelining x x 

Table 1. Procesor-Memory features of different architectures. R4K: MIPS R4000, SA: StrongArm, 

56K: Motorola 56K, c5x: TI C5x, c6x: TI C6x, MA: MAP JOOOA, SC: Starcore, RIO: MIPS RJOOOO, 
MP: Motorola MPC7450, U3: SUN UltraSparc Ili, a64: Alpha 21364, IA64: Intel IA-64, PS2: Sony 

PlayStation 2000 

17 

PS2 J 

6 
1-2 

6 

6 

1-16 
12 
BT 

E 
x 

x 
x 

4 

2 
6,9 
l 

x 

x 
x 
x 



new, unless this new functionality can be composed of existing sub-functions. Section 4 presents 
the functional abstraction needed to capture the wide variety of architectural features and memory 
configurations. 

4 Functional Abstraction 

Functional abstraction allows the system designer to describe a wide variety of architectures in a 
hierarchical fashion. In this section we present functional abstraction by way of illustrative exam
ples. We first explain the functional abstraction needed to capture the structure and behavior of the. 
processor and memory subsystem, then we discuss the issues related to defining generic controller 
functionality, and finally we discuss the issues related to handling interrupts and exceptions. 

4.1 Structure of a Generic Processor 

Broadly speaking, the structure of a processor consists offunctional units, connected using ports, 
connections and pipeline latches. Major functional units are the PC unit, fetch unit, decode unit, 
issue unit, execute unit and completion or writeback unit. Although, a broad classification makes 
the architecture look similar, each architecture differs in terms of the algorithm it employs in branch 
prediction, the way it detect hazards, the way it handle exceptions etc. Moreover, each functional 
unit has different parameters for different architectures (e.g., number of fetches per cycle etc.). 

We capture the structure of each functional unit using parameterized functions. However, generic 
functions are not sufficient since each functional unit will perform a different function at different 
points of time depending on the architecture. For example, operand read and RAW hazard detec
tion happens in the decode unit for some architectures whereas in ·?Orne others these operations are 
performed in the issue unit. Some architectures even allow operand read in execution unit. On 
the other hand, some architectures do not issue operations if RAW hazard is detected while others 
issue the operation in spite of RAW hazard ( use snooping to read the data at execution stage using 
feedback paths). Hence, there is a need for parametric sub-functions. Based on the observations 
made in Section 3 we have defined the key set of common functions, sub-functions and appropri
ate parameters from our study of wide variety of processor-memory architectures. In the following 
paragraphs we describe briefly some of the generic functions and sub-functions used in functional 
abstraction. 

The program counter latch in the PC unit can be updated in three ways viz., initialization, 
through the branch unit or by a normal increment operation. Any functional unit may occupy 
single or multiple pipeline stage. For example, the fetch unit uses four pipeline stages for TI C6x 
whereas, it uses single stage for the Intel Itanium, MIPS RlOK and other processors. The fetch 
unit may or may not have support for branch prediction. It may or may not have a reservation 
station. Depending on the architecture it will read a different number of operations per cycle. The 
number of operations it delivers to decode unit per cycle is also architecture dependent. We capture 
the structure of each functional unit using parameterized functions. The fetch unit functionality as 
shown below contains several parameters, viz., number of operations read per cycle, number of 
operations written per cycle, reservation station size, branch prediction scheme, number of read 
ports, number of write ports etc. While connecting the units these ports will be used. 
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In the following specific example, the fetch unit reads n operations from instruction cache using 
current PC address and writes them to the reservation station. It reads from reservation station 
m operations and writes them to the output latch (fetch to decode latch). It uses a BTB based 
prediction mechanism. 

FetchUnit( ...... ) 
{ 

address = ReadPC{) 
Instructions = ReadinstMemory(address, n) 
WritetoReservationStation(Instructions, n) 
outinst = ReadFromReservationStation(m); 
WriteLatch(decode_latch, outinst) 

pred = QueryPredictor(address) 
IF pred 
{ 

nextPC = QueryBTB(address) 
SetPC (next_PC) 

ELSE 
IncrementPC(x) 

As shown above, the fetch unit is described using sub-functions. Each sub-function is defined 
using appropriate parameters. The notion of generic sub-function allows the flexibility of specify
ing the system in finer detail. It also allows reuse of the components. These components can be 
pre-verified. So the task of verification will reduce to mainly performing interface verification at all 
levels. The concept of sub-function is necessary because the same functionality can be performed 
in different units of different architectures as described earlier. 

We have defined sub-functions for all common activities e.g., ReadLatch, WriteLatch, Read
Operand, RenameRegister etc. Table 2 provides the list of common activities we have identified .. 
The first column represents the name of the common function, the second column describes the 
activity, and the last column describes the input and output parameters of the function. 

We have defined parameterized functions for all functional units viz., fetch unit, branch unit, 
decode unit, issue unit, execute unit, completion unit, PC Unit, Latch, Port, Connection etc. using 
sub-functions: 

DecodeUnit( number of entries i the reservation station, 
number of input instructions, 
number of instructions decodable per cycle, 
number of operations read each cycle, ...... ) 

Data=ReadLatch(fetch_latch) 
Data=Reorder branch(Data) 
CompletionQinsertOperations(Data) 
RSinsertOperations(Data,m) 
RSReadOperand(r) 

UNTIL (e) instructions are issued or until queue is empty 

Operation=RSReadOperation 
Resource=Unit_receive(Operation) 
IF Resource 
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Table 2. The list of common sub-functions 

Function Name Description Parameters 

ReadLatch Read a latch for n operations Latch X, n, Data 

WriteLatch Write data to a latch Latch, Data 

Query Predictor Query prediction status Branch address, status 
QueryBTB Query predicted address Branch and memory address 
UpdateBTB Send address to branch unit ID, target address 

UpdatePredictor Update branch predictor ID, prediction type 
Branch Other Other branch address ID, Address 
IncrementPC Increase PC with X X, New PC 

SetPC New PC address X X, New PC 
Read PC Get PC PC address 

RSinsertOperation Add one operation to RS Operation 
RS InsertOperati o ns Add X operations to RS Operations, X 
RSDeleteOperation Dequeue operation from RS ID 

RS Read Operation Read one operation from RS Operation 
RS Read Operand Read n's operations operands RS, n, RS 

Read Operand Read one operand Address bus, Reg name, Data 
Read Operands Read all source operands Operation X 

WriteResult Write operand Data/ Addr bus, Reg name, Data 
MarkDestB usy Mark Register busy Register name 

ReleaseDest U nrilark Register busy Register name 
CheckRAW Check for RAW Register name, status 
CheckWAW Check for WAW ID, status 
Check WAR Check for WAR ID, status 
IsUnitBusy Is unit X busy X, status 

IsUnitStalled Is unit X stalled X, status 
IsOperandRead Is operand X read ID, X, status 
IsOperandsRead Are all operands read? ID, status 

MarkOperandRead Mark the operand as read ID,X 
HasUnitRS Does unit X have RS? X, status 

SetUnitStalled Set Stall bit for unit X X, True/False 
SetUnitBusy Set Busy Bit for unit X X, True/False 

CompletionQDeleteOperation Remove from completion queue ID 
ReadPredi cate Check predicate register X Pred reg. X, status 
WritePredicate Set predicate register X to Y Pred reg., value 

ExecuteOperation Execute an operation Srcl, Src2, func, Result 
ExecuteBranchOperation Execute branch Src 1-2, func, Result, Cmp_reg 

MarkOperationDone Mark operation done in comp queue ID 
IsOperationDone Query if operation done ID, status 

CompletionQinsertOperation Add operation to comp queue Operation 
CompletionQinsertOperations Add operations to comp queue Operations 
CompletionQDeleteOperation Delete an entry from comp queue ID 

FlushCompletionQ Remove all operations above ID ID 
IsOperation Valid Query if operation is valid ID, status 

SetValidBit Set valid bit to X for operation ID,X 
IsBranchAhead Is there a branch ahead? ID, status 
CheckPredicate Query ID's predicate ID, status 

IsBranchOperation Is operation a branch? ID, status 
IsS toreOperati on Is operation a store? ID, status 

IsMapped Is X in mail@ng table Reg X, status 
GetPhysicalRegister For a logical register Logical, physical reg 

GetFreeRegister Return a free physical reg Register number 
MapRegisters logical to physical Logical, physical reg 

ComputeBusybit check if unit is busy Incoming operations, 
free entries, cycles left 



IF (IsBranchOperation(ID)) 

UpdateBTB(ID, dst) 

RSDeleteOperation(ID) 
Add Read bit to instruction (true in case of immediate type) 
Generate ID for instruction 

IF register_renaming 
{ 

RenameRegister(ID); 

WriteLatch(Operation,Resource) 
ComputeBusybi t () 

ExecuteUnit( .... ) 
{ 

Data=ReadLatch(Decode_latch,m) 
IF (n>O) 

{ 

RSinsertOperations(Data,m) 
RSReadOperand(r) 
Operation=RSReadOperation 
RSDeleteOperation (ID(operation)) 

}ELSE 
Operation=Data 

IF predication 
IF ReadPredicate(Pred_reg) 

ExecuteOperation (Operation(OP code), Srcl,Src2)) 
ELSE 

ExecuteOperation (Operation(OP code), Srcl,Src2)) 

MarkOperationDone (ID) 

~- writeback 
IF ! (CheckWAR) AND ! (CheckWAW) 

WriteResult(Result, Dst) 
ReleaseDest(Dst) 

ELSE 
WriteLatch(output_latch,Result) 

ComputeBusybit 

AddressCalculationUnit( .... ) 
{ 

Data=ReadLatch(Decode_latch,m) 
IF (n>O) 
{ 

RSinsertOperations(Data,m) 
RSReadOperand(r) 
Operation=RSReadOperation() 
RSDeleteOperation (ID(operation)) 

}ELSE 
Operation=Data 
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result = AddMe::nAddressAndOffse'::. (Operatio:--~l; 
WriteLatch(outpu::._latch,result) 
ComputeBusybit.() 

BranchUni t () 
{ 

Data=ReadLatch(Decode_latch,m) 
IF (n>O) 
{ 

RSinsertOperations(Data,m) 
RSReadOperand(r) 
Operation=RSReadOperation 
RSDeleteOperation (ID(operation)) 

}ELSE 
Operation=Data 

Dst,Cmp_reg=ExecuteBranchOpertion (Operation(OP code), Srcl,Src2) 

B_result = UpdateBTB (ID, Cmp_reg(OP code)) 
MarkOperationDone (ID) 
CornputeBusybit() 

CornpletionUnit( .... ) 
{ 

Traverse completion queue until s or b 
{ 

IF CheckPredicate(ID) 
SetValidBit=True 
IF IsOperationDone(ID) and IsOperationValid(ID) 

IF IsBranchOperation(ID) 
IF branch flag 

Flag Flushing 
ELSE 

Activelist_writeback(ID) 
Corr.pletionQDeleteOperation (ID) 
Branch_rernove(ID) 

}ELSE 
stop traversing 

IssueUnit ( ... ) 

Data=ReadLatch(Decode_latch,rn) 
RSinsertOperations(Data,rn) 
RSReadOperand(r) 

UNTIL (n) operations are read 
{ 

op=RSReadOperation 
ReadOperands(op) 

Until y instructions are tried to be issued 

Operation=RSReadOperation 
Resource=Unit_receive(Operation) 
IF ! ! (resource) 
{ 

WriteLatch(Resource_latch, operation) 
RSDeleteOperation(ID) 
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Compu teBusybi t ( ) 

WriteBackUnit( .... ) 
{ 

Data=ReadLatch(Decode_latch,m) 
IF (n>O) 
{ 

RSinsertOperations(Data,m) 
RSReadOperand(r) 

}ELSE 
Operation=Data 

Until y instructions processed 
{ 

Operation=RSReadOperation 

IF ! (CheckRAW) AND ! (CheckWAW) 

WriteResult(Result, Dst) 
ReleaseDest(Dst) 
RSDeleteOperation(ID) 

ComputeBusybit() 

MemoryController (no. of entries in the RS (Reservation Station) (n), 
no. of input instructions (m), 
no. of load/store per cycle (s)/(l)) 

Read latch for (m) entries 
Push entries into a list, initialize to _NEW. 
For each entry in the list evaluate the state machine until 
(s) or (1) has been reached: 

_NE\'J: 

I? store operation 

send write request to memory (value and address) 
IF acknowledged 

Next state is _Done 
ELSE 

Next state is _NEW 

IF load operation 
{ 

send read request to memory (address) 
IF acknowledged 

Next state is _RETRIEVE 
ELSE 

Next state is _NEW 

RETRIEVE: 
If data is ready 

Next state is WRITEBACK -
ELSE 

Next state is _RETRIEVE 

23 



_vn~:::::':'EBACK 

Check for WAW 
Write received data to appropriate Register (i.e. bank and register) 
Release destination register 

We have also defined a few sub-functions e.g., RenameRegister, GraduateOperation using sub
functions to allow a finer granularity of architectural exploration. We present few sub-functions 
which are modeled using sub-functions. 

RenameRegister( Instruction ID ) 
{ 

II Rename Srcl 
RenameReg(srcl); 
II Rename Src2 
RenameReg(src2); 

II Rename dest 
if (store operation) 

RenameReg (des t) ; 
else if (not branch operation) 
{ 

p_dest = GetFreeRegister(); 
MapRegisters(p_dest,dest); 
MarkDestBusy(p_dest); 

RenarneReg(Register src) 
{ 

IF IsMapped(src) 
p_src=GetPhysicalRegister(src) 

p_src = GetFreeRegister(); 
MapRegisters(p_src,src) 

ReadOperands(Instruction I) 
{ 

FOR all source operands S in I 
{ 

IF S is not already read and no RAW hazard 
{ 

ReadOperand(S) 
MarkOperandRead(I, S); 

ReservationStationReadOperand(RS) 
{ 

UNTIL (n) operations are read in RS 

Read one operation I from RS 
ReadOperands(I); 
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Now, we discuss few specific points pertaining to defining generic abstractions of different units. 
The execute unit can be single cycle or multi- cycle. Each execute unit can support different opcode 
functionalities. The list of opcode functions (described later) supported by a particular execute unit 
is passed as a parameter for the execute unit function. 

Data hazard detection is done using sub-functions e.g., RAW _detect, WAR_detect and WAW _detect. 
These sub-functions are used by appropriate functional units depending on the architecture. For 
example, decode unit functionality uses these three sub-functions for DLX architecture whereas 
in certain architectures read-after-write(RA W) hazard occurs during operand read in issue units, 
WA W and WAR hazard detection happen in completion or write back stage using program order 
buffer. For architectures with register renaming, only RAW hazard is possible. 

Branch unit uses branch mis-prediction handler sub-function which specifies the actions to be 
performed viz., which are the operations to be allowed to graduate and which ones to flush. 

The completion unit functionality along with program order completion queue can perform wide 
varieties of actions depending on the parameters values. Normally, completion queue maintains 
program order during out-of-order execution. During in-order or out-of-order execution this queue 
can be used to perform WAW and WAR checks. This program order information can be used for 
flushing the instructions selectively during branch mis-prediction or interrupts. This queue can 
further be used for enforcing in-order completion of branches. This may also be used for servicing 
synchronizing events, e.g., all memory writes are completed, all pending exceptions are reported 
etc. 

The reservation station used in different functional unit can behave differently. For example, 
during in-order execution FIFO buffers are adequate whereas, for out-of-order execution linked 
list implementation is needed. This is because when an instruction is deleted, it creates space 
inside the reservation station. The next incoming instruction is inserted in that place. Now buffer 
has no order and it needs priority logic for deciding next outgoing instruction. Load Store issue 
unit or memory controller reservation station buffers are generally cyclic queues since the state of 
a load/store operations gets modified every cycle. Possible states are issued, address calculation 
done, TLB accessed, miss, retry etc. 

4.2 Behavior of a Generic Processor 

The behavior of a generic processor is captured through the definition of opcodes. Each opcode 
is defined as a function with generic set of parameters which performs the intended functionality. 
The parameter list includes source and destination operands, necessary control and data type infor
mation. We have defined common sub-functions e.g., ADD, SUB, SHIFT etc. The integer addition 
function is shown below. 

int 
IADD(int x, int y) 
{ 

return (x + y); 
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The opcode functions use one or more sub-functions. For example, the MAC (multiply and 
accumulate) uses two sub-functions. As mentioned in previous section. these opcode functions are 
used as a parameter for the functional units. 

4.3 Generic Controller 

We define control in both distributed and centralized manner. While an instruction gets decoded 
the control information needed to select the operation, the source and the destination operands are 
placed in the output latch as shown in Figure 8. These decoded control signals pass through the 
latches between two pipeline stages unless they become redundant. For example, when the value · 
for source 1 is read that particular control is not needed any more, instead the read value will be in 
the latch. We have shown here only the control information of the latch. The latch contains data 
values and predicate registers (if applicable) as well. 

opcode src1 src2 dest 

I I I I 
I I I I 

i-r--r=----=1=--t-i 
I I - I I 
I I I I 
I :---~ 1 I 
I I I : r~-----~ : 
I Execution Unit : 

L-----------------
Figure 8. Example of distributed control 

The centralized control is maintained by using a generic control table. The number of rows in the 
table is equal to the number of pipeline stages in the architecture. The number of columns is equal 
to the maximum number of parallel units present in any pipeline stage. Each entry in the control 
table corresponds to one particular unit in the architecture. It also contains information specific to 
that unit e.g., busy bit (BB), stall bit (SB), list of children, list of parents, opcodes supported etc. 

The control table captures all the necessary details to perform selective or complete stalling of 
the pipelines. Stalling happens due to three kinds of hazards viz., structural hazards, data hazards 
and control hazards. In the following sections we briefly describe how we handle these three kinds 
of hazards using the control table. 

1. Structural Hazard: Each unit marks the busy bit in the control table when the following 
conditions occur. 

• If it does not have sufficient space in reservation station to accommodate the number 
of incoming instructions possible in next cycle. 

e If it does not have a reservation station and executes a multi-cycle operation which is 
yet to complete. 
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In other words, a unit marks itself busy when it can not take any instruction from its parent 
unit in pipeline. A unit sets its stall bit (which means it will not be executed in the next cycle) 
when it does not have a reservation station and one of its children is busy or stalled. 

2. Data Hazard: The detection of different data hazards viz., RAW, WAR and WAW occurs 
in different functional unit depending on the architecture as described in Section 4.1. The 
hazard detection sub-functions set the appropriate bits in control table. 

3. Control Hazard: The branch unit sets the appropriate bits in control table when branch mis
prediction is detected. The sub-function for mis-prediction handling performs the necessary -
actions as described in Section 4.1 

Pipeline stalling happens at the end of the cycle by the control unit in a bottom-up fashion, 
starting with the leaf level units and proceeding up to the fetch unit. This algorithm terminates 
when it reaches the fetch unit or when it reaches any stage where none of the units are busy or 
stalled. The same stalling algorithm resets the stall bit to zero for a particular unit when the stall 
condition does not hold anymore. A simplified version of the generic controller is shown below. 

Control unit ( ... ) 
{ 

IF startup 
{ 

Write initial PC address to PC 

-- Stall and unstall mechanism--

Start at the leafs and traverse the tree upwards 
{ 

IF no reservations station 

ELSE 

IF any child is stalled or busy 
Stall unit 

Not stall 

-- Stall mechanism END--

--Flushing 

IF flushing flag is TRUE 
{ 

II i.e. a branch is mispredicted 

Query branch unit for other Branch address 
Update PC to other branch address 
Reset Busybit RF 
Reset Control table 

IF register_renaming 
Reset Mapping table 

IF free_list 
Add all registers to free list 

IF memorystore_buffer 
Reset memory buffers 

Update buffered memory 
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4.4 Interrupts and Exceptions 

In this section we briefly describe the abstraction needed to capture the wide varieties exceptions 
and interrupts possible. Each exception is captured using appropriate sub-function. Opcode related 
exceptions (e.g., divide by zero), are captured in opcode functionality. Functional unit related 
exceptions (e.g., illegal slot exception), are captured in functional units. External interrupts (e.g., . 
reset, debug exceptions), are captured in control unit functionality. 

The interrupt handler unit services these exceptions. It has information regarding the priority 
of interrupts and which exceptions generate what interrupt. The generic in~errupt handler has a 
parameterized priority table. The interrupt handler unit generates one particular interrupt based 
on priority. Before execution of that particular interrupt service routine, context saving and com
plete/partial flushing occurs. The specific types of flushing is decided by the semantics of that 
interrupt. Complete flushing clears the entire pipeline. Partial flushing means flushing only the 
instructions behind the interrupted instruction and allowing the previous instructions to continue 
using the program order information available in completion queue. Again, these actions are part 
of parametric sub-functions that allow a finer grain of microarchitechtural exploration. 

4.5 Structure of a Generic Memory Subsystem 

The memory represents a major bottleneck in modern embedded systems. Each type of memory 
module viz., SRAM, cache, DRAM, SDRAM, stream buffer, victim cache etc., is modeled using a 
function with appropriate parameters. For example, the cache function has parameters: cache size, 
line size, associativity (zero associativity implies direct cache), word size, replacement policy, 
write policy, read/write access times etc. These functions also have parameters for specifying 
pipelining, parallelism, access modes (normal read, page mode read, burst read etc.) etc. Again, 
each function is composed of sub-functions. For further details on generic memory subsystem, 
please refer to [ 15]. 

4.6 DMA Controller 

The direct memory access (DMA) controller transfers data between regions in the memory map 
without intervention by the CPU. The DMA controller allows movement of data to and from inter
nal memory, internal peripherals, or external devices to occur in the background of CPU operation. 
DMA controller function has following generic parameters: 

• Block transfer: For each block transfer starting address of source memory, starting address 
of destination memory and the size of the block. Each block transfer can consist of multiple 
frames of a programmable size. Once a block transfer is complete, a DMA channel can 
automatically reinitialize itself for the next block transfer. 
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• Number of channels: The number of independent block transfers. Each channel can be one 
way or can be used to perform both the receive and transmit element transfers from or to 
a peripheral simultaneously, effective acting like two DMA channels. Each channel can 
be independently configured to transfer data values of different width (e.g., bytes, 16-bit 
halfwords, 32-bit words etc.) 

• Programmable priority: Each channel has independently programmable priorities versus the 
CPU. 

• Programmable address generation: Each channel's source and destination address registers -
can have configurable indexes for each read and write transfer. The address can remain 
constant, increment, decrement, or be adjusted by a programmable value. The programmable 
value allows an index for the last transfer in a frame distinct from that used for the preceding 
transfers. 

• Events and Interrupts: Each read, write, or frame transfer may be initiated by selected events. 
On completion of each frame transfer or block transfer as well as on various error conditions, 
each DMA channel can send an interrupt to the CPU. 

4. 7 Coprocessor 

The coprocessor is used to perform certain functionality which processor is is not able to handle 
or coprocessor might be optimized for that. The coprocessor function has similar parameters as 
generic execution unit function e.g., opcodes supported, single cycle or multi-cycle, single stage or 
multistage, instruction format supported, etc. It has few parameters which are unique to coproces
sor. For example, it may have local memory. As a result before any computation the necessary data 
needs to be brought in using DMA controller and external memory interface (EMIF). Similarly, 
at the end of the computation the result needs to be written back to main memory using DMA 
controller and EMIF. The coprocessor can operate on local or main memory. 

5 Contemporary Example Architectures 

Using the functional abstraction approach outlined above, we have been able to describe the 
DLX, TI c6x, MIPS R4000, MIPS RlOK, Itanium and PowerPC architectures representing a di
verse set of processor-memory styles. In this section we describe how we capture two architectures 
having different processor and memory styles using our functional abstraction approach. MIPS 
RlOK is a superscalar processor with two level of cache hierarchy. TI C6x is a hybrid processor 
containing both DSP and VLIW features with a novel memory organization (partitioned register 
file, cache hierarchy and configurable scratch pad SRAM). 

5.1 MIPS RlOK Architecture 

The MIPS RlOOOO is a dynamic, superscalar microprocessor that implements the 64-bit Mips-
4 instruction set architecture. It fetches and decodes four instructions per cycle and dynamically 
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issues them to five fully-pipelined, low-latency execution units. Instructions can be fetched and ex
ecuted speculatively beyond branches. Instructions graduate in order upon completion. Although 
execution is out of order, the processor still provides sequential memory consistency and precise 
exception handling. With speculative execution, it calculates memory addresses and initiates cache 
refiIIs early. 

Figure 9 shows a simplified version of the RIOK architecture. For illustration, we do not show 
control unit, completion queue (Active List), memory hierarchy and interrupt handler, branch pre
dictor and few connections for clarity. Small rectangular boxes are pipeline latches. Each large 
labeled box is a functional unit, register file or memory. Small square boxes are ports and lines are 
connections. In this section we outline how we specify MIPS RlOK using the functional abstrac
tion described in Section 4. 

PC UNrT 

DECODE 

Figure 9. Simplified RlOK architecture 

The fetch unit function is invoked with three connections initialized viz., input from PC Latch, 
input from instruction memory and output to decode latch. Both the number of instructions fetched 
per cycle and number of instructions sent to decode stage per cycle are set to four. The number of 
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entries in reservation station is set to zero. The number of entries in completion queue (Active List 
in RIOK terminology) is set to 32. 

The decode functionality is instantiated with read connection from fetch latch and write con
nections to Mernlssue, Intissue and Floatissue units. It uses the register renaming sub-function 
while decoding instructions. It inserts the decoded instruction in the completion queue (ActiveList) 
which maintains the program order. The decode logic decides where to dispatch (Memissue, Intis
sue or Floatissue) a particular instruction based on the opcode supported by those issue units. As 
mentioned in Section 4, the control table has the information regarding the supported opcodes by a 
particular unit. Table 3 shows the control table for a simplified MIPS Rl OK architecture as shown_ 
in Figure 9, where the rows indicate the pipeline stages and columns represent parallel functional 
units. For example, the table entry for the third row and the second column corresponds to Intissue 
unit with both busy bit and stall bit value zero. 

Table 3. Control table for RlOK architecture 

Fetch 
BB:O SB:O 

Decode 
BB:O SB:O 

Mernlssue Intissue Floatissue 
BB:O SB:O BB:O SB:O BB:O SB:O 
AddrCalc ALUl ALU2 FADDl FMPYl 

BB:O SB:O BB:O SB:O BB:O SB:O BB:O SB:O BB:O SB:O 
TLB FADD2 FMPY2 SQRT FDIV 

BB:O SB:O BB:O SB:O BB:O SB:O BB:O SB:O BB:O SB:O 
FADD3 FMPY3 

BB:O SB:O BB:O SB:O 

The Intissue, Floatissue and Mernlssue functions are instantiated with a reservation station size 
of 16 entries. Each issue unit performs operand read and RAW hazard detection (using appropri
ate sub-functions) before performing out-of-order issue. The reservation stations are of different 
nature for the different functional units. The Memissue unit uses a circular buffer as its reservation 
station whereas the Intlssue and Floatissue uses a buffer where instructions are inserted in empty 
slots (not in any order) and retrieved using priority logic. 

Execution units are instantiated using appropriate opcode functionalities. The Address Queue 
(Memissue unit) reads data and tag using virtual address while the physical address is computed. 
It checks whether load is a hit or miss once the physical address is available. This is different 
than the conventional way of hit or miss detection. In conventional architectures the load request 
is done using physical address and hit or miss detection is done inside the memory subsystem. 
Due to our sub-function based abstraction approach, we are able to re-use the hit or miss detection 
sub-function in the processor side (this remains conventionally in the memory). 
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The integer and floating-point register files are instantiated using generic register file with data 
widths and data type parameters. The memory hierarchy consists of two levels of cache. The 
parameters for the primary cache are: associativity - 2, cache size - 2K double-words, line size 
- 4 , word size - 64 bits, replacement - LRU, write policy - write back, number of lines - 512. 
access time - 1 cycle. Similarly secondary cache functionality is instantiated with the appropriate 
parameters viz., associativity - 2, cache size - 512K double-words, line size - 16, word size - 64 
bits, replacement - LRU, write policy - write back, number of lines - 32K, access time - 2 cycles. 

Each functional unit invokes the appropriate sub-functions to capture exception conditions. The 
interrupt handler function captures the priority table of 19 interrupts. In this manner we are able to. 
concisely capture a state-of-the-art dynamic superscalar architecture using functional abstraction 
approach. 

5.2 TI C6x Architecture 

We now demonstrate the ability to capture a hybrid VLIW /DSP architecture using our functional 
abstraction technique. Figure 10 shows a simplified model of the TI C6x architecture. Small 
rectangular boxes are pipeline latches. Each large labeled box is a functional unit, register file or 
memory. Small square boxes are ports and lines are connections. 

The fetch functionality consists of four stages viz., program address generation, address send, 
wait, and receive. Each of the four stages is modeled using respective sub-functions with appro
priate parameters. The architecture fetches one VLIW instruction (eight .parallel operations) per 
cycle. 

The decode function decodes the VLIW word and dispatches upto eight operations per cycle 
to eight execution units. Each execution unit performs operand read and hazard checks (using 
sub-functions). At the end of computation each execution unit writes back (using sub-function) 
the result to register file. Each execution unit is instantiated with appropriate opcode functions as 
parameters. For example, L unit (LI and L2) uses 32/40-bit arithmetic and compare operations for 
fixed-point mode, and arithmetic and conversion operations for floating-point mode. 

The functional units, L 1, S 1, M 1 and DI are connected to the "A" part of the partitioned register 
file whereas the remaining functional units viz., L2, S2, M2, D2 are connected to the "B" of the 
register file. Two cross paths, viz., IX and 2X, are used for transferring data fro~ the other part 
of the partitioned register file. Each register file is instantiated using generic register file with 16 
32-bit registers. 

The TI C6x architecture has a novel memory organization (Figure 11, comprised of a 2-level 
cache hierarchy and a programmable SRAM space. The Ll program cache is 4K bytes, direct 
mapped with line size 64 bytes. The Ll data cache is 4K bytes, associativity 2 and line size 32 
(bytes). The L2 cache is 64K bytes and depending on the mode of configuration, the memory 
space is divided between SRAM and associative cache. Memory modules are instantiated with 
appropriate parameters for capturing the memory subsystem. 

Each functional unit invokes the appropriate sub-functions to capture exception conditions. The 
interrupt handler function captures the priority table of 14 interrupts. Reset and NMI has higher 
priority than INT4 to INT15 interrupts. Thus we are able to capture a hybrid DSPNLIW architec
ture using our functional abstraction approach. 
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Figure 10. Simplified TI C6x architecture 
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6 Experiments 

In this section we show the utility of the functional abstraction scheme by performing design 
space exploration of a TI C6x based architecture. We vary several architectural features. including 
memory configurations. We describe our initial design space exploration results by generating a 
retargetable software toolkit from using the functional abstraction approach. Based on feedback 
from design space exploration results, designers can modify the original specification to reduce 
bottlenecks. These modifications can be quite drastic, for instance the original VLIW-like archi
tecture can become superscalar after few iterations. This is possible only due to the fact that an_ 
ADL such as EXPRESSION can capture wide spectrum of processor-memory architectures using 
functional abstractions. 

Using the functional abstraction approach and the generic simulation models as shown in Sec
tion I we have generated a software toolkit, including a compiler and simulator, for the TI c6x 
architecture. In this section we demonstrate the design space exploration capability using different 
memory configurations, starting from the base TIC62I1 processor architecture, with the goal of 
studying the trade-off between cost and performance. 

6.1 Experimental Setup 

The memory organization of the TIC62I I is varied by using an LI cache, L2 cache, an off-chip 
DRAM module, and an on-chip SRAM module. The LI cache is a 2-way set associative cache 
with line size of 4 words and word of 4 bytes. The L2 cache shares a total of 2K on-chip SRAM 
memory with the direct mapped on-chip SRAM. 

We used a set of benchmarks from the multimedia and DSP domains, and compiled them using 
the generated EXPRESS compiler[3]. We collected the statistics information using the generated 
SIMPRESS [13] cycle-accurate structural simulator, which models both the TI62I I processor and 
the memory subsystem. 

The configurations we experimented with are presented in Table 4. The numbers in Table 4 
represent: the size of the memory module (e.g., the size of LI in configuration I is I28), the 
cache/stream buffer organizations: num_lines x num_ways x line_size x word_size, the latency (in 
number of processor cycles), and the replacement policy (LRU or FIFO). . 

The configurations m Table 4 are presented in increasing order of the cost in terms of area. The 
first configuration contains the LI cache and an on-chip direct mapped SRAM of 2K. Some of 
the arrays in the application are mapped to the SRAM. Due to the reduced control necessary for 
the SRAM, it has a small latency (of I cycle), and the area requirements are small. The second 
configuration contains LI and L2 caches with FIFO replacement policy. Due to the control neces
sary for the L2 cache (of size 2K), the cost of this configuration is larger than the configuration 2 
containing the SRAM. Configuration III is the same as configuration 3, but with LRU replacement 
policy for the LI and L2 caches. Due to the more complex control required by the LRU policy, the 
cost of this configuration is larger than configuration II. Configuration IV contains an LI cache, an 
L2 cache of size IK and a direct mapped SRAM of size IK. Due to the extra busses to route the 
data to the caches and SRAM, this configuration has a larger cost than the previous one. All the 
configurations contain the same off-chip DRAM module with a latency of 20 cycles. 
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Table 4. The memory subsystem configurations 

Config LI L2 SRAM DRAM 
Cache Cache 

I 4x2x4x4 - 2K lat=20 
lat=l (LRU) lat=l cycle 

II 4x2x4x4 16x4x8x4 - lat=20 
lat=l (FIFO) lat=4 (FIFO) cycle 

III 4x2x4x4 16x4x8x4 - lat=20 
lat=l (LRU) lat=4 (LRU) cycle 

IV 4x2x4x4 32xlx8x4 IK lat=20 
lat=l (FIFO) lat=4 (FIFO) lat=l cycle 

6.2 Results 

Figure 12 presents a subset of experiments we ran, showing the total cycle counts (including 
the time spent in the processor) for the set of benchmarks for different memory configurations 
attached to the TIC6211 processor. From the experiments we performed, we chose a representative 
set of benchmarks, which show the different trends in the cost versus performance trade-off. Even 
though these benchmarks are kernels, we observed a significant variation in the trends shown by 
the different applications. 

For instance, in FirstMin and Linear the first configuration even though has the lowest cost per-
forms the best (lower cycle count means higher performance), dtie to the fact the most frequently 
used data fits in small SRAM. The expected trend of higher cost - higher performance was appar
ent in the applications 2DPartPusher, compress, and lowpass. In this manner, we are able to use 
our functional abstraction based Design Space Exploration approach to obtain design points with 
varying cost and performance. The designer is also able to explore the effects of employing hybrid 
architectural features. 

7 Conclusion 

This report proposed a functional abstraction based design space exploration methodology which 
is capable of capturing a wide variety of processor and memory architectures. Rapid design space 
exploration can be performed by generating the software toolkit automatically. Functional abstrac
tion can be extracted from an ADL description as well. Generic function based design space ex
ploration allows designers to make fast design decisions and reuse the generic components. Hence 
the problem of design verification in this methodology reduces to interface verification, since each 
generic function can be pre-verified. 

Our ongoing work targets the use of this functional abstraction based design space exploration by 
generating synthesized hardware automatically. Furthermore, we plan to extend this specification 
technique to generate FSM automatically and perform property checking during rapid design space 
exploration driven by EXPRESSION ADL [4]. 
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