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Abstract

A major limitation for RNA-seq analysis of alternative splicing is its reliance on high sequencing 

coverage. We report DARTS (https://github.com/Xinglab/DARTS), a computational framework 

that integrates deep learning-based predictions with empirical RNA-seq evidence to infer 

differential alternative splicing between biological samples. DARTS leverages public RNA-seq big 

data to provide a knowledge base of splicing regulation via deep learning, helping researchers 

better characterize alternative splicing using RNA-seq datasets even with modest coverage.

RNA sequencing (RNA-seq) enables transcriptome-wide profiling of alternative splicing1, 2. 

The rapid accumulation of RNA-seq data in public repositories (e.g. ENCODE3, Roadmap 

Epigenomics4) provides unprecedented resources for characterizing alternative splicing 
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across diverse biological states. However, an inherent limitation of RNA-seq is that it is 

restricted by sequencing depth5, and cannot reliably quantify splicing in lowly expressed 

genes6.

Motivated by recent successes in using machine learning to predict exon inclusion/skipping 

levels in bulk tissues or single cells7–10, we hypothesized that large-scale RNA-seq resources 

can be utilized to construct a deep learning model of differential alternative splicing. To test 

this hypothesis, we developed DARTS (Deep-learning Augmented RNA-seq analysis of 

Transcript Splicing). DARTS consists of two core components: a Deep Neural Network 

(DNN) model that predicts differential alternative splicing between two conditions based on 

exon-specific sequence features and sample-specific regulatory features; and a Bayesian 

Hypothesis Testing (BHT) statistical model that infers differential alternative splicing by 

integrating empirical evidence in a specific RNA-seq dataset with prior probability of 

differential alternative splicing (Fig. 1a). During training, large-scale RNA-seq data are 

analyzed by the DARTS BHT with an uninformative prior (DARTS BHT(flat), with only 

RNA-seq data used for the inference) to generate training labels of high-confidence 

differential or unchanged splicing events between conditions, which are then used to train 

the DARTS DNN. During application, the trained DARTS DNN is used to predict 

differential alternative splicing in a user-specific dataset. This prediction is then incorporated 

as an informative prior with the observed RNA-seq read counts by the DARTS BHT 

(DARTS BHT(info)) to perform deep learning augmented splicing analysis.

Unlike methods that use cis sequence features to predict exon splicing patterns in specific 

samples7–10, the DARTS DNN predicts differential alternative splicing by incorporating 

both cis sequence features and mRNA levels of trans RNA binding proteins (RBPs) in two 

conditions (Fig. 1b, Supplementary Fig. 1). This design allows the DARTS DNN to consider 

how altered expression of RBPs affects splicing. We initially focused on exon skipping, the 

most frequent alternative splicing pattern in animals6. We compiled 2,926 cis sequence 

features and 1,498 annotated RBPs11 whose mRNA levels were treated as trans RBP 

features (Supplementary Table 1).

To train the DARTS DNN, we utilized large-scale RBP-depletion RNA-seq data in two 

human cell lines (K562 and HepG2) generated by the ENCODE consortium12 (Fig. 1c). We 

used RNA-seq data of 196 RBPs depleted by shRNA in both cell lines, corresponding to 408 

knockdown vs. control pairwise comparisons (Fig. 1c). The remaining ENCODE data, 

corresponding to 58 RBPs depleted in only one cell line, were excluded from training and 

used as leave-out data to independently evaluate the DARTS DNN (Fig. 1c). To generate 

training labels, we applied DARTS BHT(flat) to calculate the probability of an exon being 

differentially spliced or unchanged in each pairwise comparison. DARTS BHT(flat) was 

benchmarked using simulation datasets and compared favorably to two state-of-the-art 

statistical models for differential splicing inference MISO and rMATS (Supplementary Fig. 

2 and 3). From the high-confidence differentially spliced vs. unchanged exons called by 

DARTS BHT(flat) (Supplementary Table 2), we used 90% labelled events for training and 5-

fold cross validation, and the remaining 10% events for testing (Methods). The performance 

of the DARTS DNN increased as training progressed, reaching a maximum Area Under the 
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Receiver Operating Characteristic curve (AUROC) of 0.97 during cross-validation and 0.86 

during testing (Supplementary Fig. 4).

To test the general applicability of the DARTS DNN, we used the leave-out data, 

corresponding to 58 RBPs that had never been seen during training (Fig. 1c). The trained 

DARTS DNN showed a high accuracy (average AUROC=0.87) on the leave-out data 

(Supplementary Table 3). We used the leave-out data to compare the DARTS DNN to three 

alternative baseline methods: the identical DNN structure trained on individual leave-out 

datasets (DNN), logistic regression with L2 penalty (Logistic), and Random Forest. We 

trained these baseline methods using 5-fold cross-validation in each leave-out dataset. 

Additionally, we implemented another alternative baseline method, by predicting sample-

specific exon inclusion levels (PSI values)1, 10 then taking the absolute difference of the 

predicted PSI values between two conditions as the metric for differential splicing 

( ψKD − ψCTRL ). The DARTS DNN trained on the large-scale ENCODE data outperformed 

baseline methods by a large margin in 57/58 experiments (Fig. 1d). The DARTS DNN 

model trained on individual leave-out datasets was the worst performer, illustrating the 

importance of training the DARTS DNN on large-scale data comprising diverse perturbation 

experiments.

Next, we evaluated the ability of the DARTS framework to infer differential splicing from a 

specific RNA-seq dataset, by incorporating the DARTS DNN predictions as the informative 

prior and observed RNA-seq read counts as the likelihood (DARTS BHT(info)). The 

posterior ratio of differential splicing consists of two components: the prior ratio, generated 

by the DARTS DNN based on cis sequence features and trans RBP expression levels; and 

the likelihood ratio, determined by modelling the biological variation and estimation 

uncertainty of splice isoform ratio based on observed RNA-seq read counts. Simulation 

studies demonstrated that the informative prior improves the inference when the observed 

data is limited, for instance due to low gene expression levels or limited RNA-seq depth, but 

does not overwhelm the evidence in the observed data (Supplementary Fig. 5).

We used DARTS BHT(info) and DARTS BHT(flat) to infer cell-type-specific splicing 

events between HepG2 and K562 cell lines. To obtain high-confidence differential and 

unchanged splicing events between the two cell types, we aggregated all 24 or 28 RNA-seq 

replicates of HepG2 or K562 from ENCODE and applied DARTS BHT(flat) to this ultra-

deep RNA-seq dataset. Next, we applied DARTS BHT(info) and DARTS BHT(flat) to all 

possible (24×28) pairwise comparisons between individual replicates of HepG2 and K562, 

and computed the Area Under Precision Recall Curve (AUPR) for the two methods 

(Supplementary Table 4). DARTS BHT(info) outperformed DARTS BHT(flat) in all 

pairwise comparisons, and the performance gain was negatively correlated with the RNA-

seq depth of individual replicates (Spearman’s rho=−0.69, p-value<2.2e-16), with the largest 

gain coming from comparisons involving low-coverage RNA-seq samples (Fig. 2a). Thus, 

incorporating the DNN prediction as prior information improves the detection of cell-type-

specific splicing events from low-coverage RNA-seq data.

Next, we determined whether the DARTS DNN can be extended to additional cell types, and 

how the choice of training datasets influences its performance. We utilized RNA-seq data 
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from diverse cell types generated by the Roadmap Epigenomics consortium4. We performed 

253 pairwise comparisons of Roadmap samples (Supplementary Table 5) by DARTS 

BHT(flat) to generate training data for the DARTS DNN. We excluded all pairwise 

comparisons involving the thymus tissue from training to use as leave-out data for 

independent evaluation. We trained three DARTS DNN models, using ENCODE data only, 

Roadmap data only, or both (Fig. 2b). The DARTS DNN trained on ENCODE data exhibited 

high predictive power for leave-out ENCODE data but modest predictive power for leave-

out Roadmap data. Conversely, the DARTS DNN trained on Roadmap data had high 

predictive power for leave-out Roadmap data but modest predictive power for leave-out 

ENCODE data. The DARTS DNN trained on combined ENCODE and Roadmap data had 

the best performance (Fig. 2b).

We extended the DARTS DNN beyond exon skipping to predict other types of alternative 

splicing patterns. We compiled cis sequence features (Supplementary Table 1) and trained 

three DNN models for predicting differential alternative 5’ splice sites (A5SS), alternative 3’ 

splice sites (A3SS), and retained introns (RI). Trained on ENCODE and Roadmap data, 

these DNN models exhibited a high prediction accuracy in independent leave-out datasets 

(Supplementary Fig. 6).

Finally, we applied DARTS to study alternative splicing during the epithelial-mesenchymal 

transition (EMT), a key process in embryonic development and cancer metastasis13. We re-

analyzed our published time-course RNA-seq data on an inducible H358 lung cancer cell 

line model of the EMT14. We used DARTS BHT(flat) to compare each day to Day 0, then 

assessed the ability of the DARTS DNN to predict high-confidence differential vs. 

unchanged splicing events during the EMT. The DARTS DNN trained on ENCODE

+Roadmap data displayed the best performance, followed closely by the DARTS DNN 

trained on Roadmap data, whereas the DARTS DNN trained on ENCODE data performed 

least well (Fig. 3a). This was expected, given that the Roadmap data cover epithelial and 

mesenchymal cell types. The best prediction accuracy (AUROC=0.82) was achieved by the 

DARTS DNN trained on ENCODE+Roadmap for the Day 6 versus Day 0 comparison. As 

an example, the DARTS DNN predicted the EMT-associated alternative splicing change in 

PLEKHA1 (Supplementary Fig. 7).

To further assess the DARTS DNN predictions, we compiled 449 “DARTS DNN rescued” 

events from the Day 6 vs. Day 0 comparison (Methods). A subset of these “DARTS DNN 

rescued” events had significantly reduced exon inclusion during the EMT, and their 

downstream intronic regions were enriched for the consensus motif of the splicing factors 

ESRP1/215 (Fig. 3b). A similar pattern of ESRP motif enrichment was observed for 

differential splicing events called by DARTS BHT(flat) using RNA-seq data alone (Fig. 3b). 

By contrast, events that were called significant by DARTS BHT(flat) but fell below the 

significance threshold (posterior probability<0.9) after incorporating the informative prior 

were not enriched for the ESRP motif (Supplementary Fig. 8). ESRPs are epithelial-specific 

splicing factors whose downregulation is a major driver of alternative splicing during the 

EMT14. This observed pattern of ESRP motif enrichment is consistent with ESRP binding 

downstream of alternative exons enhancing exon inclusion13.
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To extend our DARTS analysis of the H358 EMT system, we performed paired-end RNA-

seq of the PC3E and GS689 prostate cancer cell lines, which have contrasting epithelial vs. 

mesenchymal characteristics2, 16. The DARTS DNN scores of these two EMT systems were 

highly correlated (Spearman’s rho=0.87, p-value<2.2e-16; Fig. 3c), suggesting that the 

DARTS DNN can capture a core EMT splicing signature.

To assess if DARTS can uncover bona fide differential splicing events from lowly expressed 

genes, we performed targeted splicing profiling using the RASL-seq technology17 and 

estimated the absolute difference of PSI values (RASL-|ΔPSI|) for 1,058 alternative splicing 

events between PC3E and GS689 (Methods). We restricted our further analysis to events 

with RASL-|ΔPSI| value <0.3. As expected, alternative splicing events called as differential 

or unchanged using RNA-seq data alone (by DARTS BHT(flat)) displayed the highest or 

lowest RASL-|ΔPSI| values, respectively (Fig. 3d). For the remaining events called as 

inconclusive by DARTS BHT(flat), we compiled DARTS DNN-predicted differential events 

and unchanged events, with high (FPR<5%) and low (FPR>80%) DARTS DNN scores 

respectively (Supplementary Table 6). DARTS DNN-predicted differential events had 

significantly larger RASL-|ΔPSI| values than DARTS DNN-predicted unchanged events (p-

value=0.035, one-sided Wilcoxon test), with the former group similar to the RNA-seq 

differential events and the latter group similar to the RNA-seq unchanged events (Fig. 3d). 

DARTS DNN-predicted differential events were in genes with significantly lower expression 

levels (p-value=0.001, Wilcoxon test) and had significantly lower RNA-seq coverage (p-

value=2.1e-7, Wilcoxon test) compared to differential events called by DARTS BHT(flat) 

(Supplementary Fig. 9a,b). Collectively, among the events analyzed by RASL-seq, DARTS 

DNN predicted 52 additional differential splicing events, beyond the 77 events called using 

RNA-seq data alone. Moreover, on RNA-seq inconclusive events with high or low DARTS 

DNN scores, we used RASL-seq to define the ground truth with RASL-|ΔPSI|>5% as 

differential and RASL-|ΔPSI|<1% as unchanged. We benchmarked the performance of 

DARTS BHT(info), DARTS BHT(flat), DARTS DNN, as well as rMATS2 and SUPPA218 

that adopted alignment-based vs alignment-free strategies for quantifying splicing using 

RNA-seq data. DARTS BHT(info) consistently outperformed baseline methods that use 

RNA-seq data alone to call differential splicing (Supplementary Fig. 9c-d). These data 

suggest that by combining deep learning predictions with empirical evidence in user-specific 

RNA-seq data, DARTS can uncover alternative splicing changes in lowly expressed genes 

and expand the findings beyond a conventional RNA-seq splicing analysis.

Methods

DARTS Bayesian hypothesis testing (BHT) framework

We developed DARTS BHT, a Bayesian statistical framework to determine the statistical 

significance of differential splicing events or unchanged splicing events between RNA-seq 

data of two biological conditions. The DARTS BHT framework was designed to integrate 

deep learning based prediction as prior and empirical evidence in a specific RNA-seq dataset 

as likelihood. We start by modelling the simplest case, i.e. testing the difference in exon 

inclusion levels (PSI values) between two conditions without replicates, i.e. one sample per 

condition (for model with replicates, see Supplementary Notes):
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Iij ψij ∼ Binomial n = Iij + Sij, p = fi ψij

ψi1 = μi

ψi2 = μi + δi

μi ∼ Unif(0, 1)

δi ∼ N 0, τ2

Where Iij, Sij and ψij are the exon inclusion read count, the exon skipping read count, and 

the exon inclusion level for exon i in sample group j ∈ 1, 2 , respectively; fi is the length 

normalization function for exon i that accounts for the effective lengths of the exon inclusion 

and skipping isoforms2; μi is the baseline inclusion level for exon i, and δi is the expected 

difference of the exon inclusion levels between the two conditions. The goal of the 

differential splicing analysis is to test whether the difference in exon inclusion levels 

between the two conditions δi exceeds a user-defined threshold c (e.g. 5%) with a high 

probability, i.e.

P δi > c Iij, Sij ≈ 1

In Bayesian statistics, this test can be approached by assuming a “spike-and-slab” prior for 

the parameter of interest δ. The spike-and-slab prior is a two-component mixture prior 

distribution, with the “spike” component depicting the probability of the model parameter δ
being constrained around zero, and the “slab” component depicting the unconstrained 

distribution of the model parameter δ.

In the DARTS BHT statistical framework, we impose a spike prior H0 with a small variance 

τ = τ0, such that the probability of δ concentrates around 0, to account for random biological 

or technical fluctuations in PSI values between two biological conditions for unchanged 

splicing events. We impose a slab prior H1 with a much larger variance τ = τ1 to model the 

difference in PSI values between two conditions for differential splicing events. We set 

τ0 = 0.03, corresponding to 90% density constrained within δ ∈ −0.05, 0.05 , and τ1 = 0.3; we 

note that the final inference is robust to choice of τ values (for more details, see 

Supplementary Notes and Supplementary Fig. 10). The posterior probability of a splicing 

event being generated by the two models can be written as:

Zhang et al. Page 6

Nat Methods. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



P H1|Iij, Sij = 1
Z P H1 ⋅ P(Iij, Sij H1)

P Iij, Sij|H1 = ∫
δ

∫
μ

P Iij, Sij|μi, δi ⋅ P μi, δi|H1 dμidδi

P H0|Iij, Sij = 1
Z P H0 ⋅ P Iij, Sij|H0

P Iij, Sij|H0 = ∫
δ

∫
μ

P Iij, Sij|μi, δi ⋅ P μi, δi|H0 dμidδi

Where P H1  is the prior probability of exon i being differentially spliced, determined by 

exon-specific cis features and sample-specific trans RBP expression levels in the two 

biological conditions, which is independent of the observed RNA-seq read counts. 

P H0 = 1 − P H1  is the prior probability of exon i being unchanged. P(Iij, Sij |H1) and 

P(Iij, Sij |H0) represent the likelihoods under the model of differential splicing or unchanged 

splicing respectively. Z is a normalizing constant.

Since we are comparing only two models, we can further re-write the above equation as a 

factorization of the ratios between prior and likelihood:

P(H1 Iij, Sij)
P(H0 Iij, Sij)

=
P H1
P H0

⋅
P(Iij, Sij H1)
P(Iij, Sij H0)

Note that when the prior distribution is flat, i.e. P H0 = P H1 = 0.5, the above equation is 

equivalent to a likelihood ratio test, which we refer to as DARTS BHT(flat). When P H0
and P H1  incorporate an informative prior based on exon- and sample-specific predictive 

features, we refer to this DARTS BHT model as DARTS BHT(info).

Finally, using the equation above, we can derive the marginal posterior probability 

P(δi | Iij, Sij) for the parameter of interest δi as a mixture of the posterior conditioned on the 

two models:

P δi|Iij, Sij = P δi|H1, Iij, Sij ⋅ P H1|Iij, Sij + P δi|H0, Iij, Sij ⋅ P(H0 Iij, Sij)

Hence, the final inference is performed on the probability P( δi > c|Iij, Sij). In our analysis, 

we set c=0.05 (i.e. a 5% change in exon inclusion level) and call events with 

P( δi > 0.05 |Iij, Sij) > 0.9 as significant differential splicing events and 
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P( δi > 0.05 |Iij, Sij) < 0.1 as significant unchanged splicing events. Events with 

0.1 ≤ P( δi > 0.05 |Iij, Sij) ≤ 0.9 are deemed as inconclusive. In the following text, we omit 

the subscripts and use P( δi > c |Iij, Sij) and P( Δψ > c) interchangeably.

DARTS deep neural network (DNN) model for predicting differential alternative splicing

A core component of the DARTS BHT framework is a deep neural network (DNN) model 

that generates a probability of differential splicing between two biological conditions using 

exon- and sample-specific predictive features. We designed the DARTS DNN to predict 

differential splicing of a given exon based on exon-specific cis sequence features and 

sample-specific trans RBP expression levels in two biological conditions.

As noted above, a useful feature of the DARTS BHT framework is its capability to 

determine the statistical significance of both differential splicing events and unchanged 

splicing events. Specifically, for a splicing event i in the comparison k between RNA-seq 

datasets from two distinct biological conditions j ∈ 1, 2 , let Y ik = 1 if this event is 

differentially spliced (i.e. H1 is true); and Y ik = 0 if H0 is true as labels for differential or 

unchanged splicing events respectively. The task of predicting differential splicing can be 

formulated as:

P(Y ik = 1) = F Yik; Ei, Gk

Where Y ik is the label for event i in the comparison k; Ei is a vector of 2,926, 2,973, 2,971, 

and 1,748 cis sequence features for event i, including evolutionary conservation, splice site 

strength, regulatory motif composition, and RNA secondary structure for skipped exons, 

alternative 5’ splice sites, alternative 3’ splice sites, and retained introns, respectively. Gk is a 

vector of 2,996 (=1,498×2) normalized gene expression levels of 1,498 RBPs in the two 

conditions. See Supplementary Table 1 for a full list of the features. The prediction of 

P Y ik = 1  based on the features from any specific RNA-seq dataset can then be incorporated 

as an informative prior for P H1  in the DARTS BHT framework.

We implemented a deep learning model (DARTS DNN) to learn the unknown function F 

that maps the predictive features to splicing profiles (differential vs. unchanged). We 

designed the DARTS DNN with 4 hidden layers and 7,923,402 parameters. The 

configuration of the DNN was: an input layer with 5922(=2926+1498*2) variables; 4 fully-

connected hidden layers with 1200, 500, 300, 200 variables and the ReLU activation 

function; and an output layer with 2 variables and the Softmax activation function. We 

implemented the DARTS DNN using Keras (https://github.com/keras-team/keras) with the 

Theano backend.

To mitigate potential overfitting of the DARTS DNN, we added a drop-out probability19 for 

connections between hidden layers. Specifically, the variables in the four hidden layers were 

randomly turned off during the training process with probability 0.6, 0.5, 0.3, and 0.1, 

respectively. We also added batch-normalization layers20 for all hidden layers to help the 

model converge and generalize. Finally, we used the RMSprop optimizer to adaptively 
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adjust for the magnitudes of the components of the gradient in this deep architecture and 

chose 1000 labelled alternative splicing events as one mini-batch to obtain a more stable 

gradient. In each mini-batch we balanced the composition of positive and negative labels by 

adding more positive events in the mini-batch such that positive : negative = 1:3 in the mini-

batch. Since there were significantly more negative (unchanged) events compared to positive 

(differential) events, such a balanced composition will provide a gradient for learning the 

positive events in different mini-batches.

To monitor the training loss and validation loss, we computed the loss every 10 mini-batches 

and saved the current model parameters if the validation loss was lower than the previous 

best model. We trained the DARTS DNN on Tesla K40m.

Processing of ENCODE RNA-seq data and training of the DARTS DNN model

We used a comprehensive RNA-seq dataset from the ENCODE consortium to train the 

DARTS DNN. The ENCODE investigators have performed systematic shRNA knockdown 

of over 250 RBPs in two human cell lines HepG2 and K562. We downloaded all available 

(as of May 2017) RNA-seq alignments (ENCODE processing pipeline on the human 

genome version hg19) for shRNA knockdown and control samples from the ENCODE data 

portal (https://www.encodeproject.org/).

We processed the RNA-seq alignments (bam files) using rMATS2 (v4.0.1). Given RNA-seq 

alignment files, rMATS constructs splicing graphs, detects annotated and novel alternative 

splicing events, and counts the number of RNA-seq reads for each exon and splice junction. 

Given the modest depth of the ENCODE RNA-seq data (32 million read pairs per replicate 

on average), the read counts from the two replicates were pooled together for downstream 

analyses.

We processed the raw RNA-seq reads with Kallisto21 (v0.43.0) to quantify gene expression 

levels using Gencode22 (v19) protein coding transcripts as the index. For each of the two 

biological conditions in a given comparison (i.e. shRNA knockdown vs. control), we 

extracted the Kallisto derived gene-level TPM values of 1,498 known RBPs11. The TPM 

value of each RBP was normalized by dividing by its maximum observed TPM value of all 

comparisons, then used as RBP expression features by the DARTS DNN.

To generate training labels for the DARTS DNN, DARTS BHT(flat) was applied to the 

ENCODE RNA-seq data. Events with posterior probability P( | | > 0.05) > 0.9 were called 

positive (Y=1). Events with posterior probability P( | | > 0.05) < 0.1 were called negative 

(Y=0). We defined these significant differential splicing events and significant unchanged 

splicing events as labelled events and used them to train the DARTS DNN.

The vast majority of the RBPs (n=196) in the ENCODE data were knocked-down by at least 

one shRNA in both HepG2 and K562 cell lines, corresponding to a total of 408 comparisons 

between knockdown and control. We set aside 10% of the labelled positive events and the 

same number of labelled negative events in each comparison as the testing data for 

estimating the generalization error of the trained DNN model. For the remaining 90% of the 

labelled events, we further split them into 5-fold cross-validation subsets for the purposes of 
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training, monitoring overfitting, and early-stopping. We also collected ENCODE RBP 

knockdown experiments performed in only one cell line (either HepG2 or K562, n=58) as 

leave-out datasets. All labelled events in these leave-out datasets were only utilized for 

evaluating the trained DARTS DNN and were never used during training.

We randomly drew 4 RBPs without replacement for a training batch, and iterated through all 

196 RBPs as an epoch. The performance of the DARTS DNN was measured by Area Under 

the Receiver Operating Characteristics curve (AUROC). The model with the best 

performance during training and cross-validation was selected, and subsequently 

benchmarked using the testing data and leave-out data.

Rank-transformation of the DARTS informative prior

In a typical RNA-seq study, the number of unchanged splicing events can be orders of 

magnitude larger than differential splicing events, and machine learning algorithms may be 

biased to the majority class. To mitigate this potential bias, we used an unsupervised rank-

transformation to rescale DARTS DNN scores to derive the informative prior for the DARTS 

BHT framework. Specifically, we first fit a two-component Gaussian mixture model for all 

the DARTS DNN scores to derive the mean and variance of the two mixed Gaussian 

components as well as the posterior probability λ of each DARTS DNN score belonging to a 

specific component. Setting the new mean and variance of the two Gaussian components to 

μ0 and μ1, σ0 and σ1, respectively, each DARTS DNN score was rank-transformed to the new 

Gaussian components and then averaged by the weight parameter λ. Finally, to maintain a 

valid prior probability, the transformed DARTS DNN scores were rescaled to α, 1 − α , 

where α ∈ 0, 0.5  sets the desired prior strength for the DARTS BHT framework and a 

smaller α value corresponds to a stronger strength of the informative prior. Using this 

rescaling scheme, the entire ranks of the DARTS DNN scores are preserved while the 

potential bias for negative over positive events is reduced. In practice, we set μ0 = 0.05, 

μ1 = 0.95, σ0 = σ1 = 0.1, and α = 0.05.

Generalization of the DARTS framework to diverse tissues and cell types

We generalized the DARTS framework to incorporate diverse tissues and cell types by 

utilizing RNA-seq resources from the Roadmap Epigenomics project4. The Roadmap data 

was processed following the same protocol as for the ENCODE data. We took all Roadmap 

data with 101bp x 2 or 100bp x 2 paired-end RNA-seq, and truncated reads from the 101bp 

x 2 datasets to 100bp for rMATS. In total, this represented 23 distinct tissues or cell types. 

All possible pairwise comparisons (n=253) between these 23 RNA-seq samples were 

performed. Comparisons involving thymus were held out as Roadmap leave-out data, and all 

remaining comparisons were used as training datasets.

We trained three DARTS DNN models using different training datasets: i) ENCODE data 

only, ii) Roadmap data only, and iii) the combination of ENCODE+Roadmap data. The 

performances of the three models were subsequently benchmarked by using ENCODE or 

Roadmap leave-out datasets.
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DARTS splicing analyses of EMT-associated RNA-seq datasets

We applied the trained DARTS model to study EMT-associated alternative splicing events in 

two distinct human cell culture systems: H358 lung cancer cell line induced to undergo EMT 

through a 7-day time course14, and PC3E/GS689 prostate cancer cell lines that had 

contrasting epithelial versus mesenchymal characteristics2, 16.

For the H358 time-course RNA-seq data (GSE75492), we used DARTS BHT(flat) to 

compare RNA-seq data from Day 1 to Day 7 against Day 0. Splicing events that displayed a 

high DARTS DNN score of differential splicing (FPR<5%) and a non-trivial splicing change 

(over 10% difference in exon inclusion level), but did not pass the significance threshold by 

DARTS BHT(flat) using observed RNA-seq read counts alone were defined as DARTS 

DNN rescued events. Motif analysis was performed by calculating the average percentage of 

nucleotides covered by any of the top 12 ESRP SELEX-seq hexamer motifs15 in a 45bp 

sliding window. Background sequences were significant unchanged events by DARTS 

BHT(flat). For the PC3E and GS689 cell lines, we conducted RASL-seq17 and RNA-seq 

experiments on the same batch of RNA samples, each with 3 replicates and on average 125 

million read pairs per replicate (raw data deposited as GSE112037). RASL-seq reads were 

aligned to the pool of target splice junctions in the RASL-seq library using Blat23. RASL-

PSI values were calculated as I
I + S , where I is the number of exon inclusion splice junction 

reads and S is the number of exon skipping splice junction reads. Alternative splicing events 

with total RASL-seq read counts larger than 5 in every replicate were used for downstream 

analyses. Gene expression levels of RBPs in the two datasets were quantified using Kallisto 

v0.43.0.

RASL-seq library preparation and sequencing

RASL-seq was performed as described24 with some modifications. Total RNA from PC3E 

and GS689 cell lines were extracted with Trizol (Thermo Fisher Scientific). RASL-seq 

oligonucleotides (a gift from Xiang-Dong Fu, UCSD) were annealed to 1 μg of total RNA, 

followed by selection by oligo-dT beads. Paired probes templated by polyA+ RNA were 

ligated and then eluted. 5 μl of the eluted ligated oligos were used for 8 cycles of PCR 

amplification using primers F1: 5’-

CCGAGATCTACACTCTTTCCCTACACGACGGCGACCACCGAGAT-3’ and R1: 5’-

GTGACTGGAGTTCAGACGTGTGCGCTGATGCTACGACCACAGG-3’. One third of the 

resulting PCR products were used in the second round of PCR amplification (9 cycles) using 

primers F2: 5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACG-3’ 

and R2: 5’-

CAAGCAGAAGACGGCATACGAGAT[index]GTGACTGGAGTTCAGACGTGTGC-3’; 

indexes used in this study were Illumina indexes D701-D706. The indexed PCR products 

were pooled and sequenced on a Miseq with a custom sequencing primer 5’-

ACACTCTTTCCCTACACGACGGCGACCACCGAGAT-3’ and a custom index sequencing 

primer 5’-TAGCATCAGCGCACACGTCTGAACTCCAGTCAC-3’.
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Data Availability

The RNA-seq data that support the findings of the deep learning models are available from 

the ENCODE project (https://www.encodeproject.org/) and the Roadmap Epigenomics 

project (http://www.roadmapepigenomics.org/). The H358 time-course RNA-seq data were 

downloaded from GEO with accession ID GSE75492. The PC3E-GS689 RNA-seq data and 

RASL-seq data can be accessed from GEO with accession ID GSE112037.

Code Availability

The DARTS program, trained model parameters, and predictive features are provided at 

GitHub (https://github.com/Xinglab/DARTS).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The DARTS computational framework for deep learning-augmented RNA-seq analysis of 

transcript splicing. (a) Overall workflow of DARTS. (b) Schematic illustration of the 

DARTS DNN features, including cis sequence features and trans RBP features. (c) Overview 

of training and leave-out RBPs, and the number of significant differential splicing events 

called by DARTS BHT(flat) on the ENCODE data (illustrated by bar charts above the outer 

and middle circles). 196 RBPs knocked-down in both the K562 and HepG2 cell lines are 

used for training (orange), while the remaining 58 RBPs knocked-down in only one cell line 

are leave-out data (light orange) (illustrated in the inner circle). (d) Comparison of the 

DARTS DNN with baseline methods in leave-out datasets.
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Figure 2. 
The performance evaluation of the DARTS Bayesian Hypothesis Testing (BHT) framework 

and the influence of training datasets on the performance of the DARTS DNN. (a) The 

performance of DARTS BHT(info) vs. DARTS BHT(flat) in the cell-type-specific 

differential splicing analysis of HepG2 and K562 (two-sided paired t-test, n=672 pairwise 

comparisons). The performance gain by DARTS BHT(info) is plotted against the RNA-seq 

depth in pairwise comparisons of individual replicates (inset). (b) AUROC values of the 

DARTS DNN trained on ENCODE+Roadmap data, ENCODE data only, or Roadmap data 

only when applied to ENCODE or Roadmap leave-out data.
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Figure 3. 
DARTS analysis of alternative splicing during the EMT. (a) The performance of the DARTS 

DNN on the time-course RNA-seq data of an inducible H358 lung cancer cell line model of 

the EMT. The numbers of differential splicing events called by DARTS BHT(flat) are shown 

as bar plots at the bottom. (b) Meta-exon motif analysis of the ESRP motif for RNA-seq 

differential events called by DARTS BHT(flat) and DARTS DNN rescued events in the Day 

6 vs. Day 0 comparison. (c) DARTS DNN predictions for the H358 EMT time course (Day 

6 vs. Day 0) and in GS689 vs. PC3E. Plotted are the ranks of predicted DARTS DNN 

scores. (d) RASL-seq validation of RNA-seq called events and DARTS DNN predicted 

events. Plotted are the RASL-|ΔPSI| values of RNA-seq inconclusive events with high 

DARTS DNN scores (FPR<5%; n=52 events) (orange line) and RNA-seq inconclusive 

events with low DARTS DNN scores (FPR>80%; n=29 events) (green line).
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