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A B S T R A C T

Our study examines empirically the impact of agricultural research inputs on the creation and dissemination of
knowledge by the University of California Cooperative Extension (UCCE). We formulate a conceptual framework
to understand the relationship between the agricultural research inputs employed by UCCE and the knowledge
shared. We develop an index of knowledge based on a weighted average of the various modes through which
knowledge is produced by UCCE's agricultural research for all counties in the state of California during
2007–2013. Empirical results indicate significant positive impacts of research inputs on the production of
knowledge. We find research input, such as number of research positions measured as full-time equivalent (FTE),
level of salary per researcher (including seniority and status), and investment in research infrastructure per FTE,
positive and significant. Our models suggest diminishing marginal knowledge returns to research infrastructure,
and a linear knowledge production function with respect to the number of FTE and the salary per FTE in the
UCCE system.

1. Introduction

Technological innovation has been identified as one of the im-
portant engines for economic development and growth (Griliches,
1979). It is driven through producing knowledge by firms and in-
dividuals, which allows them to stay competitive in the market (Buesa
et al., 2010). Since the seminal paper by Griliches (1979), the concept
of the knowledge production function has been further developed in
theory (Czarnitzki et al., 2009) and applied at national (Perret, 2016),
regional (Fritsch, 2002; hUallachain and Leslie, 2007; Charlot et al.,
2014), sectoral (Gurmu et al., 2010), levels, and even using a meta-
analysis of 15 individual studies (Neves and Sequeira, 2018).

Agriculture is one of the sectors in which innovation has become
extremely important due to scarcity of natural resources, such as land
and water, and increased demand for food driven by population
growth. According to Food and Agricultural Organization (FAO) of the
United Nations estimates,1 global population is expected to grow by
more than a third, or 2.3 billion people, between 2009 and 2050.
Agricultural productivity would have to increase by about 70% to feed
the global population of 9.1 billion people over this period. Arable land
would need to increase by 70million ha, with considerable pressure on

renewable water resources for irrigation. Efficiency in agricultural
practices and resource usage are among the suggested prescriptions to
ensure sustainable agricultural production. Sands et al. (2014) also
predicted net positive improvements in global agricultural production
in the year 2050, in a simulated scenario of rising population and low
agricultural productivity growth. While such studies are reassuring, it
becomes imperative to guarantee continuous research and development
in agriculture to sustain the current rate of productivity growth, and to
increase it to counter both population growth and natural resource
scarcity in the future. Such objectives can be met by proper investment
in agricultural R&D and its dissemination to the agricultural producers.
A first step is the identification of the process of converting research
and dissemination inputs into knowledge used for improvement of food
production.

Much of the literature reviewed in Section 2 below focuses on
knowledge production functions in industrial firms and sectors. Fewer
works apply the concept of knowledge production function to agri-
cultural research (e.g., Alston et al., 1998; Dinar, 1991; Griliches, 1979;
Pardey, 1989), and we are not aware of estimation of such function for
agricultural extension. Agricultural extension is a public based research
and dissemination of knowledge to farmers by universities and/or
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government agencies. In this paper, we apply the concept of knowledge
production function to an agricultural extension system by focusing on
research-based agricultural knowledge generated by the University of
California Cooperative Extension (UCCE). This publicly-funded re-
search and extension system has offices across counties within the state
of California. We analyze the nature of the input-output relationship
between the research inputs invested by UCCE in R&D and outreach,
and the knowledge produced and disseminated by UCCE. This paper
contributes to the literature in several ways that set it apart from similar
endeavors. To our knowledge, this paper is the first to develop a
knowledge production function for an agricultural extension system
that creates and disseminates knowledge, which is in itself an innova-
tion. Second, it develops a weighted average value of knowledge, in-
cluding a number of different components of knowledge produced.
Third, the paper uses academic publications (as in Pardey, 1989, for an
agricultural research system) to measure knowledge produced by ex-
tension, as opposed to patents used in measuring knowledge in private
sector. Finally, it distinguishes knowledge production across California
counties and over time, suggesting relative advantages in knowledge
creation by counties with potential implications for public
budget allocation.

The remainder of the paper is organized as follows: Section 2 re-
views previous works and places our paper within that literature.
Section 3 develops the econometric methodology, departing from the
previous published work on agricultural knowledge that is reviewed in
Section 2. Section 4 describes the data and variable creation. Section 4
reports the empirical results, and Section 5 presents the conclusion and
policy implications.

2. Review of previous work

The knowledge production function has various applications at so-
cietal and sectoral levels. A recent published theoretical framework
addressing the role of knowledge in society's growth was developed by
Dolgonosov (2016). Distinguishing between technological knowledge
and general total knowledge, the author demonstrated that knowledge
is essential to allow sustainable population growth within the carrying
capacity of the planet. The role of knowledge production is essential,
especially with the increasing population and environmental load. This
framework suggests that society could introduce policies to improve the
efficiency of knowledge production in various sectors.

The literature distinguishes also between knowledge of various
qualities. Cammarano et al. (2017) introduced the notion of quality of
innovation output, using patent data from bio-pharmaceutical and
equipment-producing companies. The analysis suggests a more pro-
ductive knowledge process in which innovative firms use knowledge
and information produced by external sources. Working on a related
industry, Lauto and Valentin (2016) estimated a knowledge production
function for what was coined the new science development model for
clinical medicine, in which research can be conducted in a transna-
tional effort, or locally. This is a very interesting distinction that may
indicate the efficiency of transnational simultaneous research benefit-
ting from a variety of conditions and its superiority to knowledge
spillover of research conducted separately. However, the authors find
that by its nature, transnational research may have lower efficiency and
impact because it includes diverse aspects in quantitative comparisons.
Some surprising findings are offered by Roper and Hewitt-Dundas
(2015), who estimates the interaction between knowledge stocks and
flows and their impact on the firm's innovation. They found (1) that
negative rather than positive (although weak) effects between knowl-
edge stocks and innovation (patents), and (2) knowledge flows dom-
inate the effects of knowledge stocks on the innovation of the firm.

Several works address the issue of networking and proximity among
the knowledge creation centers (Marrocu et al., 2013), and the effects of
collaboration within and between regions on knowledge productivity
(De Noni et al., 2017). Both works were applied to Europe. Ramani

et al. (2008) develop a model of knowledge production function that
can be estimated at both the firm and the sector level and apply it to the
bio-food industry. The production function in this work allows to dis-
tinguish between the absorptive capacity to exploit inter- and intra-
sectoral spillovers. Marrocu et al. (2013) found that technological
proximity outperforms the geographic proximity, suggesting that net-
working has a limited role in enhancing knowledge creation. The most
relevant finding of De Noni et al. (2017) to our work is that the impact
on knowledge productivity is stronger in the case of collaboration be-
tween regions with diversified knowledge base. From a different per-
spective, Verspagen and De Loo (1999) addressed the spillover effect of
knowledge, both across sectors and over time using a knowledge flow
matrix. The methodology is very relevant for knowledge production
investments, but it is heavily dependent on data that might not be
readily available everywhere. Two examples of recent studies that ad-
dress spillover effects in knowledge production are Wang et al. (2017)
and Neves and Sequeira (2018). Wang et al. (2017) estimated the
spillover effects in the semiconductor industry to find that the strength
of the networking ties between companies explain the level of spillover
effect in the knowledge production process. Spillover effects are ex-
pected to be stronger in weaker network ties. Neves and Sequeira
(2018) conducted a meta-analysis of data from 15 published works to
find expected, but reassuring results. They quantify level of spillover
effects and discover that the spillover effect will be larger when they
include in the estimation of the knowledge production foreign inputs,
and it will be lower when only rich economics are included in the es-
timation.

Finally, universities are considered a hub for knowledge production,
based on research conducted in addition to their role as educational
institutions. Gurmu et al. (2010) used patents issued to universities
during 1985–1999 as a measure of knowledge. They explained varia-
tion in knowledge by field of knowledge, R&D expenditures (over 4–8
previous years with a depreciation rate of knowledge of 15%), as well
as detailed human capital variables, and several control variables. Their
results indicated marginal contribution of each research variable to the
production of knowledge.

While the literature review is by no means inclusive, it represents
the many efforts that have been made in the literature for under-
standing the determinants of knowledge production. We will rely on
these works while developing our analytical framework.

3. Analytical framework

The literature suggests that agriculture-related R&D inputs result in
the production of knowledge, which upon application leads to im-
provement in productivity in the agricultural sector. Alston et al. (1998,
2008), Birkhaeuser et al. (1991), and Evenson (2001) estimated the
impact of R&D and extension-related expenditures on agricultural
productivity. The underlying theory is that expenditures made towards
R&D and outreach impact productivity, and that impact of research
expenditures is differential; old expenditures have a lower impact on
current productivity. Evenson (2001) and Birkhaeuser et al. (1991)
reported positive impacts of both R&D and cooperative extensions on
productivity for studies from around the world. While these studies
provide strong evidence of a long-term impact of R&D-related ex-
penditure as well as the impact of farmer-extension agent contacts on
productivity, there is a gap in our understanding of how well these
proxies for agricultural knowledge represent actual knowledge pro-
duced. This is understandable because measurement of knowledge
produced from investments in R&D is conceptually and computation-
ally complicated.

Griliches (1979) discussed the issues of measurement of knowledge
production between public and private sector investments in R&D. He
claimed that patents are a good approximation of knowledge and in-
novation, especially because of the commercial value attached to it. An
industry or a firm likes to file for patents to have sole right on its
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invention and is paid for its use by others. Pavitt (1985) mentioned that
patents are good proxy measures of innovative activities. Other studies
(Buesa et al., 2010; Czarnitzki et al., 2009; Fritsch, 2002 and Ponds
et al., 2010) have used patents as proxies for knowledge production.
Data on patents are well documented in the United States and in the rest
of the world and are easily obtainable without the hassle of conversion
of units. In the industrial sector, knowledge produced through research
is mostly owned as private property by the innovating firm because of
the related commercial incentive of private property ownership. This
makes patents the most appropriate proxy variable for knowledge
production function analysis in the case of private sector research.

However, publicly funded research and especially agricultural re-
search creates knowledge, most of which is publicly available. Pardey
(1989) and Dinar (1991) used publications (the dependent variable) as
a proxy for knowledge production. Publications are more prevalent in
public research agencies, where research results are typically published
in journals. Dinar (1991) used peer-reviewed journal publications in
different fields as the dependent variable for his study of the agri-
cultural research system in Israel. According to Pardey (1989), pub-
lications have been chosen over patented and non-patented output like
mechanical innovation processes or new biological material, books,
State Agricultural Experiment Station bulletins, and newsletters. Pub-
lications capture the knowledge output of a station completely because
they establish intellectual property rights of the researchers over their
work, which in turn affect their salary scale, promotion rate, and tenure
status. Link (1982) analyzed the determinants of inter-farm differences
on the composition of R&D spending, namely basic and applied R&D.
He regressed these R&D components on profits, diversification, own-
ership structure, and subsidies. Jaffe (1989) found a significant positive
impact of university research on corporate patents for a number of
technical areas, such as drugs and medical technology, and electronics,
optics and nuclear technology in the United States. The literature on the
topic leads us to two main observations: (i) a dearth of papers that deal
with the analysis of the knowledge production function and the study of
the impact of production inputs on knowledge produced; and (ii) the
choice of variables representing knowledge produced through invest-
ments in R&D only provides a partial picture of the true process. There
is little attempt to compute a comprehensive knowledge production
variable that captures knowledge produced through all avenues.

UCCE follows an input-output framework for research, which in-
volves utilization of research inputs such as manpower and infra-
structure, for the production of knowledge to be disseminated to po-
tential clientele from a variety of different sectors. This knowledge is
produced through basic and applied research, and extension work,
which are targeted to address the needs of the clients at the county
level. Agricultural knowledge that is generated by UCCE is public in
nature and is freely available to all. Because of this, it seems appro-
priate to use various types of peer-reviewed publications by advisors as
the representative variable for knowledge. But publications are only a
part of the total knowledge produced; there are other modes by which
knowledge is produced and disseminated by UCCE. These need to be
incorporated into the analysis to capture a more complete representa-
tion of the generated knowledge. To achieve this, we collected data on
eleven different modes by which UCCE produces knowledge, all of
which are aggregated to the county level to create a knowledge index
that captures all UCCE knowledge produced.

3.1. The model

The basic structure of the knowledge production function is similar
to a standard production function in which the output is knowledge
produced in county i at time t. It is a function of three identified input
variables: full-time equivalent (FTE) extension positions, expenditures
on salaries per-unit FTE, and expenditures on infrastructure per-unit
FTE. We keep the knowledge production function simple, accounting
for the main extension-research inputs. We adopt the general

specification of Fritsch (2002) that includes R&D expenditures and the
number of research-related employees as inputs (plus fixed effects of
various industries considered). We introduce fixed effects of the various
counties of the state of California in the empirical function (2).

Therefore, the general form of the model is:

=K f FTE S I( , , )it it it it (1)

where i=1, 2…, N county offices, t= t1, t2, …, tn. K is knowledge
produced through expenditures made by UCCE. FTE is the full-time
equivalent employment advisor positions. S is expenditures on salaries
per-unit FTE. I represents the “non-salary related” expenditures on in-
frastructure, including benefits, travel expenses, and county extension
programs.

The explicit econometric model, based on (1) that we estimate is
presented in Eq. (2):

= + + + + + + +ln K α βlnFTE γlnS δlnI θ ln I ρD φT ε( )it it it it it i t t
2

i (2)

where εit is the error term, i is an index for all county offices and t is
time, t=2007–2013. Kit, FTEit, Sit, Iit, are defined the same way as for
Eq. (1); Di is the control variable for county fixed effects, and Tt is the
control variable for year fixed effects.

Dichotomous variables representing county fixed effects are in-
troduced in the model to control for factors that are common to a
county, and possibly impact productivity. Year fixed effects can control
for random shocks, e.g., budget surplus leading to a recruitment of
more skilled advisors in a particular year, which may have led to larger
number of total knowledge produced across all counties in a single year.

The model includes a non-linear term for investments in infra-
structure. This is included to capture possible diminishing marginal
returns to infrastructure. Expenditure on infrastructure can be bene-
ficial to knowledge production, but after a certain degree of provision
the marginal effect may diminish. It makes little sense to keep building
laboratories and offices if there are no researchers or staff to fill them.
We follow Roper and Hewitt-Dundas (2015:1334), who introduced the
plant size as a quadratic Schumpeterian resource indicator, which has
also been shown by Jordan and O'Leary (2007) to have an inverted-U
shaped relationship with knowledge production. A similar specification
by Charlot et al. (2014) lumps all R&D costs in a quadratic relationship
due to economies and diseconomies of scale. The quadratic specifica-
tion of infrastructure expenses means that over-investment in research
infrastructure (non-salary expenditures) may turn to be counter-pro-
ductive and to result in diminishing marginal productivity of knowl-
edge production. To test this hypothesis, the square term for log of
infrastructure expenses was included in our model. The choice of the
log-log model for the empirical analysis is to facilitate the computation
of output elasticity for each of the inputs of production.

We use a log-log formulation for the knowledge production func-
tion, which is standard in the literature (Czarnitzki et al., 2009;
hUallachain and Leslie, 2007; Perret, 2016) and is based on the as-
sumption of a Cobb-Douglas-type production function with no restric-
tion on returns to scale. Econometrically, this functional form is in-
formative about input elasticities.

We calculate output elasticities for each of our inputs from our
empirical model in Eq. (2). The elasticities of knowledge production
are:

=
dK dFTE

K FTE
β/

/ (3)

=
dK dS

K S
γ/

/ (4)

= +
dK dI

K I
δ θ lnI/

/
2 ( )

(5)

Eq. (5) is dependent on the level of investments in infrastructure.
For the output elasticity calculations, we use regression coefficients
reported in Section 5.
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We also estimate Eq. (2) including a linear time trend instead of
year fixed effects. This is to de-trend both the dependent variable as
well as the independent variables (Wooldridge, 2010), and to capture
un-modeled effects including UCCE R&D and outreach efforts, which
may impact the knowledge variable. Failure to deal with two un-
correlated time-series variables trending over time in the same direc-
tion can lead to spurious results. The following section describes the
data used for the study.

4. Data

The University of California Cooperative Extension was estab-
lished a century ago with the purpose of educating the citizens about
agriculture, home economics, mechanical arts and other practical
professions.2 Through the course of almost a century since the Smith-
Lever Act of 1914, the UC Cooperative Extension has grown into an
elaborate system that has branched out from handling mainly farm-
related issues to many other aspects concerning the farm, as well as
the overall society. Extension advisors communicate practical re-
search-based knowledge to agricultural producers, small business
owners, youth, and consumers, who then adopt and adapt it to im-
prove productivity and income. Today the UCCE works in six major
areas,3 including Agriculture, 4-H Youth Development, Natural Re-
sources, Leadership Development, Family and Consumer Sciences, and
Community and Economic Development. This paper focuses on UCCE
activities in agriculture.

The University of California Division of Agriculture and Natural
Resources (UC ANR) headquartered in Oakland, California, is the
source of data for the analysis in this paper. We collected annual budget
data from the database for all UCCE county offices for the period of
2007 to 2013.4 Our data set includes complete data for seven years for
47 county offices, which serve the 58 counties in California. There are
six groups of two counties each, which are served by a single county
office. And there is one office that serves four counties.

Upon comparing older UCCE budget data with real expenditures,
we found that they follow similar time trends for each county office
and could be used as proxies for expenditures. This data was con-
verted into constant 2013 US dollars, using GDP deflator data from
the World Bank database and is presented as such hereafter.5 Hen-
ceforth, we will refer to the UCCE budget as expenditures, to avoid
ambiguity. The expenditures made by UCCE are shown in panel (d)
of Fig. 1. There is evidence of impact of the 2009–2010 recession on
investments in 2010, which went down from over $90 million to less
than $85 million. From 2010 onwards, we observe a steady decline in
annual UCCE expenditures, to about $76 million in 2013. In 2007,
the county offices that recorded some of the largest overall ex-
penditures include Fresno, Tulare, San Diego, Humboldt-Del Norte,
San Joaquin, Ventura, and Kern, in declining order. In 2013 we no-
tice that leading counties in terms of overall expenditures were San
Diego, Tulare, Kern, Plumas-Sierra, San Francisco, and San Mateo.

Data on salaries of advisors employed in each county office was
collected from the UCCE database as well. Expenditures on infra-
structure are the amount remaining in the budget after subtracting total
expenditures on salaries for the counties. These expenditures capture
non-salary related expenditures, including benefits and travel provi-
sions for county advisors, along with various expenditures on research
and outreach programs taken up by the county offices. Full-time
equivalent (FTE) employment data was obtained for advisors employed
by each county office. We observed an overall fall in both advisor FTE
and advisor salaries, as represented in panel (a), Fig. 1. After 2010, both

FTE and expenditures on salaries showed consistent decline. We ob-
serve (panel (c), Fig. 1) an overall declining trend in expenditures on
infrastructure, with a fall of about $5 million between 2009 and 2010.
This could be the effect of the 2009–2010 recession, which also led to a
fall in overall expenditures during that period. Panel (d) reflects the
decline in total expenditures that include both salaries and non-salary
infrastructure related expenditures.

The outcome variable in our empirical analysis is created using
data on a number of component variables. UC ANR records data on a
variety of methods in which knowledge, produced through invest-
ments in research and infrastructure, is disseminated. We use
knowledge produced and knowledge disseminated interchangeably,
because all knowledge produced by UCCE is publicly available and is
disseminated. Hence, the methods of dissemination capture knowl-
edge produced. These methods are categorized into three main
knowledge groups. The first group includes data on classes, work-
shops, demonstrations, individual consultations, meetings or group
discussions, educational presentations at meetings, and all other
kinds of direct extension activities. The variable is named direct
contact knowledge, and it includes all counts of knowledge dis-
semination from direct contact with growers. The second group is
named indirect contact knowledge, and it includes counts of knowl-
edge disseminated through indirect contact with possible clients via
newsletters published and websites managed by UC ANR, television,
radio programs or public service announcements, social marketing
methods, mass-media efforts of knowledge dissemination, and other
indirect extension efforts, including those through collaboration with
other agencies. The last category is named research publication and
other creative activity related knowledge. This category includes
counts of basic, applied or development research projects, program
evaluation research projects, needs assessment research projects,
educational products created via video and other digital media,
curricula, and manuals created for educational purposes. We also
include publications in peer-reviewed journals in this category. The
above data on knowledge was recorded as counts. We were unable to
categorize input variables into issues related to agriculture only, so
to avoid overestimation issues, we include knowledge produced for
all programs undertaken by UCCE for the period of the study.

Using the data on all knowledge categories, we generated an index

Fig. 1. Panel (a): Annual UCCE advisor FTE (counts); panel (b): Annual ex-
penditures for UCCE advisor salaries (constant 2013 million USD); panel (c):
Annual expenditures for UCCE infrastructures and programs (constant 2013
million USD); panel (d): Annual total expenditures of UCCE (constant 2013
million USD).

2 http://www.csrees.usda.gov/qlinks/extension.html.
3 http://www.csrees.usda.gov/qlinks/extension.html#today.
4 Data on UCCE budgets was obtained from 1992 to 2013, but data on all other vari-

ables was available only for 2007–2013.
5 http://data.worldbank.org/.
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of knowledge as a weighted average of all the categories.6 We assigned
weights to each category, based on relative importance of each kind of
knowledge variable in terms of effectiveness. For this, we sent an
electronic survey (Appendix Table A1) to the directors of all UCCE
county offices in California. In the survey, we indicated the three above-
mentioned broad categories of knowledge production, with a number of
subcategories. Respondents provided percentage weights for each
broad category so the sum would add up to 100%. Within each broad
category, respondents indicated percentage weights for each sub-
category so the sum of the weights also equaled 100%. We obtained 10
replies from county directors after two rounds of surveys and created
weights from the survey results. The completed surveys indicated that
the most important effect on agricultural productivity is direct contact
with farmers (50%), followed by indirect contact with farmers (27%),
and finally research and publications (23%).

From the data collected on knowledge production variables, we
identified seven federal planned programs (FPP): Climate Change,
Healthy Families and Communities, Sustainable Food Systems, Water
Quality, Quantity, and Security, Sustainable Energy, Endemic and Invasive
Pests and Diseases, and Sustainable Natural Ecosystems. Climate Change
was dropped from the official FPP categories from fiscal year 2013.
Knowledge produced through indirect methods of contact is the most
popular means of knowledge production, due to the comparatively
lower cost of dissemination and wider reach to potential clientele.
Direct contact methods are costlier than indirect methods and have a
more limited reach. Research projects, peer-reviewed publications, and
the knowledge produced through them are also available to the public,
but perhaps cater to a smaller audience compared to the other two
methods. However, they are certainly a significant component in the
direct interactions with farmers by specialists and county advisors.

Over the period 2007–2013, we observe that all knowledge pro-
duction declined as is illustrated in Fig. 2. Total knowledge produced in
direct contact, indirect contact, and publication and research project
methods of production have declined over time. Total number of counts
of knowledge produced through all direct contact methods rose by 43%,
from 15,059 in 2007 to 21,479 in 2011, but thereafter it continued
falling until it reached a total count of 8282 in 2013, which is a 61%
decrease compared to 2011. Knowledge produced through different
methods of indirect contact with growers starts at 259,065 in 2007, and
peaks at 405,386 in 2009, before falling down to nearly 43,000 counts
per year in 2010. In 2013, the recorded number is 100,919, which is
equivalent to a 61% reduction from the original levels in 2007. Re-
search projects and peer-reviewed journal publications went down from
3349 in 2007 to 506 in 2013, which is a percentage decline of nearly
85% of the 2007 value.

Among all the counties, San Diego recorded the highest average
(over time) count of knowledge production from direct methods, at
17147 (maximum 2817, minimum 470), and Madera the lowest, at 3
(maximum 17, minimum 0). San Joaquin had the highest average count
of knowledge production from indirect contact method at 49,225
(maximum 262,205, minimum 0), and Madera the lowest, at 0. San Luis
Obispo had the highest value of average knowledge production through
publications and research projects, at 308 (maximum 1890, minimum
27), and Mariposa the lowest, at 1 (maximum 4, minimum 0).

We also observe an overall falling trend in both inputs of knowledge
production, such as county-level FTE, expenditures on salaries per unit

FTE, expenditures on infrastructure per unit FTE, as well as output (i.e.,
weighted knowledge produced from all three identified sources). In the
next section, we report the results of our econometric estimates of the
knowledge production function.

5. Results and discussion

Summary statistics of the variables in our analysis are reported in
Table 1. We observe high levels of dispersion in the distribution of some
of the knowledge variables. At the county level, San Joaquin, one of the
most important agricultural producers, presents the highest mean
knowledge index over 2007–2013, while Madera had the lowest. Mean
advisor FTE number in San Joaquin was 353% higher than that in
Madera; with 36% lower expenditures on salaries per unit FTE, and a
1% lower expenditures on infrastructure per FTE, compared to Madera
county.

The knowledge index, the weighted average of counts of the com-
ponent variables, had been declining for the period of our study, as seen
in Fig. 3. The cross-sectional average value of log (knowledge index)
went down from about 3.9 to about 2.75 over the period of 2007–2013,
which reflected a 68% decline in the knowledge index. With these
observations, it is important to know how our inputs impacted the
average knowledge produced, and how these declining trends in inputs
may have impacted knowledge production. Similar trends in knowledge
production in agriculture are reported also by Alston et al. (2013) and
by Ball et al. (2013) for the USA as a whole.

Table 2 reports the regression results of Eq. (2), including two dif-
ferent models. Column (1) reports the results for the case in which we
include county and year level dummy variables to control for any fac-
tors that remain fixed across counties or years, possibly impacting the
dependent variable. This is a noticeable contribution to the literature
because recent works on agricultural knowledge production function
estimates have been focused on state level or national level. However,
decisions on allocation of funding for knowledge production in exten-
sion activities have been made at the county level. The second version
of the model (Column (2)) includes a time trend instead of time-fixed
effects. The specification with time trends allows to treat time effects on
knowledge production as a continuous rather than fixed effect variable,
which potentially can be more useful for policy makers. In the case of
our analysis, these two models produced very similar results as is dis-
cussed below.

We obtained statistically significant coefficients for all the input
variables in both versions of our model reported in columns Model (1)
and Model (2) of Table 2. A percentage rise in FTE impacted knowledge
production positively by nearly 1.1%. A 1% rise in expenditures on
salaries per unit FTE increased knowledge production by 0.86%. The
coefficient estimate for the linear term of expenditures on infra-
structures per unit FTE is positive and the coefficient estimate for the
quadratic term is negative, supporting the theory of diminishing mar-
ginal returns to expenditures in infrastructure per FTE employee. In
Model (2), we controlled for county-level fixed effects by introducing
county dummy variables. Here, we de-trended the dependent variable
as well as the independent variables by including a time trend variable
in the model. We reported robust standard errors in the parentheses.

Fig. 2. Panel (a): Counts of direct methods of knowledge production; panel (b):
Counts of indirect methods of knowledge production; panel (c): Counts of re-
search and creative activity methods of knowledge production.

6 The equation for computing the knowledge index is the following:
Kit=(β1(θ11k11+ θ12k12+ θ13k13)+ β2(θ21k21+ θ22k22+ θ23k23+ θ24k24)+ β3(θ31k31
+ θ32k32+ θ33k33+ θ34k34))it.
In the above equation, i=1, 2, …0.47 counties, and t=2007, 2008…, 2013, years.
Beta values stand for the weights for each of the three broad categories; theta values stand
for the weights for the subcategories. K variables represent knowledge, with the upper-
case ‘K’ representing overall knowledge, and the lower-case ‘k’ representing the sub-
categories.

7 All numbers are rounded off for ease of interpretation.
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Coefficient estimates for both the models are comparable to each other.
While it is difficult to compare our results in Table 2 for an agricultural
research and extension system to results of work on industrial knowl-
edge production function, still there are several similarities in terms of
the relative importance and the sign of the coefficients of the estimated
knowledge function to the work of Czarnitzki et al. (2009).

We computed the elasticities of production, based on results in
Table 2, which are reported in Table 3 below.

The elasticity of production of knowledge with respect to FTE varied
from 1.07 and 1.10, across the two models we estimated. The elasticity
of knowledge production with respect to salary level varied between
0.86 and 0.87 across the two estimated models. The elasticity of
knowledge production with respect to infrastructure expenditures
varied between −0.39 and −0.31 across the two estimated models.
The interpretation of these estimates is as follows: A 1% increase in FTE
led to a 1.1% increase in average knowledge produced. Similarly, a 1%
increase in expenditures on salaries per unit FTE would bring about a
0.87% increment in average knowledge produced by UCCE. The elas-
ticity for expenditures on infrastructures per FTE for both models were
calculated (due to the quadratic nature of infrastructure expenditure) at
the sample mean of this variable (444,873.1), using Eq. (5), as reported

Table 1
Summary statistics1.

Variable Observations Mean Std. dev. Min Max

FTE 329 3.71 2.49 0.2 12.1
Salary/FTE 329 121,501.9 149,510.7 2066.23 2656,4002

Infrastructure/FTE 329 444,873.1 254,058.2 51,563.44 2,432,511
Individual consultation 329 105.72 277.10 0 2682
Group interaction 329 127.77 468.31 0 5051
Other direct interaction 329 57.75 187.22 0 2374
Newsletters 329 4269.51 20,887.01 0 262,174
Websites 329 5.69 10.01 0 61
TV & radio 329 25.39 125.08 0 1003
Other indirect 329 106.13 911.15 0 12,002
Publications 329 13.43 17.95 0 107
Basic research 329 0.51 1.25 0 12
Applied research 329 6.40 6.61 0 45
Other research 329 10.82 103.52 0 1849
knowledge index (count) 329 358.63 1464.80 0 18,179.18

Note: All knowledge production variables, and FTE are computed as counts. Knowledge index can also be interpreted as a county variable, being the weighted
average of component knowledge production variables. Expenditures in salaries and infrastructure are expressed in constant 2013 USD.

1 Summary statistics indicate 0 values for some of the knowledge production subcategories. When we construct the knowledge index, we obtain 0 values for 30
observations. STATA output regards natural log transformations of 0 values as ‘missing values’, and drops them from the regression. But the 0 value cases imply no
knowledge production, and provide important information as far the analysis of impact of inputs on knowledge production is concerned; so we keep them in the
sample, by recoding them as 0 values.

2 According to our data the real expenditures on total salaries in San Francisco-San Mateo counties for the year 2013 is $531,280. The advisor FTE for this year is
20%. The normalization of the salary expenditure by the FTE leads us to this number.

Fig. 3. Annual mean ln (knowledge index).

Table 2
Regression results with log weighted average of knowledge (knowledge index)
as dependent variable.1

Model (1) (2)

Dependent variable ln (average
knowledge)

ln (average knowledge)

ln (FTE) 1.10⁎⁎ 1.07⁎⁎

(0.51) (0.51)
ln (salary/FTE) 0.86⁎⁎⁎ 0.87⁎⁎⁎

(0.23) (0.23)
ln (infrastructure/FTE) 14.17⁎⁎ 14.25⁎⁎

(6.86) (6.71)
ln (infrastructure/FTE)

squared
−0.56⁎⁎ −0.56⁎⁎

(0.27) (0.27)
Constant −94.58⁎⁎ 237.6⁎⁎

(43.99) (98.97)
Observations 329 329
R-squared 0.664 0.662
AIC 1259.61 1250.83
County FE YES YES
Year FE YES NO
Time trend NO YES
F-stat 27.67⁎⁎⁎ 30.97⁎⁎⁎

Robust standard errors in parentheses. ⁎⁎⁎p < 0.01, ⁎⁎p < 0.05, ⁎p < 0.1.
1 We also estimate Eq. (2) using the same inputs of production but with a

disaggregated dependent variable that accounts for each of the 3 broad
knowledge categories and for each sub category. Several results are shown in
Appendix Tables A2, A3 and A4. For more details see Chatterjee et al., 2016.

Table 3
Elasticities of production of weighted average knowledge.

Output elasticity Model (1) Model (2)

dK dFTE
K FTE

/
/

= β 1.10 1.07

dK dS
K S

/
/

= γ 0.86 0.87

dK dI
K I

/
/

= δ+2θ(lnI) −0.39 −0.31
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in Table 3. This value is negative, both in Model (1), and Model (2). Due
to diminishing marginal returns, the relationship between this input
and knowledge produced is concave, and the elasticity therefore de-
pends upon the value of expenditures at which it is calculated. We
computed the value of expenditures on infrastructure per unit FTE that
corresponds to the turning point of the production function from a
positive to a negative slope; this value equals $312,320.8 Expenditures
on infrastructure per FTE less than this amount will yield a positive
output elasticity; higher values will yield negative output elasticity, as
is the case when we use the mean value.

We observed that FTE is the most effective input in the knowledge
production process, with an elasticity> 1. The advisor FTE employed
by the county offices are engaged in various kinds of research and
outreach operations and are the most important factor in the process of
knowledge production. Dinar (1991) found similar evidence of sig-
nificant positive marginal product of senior researchers on production
of knowledge for the public agricultural research system in Israel. Ex-
penditures on salaries act as an incentive system to make the current
advisor FTE more productive, which enhances productivity, as is in-
dicated by our results. Expenditures on infrastructure have a positive
impact on knowledge production before the threshold level is reached,
beyond which the impact becomes negative. In this respect, our find-
ings for the extension system in California suggest that the research and
dissemination by agricultural extension is similar to that of a research-
only system.

The quadratic behavior of the expenditures on infrastructure was
found significant, with a negative sign for the quadratic term. This
finding is similar to the results in Roper and Hewitt-Dundas (2015),
Jordan and O'Leary (2007), and Charlot et al. (2014). Such results
suggest an inverse U-shaped relationship between knowledge produc-
tion and fixed infrastructure investment. The support in findings on the
inverse U-shaped impact of research infrastructure on knowledge pro-
duction we get from literature on non-agricultural research, is very
helpful for validating the results in our analysis with focus on agri-
cultural research and extension in California.

The coefficients indicate that all three inputs impacted knowledge
production positively. We found that expenditures on infrastructure
per-unit FTE as a research input has diminishing marginal effects on
knowledge production. Marginal product of advisor FTE calculated at
the mean value of the input and knowledge index equals 106.339; this
implied that one unit increase in county FTE led to nearly 106 addi-
tional counts of knowledge production. Marginal products of ex-
penditures on salaries per FTE and infrastructure per FTE are 0.00310

and −0.0003,11 respectively. Marginal products values calculated at
the mean emphasized the importance of advisor FTE as a research
input. They also brought forward the issue of diminishing returns on
investments in incentives and infrastructures.

We conducted several robustness checks by running regression for
models using each of the three broad categories of knowledge pro-
duction and dissemination instead of the calculated knowledge index.
The three broad categories are: direct contacts, indirect contact, and
publications and research projects as dependent variables. The results
of the robustness checks are reported in Appendix Tables A2, A3, and
A4. The results suggest similar range of coefficients for each of the
variables, similar signs and significance levels (although this parameter

was the one showing highest variation) across the various estimated
models. Thus, these results suggest that the empirical knowledge
function we use is robust.

Endogeneity, if exists, could be found in the sphere of
budget allocation for extension work (research and dissemination) at
the county level. It could be argued that level of budget allocation is a
function of the agricultural performance of the county, and thus in-
troducing endogeneity biases in our estimates. However, following in-
terviews with county directors, decisions on budget allocations among
the counties in California are made based on political negotiations
between the county directors and the UCCE system. Furthermore, as
suggested by Guttman (1978), Rose-Ackerman and Evenson (1985),
Pardey (1989) and Pardey and Craig (1989), political rather than just
economics efficiency criteria influence the allocation of public agri-
cultural research and extension resources.

6. Conclusion and policy implications

We have estimated the contemporaneous impact of UC Cooperative
Extension on the production of knowledge through research and ex-
tension work that is conducted in all California counties. Available data
on R&D expenditures and knowledge products was used to construct a
unique data set for seven years, spanning from 2007 to 2013. The data
contained information on extension advisor FTE, expenditures on ad-
visor FTE salaries, and on advisor FTE infrastructure. We obtained data
on a number of knowledge production and dissemination methods.
They are categorized into 11 subcategories, and three broad categories.
We computed a weighted average knowledge index variable with the
weights provided by UCCE county directors via an electronic survey.

The contribution of this work is the quantification of extension re-
search input and in the fact that the trends and relative importance of
research variables found in an extension research and dissemination
system in California are similar to (1) previous results of the agri-
cultural research system in the USA, and (2) previous results from
several industrial research and development activities around the
world. Both these similarities suggest that a research and dissemination
agricultural extension behaves similarly to industrial research systems.

One limitation of the study is that we were able to capture only the
contemporaneous impact of research inputs on the production and
dissemination of knowledge, due to data constraints. With further
availability of data, analysis of long-run impact will enable policy-
makers to make informed decisions on investments in research inputs.
This will enable sustained knowledge production and dissemination.

Another limitation of the study is the lack of information on com-
ponents of the research inputs, such as attributing research outcomes
and extension impact to advisors, rather than distinguishing among
advisors, based on seniority and experience. Such a distinction related
to university research was performed in a study by Gurmu et al. (2010).

Some potential issues with the variable specifications deserve a
mention. The variable FTE includes UCCE county advisors.
Incorporation of detailed data on knowledge produced and dis-
seminated by UCCE specialists at the county level would provide a more
complete picture of the knowledge production mechanism. Data on FTE
experience and expertise could also refine our results and under-
standing of the input-output relationship. Research-based agricultural
knowledge is one of the most important inputs in the enhancement of
agricultural productivity (Alston et al., 1998, 2008), and evidence
suggests significant impacts on current productivity from the past
35 years of research-based knowledge (Alston et al., 1998, 2008).
Therefore, better understanding of relevant research inputs, environ-
ments in which substitution between inputs is viable, and long-term
impact of shifts in investments in research inputs have a great deal of
importance for policy purposes. This paper poses and provides answers
to some of these questions and indicates possible directions for future
study on this issue.

Another point to address is the international and national relevance

8 The turning point of the production function is a point beyond which the slope
changes from positive to negative; at this point the elasticity equals 0. This is obtained by
solving the equation:

= + =

∂

∂
δ θ lnI2 ( ) 0.

K
K

I
I

Plugging in the values of the coefficient estimates into the

equation, we obtain =e14.17/1.12, which gives us the value of expenditures on infra-
structure per FTE at the turning point.

9 This value equals ((1.1)∙(358.63)/3.71).
10 This value equals ((0.87)∙(358.63)/121,501.9).
11 This value is calculated from the following expression: ((359.63/444,873.1)∙

(14.2+ 2*(−0.56)∙(ln(444,873.1))).
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of this work to the literature and to policy practitioners. California is a
leader in agricultural production. California extension system is a
leader in extension knowledge that feeds into the agricultural produc-
tion in the state. Therefore, understanding the process of knowledge
creation by agricultural extension in California is of interest to re-
searchers and practitioners in other states and countries. The finding in
this study suggests that data collection and analysis for public extension
activities are essential for proper policy consideration of a public
knowledge system, which faces budget pressure world-wide. While the
coefficients estimated for the case of California represent California
situation, the trends of the coefficients are general and relevant to other
states and countries around the world. With the data challenges we
faced in this study, our results indicate the importance of the policy-
maker to be able to quantify the process of knowledge production in the
agricultural extension systems. California ranks first among the top five
national agricultural producers, according to the California Statistical
Review 2014–15 (CDFA, 2015), with crop cash receipts amounting
$53.5 billion (13% of the nation's total). Irrigated agriculture in Cali-
fornia consumes on average about 85% of the available renewable
water resources in the state (Hanak et al., 2011). Agricultural extension
plays a major role in keeping agriculture sustainable and profitable (Jin
and Huffman, 2016). Therefore, the need for a reliable system of data
collection on agricultural extension activities and knowledge produced
at the state and county levels would enhance the ability to identify the
determinants of knowledge production by the extension system.

Finally, we observed, as Pardey (1989) and Alston et al. (2013) also
did, that the public budget allocated to agricultural and extension has
declined over time. The lesser funding allocated to UCCE over time is
not because knowledge has decreased; in fact, we claim that it is the
opposite, knowledge production has declined because there was less
funding due to recession or/and budgetary constraints in the University
of California system as a result of financial difficulties faced by the state
of California during the years we analyze.
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