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ABSTRACT

Software architecture descriptions are high-level models of
software systems. Some researchers have proposed special-
purpose architectural notations that have a great deal of
expressive power but are not well integrated with common
development methods. Others have used mainstream
development methods that are accessible to developers, but lack
semantics needed for extensive analysis. We describe an
^proach to combining the advantages of these two ways of
m(^eling architectures. We present two examples ofextending
UML. an emerging standard design notation, for use with two
architecture description languages, C2 and Wright. Our
approach suggests a practical strategy for bringing architectural
modeling into wider use, namely by incorporating substantial
elements of architectural models into a standard design method.
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1 INTRODUCTION

Architecture-based software development is an approach to
designing software in which developers focus on one or
more high-level models of the software system rather than
program source code. Architectural models include elements
such as software components, communication mechanisms,
states, processes, threads, hosts, events, external systems,
and source code modules [7, 10, 11, 18, 24, 25].
Relationships between these elements address such issues as
message passing, data flow, resource usage, dependencies,
state transitions, causality, and temporal orderings. The basic
promise of software architecture research is that better
software systems can be achieved by modeling their
important aspects during development. Choosing which
aspects to model and how to evaluate them are two decisions
that frame software architecture research [14].

Part of the software architecture research community,
primarily academics, has focused on analytic evaluation of
architecture descriptions. Answering difficult evaluation

This material is based upon work supported by the National Science Foundation
underGrantNo.CCR-9624846 and Giant No.CCR-9701973. Effort alsospon-
soiedbytheDefense Advanced Research Projects Agency, andRomeLaboraloiy,
Air Force Materiel Command. USAF, under agreement number F30602-97-2-
0021 andF30602-94-C-02I8.Additional supportis providedby Rockwell Interna
tional. TheU.S. Government is authorized to reproduce anddistribute reprints for
Governmentalpurposes ncXwithstanding any copyright annotation thereon. The
views and conclusions contained herein ate those of the authors and should not be
interpreted as necessarily representingtheofficial policiesor endorsements, eith^
expressed or implied, of theDefense Advanced Research Projects Agency, Rome
Laboratory or tfie U.S. Government.

questions demands powerful modeling and analysis
techniques that address specific aspects in depth. By paying
the cost of making a detailed model, developers gain the
benefit of knowing the answers to these questions. In this
sense, software architecture descriptions serve primarily as
input to analysis tools. For example, determining the
possibility of deadlock requires specialized, formal models
of the possible behavior and communication of each thread
of control [3]. However, the emphasis on depth over breadth
of the model can make it difficult to integrate these models
with other development artifacts, because the rigor of formal
methods draws the modeler's attention away from day-to-
day development concerns. The use of special-purpose
modeling languages has made this part of the architecture
community fairly fragmented, as revealed by a recent survey
of architecture description languages [15].

Another part of the community, primarily from industry, has
focused on choosing which aspects to model. Modeling the
wide range of issues that arise in software development
demands a family of models that span and relate the issues of
concern. By paying the cost of making such models, devel
opers gain the benefit of clarifying and communicating their
understanding of the system. In this sense software architec
tures serve primarily as the "big picture" of the system under
development. For example, upgrading a database application
requires an understanding of the various kinds of users and
their respective tasks, the data schema, and the application's
software components and their interfaces. However, empha
sizing breadth over depth potentially allows many problems
and errors to go undetected, because lack of rigor allows
developers to ignore certain details. Several competing nota
tions have been used in this part of the community, but they
share central concepts, have been tempered by mainstream
use, and have been formalized to some extent [5, 26]. There
now exists a concerted effort to standardize methods for
object-oriented analysis and design [17].

Standardization provides an economy of scale that results in
more and better tools, better interoperability between tools,
more available developers who are skilled in using that
notation, and lower overall training costs. When special-
purpose notations are needed, they can often be based on, or
related to, standard notations. Doing so provides them with
some of the benefits of the standard, and allows for more
direct comparison and evaluation in terms of the value added
by the special-purpose notation.

We use the Unified Modeling Language (UML) [19] as a
starting point for bringing architectural modeling into wider



use. UML is well suited for this because it provides a useful
and extensible set of predefined constructs, it is semi-formally
defined, it has substantial tool support, and it is based on
experience with mainstream development methods. The next
section describes UML and our strategy for adapting it to our
needs. Sections 3 and 4 provide examples of adapting UML
with semantics specific to two ADLs, C2 and Wright.
Section 5 expands on our approach and conu-asts it to related
work. Section 6 discusses the contributions of our approach:
specifically, it is a way to integrate the power of ADLs with the
day-to-day usefulness of UML; and more generally, it
suggests a practical strategy for achieving partial integration of
architectural models as needed for specific development tasks.

2 UML AND ITS EXTENSION MECHANISMS

2.1 UML Background

A UML model of a software system consists of several partial
models, each of which addresses a certain set of issues at a
certain level of fidelity. There are eight issues addressed by
UML models: (1) classes and their declared attributes,
operations, and relationships; (2) the possible states and
behavior of individual classes; (3) packages of classes and their
dependencies; (4) example scenarios of system usage
including kinds of users and relationships between user tasks;
(5) the behaviorof the overall system in the context of a usage
scenario; (6) examples of object instances with actual attributes
and relationships in the context of a scenario; (7) examples of
the actual behavior of interacting instances in the context of a
scenario; and (8) the deployment and communication of
software components on distributed hosts. Fidelity refers to
how close the model will be to the eventual implementation of
the system; low-fidelity models tend to be used early in the
life-cycle and be more problem-oriented and generic, whereas
high-fidelity models lend to be used later and be more solution-
oriented and specific. Increasing fidelity demands effort and
knowledge to build more detailed models, but results in more
properties of the model holding true in the system.

The UML is a graphical language with well-defined syntax
and semantics. The syntax of the graphical presentation is
specifiedby examples and a mapping from graphical elements
to elements of the underlying semantic model [21]. The syntax
and semantics of the underlying model are specified semi-for-
mally via a meta-model, descriptive text, and constraints [20].
The meta-model is itself a UML model that specifies the
abstract syntax of UML models. This is much like using a
BNF grammar to specify the syntax of a programming lan
guage. For example, the UML meta-model states that a Class
is one kind of model element with certain attributes, and that a
Feature is another kind of model element with its own
attributes, and that there is a one-to-many composition rela
tionship between them. Semantic constraints are expressed in
the Object Constraint Language (OCL) which is based on
first-order predicate logic [22]. Each OCL expression is evalu
ated in the context of some model element (referred to as
"self) and may use attributes and relationships of that ele
ment as terms. OCL also defines common operations on sets
and bags, and constructs for traversing relationships so that
attributes of other model elements may also be used as terms.
Traversing a one-to-many or many-to-many relationship

results in a bag of instances. Several examples of OCL con
straints are given below.

2.2 UML Extension Mechanisms

UML is an extensible language in that new constructs may be
added to address new issues in software development. Three
mechanisms are provided to allow limited extension to new
issues without changing the existing syntax or semantics of
the language. (1) Constraints place semantic restrictions on
particular design elements. (2) Tagged values allow new
attributes to be added to particular elements of the model.
(3) Stereotypes allow groups of constraints and tagged values
to be given descriptive names and applied to other model
elements; the semantic effect is as if the constraints and
tagged values were applied directly to those elements.

Figure 1 presents an example of using UML to model part of
a human resources system. A company employs many
workers, offers many training courses, and owns many
robots. Robots and employees are workers. Labor union
contracts constrain companies such that robots may not
make up more than 10% of the work force. A training course
contains many trainees, and each trainee may take from 1 to
4 courses. In this example. Trainee is an interface (a set of
operations) rather than a full class. An employee is capable
of performing all the operations of Trainee.

Suppose we wish to impose the design constraint that "a
person may not be a composite element of another class", in
other words, "a person must be the whole in any whole-part
relationships." This does not prevent a person from
participating in containment relationships, only compxjsite
relationships. In UML. containment (white diamond)
indicates that one object is temporarily subordinate to one or
more others, whereas composition (black diamond) indicates
that an object is subordinate to exactly one other object
throughout its life-time. In this example, composition would
mean that employees could not participate in any other
aggregates and never work for another company. Constraints
may be applied directly to a class or, as we have done here,
constraints may be applied to a stereotype (e.g.. Person) and
the stereotype applied to a class (e.g.. Employee). The
constraint may be stated formally in OCL as:

Stereotype Person for instances of meta-class Qass
[1]If a person is in anycomposite relationship, it mustbe thecomposite.
self.oclType.assocEnd.forAlKnv&id |

iryEnd.association.assocEhd->escists(arvEfcd |
ai^'Elid.aggregaticBi = carposite) iitplies

aggregation = canposite)

Note: Theabove constraint is sufficient because theUMLalready
constrains associations to have at mostonecomposite end.

jtself .rcibot->size) / (sel£.worker->size) < 0.10 ^

Company

Employee

Figure 1. An example design expressed in UML
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Figure 2. Simplified UML Meta-Model (Adapted from [20]}

The labor union rule uses terms from the model to constrain
the state of the system at run-time. In contrast, the Person
stereotype uses terms from the UML meta-model to constrain
the model of the system. Traversing the "oclType" association
allows us to refer to the meta-model, rather than the design at
hand. Figure 2 shows the parts of the UML meta-model used
in this paper. We have simplified the meta-model for purposes
of illustration, but all the constraints we define can be easily
rewritten for use with the complete meta-model.

2.3 Our Strategy for Adapting UML

One straightforward approach to using an ADL with UML is
to define an ADL-specific meta-model. This approach has
been used in more comprehensive formtdization of
architectural styles [1, 13]. Defining a new meta-model helps
to formalize the ADL. but does not aid integration with
standard design methods. By defining our new meta-classes as
subclasses of existing meta-classes we would achieve some
integration. For example, defining Component as a subclass of
meta-class Class would give it the ability to participate in any
relationship in which Class can participate. This is basically
the integration that we desire. However, this integration
approach requires modifactions to the meta-model that would
not conform to the UML standard, therefore we cannot expect
UML-compliant tools to support it.

For the reason above, we restrict ourselves to using UML's
built-in extension mechanisms on existing meta-classes. This
allows the use of existing UML-compliant tools to represent
the desired architectural models, and style conformance
checking when OCL-compliant tools become available. Our
basic strategy is to first choose an existing meta-class from the
UML meta-model that is semantically close to an ADL
construct, and then define a stereotype that can be applied to
instances of that meta-class to constrain its semantics to that of
the ADL. In the next two sections, we demonstrate this
strategy and illustrate the results with example specifications.

3 INTEGRATING UML AND C2

3.1 Overview of C2

C2 is a software architecture style for user interface intensive
systems [25]. C2 SADL is an ADL for describing C2-styIe

TageedValue

value: Uninterpreted

I.." ModelElement I-*
name : String "pr

Stereotype

Constraint
body: Uninterpreted

architectures [13, 15]; henceforth we use "C2" to refer to the
combination C2 and C2 SADL. In a C2-style architecture,
connectors transmit messages between components, while
components maintain state, perform operations, and
exchange messages with other components via two
interfaces (named "top" and "bottom"). Each interface
consists of a set of messages that may be sent and a set of
messages that may be received. Inter-component messages
are either requests for a component to perform an operation,
or notifications that a given component has performed an
operation or changed state.

A C2 component consists of four internal parts. An internal
object stores slate and implements the operations that the
component provides. A wrapper on the internal object
monitors all requested operations and sends notifications
through the bottom interface. A dialog specification maps
from messages received to operationson the internal object.
Optionally, a translator may modify some messages so as to
match those understood by other components, thus adapting
a component to fit into a particular architecture.

In the C2 style, components may not directly exchange
messages; they may only do so via connectors. Each
component interface may be attached to at most one
connector. A connector may be attached to any number of
other components and connectors. Request messages may
only be sent "upward" through the architecture, and
notification messages may only be sent "downward."

The C2 style further demands that components communicate
with each other only through message-passing, never
through shared memory. Also, C2 requires that notifications
sent from a component correspond to the operations of its
internal object, rather than the needs of any components that
receive those notifications. This constraint on notifications
helps to ensure substrate independence, which is the ability
to reuse a C2 component in architectures with differing
substrate components (e.g., different window systems). The
C2 style explicitly does not make any assumptions about the
language in which the components or connectors are
implemented, whether or not components have their own



threads of control, the deployment of components to hosts,
or the communication protocol used by connectors.

Figure 3 shows an example C2-style architecture. This system
consists of four components and two connectors. One
component is a database server, two are graphical user
interfaces (GUI) to the database, and one is a window-system
binding. One GUI is for posing queries, viewing result, and
making updates. The other GUI is for configuring the database
server. When either user interface is used to request a
modification, a request message is sent upward to the
connector, and then to the database. When the database

performs an operation, a notification message is sent to the
connector and is ultimately received by both GUI
components. This style of component interaction is influenced
by Model-View-Controller designs and supports multi-user
systems and multi-view interfaces [9].

UML provides constructs for modeling software
components, their interfaces, and their deployment on hosts.
However, these built-in constructs are not suitable for
describing C2-style software architectures because they
assume both too much and too little. Components in UML
are assumed to be concrete executable artifacts that take up
machine resources such as memory. In contrast, C2
components are conceptual artifacts that decompose the
system's state and behavior. C2 components may be
implemented by concrete components, but they are not
themselves concrete. Furthermore, components in UML may
have any number of interfaces and any internal structure,
whereas C2 components must follow the C2-style rules.
Since "vanilla" UML does not fit our needs, we will adapt it
to express several aspects of the C2 style.

3.2 C2 Operations in UML

The UML meta-class Operation matches the C2 concept of a
message specification. UML Operations consist of a name
and a parameter list (which may contain returned values).
Operations indicate whether they will be provided or
required (i.e., they may be received or sent). Operations may
be public, private, or protected. To model C2 message
specifications we add a tag to differentiate notifications from
requests and constrain Operation to have no return values.
C2 messages are all public, but that constraint is built into
the UML meta-class Interface used below.

Stereotype C20peration fw instances of meta-class Operation
[1] C20perations are tagged as either notifications or requests.
c2MsgTVpe : esium { notification, request }

[2] C2 messages do not have return values.
self .paraireCer->forAll(p | p.kind <> return)

Database Component

Admin GUI User GUI

I Window System |

Figure 3. An example C2 architecture for a database application

3.3 C2 Components in UML

Tbe UML meta-class Class is closest to C2's notion of

component. Classes may provide multiple interfaces with
operations, may own internal parts, and may participate in
associations with other classes. However, there are aspects of
Class that are not appropriate, namely, they may have
methods and attributes. In UML. an operation is a
specification of a procedural abstraction (i.e., a procedure
signature with optional pre- and post-conditions), while a
method is a procedure body. Components in C2 provide only
operations, not methods, and those operations must be part
of interfaces provided by the component, not directly part of
the component. Furthermore, a C2 conceptual component is
assumed to have no state other than the state of its internal

parts, and thus may have no direct attributes.

Stereotype C2Inierface for instances of meta-class Interface
[1] A C2 interface has a tagged value identifying its position.
c2pos : enum { tcp, bottom }

[2] All C2Interface operations must have stereotype C20peration.
self.ocn^pe.cperaticn->farAll{o | o.stereoQpe = C2Ci3eraticti)

StereoQpe C2Component for instancesof meta-classClass
[1] C2Components may not directly contain features (i.e., methods,
operations, or attributes).
self .oclType.feature->size - 0

[2] C2Components must implement exactly two interfaces, which
must be C21nierfaces. one top, and the other bottom.
self.oclTvpe.ijiterface->size = 2 and
self.oclTVpe-lnterface->forAll(i |

i.stereotype = C21nterface) and
self.oclType.interface->e>d.sts(i I i.c2pos = tcp) and
self.oclTVpe-interface->exists(i j i.c2pos = bottcm)
[3] Requests travel "upward" only, i.e.. they are sent through top
interfaces and received through bottom interfaces.
Let tcpint - self .ocl1Vpe.interface->select(i |

i.c2pos = tcp),
Let botJjit = self .ocl1Vpe.interface->sel0c:t(i |

i. c2pos = botton),
tcpint.cperaticai->forAll(o |

(o.c2MsgType - request) iitplies o.dir - require) and
botInt.cperaticn->forAll{o 1

(o.c2MsglVpe = rec^est) iirplies o.dir = provide)

[4] Notifications travel "downward" only. Similar to the constraint above.
[5] Each C2Component has one instance in the running system,
self.alllnstances->size - 1

[6] C2Components participate in at most four whole-pan
relationships named intemalObject, wrapper, dialog, and translator.
Let viiioles = self.ocl'IVpe'assocEnd->select(

aggregaticffv = ccnposite),
(v4iole->size <= 4) and

((v4ioles.associatian.name->asSet) - Set (
"intemalCbject", "varafper", "dialog",
"translator"})->size = 0

[7] Each operation on the internal object has a corresponding
notification which is sent from the component's bottom interface.
Let cps = self .intemalCbject.feature->select(f [

f->isKindOf (Cperation)),
Let botint - self .ocl'IVpe.interface->select{i |

i.c2pos = bottcm),
cps->forAll (cp I

botint->€xists (note j
(cp.name - note.name and

cp.paranetier - note.parameter) iitplies
note.dir = required and note.c2MsgI^pe - notification)}



3.4 C2 Connectors in UML

C2 connectors share many of the constraints of C2
components. One difference is that they do not have any
prescribed internal structure. Components and connectors
are treated differently in the architecture composition rules
discussed below. Another difference is that connectors may
not define their own interfaces; instead their interfaces are
determined by the components that they connect.

We can model C2 connectors using a stereotype
C2Connector that is similar to C2Component. Below, we
reuse some constraints and add two new ones. But first, we
introduce three stereotypes for modeling the attachments of
components to connectors. These attachments are needed to
determine component interfaces.

Stereotype C2AttachOveiComp for instancesof m«a<lass Association
[1] C2 attachments are binary associations,
self .ocl'IVpe-assocEnd->size = 2

[2] The first end of the association must belo a C2 component.
Let ends = self.ocllVpe-assocEhd,
€nds[l] .miltiplicity = "1. .1" and
aids[l].class.stereotype - C2CcxrpGnait

[3] The second end of the association must be to a C2 connector.
Let ends = self.ocllVpe.assocE^,
ends[2] .miltiplicity = "1..1' and
ends[2].class.stereotype - CSCcnnectcr

Stereotype C2AttachUndeTComp for instances of m«a-class
Association.Same as C2AttachOvetComp.except that the firstend must
be to a connector, and the secondend mustbe to a component.

Stereotype C2AttachConnConn for instancesof meta-class Association
[1] C2 attachments are binary associations,
self.oclType.assocEnd->size = 2

[2] Each end of the association must be on a C2 connector,
self.oclTVpe.assocEiTd->forAll{ae |

ae.miltiplicity = "1..1* and
ae.cleiss. stereotype = C2Connector)

[3] The two end are not both on the same C2 connector,
self .ocliype.assocEhd[11 .class o

self .ciclType.assocEnd[2] .class

Stereotype C2Connector for instancesof meta-classQass
[1-5] Same as constraints 1-5 on C2Component.
[6] The top interface of a connector is determined by the
components and connectors attached to its bottom.
Let toplnc = self.ocnvpe.intarfaoe-sselectd [ i.c^xis = tcp),
Let dcwnAtt:acii - self .oclTVpe.assocEiid. associa

tion->select (a I a.role(21 = self.ocllVpe),
Let topslntsBelcw - dcwnAtcacii.assocES*3[l} .inter-

felce->select(i I i.c2pos - tcp),
tcpsIntsBelow. cperaticn->asSet = tcpInt.cperaticai->asSet

[7]Thebottom interface of a connector isdetermined bythecomponents
and connectors attached to its top. This is similar to the constraint above.

3.5 C2 Architectures in UML

Now we turn our attention to the overall composition of
components and connectors in the architecture of a system.
Recall that well-formed C2 architectures consist of
components and connectors, components may be attached to
one connector on the top and one on the bottom, and the top
(bottom) of a connector may be attached to any number of

•C2AnachOvefCamp-

Datal)^^Srnponeni
rqst rcvd updaieO
note sent updatedO
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Figure 4. C2 architecture from Figure 3 expressed in UML

other connectors' bottoms (tops). Below, we also add two
new rules that guard against degenerate cases.

Stereotype C2Architecture forinstances of meta-class SystemModel
[1] A C2 architecture is made up of only C2 model elements,
self. ocltVpe .niQdelElefnent->forftll (me |

me.stereotype - C2Cciipcffient or
me.stereotype = C2Ccfinector or
me.stereotype = C2AttachDverCcnp or
me.stereotype - C2AttachiaiderCcnp or
me.st:ereotype = C2AttachCQnnCann)

[2] EachC2Component has at mostoneC2AttachOverComp.
Let ccitps = self .oclType.modelElement->select(ite |

me.stereotype = C2Ccxrponent).

ccfrps.assocEhd.associaticn->select(a |
a.stereotype = C2AttachUhderCcirp) ->size <= 1

[3] Each C2Component hasat most oneC2AttachUnderComp.
Similar to the constraint above.
[4} C2Componentsdo not participate in any non-C2 associations.
Let ccitps - self .oclTipe.nDdelElenient->select(ne |

me.stereotype = C2CCiiponent).

cciips.assocEhd.associaticn->£orAll(a |
a. stereotype - C2AttachDvei:Ccnp or
a. stereotype = C2AttachUnderCcttp)

[5] C2Connectorsdo not participate in any non-C2associations.
Let conns - self. oclType .mndelElenient->select (me |

me.stereotype = C2Cannector),
ccajns.assocEiid.associatic8i->forAll(a |

a.stereotype = C2AttachOverCciip or
a. stereotype = C2AttachiaxJerCcitp or
a. stereotype = C2Attaci5CannCcnn)

[6] Each C2Component must be attached to some connector.
Let cciipe = self .ocnype.mndelElement-yselect (me |

me.stereotype - C2Cccponent),
cciips.assocBid.associatic«i->size > 0

[7]EachC2Connector mustbeattached tosomeconnector orcomponent.
Let conns - sel£.ocl'IVpe.elenEnts->select(e |

e.stereotype = C2Connector),

conns.assocQid.association->size > 0

3.6 Example C2 Architecture

Figure 4 shows the UML graphical notation for the same
system shown in Figure 3 to illustrate the C2 style. We show
some operations and omit others as needed to clarify the
discussion below. Each element is marked with its stereotype
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in smali double angle brackets. Alternatively, UML allows
icons to be used to denote the stereotype.

Given a C2 architecture that is modeled in UML, it can be
related to other standard UML model elements that are

commonly used in software development. Figure 5 makes
explicit our assumptions about the Idnds of users who will
use this system and their tasks. Figure 6 is a sequence
diagram showing how the system behaves in the context of a
particular use case. Explicitly modeling these aspects of the
system enhances C2's support for component-based
development of systems with complex user interfaces.

3.7 Benefits of Integrating UML and C2

Adapting UML to enforce the C2-style rules has been fairly
straightforward, because many C2 concepts are found in
UML. Neither C2 nor UML constrain the choice of

implementation language or require that any two
components be implemented in the same language. Neither
C2 nor UML constrain the choice of GUI toolkits, or inter
process communication mechanisms. Neither C2 nor UML
(as we have used it) assume that any two components run in
the same thread of control or on the same host. Both C2 and

UML limit communication to message passing and include
specifications of messages that may be sent and received.
Although we did not model details of the internal parts of a
C2 component or the behavior of any C2 constructs, we feel
those aspects of C2 could be modeled in UML. In fact, we
provide an example of modeling behavior in the next section.

Some concepts of C2 are very different from those of UML
and object-oriented design in general. For example, main
stream object-oriented design has a strict dichotomy between

classes and instances. Since each class may have multiple
instances, associations between classes may have multiplicity
greater than one (e.g., there could be any number of employ
ees in Figure 1). Furthermore, the features of an instance are
declared in its class. In contrast, the interface of a C2 connec

tor is determined by context rather than declared, and the addi
tion of a new component instance at run-time is considered an
architectural change. We addressed this difference by demand
ing that each C2 component and connector have exactly one
instance. If a system uses two connectors, they must each have
their own class in the design, although they may be imple
mented by the same concrete components. Another concep
tual difference is that it is legal for C2 messages to be sent and
not received by any component, whereas UML assumes that
every message sent will be received. We have declined to
address this last difference since it intfoduces more complex
ity than we feel it merits. As will be discussed more in
Section 5. our approach allows aspects of an ADL to be
expressed in UML or left to special purpose tools as desired.

4 INTEGRATING UML AND WRIGHT

The preceding section demonstrated that an ADL that
supports a specific architectural style can be modeled in
UML. This section shows the applicability of our approach
to a general-purpose ADL, Wright [1, 3]. A more recent
version of Wright also supports system families,
architectural styles, and hierarchical composition. We do not
address these newer features here, but believe that they could
be incorporated into our model.

An architecture in Wright is described in three parts:
• component and connector types;
• component and connector instances; and
• configurations of component and connector instances.

Unlike C2, Wright does not enforce the rules of a particular
style, but is applicable to multiple styles. However, it still
places certain topological constraints on architectures. For
example, as in C2, two components cannot be directly
connected, but must communicate through a connector; on
the other hand, unlike C2. Wright disallows two connectors
from being directly attached to one another.

The remainder of the section describes an extension to UML

for modeling Wright architectures. For brevity, stereotypes
and constraints are elided whenever they are obvious from
the discussion in this or the previous section.

4.1 Behavioral Specification in Wright

Wright uses a subset of CSP [8] to provide a formal basis for
specifying the behavior of components and connectors, as
well as the protocols supported by their interface elements.
Given that this subset "defines processes that are essentially
finite state" [1], it is possible to model Wright's behavioral
specifications using UML's State Machines (21).

CSP processes are entities that engage in communication
events. An event, e, can be primitive, or it can input or output
a data item x (denoted in CSP with e?x or e!x,
respectively). CSP events are modeled in State Machines as
shown in Figure 7.
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Figure 7. (a) A CSP event with input data, e?x, is modeled in
UML State Machines as a state transition event with no action,
(b) A CSP event, e, with output data, e!x. is modeled as a null
state transition event that results in action e.

CSP Concept CSP Notatkxi UML State Machine

Prefixing P = a->Q

Allemative

{deterministic P=b->Q[]c^R
choice)

Decision

(non-deterministic p = d
choice)

Parallel

Composition

Success Event

P = Q R

-»CE)

Table 1.UML State Machinetemplates for Wright's CSPconstructs

These two types of stale transitions can be used in modeling
more complex CSP expressions supported by Wright. Table 1
presents the mappingfrom CSP to State Machinesusingevents
with no actions (Figure 7a): the mapping for null events with
actions (Figure 7b) is straightforward. It is possible for CSP
events to have no associated data (see Figure 8 below). In such
a case, the semantics of State Machines force us to make a
choice as to which entities generate events and which observe
them. We choose to model Wright ports and roles (described
below) with event-generating actions, and computation and
glue with transitions that oberve those events.

The stale machines in Table 1 can be used as templates from
which equivalents of more complex CSP expressions can be
formed. Therefore,a "Wright" state machine is described by
the following stereotypes.

Stereotype WSMTransitionfor instancesof meta-ciassTransition
[1] A transition is tagged as one of the two cases shown in Figure 7.
WEMtransitlcrtlVpe : enum { event, acticn }

[2] An "event" transition consists of an event only (Figure 7a).
self.oclTVpe.uafturansiticnl^pe = evait inpl -ioja

(self .ocllVpe.eventType = callEvent and
self .ocl1Vpe.ActicnSe(3uence->size = 0)

[31 An "action" transition consists of a null event and an action
(Figure 7b).
self .oclType.W9ftransiticnTV^ - action iirplies

(self .oclTVpe.eventType->si2e - 0 and
self .oclTVpe.ActionSequence.Action->size = 1)

Stereotype WrightStateMachine forinstances of m^lass StaleMachine
{11 A WrightStateMachine consists of one of the composite slates
discussed above, and partially depicted inTable 1. Eachsimple
state may be refined as another WrightStateMachine. This
constraint is elided in the interest of space.

[2] All WrightStateMachine transitions must be WSMTransitions.
self.ocl'IVpe.t:ransiticn->forAll(t I t = WQCTransiticffi)

4.2 Wright Component and Connector Interfaces in UML

Each Wright interface (a port in a component or a role in a
connector) has one or more operations. In Wright, these
operations are modeled implicitly, as pan of a port or role's
CSP protocol. We choose to model the operations explicitly
in UML. The CSP protocols associated with a pon or role
are modeled as WrightSialeMachines.

Stereotype WrightOperation forinstances of meta-class Operation
[1] WrightOperaiions do not have parameters; parameters are
implicit in the CSP specification associated with each operation
self.paramecer->size = 0

Stereotype Wrightlnierface for instances of meta-class Interface
[1] Wrighilnterfaces are tagged as either ports or roles,
WrightlnterfacefType : enum { port, role }

[2] All operations in a Wrightlnierface are WrightOperations.
self.ocl'IVpe.operatian->forAll(o |

o.stereotype = Wri^tCperaticn)

13]Exactly one WrightStateMachine is associated with each
Wrightlnierface.
self .oclT^pe.statd4achine->size - 1 aixl
self.ocl'IVpe.stat:eMachine->forAll{s |

s.stereotype - Wri^tStat^diine)

[4] In a Wrightlnterface.a WrightStateMachine is expressedonly
in terms of that interface's operations; these are operations on the
slate machine's call events.

self.oclType.st:ateMachine.transition->forAll(t |
(t.eventTVpe = callEvent) inplies

self.oclTipe.cperaticn->€}dsts(o |
o = t.eventlVpe.cperaticn))

A Wrightlnierface, as modeled above, specifies the alphabet
of a port or role.

4.3 Wright Connectors in UML

A connector type in Wright is described as a set of roles,
which describe the expected behavior of the interacting
components, and a glue, which defines the connector's
behavior, by specifying how its roles interact.

We will model Wright connectors with the UML meta-class
Class. Wright connectors provide multiple interfaces (roles)
and participate in associations with other classes (Wright
components). Wright connector types are assumed to have
no stale other than the state of their internal parts, and thus
may have no direct attributes.

Stereotype WrightGlue forinstances of meta-class Operation
[1] WrightGlue is modeled as a WrightOperation.
self.oclType.operaticin->forAll(o |

©.stereotype = Wri^tCperation)

[2] WrightGlue contains a single WrightStateMachine.
self.oclType.sCatdlachine->size - 1 arx3
self. ocnype. stat^1achine->forAll (s |

s. stereotype = Wri^tStat^fediine)

Stereotype WrightConnector for instances of meta-class Gass
[1] WrightConnectorsmust implementat least one
WrightlnterfaceType, which must be a role,
self.ocl'IVpe-inCerface->si2e >= 1 and
self.cclType.interf5ice->forftll(i |

i.stereotype = Wric^itJnterface etixi
i .Wri^tlnterfacedype - role)



{2] A WrightConnector contains a single glue.
sel£.ocl'IVpe>cpexaCian->size - 1 and
self.oclType.cperation->forAll(o |

o. stereotype = Wri^tGlue)

[3] Operations with no data and with input data that belong to the
different interface elements of a connector are the trigger events in
glue's state machine.
self .oclType.cperation.stateMachine. transition->forAll (t |

(t.eventType = callEvsnt) irtplies
self.oclTipe.interface.cperaticn->exists(o |

o - t.evenCiype.cperaticn))

[4] Operations with output data that belong to the different interface
elements of a connector are the actions in glue's state machine.
Similar to the above constraint.

[5] The semantics of a Wright connector can be described as the
parallel interaction of its glue and roles [1].
self .oclTVpe.StateMachine->size - 1 and
sel£.oclType.statatechine->forAll{sni |

sm.state->size - 1 and sm.state->forAll{s j
s .ocliype = Ccnpositestate and s .isCdicurrent = txue and
s.state->si2e - 1 self .oclType.interface-^size and
s.st:ate->exists (gs |

gs = self.ocliype.cperaticn.statei^tchine.tcp) ard
self .ocliype.interface->forAll (i |

s.state->€9d.sts (rs | rs = i.statdtechine.top))))

[6] A WrightConnector must have at least one instance in the
running system.
sel£.alllnstances->size >= 1

4.4 Wright Components in UML

A component type is modeled by a set ofports, which export
the component's interface, and a computation specification,
which defines the component's behavior. We model Wright
components in UML with a stereotype WrightComponeni.
This stereotype has much in common with the
WrightConnector stereotype, and is thus omitted.

4.5 Wright Architectures in UML

We introduce stereotypes for modeling the attachments of
components to connectors and for Wright architectures.
Unlike C2, which considers architectures to be networks of
abstract placeholders, Wright architectures are composed of
component and connector Instances. One solution we con
sidered was to define WrightConnectorlnstance and Wrighl-
Componentlnstance stereotypes and express architectural
topology in terms of them. However, we believe that it is
undesirable to introduce instances at this level, since we are
still dealing with design issues. Additionally, we have found
that most of the constraints on component and connector
instances can be expressed in terms of their corresponding
types. Therefore, we refer to component and connector types
in the stereotypes below.'
Stereotype WiightAttachment for instances of meta-class Association
[1] Wright attachments are associations between two elements,
self .ocliype.assocEnd->size = 2

[2] One end of the association must be to a Wright component.
Let ends = self .ocliype. assoc&id,
ends [11 .nultiplicity - "1. .1' and
aidsll] •class.stereotype = WrightCcnpcnent

1.Theone exceptionis in con^raints 2 and 3 of the Wri^KAithilectuie stereo
type; "UnkEnd" refersto an instanceof a class(type).

[3] The other end of the association must be to a Wright connector.
Let roles = self.ocliype.assocEhd,
ends[21 .nultiplicity = and
ends[2] .class.stereotype = Wri^tCcnnector

Stereotype WrighlArchitecture for instances of meta-classSystemModel
[1] A WrightArchitecture is made up of only Wright model elements,
self.oclType.elements->forAll(e [

e.stereotype - Wri^tCcnpcnent or
e.stereotype = WrightCcmnector car
e.stereotype - WrighCAtcaclment)

[2] Each WrightComponeni port participates in at most one
WrightConnector role.
Let ccnps = self .oclType.elanents->select(e |

e. stereotype - Wri^tCcrponent),
OCTips.eissocEi5d->forAll(ae | ae.linkEiid->si2e - 1)

[3] Each WrightConnector role is fulfilled by at most one
WrightComponeni port. Similar to the constraint above.
[4]WrightComponenis andWrightConnectors donotparticipate inany
non-Wright associations. Similar to constraints (4-5] in Section 3.5.

The semantics of port-role attachments in Wright are formally
defined [3]. However. Wright places no language-level
constraints on port-role pairs. Instead, establishing and
enforcingthese constraints is the task of external analysis tools.
Hence, we provide no port-role compatibilityconstraints.

4.6 Example Partial Wright Architecture

Having provided an extension to UML for modeling Wright
architectures, we now demonstrate how that extension is
used to describe a Wright specification. Figure 8 shows the
Pipe connector example from [Ij. The UML State Machine
model of the Pipe is shown in Figure 9. Wright's scoping of
events is modeled in UML by prefixing every event's name
with the name of the role to which the event belongs. The
class diagram for Pipe is analogous to the C2 diagram shown
in Figure 4, and has been omitted for brevity.

4.7 Benefits of Integrating UML and Wright

Modeling an ADL such as Wright in UML provides benefits
both to practitioners who prefer Wright as a design notation
and to those who are more familiar with UML. Mapping a
Wright architecture to UML enables a Wright user to
leverage a wide number of general-purpose UML tools (e.g..
code generation, simulation, analysis, reverse engineering,
and so forth). On the other hand, being able to map a UML

connector Pipe =
role Writer = write -> Writern close -*»J
role Reader =

let ExitOnly = close -»,/
in let DoRead =:(read —> Reader

Dread-eof ExitOnly)
in DoRead DExitOnly

glue = let Readonly = Reader.read ReadOnly
OReader.read-eof

->Reader.close->,y
QReader.close

in let WriteOnly» Writer.write WriteOnly
0Writer.close -»^

In Writcr.write ->glue
0 Reader.read —* glue
DWriter.close —» ReadOnly
QReader.close -♦ WriteOnly

Figure 8. A connector specified in Wright(adapted from [1]).
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Figure 9. UML State Machine model of the Pipe connector.

design of a system to Wright (by adhering to the constraints
specified in this section) would enable a UML designer to
utilize Wright's powerful analysis capabilities, such as
interface compatibility checking and deadlock detection.

5 CORE MODELS AND EXTENSIONS

Notational standardization has a wide range of benefits, as
discussed in the introduction. The challenge of
standardization is finding a language that is general enough
to capture needed concepts without adding too much
complexity. It is tempting to extend the UML meta-model to
fully capture each feature of each ADL. However, such a
notation would be overly complex and incompatible with
standard UML tools. There has never been a single
programming language that served the needs of all
programmers, and there is no reason to expect a single ADL
to meet the needs of all software architects. This has led the

software architecture community to attempt interchange
rather than standardization of ADLs.

ACME is an architecture interchange language that supports
automatic transformation of a system modeled in one ADL
to an equivalent model in another ADL [6]. This allows
architects to model and analyze their system architecture in
one ADL and then translate the model to another ADL for

further analysis. Architects need not work directly with
ACME; they may instead use the ADL and toolset that is
most suited to the current issue of concern. ACME's

approach is easier than providing direct mappings between
pairs of ADLs because the ACME language serves as an
intermediate step and provides additional tool support.
ACME'S architectural ontology plays a role analogous to

UML's meta-model; however it is smaller and focuses on
structural aspects of architectures.

Full realization of ACME's goals presents a number of chal
lenges. Complete, automated translation among a set of
ADLs requires a set of semantic mappings that involve every
concept of every ADL in the set. which may not be possible
given that different ADLs address different system aspects
and have different semantics. The translation approach
depends on exploiting constructs common to every ADL. At
this point, the evident commonalities are syntactic rather
than semantic [15]. For these reasons ACME emphasizes a
partial and incremental approach.

ACME uses a seven element architectural ontology together
with key-value pairs to represent arbitrary, uninterpreted
architectural features and a template mechanism that
leverages commonalities. Like ACME, our approach uses a
fixed ontology (the UML meta-model). key-value pairs
(tagged-values), and templates (stereotypes). However. UML
provides much richer semantics due to its more
comprehensive meta-model and its first-order predicate logic
constraints.

A fundamental difference is that our approach does not use
translation between notations, but rather uses a core model with
several independent extensions. We use UML as our core model
and assume that developers are able to use UML constructs,
such as classes and use cases, in day-to-day development activi
ties. We extend this core model with specificattributes and con
straints as needed for specific analyses. As new issues of
concern arise in development, new attributes may be added to
support analyses relevant to those concerns. The semantics of
the core mo^l are always enforced by UML-compliant tools.
The semantics of each extension are enforced by the constraints
of that extension and the constraints imposed by the desired
analyses. Dependencies and conflicts may arise between the
attributes in different extensions, and must be handled by devel
opers just as they manage the other myriad dependencies and
potential conflicts of software development. This situation is not
ideal, but it is practical: it uses available methods and tools that
are well integrated into day-to-day development, and it is incre
mental. We feel that these features are key to bringing the bene
fits of architectural modeling into mainstream use.

In using a core model and extensions, the question arises of
what should be in the core and what should be left to

extensions. Technical considerations play some role in this
decision. For example, ACME's simple architectural
ontology eases tool building, whereas UML's larger meta-
model presents a higher barrier. Development processes also
influence the core model. For example, object-oriented
design and use cases are widely used by practitioners and
directly relate to day-to-day development activities. We
choose UML as our core model because it is grounded in
mainstream development practices, already has substantial
tool support, and provides explicit extension mechanisms.

Figure 10 sketches a process in which developers use the core
model and some available extensions for day-to-day
development concernsand takeprocess excursions as needed to
address specific architectural concerns identified during the
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Figure 10. (a) A core model with extensions
(b) Sketch of an associated process

main process. Information learned in excursions guides later
decisions in the main process. Different concerns will arise as
the main process progresses and model fidelity increases. For
example, deadlock can only be addressed once system behavior
is specified in detail. We envision developers using UML
normally and ADL-specific tools as needed; an alternative
process more suited toresearchers might involve using anADL
normally and UML tools asn^ded (e.g., togenerate code).

6 CONCLUSIONS

Further research into this approach will attempt to integrate
UML with the semantics ofother ADLs, apply object-oriented
concepts such as polymorphism and inheritance to architectural
elements [16], exploit more formal semantics [5. 26] and
evaluate the effectiveness of the approach in practice. In
addition to C2 and Wright, we have also investigated
integrating UML with Darwin [12] and Rapide [11]. Each of
these ADLs has certain aspects incommon with UML, some of
which can be expressed with UML's extension mechanisms,
while others may be included in a UML specification but can
only be interpreted byADL-specific tools.

From our experience to date, adapting UML to address
architectural concerns seems to require reasonable effort, be a
useful complement toADLs and their analysis tools, and be a
practical step toward mainstream architectural modeling.
Using UML has the benefits of leveraging mainstream tools,
skills, and processes. It may also aid in comparison ofADLs
because it forces some implicit assumptions to be explicitly
staled in common terms.

Integrating architectural models into mainstream development
methods is not simply a matter of convenience. Based on
experience in complex system design, "mismatches between
the systems models used by the R&D design team and those
ofdie system engineer, manufacturer, and user have delayed
delivery, raised costs, entailed product rework, and led to
faulty failure diagnoses [23]." These problems arise when
models become out of synch with the system and current
design concerns, or when lessons learned in modeling are not
communicated to developers. Integrating architectural models
with standard design methods addresses both these issues.
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