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Prostate cancer is the most common noncutaneous cancer in men in the United States. The current paradigm
for screening and diagnosis is imperfect, with relatively low specificity, high cost, and high morbidity. This
study aims to generate new image contrasts by learning a distribution of unique image signatures associated
with prostate cancer. In total, 48 patients were prospectively recruited for this institutional review board–ap-
proved study. Patients underwent multiparametric magnetic resonance imaging 2 weeks before surgery. Post-
surgical tissues were annotated by a pathologist and aligned to the in vivo imaging. Radiomic profiles were
generated by linearly combining 4 image contrasts (T2, apparent diffusion coefficient [ADC] 0-1000, ADC
50-2000, and dynamic contrast-enhanced) segmented using global thresholds. The distribution of radiomic
profiles in high-grade cancer, low-grade cancer, and normal tissues was recorded, and the generated prob-
ability values were applied to a naive test set. The resulting Gleason probability maps were stable regard-
less of training cohort, functioned independent of prostate zone, and outperformed conventional clinical
imaging (area under the curve [AUC] � 0.79). Extensive overlap was seen in the most common image sig-
natures associated with high- and low-grade cancer, indicating that low- and high-grade tumors present simi-
larly on conventional imaging.

INTRODUCTION
Prostate cancer is the most frequently diagnosed noncutaneous
cancer in men in the United States, accounting for �1 in 5 new
cancer diagnoses (1). Increased screening efforts, early aggres-
sive therapy for high-risk disease, and the relatively indolent
nature of the disease in most patients have resulted in an overall
5-year survival rate of 99% for organ-confined prostate cancer
(1). The current paradigm for prostate cancer diagnosis centers
on obtaining tissue diagnosis before definitive therapy, either
through conventional 12-core systematic transrectal ultra-
sound-guided biopsy systems or newer magnetic resonance im-
aging (MRI)-fusion targeted biopsies. These data are typically
combined with clinical information (ie, prostate-specific antigen
[PSA], PSA density, and clinical T stage) and implemented into
various nomograms to predict disease “risk” status.

While PSA screening has been shown to reduce mortality
(2-4), PSA alone has relatively low specificity for prostate can-

cer diagnosis and is insufficient in stratifying disease risk status,
leading to an abundance of low-risk patients undergoing an
invasive biopsy (5). The conventional paradigm for prostate
cancer diagnosis and staging has been challenged in recent
years, with data showing that nontargeted biopsies can lead to
under-sampling, inaccurate risk stratification, or missing the
target cancer all together (6, 7). As a result, noninvasive imaging
with multiparametric MRI (MP-MRI) of the prostate is increas-
ingly being used as a tool for prostate cancer detection, preop-
erative staging, active surveillance, targeted biopsy, and guid-
ance for definitive focal therapy. Several recent prospective
trials have shown that using MP-MRI in the prebiopsy setting to
identify target lesions for targeted biopsy outperforms system-
atic 12-core biopsy, leading to a higher rate of diagnosis for
clinically significant cancers and a fewer clinically insignificant
cancers (8, 9). The incorporation of MR-guidance, however,
requires a radiologist to identify and label potential targets.
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With the clinical standard of care shifting toward image-guided
biopsies, an increased burden will be placed on radiologists to
correctly and efficiently identify prostate tumors for biopsy.

A typical clinical prostate MRI protocol includes T2-
weighted imaging to delineate structure and zone anatomy,
multi b-value diffusion-weighted imaging to identify areas of
diffusion restriction, and dynamic contrast-enhanced (DCE) im-
aging to identify early or contemporaneous focal enhancement.
The exams are interpreted by a radiologist according to the
PI-RADS v2 (10) that assesses the probability of clinically sig-
nificant cancer. The lack of specificity inherent to PSA screening
and MP-MRI means that a definitive diagnosis still requires a
biopsy procedure which often leads to the overtreatment of
low-risk prostate cancer (11). Patients who do not necessarily
have cancer undergo invasive biopsy procedures to mitigate the
uncertainty in the screening tests. The clinical barrier to over-
come is to appropriately stratify patients near the boundary
between intervention and active surveillance before biopsy. The
line between active surveillance and treatment is histologically
Gleason 3 vs Gleason 4, which roughly correlates to PI-RADS 3
vs PI-RADS 4 on MP-MRI.

Computer-aided diagnostic tools informed by postoperative
tissue may provide an opportunity to address this clinical barrier
(12-14). Predictive models made from aligned whole mount
tissue and in vivo imaging provide opportunity to bring addi-
tional information into image space, increasing the overall spec-
ificity of a nonspecific test. Radiomics and machine-learning
based approaches have been a great success over the past decade
(15-18) and improved sensitivity yet decreasing the specificity.
However, there is a need for further improvement of this tech-
nology.

Radiomics provides a framework for quantifying tumor
microenvironment by analyzing images as a mineable database.
In addition, by creating a database of aligned pathology or
genetics with clinical imaging, it becomes feasible to find radio-
logic patterns of tumor phenotype which may provide critical
predictive information (19-21). Radiomics-based approaches
have seen success over the past decade, proving successful
across modalities (22, 23) and organ systems, (24-26) by pro-
viding a useful means for engineering features amenable to
machine learning approaches.

This study uses an aligned rad-path data set to determine
whether unique imaging signatures predict the presence of pa-
thologist-identified prostate cancer. We present a method which
learns a distribution of unique image characteristics associated
with histologic annotations to create voxel-wise predictive
maps on a naïve test set.

METHODS
Patient Population
Forty-eight patients were recruited prospectively for this insti-
tutional review board (IRB)–approved study between June 2014
and February 2017. Written consent was obtained from all
patients. Patients’ age ranged from 45 to 71 years (mean, 60
years). Inclusion criteria for this study included a scheduled
radical prostatectomy and clinical imaging with additional high
b value DWI 2 weeks before surgery.

Imaging
MP-MRI was acquired on a 3 T MRI scanner (General Electric,
Waukesha, WI) using an endorectal coil. MP-MRI included field
of view (FOV)–optimized and –constrained undistorted single
shot (FOCUS) DWI, DCE imaging, and T2-weighted imaging. T2
acquisition parameters were as follows: repetition time (TR) �
3370 milliseconds, FOV � 120 mm, voxel dimensions � 0.23 �
0.23 � 3 mm, acquisition matrix � 512, and slices � 26.
Diffusion images were collected with 10 b-values (b � 0, 10, 25,
50, 80, 100, 200, 500, 1000, 2000). The DCE images were col-
lected during injection of a gadolinium contrast agent with
acquisition matrix � 256, slices � 25, and FOV � 120 mm. All
image contrasts used in this study were acquired axially.

MRI Preprocessing
The T2-weighted images were intensity-normalized to the stan-
dard deviation within a manually drawn prostate mask (26-29).
The B � 0 image was aligned to the T2 using FLIRT (30, 31) and
corrected manually if necessary using a freesurfer tool, tkregis-
ter2 (surfer.nmr.mgh.harvard.edu). ADC was calculated from 2
combinations of b-value for the purposes of this study, 0 and
1000 and 50 and 2000 (32). The DCE volume with maximal
contrast influx was identified using a custom algorithm pro-
grammed in Matlab (MathWorks Inc., Natick, MA) and manually
aligned to the T2-weighted image using tkregister2. The DCE
was intensity-normalized as described above for the T2-
weighted images.

Tissue Processing
Following surgery, prostate samples were sectioned using pa-
tient-specific tissue slicing molds created from the presurgical
T2 images, as previously published (29, 32). Surface models were
created from the manually drawn prostate mask using 3D slicer
and subtracted from a template-slicing mold matching the T2
slice spacing using Blender. The slicing molds were then 3D-
printed using a fifth-generation Makerbot. Tissue sections were
paraffin-embedded, whole-mounted, and stained with hema-
toxylin-eosin. Slides were digitally scanned using a microscope
equipped with an automated stage (Nikon Metrology, Brighton
MI). The digitized histology was annotated by a fellowship-
trained urologic pathologist (KAI) using color codes correspond-
ing to the Gleason grading system. Annotations were drawn on
a Microsoft Surface Pro 4 using a predefined color palette. The
annotations were saved as a mask overlaid on the high-resolu-
tion histology.

Tissue Alignment
Digitized samples were aligned to the T2-weighted images using
custom software previously published (29, 32). Control points
were manually placed on analogous points on both the histol-
ogy and the MRI. A nonlinear transform was then calculated to
warp the histology into T2 space using the imwarp command in
the Matlab image processing toolbox (MathWorks Inc.). The
annotations from our pathologist were likewise transformed
into T2 space using the same transform and a nearest-neighbor
interpolation. The pathologist annotations in MRI space are
referred to as “deep annotations” throughout the manuscript.
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Stratification by Tumor Volume
A 3-fold cross-validation approach was chosen to test general-
izability. A custom sampling algorithm was required to distrib-
ute patients into cohorts with balanced tumor burden. Patient-
wise tumor burden was calculated as the sum of the number of
pathologist-annotated high grade (Gleason 4-5) and low grade
(Gleason 3) voxels. Stratification by high grade and low grade
was chosen in lieu of individual Gleason grade owing to the
relatively limited amount of grade 5 tumor in the data set.
The ideal cohort tumor burden was calculated as the total tumor
burden divided by the number of cohorts. Random permutations
of patients were created, and the difference between the ran-
domly generated tumor burden and the ideal tumor burden was
calculated. A separate error metric is calculated for each cohort
(n) and then summed to produce a single error score for that
permutation as seen in equation 1:

Error � �
n�1

3

�1 �
Actual Tumor Burden

Ideal Tumor Burden
� � Cost (1)

The cost function was empirically set at 3:1, favoring high-
grade tumors; this results in a much larger error score if the
high-grade tumor volume is unbalanced. There were a larger
number of low-grade annotations than high-grade ones in the
data set, and balancing high-grade tumor volume was deemed
more important than balancing low grade. The permutation
producing the lowest error in 10,000 iterations was used as the
group assignment for this study. There are approximately 1021

possible combinations, thus sampling 10,000 limits bias but
provides relatively balanced cohorts.

Global Thresholding and Segmentation
Each of the 3 cohorts was used as a test set for an algorithm
trained on the other 2 cohorts. Three sets of global thresholds
were established; for each cohort a global threshold was estab-
lished using the 2 unused cohorts (32 patients). The contrasts
used in this study were ADC (b � 0 and b � 1000), ADC (b � 50
and b � 2000), T2, and DCE. Global thresholds were created
using Otsu’s method calculated on all voxels in the manually
drawn prostate masks for the entire training cohort of 32 pa-
tients; thresholds applied to the test set were not generated from
these data (33). Global thresholding tests the assumption that all
cohorts represent the same probability density function and
additionally removes the constraint that each patient expresses
each unique image characteristic. Images were segmented using
the calculated thresholds into dark, intermediate, and bright
intensities represented by values of 1, 2, and 3 respectively.

Generation of Radiomic Profiles
A unique code was created for each voxel by linearly combining
the segmented image contrasts. Radiomic profiles were created
by multiplying the segmented contrasts by ascending powers of
10 such that each digit represents the segmentation value of that
individual contrast. With 4 image contrasts with 3 color values
each a total of 81 radiomic profiles are possible; a voxel encoded
with 1133 contains dark ADCshort, dark ADClong, bright T2, and
bright DCE. A schematic demonstrating the generation of the
radiomic profiles is shown in Figure 1 (26).

Training Set Independence
To determine the training set independence, imaging from an
additional 5 patients not included in the previous analysis was
processed. Three sets of radiomic profiles were generated using
each of the 3 sets of thresholds calculated prior. Each pixel
within the prostate mask was analyzed to quantify the overlap
among the 3 sets of images. Pixels where the radiomic profile
was identical across all images were labelled 3, and pixels where
only 2 images matched were labelled as 2. A high overlap score
(a large percentage of voxels with a value of 2 or 3) would
indicate stable performance regardless of training set.

Gleason Probability Maps Generation
A probability table was generated by analyzing the distribution
of each unique image signature within the pathologist-anno-
tated regions. The distribution of each profile in the training set
is recorded for low grade, high grade, and benign atrophy (ie,
profile 1111 contains benign atrophy 75% of the time). The
probability distribution is then propagated to the test set, where
each profile is replaced by its respective percentage value, cre-
ating 4 maps depicting low grade, high grade, benign, and
cancer likelihood. Figure 2 shows the generation of the proba-
bility table and Gleason probability maps.

Zone Dependence
The imaging signatures of prostate cancer are known to be
zone-dependent. Lesions are evaluated via the PI-RADS scale
using primarily the T2-weighted images in the transition zone
and DWI in the peripheral zone. To test the robustness of
the Gleason probability maps to tumor location, additional
probability tables were created stratified by zone (ie, profile

Figure 1. Generation of Radiomic profiles. Left:
The 4 contrasts included in this study and the re-
sulting segmentations created using Otsu’s
method. Right: 81 unique image characteristics
created by linearly combining the segmented im-
age contrasts. Each voxel receives a 4-digit code
representative of the segmented image contrasts.
Code 1133 indicates dark ADCshort, dark
ADClong, bright T2, and bright DCE.
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3333 contains high-grade tumor in 3% of the voxels located in
the peripheral zone and 0% of the voxels in the transition zone)
and applied to the test set. These new maps were evaluated using
a receiver operator characteristic (ROC) and compared to the
nonzone-dependent maps.

Evaluation of Gleason Probability Maps and
Comparison to Clinical Imaging
The Gleason probability maps were evaluated lesion-wise using
a ROC analysis. High grade was compared to all other tissue,
cancer to all other tissue, and high grade to low grade. In
addition, the intensity normalized image contrasts were evalu-
ated for their ability to distinguish high-grade cancer from all
other tissue and high grade from low grade.

RESULTS
Patient Stratification
Patients were stratified pseudorandomly, attempting to match
an empirically determined ideal tumor burden using a custom
sampling algorithm. The high-grade tumor and low-grade tu-
mor burdens were, on average, 7.3% and 19.4% off the calcu-
lated ideal tumor burden.

Training Set Independence
Radiomic profile maps generated using thresholds from 3 pa-
tients cohorts were compared for overlap on data from 5 patients
not included in the study. The individual radiomic profile maps
and the overlap map can be seen in Figure 3. At least 2 cohorts
had identical radiomic profile values on 98.6% of the pixels in
the additional subject (red and yellow areas), and all 3 cohorts
agreed on 76.3% of voxels (yellow only).

Zone Independence
The zone dependence of the technique was tested using a ROC.
The resulting AUCs can be seen in Table 1. The algorithms’
performance was nearly identical when zone information was
included; however, the addition of zone information requires
manually drawn zone masks. Figure 4 shows the high-grade
Gleason probability map on the same patient with and without
zone information included.

Table 1. Comparison of ROC AUC in
Gleason Probability Maps Made With and
Without the Inclusion of Zone Information in
the Probability Table

Zones
No

Zones

High Grade vs All 0.76 0.77

Cancer vs All 0.79 0.77

Normal vs All 0.79 0.79

Figure 2. Generation of Gleason probability
maps from a training data set. Top: Hematoxylin
and eosin stained whole mount histology and the
corresponding pathologist annotations and T2
slice. Middle: Radiomic profiles are masked by
the pathologist annotations and the distribution of
the radiomic profiles. Bottom: The distribution of
radiomic profiles within high grade, low grade,
and benign regions are analyzed over 32 pa-
tients. The resulting probability values are applied
to the radiomic profiling images on naïve data to
create Gleason probability maps.

Figure 3. Top: Radiomic profiles generated with
global thresholds calculated on 3 different train-
ing sets, applied to a patient not otherwise in-
cluded in the analysis. Bottom: Overlap map: yel-
low pixels have an identical image signature
across all cohorts, red and yellow pixels have
identical image signatures in 2 cohorts. Blank
pixels have no overlap.
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Receiver Operator Characteristic
The resulting ROCs can be seen in Table 2 along with the
difference between the 2 conditions. The AUC of the clinical
contrasts alone ranged from 0.55 to 0.78. The Gleason proba-
bility maps achieved an AUC of 0.79, distinguishing cancer from
benign atrophy. Figure 5 shows ROCs comparing the Gleason
probability maps to the raw image contrasts used in the analysis.
Figure 6 shows the resulting Gleason probability maps on 3
true-positive and 1 true-negative case.

Image Signatures Unique to Low- and High-Grade
Tumors
The 10 most common profiles by volume seen in both high- and
low-grade cancer can be seen in Table 3. Seven of the top 10

most frequently seen profiles in high-grade cancer also fre-
quently appear in low-grade cancer. Approximately 13,000
voxels containing high-grade tumor are explained by profile
1122, making it the most frequently seen high-grade image
signature. That profile is the fifth most common low-grade
profile, but the volume is nearly identical at 12,000 voxels,
resulting in a similar probability that a voxel containing 1122 in
the test set is high grade or low grade.

The similarity in image characteristics between high- and
low-grade tumors occurs independent of lesion size. Normal and
benign regions, on average, exhibit image signature 2222. Le-
sions less than 200 contiguous voxels (�12.5 mm2 in-plane)
exhibit an identical image signature—these lesions are indistin-
guishable from normal tissue. Large lesions exhibit profile 1122
regardless of final Gleason grade.

DISCUSSION
This study translated a technique developed as a risk stratification
model in glioblastoma (26) to identify unique image signatures
associated with prostate cancer. The technique outperforms the
diagnostic capacity of each of the clinical images individually
(Figure 5) and brings histologic data in the form of a learned
probability distribution of unique image signatures into image
space on naive data. Patients were successfully stratified pseudo-
randomly into cohorts with roughly equivalent volumes of high-
and low-grade prostate cancer. Gleason probability mapping pro-
duces nearly identical results independent of training cohort and
functions without requiring zone information.

Table 2. Comparison of ROC AUC in
Gleason Probability Maps and Clinical Image
Contrasts

Cancer vs
Benign

High Grade
vs Low
Grade

T2 0.58 0.53

ADC 0-1000 0.77 0.58

ADC 50-2000 0.78 0.60

DCE 0.65 0.51

Gleason Probability Map 0.79 0.56

Both cancer versus benign and high grade vs low grade were tested.

Figure 4. Top: T2-weighted image and deep
annotation overlaid on the same slice. A grade 4
cribriform tumor is shown in yellow. Bottom: Glea-
son probability maps created with and without the
inclusion of zone information in the training data
set. The images are nearly identical and the tumor
is clearly visible.

Figure 5. Receiver operator characteristic (ROC)
evaluating the performance of the 4 raw image
contrasts compared to Gleason probability maps
(cancer probability). ADC 50-2000 � 0.78, ADC
0-1000 � 0.77, DCE � 0.65, T2 � 0.57, Glea-
son probability map � 0.79.
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Other prostate radiomics approaches have seen success in
detecting prostate cancer using MP-MRI (34, 35). These tools
rely either on confirmed pathologically radiologist ROIs or
aligned, annotated whole mount slides and frequently combine
first-order histogram features with texture and volume features
to create a single risk score rather than applying global thresh-
olds. Many volume- and histogram-based features require an a
priori ROI in the test set, whereas pixel-wise approaches can
provide both disease severity and detection. These tools have
trended toward aligned whole mount histology which allows
voxel-wise predictions and eliminates the need for a radiologist
to manually draw ROIs. Reported AUC varies by technique and
ranges from 0.76 to 0.99; however, all published techniques
distinguish cancer (G3�) from benign or healthy tissue. Nota-
bly, to the best of our knowledge, no technique has been pub-
lished to date that is capable of distinguishing G3 and G4
patterned lesions, which is where the clinical decision is often
made, as it pertains to choosing active surveillance versus de-
finitive therapy. The method introduced in this study, Gleason
probability mapping, likewise performs poorly at distinguishing
high-grade tumor from low-grade tumor, likely because of the
limitations of the imaging techniques themselves. Future studies
focused specifically on differentiating G3 from G4� need to
occur.

Table 3. Top 10 Most Common Radiomic
Profiles in High- and Low-Grade Lesions
Ordered by Volume

Low Grade High Grade

Volume Profilea Volume Profile

22 179 2222 13 572 1122

17 900 1123 12 146 1112

16 302 1112 9871 1132

13 609 2212 8470 1123

13 060 1122 8356 1111

12 651 2223 8323 1121

9159 1111 7800 2211

8972 1121 5873 2221

8780 2221 5452 1133

8712 2211 5157 2222

a Profiles that are common between the two are shown in italics on the
low-grade profile list.

Figure 6. Gleason probability maps. Top: True-positive cases. High-grade tumors are shown on the deep annotation in
pink (cribriform) and yellow (not cribriform). Low-grade tumors are shown in green. Images are scaled to reflect the max-
imum probability in the training data set. Bottom: True negative. The displayed slide has only benign atrophy, and thus,
no hot spots occur in the Gleason probability maps.
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Transition zone lesions are identified primarily by the T2-
weighted images in PI-RADS v2 because benign prostatic hy-
perplasia nodules often exhibit diffusion restriction and early/
contemporaneous enhancement (mimicking cancer) but appear
morphologically different from significant cancers, which may
not be captured fully by a segmentation-based method. Cur-
rently, no prostate CAD tool reads a prostate exam like a radi-
ologist—techniques are either contrast-based and well suited to
identify peripheral zone lesions or texture-based and well suited
to identify transition zone lesions. It is plausible that the most
effective method of identifying prostate tumors distinguished by
zone and uses vastly different techniques depending on the
lesions location.

There are known sources of error associated with rad-path
studies that may reduce accuracy. Our sample includes patients
with cancer: other confounding diseases are unlabeled and may
thus contribute to error. While we have previously validated our

control point–warping technique, there is still error involved in
the process. This technique used global thresholds generated
from 1 set of acquisitions on similar magnets. Future studies
should validate these thresholds on acquisitions from magnets
by other manufacturers. This study is limited to endorectal coil
images, but future studies may quantify the generalizability to a
population imaged without an endorectal coil.

CONCLUSIONS
Gleason probability mapping stratifies cancer tissue from nor-
mal prostate tissue independent of zone and training set. The
technique performs better than traditional image contrasts alone
and provides a voxelwise map which may be potentially useful
for biopsy guidance and reading clinical scans. Additional re-
search is necessary to further classify regions of tumor among
the different Gleason patterns.
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