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Abstract—We investigate the practice of regularization (also

termed damping) in inverse problems, meaning the use of prior
information to supplement observations, in order to suppress in-

stabilities in the solution caused by noisy and incomplete data. Our

focus is on forms of regularization that create smooth solutions, for

smoothness is often considered a desirable—or at least accept-
able—attribute of inverse theory solutions (and especially

tomographic images). We consider the general inverse problem, in

its continuum limit. By deconstruction into the part controlled by

the regularization and the part controlled by the data kernel, we
show the general solution depends on a smoothed version of the

back-projected data as well as a smoothed version of the general-

ized inverse. Crucially, the smoothing function that controls both is

the solution to the simple data smoothing problem. We then con-
sider how the choice of regularization shapes the smoothing

function, in particular exploring the dichotomy between expressing

prior information either as a constraint equation (such as a spatial
derivative of the solution being small) or as a covariance matrix

(such as spatial correlation falling off at a specified rate). By

analyzing the data smoothing problem in its continuum limit, we

derive analytic solutions for different choices of regularization. We
consider four separate cases: (1) the first derivative of the solution

is close to zero, (2) the prior covariance is a two-sided declining

exponential, (3) the second derivative of the solution is close to

zero, and (4) the solution is close to its localized average. First-
derivative regularization is put forward as having several attractive

properties and few, if any, drawbacks.

Key words: Inverse theory, tomography, spatial analysis,

damping, smoothing, regularization.

1. Introduction

The concept of regularization (also termed

damping) is central to solving many classes of inverse

problems, and especially those involving generaliza-

tions of the least-squares principle (LEVENBERG 1944).

Instabilities caused by incomplete data coverage,

which would otherwise arise during the inversion

process, are damped through the addition of prior

information that quantifies expectations about the

behavior of the solution. Given properly chosen prior

information, a unique and well-behaved solution can

be determined even with noisy and incomplete data.

Prior information can be implemented in two in-

terrelated, but conceptually distinct, ways:

The first approach is as an equation that looks just

like a data equation, except that it is not based on any

actual observations. This type of prior information is

often referred to as a constraint; For instance, the

prior information that two model parameters differ by

an amount h1 is expressed by the constraint equation

Dm : m2 - m1 = h1. Constraint equations can

contradict the data and for that reason are understood

to be only approximate. The strength of the con-

straint, relative to the data, is expressed by a

parameter e.
The second approach treats the model parameters

as random variables described by a probability den-

sity function p(m1, m2). The prior information is

expressed as the requirement that this probability

density function have certain features. Returning to

the example above, we infer that the constraint

equation Dm & h1 is only probable when m1 and m2

are strongly and positively correlated, with prob-

ability concentrated near the line m2 = m1 ? h1.

Thus, a constraint implies that the probability density

function has a particular covariance (and vice versa).

Furthermore, if we view the constraint equation as

holding up to some variance rh
2 [that is,

Dm ¼ h1 " 2rhð95 %Þ], then we expect this variance

to scale inversely with the strength of the constraint

(that is, rh ! e-1). These considerations strongly

suggest that the two approaches are interrelated.

In fact, these interrelationships are well known in

least-squares theory. Suppose that the prior
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information equation is linear and of the form

Hm = h, where m is the vector of unknown model

parameters and H and h are known. Alternatively,

suppose that the model parameters are normally dis-

tributed random variables with mean hmi and

covariance matrix Ch. As we will review below, a

detailed analysis of the least-squares principle reveals

that H = Ch
-1/2 and h ¼ C%1=2

h hmi (TARANTOLA and

VALETTE 1982a, b). Thus, one can translate between

the two viewpoints by ‘‘simple’’ matrix operations.

Regularization can be applied to the general linear

inverse problem Gm = d (where d is data and G is

the data kernel, which encodes the theory) to imple-

ment the qualitative notion of smoothness. This type

of prior information is extremely important when the

inverse problem is underdetermined, meaning that

some aspects of the solution are not determined by

the data. The prior information acts to fill in the data

gaps and produce a final product that is ‘‘complete’’

and ‘‘useful.’’ However, the result also is at least

somewhat dependent upon the way in which

smoothness is quantified. A very simple form of

smoothness occurs when spatially adjacent model

parameters have similar values, which implies the

same constraint equations as discussed previously

(with h1 = 0): m2 - m1 & 0, m3 - m2 & 0, m4 -

m3 & 0, etc.. These equations are equivalent to the

condition that the first spatial derivative is small; that

is, dm/dx & 0. This smoothness condition, often

termed gradient or first-derivative regularization, is

widely used in global seismic imaging (e.g., EKSTROM

et al. 1997; BOSCHI and DZIEWONSKI 1999; NETTLES

and DZIEWONSKI 2008). Another popular form of

smoothing is Laplacian or second-derivative

regularization (e.g., TRAMPERT and WOODHOUSE 1995;

LASKE and MASTERS 1996; ZHA et al. 2014), where the

constraint equations are m3 % 2m2 þ m1 ' 0,

m4 % 2m3 þ m2 ' 0, etc., being equivalent to the

condition that the second spatial derivative is small;

that is, d2m/dx2 & 0.

That these two regularization schemes produce

somewhat different results has been long recognized

(BOSCHI and DZIEWONSKI 1999). Numerical tests

indicate that second-derivative regularization leads to

greater suppression of short-wavelength features in

the solution. However, while this issue can be ap-

proached empirically, we show here that a more

theoretical approach has value, too, because it allows

us to discern what regularization does to the structure

of inverse problems in general. Such a treatment can

provide insight into how the results (and side-effects)

of a regularization scheme change as the underlying

inverse problem is modified, for example, when in

tomographic imaging a simple ray-based data kernel

(AKI et al. 1976; HUMPHREYS et al. 1984; see also

MENKE 2005) is replaced by a more complicated one

that includes diffraction effects (e.g., a banana-

doughnut kernel calculated using adjoint methods)

(TROMP et al. 2005).

An important question is whether regularization

works by smoothing the observations (making the

data smoother) or by smoothing the data kernel

(making the theory smoother). Our analysis, pre-

sented later in this paper, shows that it does both.

Two important practical issues are how to choose a

Ch or an H to embody an intuitive form of smooth-

ness, and how to assess the consequences of one

choice over another. We show that the simple data

smoothing problem is key to understanding these

issues.

By data smoothing, we mean finding a set of

model parameters that are a smoothed version of the

data. This approach reduces the data kernel to a

minimum (G = I) and highlights the role of prior

information in determining the solution. Even with

this simplification, the relationships between Ch and

H, and their effect on the solution, are still very ob-

tuse. Surprisingly, an analysis of the continuum limit,

where the number of model parameters becomes in-

finite and vectors become functions, provides

considerable clarity. We are able to derive simple

analytic formulae that relate Ch and H, as well as the

smoothing kernels that relate the unsmoothed and

smoothed data. The latter is of particular importance,

because it allows assessment of whether or not the

mathematical measure of smoothing corresponds to

the intuitive one.

Finally, we show that the effect of regularization

on the general inverse problem can be understood by

decomposing it into the part equivalent to a simple

data smoothing problem and the deviatoric part

controlled by the nontrivial part of the data kernel.

This decomposition allows us to investigate the re-

spective effects of the smoothing constraints and the
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data constraints (via some theory, represented by the

data kernel) on the solution. The former blurs (in the

literal sense of the word) the data, but we show also

that the data kernel is also blurred in exactly the same

way. Regularization partly works by smoothing the

theory.

2. Background and Definitions

Generalized least squares (LEVENBERG 1944;

LAWSON and HANSEN 1974; TARANTOLA and VALETTE

1982a, b; see also MENKE 1984, 2012; MENKE and

MENKE 2011) is built around a data equation,

Gm = dobs, which describes the relationship be-

tween unknown model parameters, m, and observed

data, dobs, and a prior information equation,

Hm = hpri, which quantifies prior expectations (or

‘‘constraints’’) about the behavior of the model pa-

rameters. The errors in the data equation and the

prior information equation are assumed to be nor-

mally distributed with zero mean and covariance of

Cd and Ch, respectively.

The generalized error U is a measure of how well

a given solution m satisfies the data and prior

information:

U mð Þ ¼ dobs %Gm
! "T

C%1
d dobs %Gm
! "

þ hpri %Hm
! "T

C%1
h hpri %Hm
! "

: ð1Þ

Here dobs are the observed data and hpri is the spe-

cified prior information. The first term on the right-

hand side represents the sum of squared errors in the

observations, weighted by their certainty (that is, the

reciprocal of their variance), and the second repre-

sents the sum of squared errors in the prior

information, weighted by their certainty. The gener-

alized least-squares principle asserts that the best

estimate of the solution is that one that minimizes this

combination of errors.

Suppose now that Cd
-1 = Qd

TQd and

Ch
-1 = Qh

TQh, for some matrices Qd and Qh. We can

rearrange Eq. (1) into the form U = [f -

Fm]TCf
-1[f - Fm] by defining

F ¼ Qd G
Qh H

# $
and f ¼ Qd dobs

Qh hpri

# $
and

Cf ¼ I:
ð2Þ

This is the form of a simple least-squares minimiza-

tion of the error associated with the combined

equation Fm = f. The matrices Qd and Qh have the

interpretation of weighting matrices, with the top

rows of Fm = f being weighted by Qd and the bot-

tom rows by Qh. The least-squares equation and its

solution are

FT F
! "

mest ¼ FTf and mest ¼ F%gf with

F%g ( FT F
! "%1

FT:

ð3a; bÞ

Here mest is the best estimate of the solution and the

symbol F-g is used to denote the generalized inverse

of the matrix F, that is, the matrix that ‘‘inverts’’ the

relationship Fm = f.
An obvious choice of weighting matrices is Qd ¼

C%1=2
d and Qh ¼ C%1=2

h , where Cd
-1/2 and Ch

-1/2 are

symmetric square roots. However, any matrices that

satisfy Qd
TQd = Cd

-1 and Qh
TQh = Ch

-1 are accept-

able, even nonsymmetric ones. In fact, if Td and Th are

arbitrary unitary matrices satisfying Td
TTd = I and

Th
TTh = I, then Qd ¼ TdC%1=2

d and Qh ¼ ThC%1=2
h are

acceptable choices, too, since the unitary matrices

cancel from the product Qh
TQh. A nonsymmetric ma-

trix Qh, with singular value decomposition UKVT, can

be transformed into a symmetric matrix Qh
0 = Ch

-1/2

by the transformation Th = VUT, since ThQh =

VUTUKVT = VKVT is symmetric and since VUT, as

the product of two unitary matrices, is itself unitary.

For reasons that will become apparent later in the pa-

per, we give Qh
-1 its own name, Ph, so that Ch = Ph

TPh.

Two other important quantities in inverse theory

are the covariance Cm and resolution R of the esti-

mated model parameters mest. The covariance

expresses how errors in the data and prior information

propagate into errors in the estimated model pa-

rameters. The resolution expresses the degree to

which a given model parameter can be uniquely de-

termined (BACKUS and GILBERT 1968, 1970; WIGGINS

1972). These quantities are given by

Cm ¼ F%gCf F%gT ¼ FT F
! "%1

FT

IF FT F
! "%1¼ FT F

! "%1
;

ð4Þ

R ¼ G%g G with G%g ( FT F
! "%1

GTC%1
d :

ð5Þ

Data Smoothing and Regularization



Here the symbol G-g is used to denote the general-

ized inverse of the data kernel G, that is, the matrix

that inverts the relationship Gm = d.

The foregoing will have been familiar to those

who have taken a linear algebraic approach to inverse

theory. We will take the continuum limit, replacing

dobs and mest with the functions d(x) and m(x), where

x is an independent variable (e.g., position). The

matrix G becomes the linear operator G, its transpose

GT becomes the adjoint Gy of the operator G, and its

inverse G-1 becomes the inverse G%1 of the operator

G. Depending upon context, we will interpret the

identity matrix either as multiplication by 1 or con-

volution by the Dirac delta function, d(x).

2.1. Formulation of the Simplified Data Smoothing

Problem

In order to understand the role of prior informa-

tion in determining the solution, we consider a

simplified problem with G = I, Cd = rd
2I,

Qd = rd
-1I, and hpri = 0. These choices define a

data smoothing problem, when m is viewed as a

discretized version of a continuous function m(x).

The model parameters mest represent a smoothed

version of the data dobs. We multiply Eq. (2) by rd so

that the data equation is Gm ¼ d and the prior

information equation, which quantifies just in what

sense the data are smooth, is rdQhHm = 0. The

matrices Qh and H appear only as a product in

Eq. (2), so we define L = rdQhH. This behavior

implies that we can understand the prior information

equation Lm = 0 either as an equation of the form

Hm = 0 with nontrivial H ! L but trivial weighting

Qh = I or as the equation Qhm ¼ 0 with the trivial

H = I but with nontrivial weighting Qh ! L. The

effect is the same but, as was highlighted in the

‘‘Introduction’’ section, the interpretation is different.

Subsequently, when we refer to Qh (or Ch or Ph) it

will be with the presumption that we are adopting the

H = I viewpoint. The combined equation is then

rdFm ¼ rdf ( I
L

# $
m ¼ dobs

0

# $
ð6Þ

with solution mest obeying

LTLþ I
% &

mest ¼ Amest ¼ dobs: ð7Þ

Here A is an abbreviation for LTLþ I
% &

. In the

continuum limit, this equation becomes

LyLþ 1
' (

m xð Þ ¼ A xð Þm xð Þ ¼ d xð Þ: ð8Þ

Here A xð Þ is an abbreviation for LyLþ 1
' (

.

Finally, we mention that, when two prior information

equations are available, say LAm = 0 and LBm = 0,

(7) becomes

I
LA

LB

2

4

3

5m ¼
dobs

0
0

2

4

3

5 ð9Þ

and the discrete and continuum solutions satisfy the

equations

LT
ALA þ LT

BLB þ I
% &

mest ¼ dobs

and LyALA þ L
y
BLB þ 1

' (
mðxÞ ¼ dðxÞ:

ð10a; bÞ

2.2. Data Smoothing in the Continuum Limit

Equation (8) has the form of a linear differential

equation with inhomogeneous source term d(x), and

can therefore be solved using the method of Green

functions. The Green function a(x, x0) satisfies the

equation with an impulsive source,

A aðx; x0Þ ¼ dðx% x0Þ: ð11Þ

Here, d(x - x0) is the Dirac delta function, that is,

a single, spiky datum located at position x0. The

Green function a(x, x0) represents the response of the

smoothing process to this datum—the smoothing

kernel. Once Eq. (11) has been solved for a particular

choice of the operator A, the solution for arbitrary

data d(x) is given by the Green function integral:

m xð Þ ¼ A%1d xð Þ ( r a x; x0ð Þd x0ð Þdx0 ( a; df g:
ð12Þ

Here we have introduced the inner product

symbol {., .} for notational simplicity; it is just

shorthand for the integral. The quantity A%1ðxÞ has

the interpretation of a smoothing operator with kernel

a(x, x0). In problems with translational invariance,

Eq. (12) is equivalent to convolution by the function

a(x); that is, A%1d xð Þ ¼ a xð Þ ) dðxÞ; where * denotes

convolution.
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Smoothing kernels are localized functions that

typically have a maximum at the central point x0 and

decline in both directions away from it. One example,

which we will discuss in more detail later in this

paper, is the two-sided declining exponential function

a xð Þ ¼ 1=2 e%1 exp %e%1 x% x0j jð Þ, which smooths the

data over a scale length e.
Equations for the covariance of the estimated

solution and the resolution can be constructed by

taking the continuum limit of Eqs. (4) and (5), after

making the simplification G = I:

ACm x; x0ð Þ ¼ r2
dd x% x0ð Þ so

Cm x; x0ð Þ ¼ r2
daðx; x0Þ; ð13Þ

AR x; x0ð Þ ¼ d x% x0ð Þ so R x; x0ð Þ ¼ aðx; x0Þ:
ð14Þ

Similarly, the relationship between the functions

Ch(x, x0) and Ph(x, x0), which are the analogues of Ch

and Ph, can be constructed by taking the continuum

limit of the equation Ch = Ph
TPh:

Ch ¼ P
y
h ;Ph

n o
: ð14Þ

These two functions satisfy the equations

r%2
d LyL
' (

Ch x; x0ð Þ ¼ d x% x0ð Þ

and r%1
d L
yPhðx; x0Þ ¼ dðx% x0Þ:

ð15a; bÞ

Equation (15a) is derived by first taking the

continuum limit of the equation Ch = rd
2[LTL]-1,

which implies that {Ch, m} is the inverse operator of

r%2
d LyL
' (

m. Then Ch; r%2
d LyL
' (

m
n o

¼ m ¼

r%2
d LyL
' (y

Ch;m

) *
¼ r%2

d LyL
' (

Ch;m
n o

¼

d;mf g, so r%2
d LyL
' (

Ch ¼ d. Equation (15b) is

derived by first taking the continuum limit of Ph = rd

L-1, which implies that Ph;mf g is the inverse of

r%1
d Lm. Then Ph; r%1

d Lm
+ ,

¼ m ¼ r%1
d L
yPh;m

n o

¼ d;mf g, so r%1
d L
yPh ¼ d:

We will derive smoothing kernels for particular

choices of prior information, L, later in this paper.

However, we first apply these ideas to the general

inverse problem.

2.3. Smoothing within the General Problem

We examine the effect of regularization on an

inverse problem with an arbitrary data kernel

G = I. With the simplifications that the data are

uncorrelated and of uniform variance (Cd = rd
2I) and

that the prior model is zero (hpri = 0), Eq. (3a)

becomes

GTGþ LTL
% &

m ¼ GTd ( ~m with

L ( rdC%1=2
h H:

ð16Þ

We have introduced the abbreviation ~m ( GTd
to emphasize that the model m does not depend

directly upon the data d, but rather on their back-

projection GTd. In the continuum limit, this equa-

tion becomes

GyGþ LyL
' (

m ¼ Gyd ¼ ~m ð17Þ

with G the linear operator corresponding to the data

kernel G. As before, ~m ¼ Gyd is the back-projected

data. Now consider the special case where GyG is

close to the identity operator 1, so that we can

write

GyGþ LyL
' (

m ¼ LyLþ 1
' (

þ GyG% 1
' (h i

m

¼ Aþ xBð Þm ¼ ~m;

ð18Þ

where A ( ðLyLþ 1Þ, xB ( ðGyG% 1Þ, and where,

by hypothesis, x is a small parameter. We call xB
the deviatoric theory. It represents the ‘‘interesting’’

or ‘‘nontrivial’’ part of the inverse problem. The pa-

rameter x is small either when G is close to the

identity operator, or when it is close to being unitary.

These restrictions can be understood by considering

the special case where G corresponds to convolution

with a function g(x). The first restriction implies

g(x) & d(x); that is, g(x) is spiky. The second re-

striction implies that gðxÞHgðxÞ ' dðxÞ; that is,

g(x) is sufficiently broadband that its autocorrelation

is spiky. The latter condition is less restrictive than

the former.

We now assume that the smoothing operator A%1

is known (e.g., by solving Eq. 8) and construct the

inverse of Aþ xB using perturbation theory (see

MENKE and ABBOTT 1989, their Problem 2.1). We first

Data Smoothing and Regularization



propose that the solution can be written as a power

series in x:

m ¼ m0 þ xm1 þ x2m2 þ * * *

(where mi are yet to be determined). Inserting this

form of m into the inverse problem yields

Aþ xBð Þ m0 þ xm1 þ x2m2 þ * * *
% &

¼ ~m: ð19Þ

By equating terms of equal powers in x, we find

that m0 ¼ A%1 ~m, m1 ¼ %A%1BA%1 ~m, etc. The solu-

tion is then

m ¼ 1þ
X1

n¼1

%A%1xB
% &n

 !

A%1 ~m; ð20Þ

and it follows from Eq. (18) that

m ¼ Aþ xBð Þ%1 ~m;

so Aþ xBð Þ%1¼ A%1 % A%1xB
% &

A%1

þ A%1xB
% &

A%1xB
% &

A%1 % * * *
ð21Þ

Since A%1 represents a smoothing operator, that

is, convolution by a smoothing kernel, say a(x), the

solution can be rewritten

m ¼ G%g a ) ~mð Þ

with
G%g ¼ 1% a ) xBð Þ þ a ) xBð Þ a ) xBð Þ % * * *ð Þ:

ð22Þ

Here we have introduced the abbreviation G%g to

emphasize that the solution contains a quantity that can

be considered a generalized inverse. The quantity

a ) ~mð Þ represents the smoothing of the back-projected

data ~m by the smoothing kernel a, with the result that

these data become smoother. The repeated occurrence

of the quantity a ) xBð Þ in the expression for G%g

represents the smoothing of the deviatoric theory xB
by the smoothing kernel a, with the result that the

theory becomes smoother. The effect of smoothing on

the theory is entirely contained in the interaction

a ) xB, so examining it is crucial for developing a

sense of how a particular smoothing kernel affects the

theory. Higher-order terms in the series for G%g have

many applications of the smoothing operator (a )),
implying that they are preferentially smoothed. The

number of terms in the expansion that are required to

approximate the true G%g is clearly a function of the

size of ða ) xBÞ, such that, if k a ) xB k2 = k xB k2 is

small, the higher terms in the approximation rapidly

become insignificant.

We apply Eq. (22) to two exemplary inverse

problems, chosen to demonstrate the range of behav-

iors that result from different types of theories. In the

first, the deviatoric theory is especially rich in short-

wavelength features, so smoothing has a large effect.

In the second, the deviatoric theory is already very

smooth, so the additional smoothing associated with

the regularization has little effect.

Our first example is drawn from communication

theory, and consists of the problem of ‘‘undoing’’

convolution by a code signal. Here the operator G
corresponds to convolution by the code signal g(x),

chosen to be a function that is piecewise constant in

small intervals of length Dx, with a randomly

assigned (but known) value in each interval. This

function is very complicated and unlocalized (in

contrast to spiky); it is a case where G is far from 1.

However, because it is very broadband, its cross-

correlation g xð ÞHg xð Þ is spiky; it is a case where

GyG ' 1. The deviatoric theory, which consists of the

cross-correlation minus its central peak,

xb xð Þ ¼ g xð ÞHg xð Þ % dðxÞ, consists of short-wave-

length oscillations around zero, so we expect that the

smoothing a ) xb will have a large effect on it. A

numerical test with 100 intervals of Dx = 1 indicates

that the decrease is about a factor of two:

k a ) xb k2 = k xb k2' 1=2; that is, the ratio is sig-

nificantly less than unity. This is a case where

smoothing has a large effect on the theory. The test

also shows that the exact and approximate solutions

match closely, even when only the first two terms of

the series are included in the approximation (Fig. 1).

This latter result demonstrates the practical useful-

ness of Eq. (22) in simplifying an inverse problem.

Our second example is drawn from potential field

theory and consists of the problem of determining the

density m(x) of a linear arrangement of masses (e.g.,

seamount chain) from the vertical component fv(x) of

the gravitational field measured a distance h above

them. Because gravitational attraction is a localized

and smooth interaction, this is an example of the G '
1 case. According to Newton’s law, the field due to a

unit point mass at the origin is

W. Menke, Z. Eilon Pure Appl. Geophys.



fv xð Þ ¼ chðx2 þ h2Þ%3=2; ð23Þ

where c is the gravitational constant. The scaled data

d xð Þ ¼ 1=2c%1hfv xð Þ then satisfy the equation

Gm ¼ g ) m ¼ d

with g xð Þ ¼ 1=2h2ðx2 þ h2Þ%3=2: ð24Þ

Here, the scaling is chosen so that the gravita-

tional response function g(x) has unit area, thus

satisfying g(x) & d(x) for small h. The function

g(x) is everywhere positive and decreases only slowly

as |x| ? ?, so g xð ÞHg xð Þ is everywhere positive and

slowly decreasing, as well. Consequently, the

regularization does not significantly smooth the

deviatoric theory. A numerical test, with h = 2,

indicates that jja ) xbjj2=jjxbjj2 ' 0:98; that is, it is

not significantly less than unity. A relatively large

number of terms (about 20) of the series are needed to

achieve an acceptable match between the ap-

proximate and exact solutions (Fig. 2). In this case,

Eq. (22) correctly describes the inverse problem, but

cannot be used to simplify it.

These lessons, when applied to the issue of

seismic imaging, suggest that regularization has a

weaker smoothing effect on a banana-doughnut

kernel than on a ray-based data kernel, because the

former is already very smooth (which is generally

good news). However, a stronger effect will occur in

cases when the scale length of the ripples in the

banana-doughnut kernel is similar to that of the side-

lobes of the smoothing kernel. This problem can be

(a)

(b)

(c)

(d)

(e)

Figure 1
Telegraph signal inverse problem. a The true model, mtrue(x) is a spike. b The observed data dobs(x) are the true data g(x) * mtrue(x) plus

random noise. c An undamped inversion yields an estimated model mest(x). d A damped inversion with L ¼ e d=dx and e = 0.1 yields a
smoother estimated model. e The first two terms of the series approximation for the generalized inverse yield a solution substantially similar to

the one in d
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avoided by using a smoothing kernel without side-

lobes (which we will describe below).

Irrespective of the form of G, regularization has

the effect of smoothing the back-projected data ~m,

which leads to a smoother solution m. Further

smoothing occurs for some data kernels (those with

an oscillatory deviatoric theory), since the regular-

ization also leads to a smoother generalized inverse.

Smoothing of ~m, which can be viewed as an

approximate form of the solution, is arguably the

intent of regularization. Smoothing of the deviatoric

theory is arguably an undesirable side-effect. This

second kind of smoothing is of particular concern

when the smoothing kernel a(x) has side-lobes, since

spurious structure can be introduced into the theory,

or when aðxÞ has less than unit area, since structure

can be suppressed. In the case studies below, we

derive analytic formulae for a(x) for four common

choices of prior information and analyze their

properties to address these concerns. As we will put

forward in more detail in the ‘‘Discussion and

Conclusions’’ section, our overall opinion is that

Figure 2
Gravity inverse problem. a The true model, mtrue(x) represents density. b The observed data dobs(x) are the true data predicted by Newton’s

law, plus random noise. c An undamped inversion yields an estimated model mest(x) that is very noisy. d A damped inversion with L ¼ e d=dx
and e = 0.1 suppresses the noise, yielding an improved estimated model. e The first 20 terms of the series approximation for the generalized

inverse yield a solution substantially similar to the one in d
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prior information that leads to a smoothing kernel

with unit area and without side-lobes is the preferred

choice, unless some compelling reason, specific to the

particular inverse problem under consideration, indi-

cates otherwise.

2.4. Four Case Studies

We discuss four possible ways of quantifying the

intuitive notion of a function being smooth. In all

cases, we assume that the smoothing is uniform over x,

which corresponds to the case where L has transla-

tional invariance, so smoothing is by convolution with

a kernel a(x). In Case 1, a smooth function is taken to

be one with a small first derivative, a choice motivated

by the notion that a function that changes only slowly

with position is likely to be smooth. In Case 2, a

smooth function is taken as one with large positive

correlations that decay with distance for points

separated by less than some specified scale length.

This choice is motivated by the notion that the

function must be approximately constant, which is to

say smooth, over that scale length. In Case 3, a smooth

function is taken to be one with small second

derivative, a choice motivated by the notion that this

derivative is large at peaks and troughs, so that a

function with small second derivative is likely to be

smooth. Finally, in Case 4, a smooth function is taken

to be one that is similar to its localized average. This

choice is motivated by the notion that averaging

smooths a function, so that any function that is

approximately equal to its own localized average is

likely to be smooth. All four of these cases are

plausible ways of quantifying smoothness. As we will

show below, they all do lead to smooth solutions, but

solutions that are significantly different from one

another. Furthermore, several of these cases have

unanticipated side-effects. We summarize the smooth-

ing kernels for each of these choices in Table 1.

Case 1 We take flatness (small first derivative) as a

measure of smoothness. The prior information equa-

tion is e dm=dx ¼ 0, where e = rd/rh, so that

L ¼ e d=dx. The parameter e quantifies the strength

by which the flatness constraint is imposed. The

smoothing kernel for this operator is (see ‘‘Appendix’’)

a xð Þ ¼ e%1

2
exp %e%1 xj j
% &

: ð25Þ

The solution (Fig. 3) is well behaved, in the sense

that the data are smoothed over a scale length e
without any change in their mean value [since a(x)

has unit area]. Furthermore, the smoothing kernel

monotonically decreases towards zero, without any

side-lobes, so that the smoothing creates no extrane-

ous features. The covariance and resolution of the

estimated solution are

CmðxÞ ¼ r2
da xð Þ and RðxÞ ¼ a xð Þ: ð26Þ

Note that the variance and resolution trade off, in

the sense that the size of the variance is proportional

to e-1, whereas the width of the resolution is

proportional to e; as the strength of the flatness

constraint is increased, the size of the variance

decreases and the width of the resolution increases.

Table 1

Comparison of smoothing kernels for the different choices of smoothing scheme for the four cases considered

Case 1 2 3 4

Constraint First-derivative
damping

Exponentially declining spatial
covariance

Second-derivative
damping

Damping towards localized
average s(x)

Constraint

equation

e d
dx
¼ 0 Ch(x) = rh

2exp(-g|x - x0 |)

with r2
h ¼ r2

de
%2

e d2

dx2
¼ 0 e[d(x) - s(x)] * m = 0

a xð Þ ¼

Comments No side-lobes
Unit area

No side-lobes
Area = 2

2þge2 \1
Side-lobes
Unit area

Side-lobes
Unit area

The plotted smoothing kernels were calculated with the choices e = 3 and g = 0.4 and are plotted at the same scale, in the x range of ±40

units
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The autocorrelation of the data,

Xd xð Þ ¼ d xð ÞHd xð Þ, where H signifies cross-correla-

tion, quantifies the scale lengths present in the

observations. In general, the autocorrelation of the

model parameters, Xm xð Þ ¼ m xð ÞHm xð Þ, will be

different, because of the smoothing. The two are

related by convolution with the autocorrelation of the

smoothing kernel:

Xm xð Þ ¼ a xð Þ ) d xð Þ½ ,H a xð Þ ) d xð Þ½ ,
¼ Xa xð Þ ) Xd xð Þ; ð27Þ

a

- - - - -
-

-

-

-

- - - - -

- - - - -

- - - - -

- - - - -
-

Figure 3
The data smoothing problem implemented using each of the four cases. e = 3 and a = 0.4. a The true model mtrueðxÞ ¼ sin Apx2ð Þ (black line)

has noise added with standard deviation 0.2 to produce the hypothetical data dobs(x) (black circles), to which the different smoothing solutions
are applied to produce estimated models (colored lines). For Cases 1–4, the smoothed solutions have posterior r.m.s. errors of 0.10, 0.44, 0.07,

and 0.19, respectively. b–e Numerical (grey) and analytic (colored) versions of the smoothing kernels, a(x), for each of the four smoothing

schemes considered. The two versions agree closely
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where Xa xð Þ ¼ a xð ÞHa xð Þ (see MENKE and MENKE

2011, their Equation 9.24). The reader may easily

verify (by direct integration) that the autocorrelation

of Eq. (25) is

Xa xð Þ ¼ e%2

4
xj jþ eð Þ exp %e%1 xj j

% &
: ð28Þ

This is a monotonically declining function of |x|

with a maximum (without a cusp) at the origin. The

smoothing broadens the autocorrelation (or auto-

covariance) of the data in a well-behaved way.

The covariance function Ch associated with this

choice of smoothing is (see Eq. 47)

Ch xð Þ ¼ r2
d

e%2

2
C0 % xj jð Þ with C0 arbitrary: ð29Þ

Note that the product r2
de
%2 equals the prior

variance rh
2.

Case 2 In Case 1, we worked out the conse-

quences of imposing a specific prior information

equation Lm ¼ 0; among which was the equivalent

covariance Ch. Now we take the opposite approach,

imposing Ch and solving for, among other quantities,

the equivalent prior information equation Lm ¼ 0:
We use a two-sided declining exponential function:

Ch x% x0ð Þ ¼ r2
de
%2 exp %g x% x0j jð Þ

¼ r2
d

2e%2

g
g
2

exp %g x% x0j jð Þ: ð30Þ

This form of prior covariance was introduced by

ABERS (1994). Here g-1 is a scale factor that controls

decreases of covariance with separation distance

(x - x0). The smoothing kernel is given by

a xð Þ ¼ c%2 bc
2

exp %bc xj jð Þ; ð31Þ

where c and b are functions of the smoothing weight e
and scale length g-1 (see Eq. 52) and

c%2 ¼ r1%1 a xð Þdx. This smoothing kernel (Fig. 3)

has the form of a two-sided, decaying exponential

and so is identical in form to the one encountered in

Case 1. As the variance of prior information is made

very large, e-2 ? ? and c-2 ? 1, implying that the

area under the smoothing kernel approaches unity—a

desirable behavior for a smoothing function. How-

ever, as variance is decreased, e-2 ? 0 and c-2 ? 0,

implying that the smoothing kernel is tending toward

zero area—an undesirable behavior, because it re-

duces the amplitude of the smoothed function, as

shown in Fig. 3.

The behavior of the smoothing kernel at small

variance can be understood by viewing the prior

information as consisting of two equations: a

flatness constraint of the form LAm ¼ b%1dm=dx ¼
0 (the same condition as in Case 1) and an

additional smallness constraint of the form

LBm ¼ lm ¼ 0, with l2 = c2 - 1 by construction.

When combined via Eq. (10b), the two equations

lead to the same differential operator as in Case 1

(see Eq. 51):

LyALA þ L
y
BLB þ 1

' (
aðxÞ

¼ c2 %b%2c%2 d2

dx2
þ 1

- .
aðxÞ ¼ d xð Þ: ð32Þ

Note that the strength of the smallness constraint

is proportional to l ¼ e g
2

% &1
2, which depends on both g

and e. The smallness constraint leads to a smoothing

kernel with less than unit area, since it causes the

solution m(x) to approach zero as e ? ? and

l ? ?. No combination of e and g can eliminate

the smallness constraint while still preserving the

two-sided declining exponential form of the smooth-

ing kernel.

Case 3 We quantify the smoothness of m(x) by

the smallness of its second derivative. The prior

information equation is e d2m=dx2 ¼ 0, implying

L ¼ e d2=dx2. Since the second derivative is self-

adjoint, we have

LyL ¼ e2 d4

dx4
: ð33Þ

This differential equation yields the smoothing

kernel

aðxÞ ¼ Vexp % xj j=kð Þ cos xj j=kð Þ þ sin xj j=kð Þf g:
ð34Þ

See Eq. 56 for the definition of the constants V

and k. The covariance function Ch is given by (see

Eq. 58)

Ch xð Þ ¼ %r%2
d

e%2

12
C0 % x3

// //% &
with C0 arbitrary:

ð35Þ
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This smoothing kernel arises in civil engineering,

where it represents the deflection a(x) of an elastic

beam with flexural rigidity e2 floating on a fluid

foundation, due to a point load at the origin (HETENYI

1979). In our example, the model m(x) is analogous

to the deflection of the beam and the data to the load;

that is, the model is a smoothed version of the data

just as a beam’s deflection is a smoothed version of

its applied load. Furthermore, variance is analogous

to the reciprocal of flexural rigidity. The beam will

take on a shape that exactly mimics the load only in

the case when it has no rigidity, that is, infinite

variance. For any finite rigidity, the beam will take on

a shape that is a smoothed version of the load, where

the amount of smoothing increases with e2.

The area under this smoothing kernel can be

determined by computing its Fourier transform, since

area is equal to the zero-wavenumber value. Trans-

forming position x to wavenumber k in (32) gives

(e2k4 ? 1)a(k) = 1, which implies a(k = 0) = 1;

that is, the smoothing kernel has unit area. This is a

desirable property. However, the smoothing kernel

(Fig. 3) also has small undesirable side-lobes.

Case 4 The prior information equation is that m(x)

is close to its localized average s(x) * m(x), where

s(x) is a localized smoothing kernel. We use the same

two-sided declining exponential as in Case 1 (Eq. 25)

to perform the averaging

s xð Þ ¼ g
2

exp %g xj jf g: ð36Þ

The prior information equation is then

Lm ¼ e d xð Þ % sðxÞ½ , ) m ¼ 0: ð37Þ

Both s xð Þ and the Dirac delta function are

symmetric, so the operator L is self-adjoint. The

smoothing kernel for this case is

a xð Þ ¼ 1% ADð Þd xð Þ % A S sin gq xj j=rð Þf
% Ccos gq xj j=rð Þgexp %gp xj j=rð Þ:

ð38Þ

See Eq. 63 for the definition of the constants A, D,

S, C, q, and r. The smoothing kernel a(x) (Fig. 3)

consists of the sum of a Dirac delta function and a

spatially distributed function reminiscent of the

elastic beam solution in Case 3. Thus, the function

m(x) is a weighted sum of the data d(x) and a

smoothed version of that same data. Whether this

solution represents a useful type of smoothing is

debatable; it serves to illustrate that peculiar behav-

iors can arise out of seemingly innocuous forms of

prior information. The area under this smoothing

kernel (see Eq. 64) is unity, a desirable property.

However, like Case 3, the solution also has small

undesirable side-lobes.

3. Discussion and Conclusions

The main result of this paper is to show that the

consequences of particular choices of regularization

in inverse problems can be understood in consid-

erable detail by analyzing the data smoothing

problem in its continuum limit. This limit converts

the usual matrix equations of generalized least

squares into differential equations. Even though

matrix equations are easy to solve using a com-

puter, they usually defy simple analysis.

Differential equations, on the other hand, often can

be solved exactly, allowing the behavior of their

solutions to be probed analytically.

A key result is that the solution to the general

inverse problem depends on a smoothed version of

the back-projected data ~m and a smoothed version of

the theory, as quantified by the deviatoric theory xB
(Eq. 22). The leading-order term reproduces the be-

havior of the simple G ¼ 1 data smoothing problem

(considered in the case studies); that is, m0 is just a

smoothed version of the back-projected data ~m.

However, in the general G 6¼ 1 case, regularization

(damping) also adds smoothing inside the generalized

inverse G%g, making it in some sense ‘‘simpler.’’

Furthermore, the higher-order terms, which are im-

portant when GyG is dissimilar from 1, are

preferentially smoothed. In all cases, the smoothing is

through convolution with the smoothing kernel a(x),

the solution to the simple ð1þ LyLÞa ¼ d problem.

Thus, the solution to the simple problem controls the

way smoothing occurs in the more general one.

We have also developed the link between prior

information expressed as a constraint equation of the

form Hm = h and of that same prior information

expressed as a covariance matrix Ch. Starting with a

particular H or Ch, we have worked out the
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corresponding Ch or H, as well as the smoothing

kernel. This smoothing kernel is precisely equivalent

to the Green function, or generalized inverse familiar

from the classic, linear algebraic approach.

An interesting result is that prior information

implemented as a prior covariance with the form of a

two-sided declining exponential function is exactly

equivalent to a pair of constraint equations, one of

which suppresses the first derivative of the model

parameters and another that suppresses their size. In

this case, the smoothing kernel is a two-sided de-

clining exponential with an area less than or equal to

unity; that is, it both smooths and reduces the am-

plitude of the observations.

Our results allow us to address the question of

which form of regularization best implements an in-

tuitive notion of smoothing. There is, of course, no

authoritative answer to this question. Any of the four

cases we have considered, and many others besides,

implements reasonable forms of smoothing; any one

of them might arguably be best for a specific prob-

lem. Yet simpler is often better. We put forward first-

derivative regularization as an extremely simple and

effective choice, with few drawbacks. The corre-

sponding smoothing kernel has the key attributes of

unit area and no side-lobes. The scale length of the

smoothing depends on a single parameter, e. Its only

drawback is that it possesses a cusp at the origin,

which implies that it suppresses higher wavenumbers

relatively slowly, as k-2. Its autocorrelation, on the

other hand, has a simple maximum (without a cusp)

at the origin, indicating that it widens the auto-co-

variance of the observations in a well-behaved

fashion.

Furthermore, first-derivative regularization has a

straightforward generalization to higher dimensions.

One merely writes a separate first-derivative equation

for each independent variable (say, x; y; z):

LAm ¼ e
o
ox

m ¼ 0 and LBm ¼ e
o
oy

m ¼ 0 and

LCm ¼ e
o
oz

m ¼ 0:

ð39Þ

The least-squares minimization will suppress the

sum of squared errors of these equations, which is to

say, the Euclidean length of the gradient vector rm.

According to Eq. (12), the smoothing kernel satisfies

the screened Poisson equation,

r2 % e%2
% &

a xð Þ ¼ %e%2dðxÞ; ð40Þ

which has two- and three-dimensional solutions

(WIKIPEDIA 2014),

a2D xð Þ ¼ e%2

2p
K0 e%1r
% &

and

a3D xð Þ ¼ e%2

4pr
exp %e%1r
% &

with r ¼ xj j:
ð41Þ

Here, K0 is the modified Bessel function. Both of

these multidimensional smoothing kernels, like the

1D version examined in Case 1, have unit area and no

side-lobes, indicating that first-derivative regulariza-

tion will be effective when applied to these higher-

dimensional problems.
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Appendix: Derivations of Smoothing Kernels

and Covariances for Case Studies

Case 1: First-Derivative Minimization

The operator L ¼ ed=dx has translational invari-

ance, so we expect that the smoothing kernel

a(x, x0) = a(x - x0) will depend only upon the

separation distance (x - x0) (as also will Ch, Ph, Qh,

and R). Without loss of generality, we can set x0 = 0,

so that Eq. (13) becomes

%e2 d2

dx2
þ 1

- .
aðxÞ ¼ dðxÞ: ð42Þ

Here, we utilize the relationship that

d=dxð Þy¼ %d=dx. The solution to this well-known

1D screened Poisson equation is

a xð Þ ¼ e%1

2
exp %e%1 xj j
% &

: ð43Þ
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This solution can be verified by substituting it into

the differential equation:

da

dx
¼ % e%2

2
sgn xð Þexp %e%1 xj j

% &
and

d2a

dx2
¼ e%3

2
exp %e%1 xj j
% &

% e%2d xð Þ

so % e2 e%3

2
exp %e%1 xj j
% &

% e2 %e%2
% &

d xð Þ

þ e%1

2
exp %e%1 xj j
% &

¼ dðxÞ:

ð44Þ

Here, we have relied on the fact that (d/

dx)|x| = sgn(x) and d=dxð ÞsgnðxÞ ¼ 2d xð Þ. Note that

a(x) is a two-sided declining exponential with unit

area and decay rate e-1. Because of the translational

invariance, the integral in Eq. (11) has the interpre-

tation of a convolution. The solution is the observed

data d(x) convolved with this smoothing kernel:

m xð Þ ¼ a xð Þ ) dðxÞ: ð45Þ

The variance Ch of the prior information satisfies

Eq. (15a):

%r%2
d e2 d2

dx2
ChðxÞ ¼ dðxÞ: ð46Þ

This is a 1D Poisson equation, with solution

Ch xð Þ ¼ r2
d

e%2

2
C0 % xj jð Þ with C0 arbitrary: ð47Þ

This solution can be verified by substituting it into

the differential equation:

dCh

dx
¼ %r2

d

e%2

2
sgn xð Þ and

d2Ch

dx2
¼ %r2

de
%2d xð Þ

thus % r%2
d e2 d2

dx2
Ch xð Þ ¼ %r%2

d e2 %r2
de
%2

% &
d xð Þ ¼ d xð Þ:

ð48Þ

The covariance Ch(x - x0) implies that the errors

associated with neighboring points of the prior

information equation m(x) = 0 are highly and

positively correlated, and that the degree of correla-

tion declines with separation distance, becoming

negative at large separation.

Finally, we note that the operator L ¼ ed=dx is not

self-adjoint, so that it is not the continuous analogue

of the symmetric matrix Ch
-1/2. As described earlier,

we can construct a symmetric operator by introducing

a unitary transformation. L is antisymmetric in x, but

we seek a symmetric operator, so the correct trans-

formation is the Hilbert transform, H, that is, the

linear operator that phase-shifts a function by p/2. It

obeys the rules Hy ¼ %H, HyH ¼ 1, and

H d=dxð Þ ¼ d=dxð ÞH. The modified operator Lsa ¼
eHd=dx is self-adjoint and satisfies LysaLsa ¼ LyL:

Case 2: Exponentially Decaying Covariance

For a covariance described by a two-sided

declining exponential function,

Ch x% x0ð Þ ¼ e%2 exp %g x% x0j jð Þ

¼ 2e%2

g
g
2

exp %g x% x0j jð Þ: ð49Þ

By comparing Eqs. (42) and (43), we find that this

prior covariance is the inverse of the operator

LyL ¼ ge2

2
%g%2 d2

dx2
þ 1

- .
: ð50Þ

The smoothing kernel solves the equation

c2 %b%2c%2 d2

dx2
þ 1

- .
a xð Þ ¼ d xð Þ

with b2 ¼ 2ge%2 and c2 ¼ 1þ ge2

2

- .
: ð51Þ

By analogy to Eqs. (42) and (43), the smoothing

kernel is

a xð Þ ¼ c%2 bc
2

exp %bc xj jð Þ: ð52Þ

An operator L that reproduces the form of LyL
given in Eq. (50) is

L ¼ k g%1 d

dx
þ 1

- .
with k2 ¼ g=2e%2: ð53Þ

The function Ph solves Eq. (15b), LyPh ¼ dðxÞ,
which for the operator in (30) has the form of a one-

sided exponential,

Ph xð Þ ¼ ak%1Hð%xÞ exp gxð Þ: ð54Þ

Here, H(x) is the Heaviside step function. Because

of the translational invariance, the inner product in

Eq. (14) relating Ph to Ch is a convolution. That,
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together with the rule that the adjoint of a convolution

is the convolution backwards in time, implies that

Ch tð Þ ¼ Ph %tð Þ ) Ph tð Þ ¼ Ph tð ÞHPhðtÞ, where H sig-

nifies cross-correlation. The reader may easily verify

that the autocorrelation of Eq. (31) reproduces the

formula for Ch given in (25). Unfortunately, its

Hilbert transform cannot be written as a closed-form

expression, so no simple formula for the symmetrized

form of Ph, analogous to Ch
1/2, can be given.

Case 3: Second-Derivative Minimization

The smoothing kernel a(x) satisfies the differential

equation

e2 d4

dx4
þ 1

- .
aðxÞ ¼ dðxÞ: ð55Þ

This well-known differential equation has solu-

tion (HETENYI 1979; see also MENKE and ABBOTT

1989; SMITH and WESSEL 1990; MENKE 2014)

aðxÞ ¼ Vexp % xj j=kð Þ cos xj j=kð Þ þ sin xj j=kð Þf g;

k ¼ 2eð Þ1=2 and V ¼ k3

8e2
: ð56Þ

The variance Ch of the prior information satisfies

Eq. (15a):

r%2
d e2 d4

dx4
ChðxÞ ¼ dðxÞ; ð57Þ

and by analogy to (47) has solution

Ch xð Þ ¼ %r2
d

e%2

12
C0 % x3

// //% &
with C0 arbitrary:

ð58Þ

This solution can be verified by substituting it into

the differential equation:

d3Ch

dx3
¼ r2

d

e%2

2
sgn xð Þ and

d2Ch

dx2
¼ r2

de
%2d xð Þ;

thus r%2
d e2 d4

dx4
Ch xð Þ ¼ r%2

d e2 r2
de
%2

% &
d xð Þ ¼ d xð Þ:

ð59Þ

This function implies a steep drop off in covari-

ance between neighboring points and increasingly

great anticorrelation with distance.

Case 4: Damping towards Localized Average

From Eq. (37), we find that the smoothing kernel

a(x) satisfies

LyLaþ a ¼ e2 d xð Þ % s xð Þ½ , ) d xð Þ % s xð Þ½ , ) aþ a ¼ d xð Þ:
ð60Þ

We now make use of the fact that the operator

Ls ¼ 1% g%2d2=dx2 is the inverse to convolution by

s(x). Applying Ls twice to (37) yields the differential

equation

1þ e2
% &

g%4 d4a

dx4
% 2g%2 d2a

dx2
þ a ¼ f ðxÞ with

f ðxÞ ¼ LsLsd xð Þ:
ð61Þ

We solve this equation by finding its Green

function [that is, solving (39) with f(x) = d(x)] and

then by convolving this Green function by the actual

f(x). This Green function can be found using Fourier

transforms, with the relevant integral given by

Equation 3.728.1 of GRADSHTEYN and RYZHIK (1980)

(which needs to be corrected by dividing their stated

result by a factor of 2). The result is

a xð Þ ¼ 1% ADð Þd xð Þ % A S sin gq xj j=rð Þf
% C cos gq xj j=rð Þgexp %gp xj j=rð Þ;

ð62Þ

where

S ¼ g
r

' (4
p p4 % q4
% &

% 2q2 p2 þ q2
% &+ ,

;

C ¼ g
r

' (4
q p4 % q4
% &

þ 2p2 p2 þ q2
% &+ ,

;

A ¼ e2g%4 - 2

p
g4

e2 þ 1

- .
- p

4uv

' (
- 2

g
r

' (

or A ¼ e2

e2 þ 1

- .
g

uvr

' (
;

D ¼ 4
g
r

' (3
pq p2 þ q2
% &

;

u ¼ 2eg2

e2 þ 1
and v ¼ g2 e2 þ 1ð Þ1=2

r2
;

r ¼ e2 þ 1
% &1=2

and p ¼ r þ 1

2

- .1=2

and

q ¼ r % 1

2

- .1=2

:

ð63Þ
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We determine the area under the smoothing

kernel by taking the Fourier transform of (61):

1þ e2
% &

g%4k4 % 2g%2k2 þ 1
% &

aðkÞ
¼ 1% 2g%2k2 þ g%4k4 ð64Þ

and evaluating it at zero wavenumber. Thus,

a(k = 0) = 1; that is, the area is unity.
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