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An online advertising intervention to increase adherence to 
stay-at-home-orders during the COVID-19 pandemic: An efficacy trial 
monitoring individual-level mobility data 
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A B S T R A C T   

The COVID-19 pandemic has led public health departments to issue several orders and recommendations to 
reduce COVID-19-related morbidity and mortality. However, for various reasons, including lack of ability to 
sufficiently monitor and influence behavior change, adherence to these health orders and recommendations has 
been suboptimal. Starting April 29, 2020, during the initial stay-at-home orders issued by various state gover
nors, we conducted an intervention that sent online website and mobile application advertisements to people’s 
mobile phones to encourage them to adhere to stay-at-home orders. Adherence to stay-at-home orders was 
monitored using individual-level cell phone mobility data, from April 29, 2020 through May 10, 2020. Mobile 
devices across 5 regions in the United States were randomly-assigned to either receive advertisements from our 
research team advising them to stay at home to stay safe (intervention group) or standard advertisements from 
other advertisers (control group). Compared to control group devices that received only standard corporate 
advertisements (i.e., did not receive public health advertisements to stay at home), the (intervention group) 
devices that received public health advertisements to stay at home demonstrated objectively-measured increased 
adherence to stay at home (i.e., smaller radius of gyration, average travel distance, and larger stay-at-home 
ratios). Results suggest that 1) it is feasible to use mobility data to assess efficacy of an online advertising 
intervention, and 2) online advertisements are a potentially effective method for increasing adherence to gov
ernment/public health stay-at-home orders.   

1. Introduction 

The COVID-19 pandemic has been the most disastrous global health 
problem within the past one hundred years. According to the World 
Health Organization, as of March 16th, 2022, there have been more than 
458 million cases of COVID-19 worldwide, including more than 6 
million deaths. Within the United States (US), there have been almost 78 
million cases and 960,703 deaths (WHO, 2022). A number of govern
ment policy mandates and recommendations have occurred in response 
to the pandemic and needs for controlling it. For example, in March of 
2020, when the pandemic was just beginning in the United States, many 
US state governors issued stay-at-home-orders, including governors of 

California, Illinois, Texas, New York, and Florida, requiring (all but 
essential working) individuals within their states to remain at home to 
reduce viral transmission (Moreland et al., 2020). New interventions are 
needed to prevent and control COVID-19 as well as future pandemics. 

A variety of new and existing technologies and tools are being 
created and/or applied to address the COVID-19 pandemic that might 
lead to interventions (Budd et al., 2020; Kumar et al., 2020; Mbunge 
et al., 2021; Young et al., 2022). For example, studies using mobility 
data have surged during the pandemic due to opportunities for pub
lic–private partnerships that were not possible before the pandemic 
(Buckee et al., 2020). These studies use global position system (GPS) 
traces and other mobility metric data (taken from smartphone data 
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when users move and these moves are recorded) to align with COVID- 
19-related outcomes. COVID-19 mobility studies have found that peo
ple’s mobility patterns can monitor and predict COVID-19 transmission, 
(Gatalo et al., 2021; Wang and Yamamoto, 2020) adherence to stay-at- 
home-orders, (Jeffrey et al., 2020; Moreland et al., 2020) political views 
on COVID-19-related behaviors, (Clinton et al., 2021) and other 
important epidemiological and policy-related outcomes. Mobility data 
are therefore a new and growing data source that might inform COVID- 
19 and other infectious disease prevention and control efforts (Garett 
and Young, 2021). 

However, one of the limitations in recent studies on mobility data is 
that mobility data are typically provided by companies in aggregate (i. 
e., data on the total number of visits to a location) rather than device- 
level (i.e., identifying the specific locations visited for each unique de
vice). Individual-level interventions are typically more effective 
compared to broader (less personalized) interventions because they can 
be tailored to individual characteristics (Bull et al., 1999). Although 
insights from studies using aggregated mobility data provide important 
insights, individual-level data studies are needed both to better under
stand the context of an individual’s mobility as well as to provide more 
granular data to inform future potential policy efforts. Individual-level 
mobility data might therefore improve the likelihood that health de
partments and researchers can act on human mobility data and apply 
this information in interventions. 

Similarly, there have been a large number of studies and in
terventions using digital advertisements and social media to prevent and 
control COVID-19 and other infectious diseases (Huang et al., 2016; 
Young et al., 2022). By using different platforms that allow delivery of 
online advertisements, such as Facebook, Google, and other indepen
dent advertising platforms, researchers and health departments have the 
potential to rapidly scale outreach efforts to increase people’s adherence 
to health recommendations, including for prevention, mask-wearing, 
and vaccination (Young and Schneider, 2020). Singapore has part
nered with the app, WhatsApp, to send COVID-19-related information 
and government updates to citizens (Ting et al., 2020). The US Centers 
for Disease Control and Prevention (CDC) has partnered with advertising 
companies to attempt to reach out people at risk with online adver
tisements (Adams, 2021; AP-NEWS, 2020). Researchers have also used 
social media, such as Facebook, to recruit participants affected by the 
COVID-19 pandemic and connect them with online interventions (Singh 
et al., 2020). Importantly, these methods using online advertisements 
have the ability to incorporate methods from social psychology to 
improve the effectiveness of the advertising/behavior change, such as 
combining social normative theories into the messaging (Cialdini et al., 
2006; Young and Goldstein, 2021). 

A study in this area would be novel for a number of reasons. First, 
limited research has studied whether sending people online advertise
ments to change their behaviora actually leads to behavior change. 
Second, no known research studies whether targeting people with online 
advertisements based on their mobility can increase adherence to public 
health recommendations or orders. Finally, current studies using 
mobility data are typically incorporating aggregate (rather than 
individual-level) mobility data, which as described above, has limita
tions. This manuscript seeks to conduct a novel study to address those 
areas: specifically, we seek to send people online advertisements to stay 
at home based on their individual-level mobility patterns, and continue 
to monitor their mobility patterns to learn at a granular whether and 
how devices have responded to advertisements advising them to stay-at- 
home. 

We focused the intervention on the regions of Chicago, Miami, New 
York, Dallas, and Greater Los Angeles/Orange County to gain a diverse 
demographic data sample across the US and because citizens within 
these states had been ordered by their governors to stay at home for all 
but essential activities. 

2. Material and methods 

2.1. Study design 

2.1.1. Sampling 
We developed and sent city/region-level polygons for each of the 5 

regions above to our advertising partner, Cphere, who then provided us 
a with a list of the most frequently listed points of interest (POIs) for each 
region that was visited by mobile devices in their dataset for the month 
of April 2020, up through April 24th. Their dataset includes approxi
mately 30 million active monthly device identification numbers (ID 
numbers used to identify smartphones) in the United States, along with 
latitude and longitude coordinates of the locations they had visited. Data 
on the locations/visits of these devices are only available if users 1) 
downloaded a mobile application that requests their device ID-level 
mobility data, 2) agreed to the terms and conditions of that mobility 
in tracking their mobility, 3) and the app provided their data to Cphere 
and/or a corporate affiliate of Cphere that shares these data. 

We filtered that list of POIs to provide Cphere with 25 POIs of lo
cations that were not health, education/school, grocery stores, or other 
potentially essential locations to attempt to limit the data to devices that 
had recently visited non-essential locations for each of the 5 regions. We 
chose to use 25 locations because we expected this would provide us 
with a sufficient number of devices who had visited these locations and 
allow us the time/effort to manually review all POI’s within the location 
for being non-essential locations. Specifically, the process was as fol
lows: 1) Sort POI visits from greatest to least number of visits; 2) For 
each POI, conduct manual google maps and other related searches to 
identify the characteristics of the POI to manually classify it as being an 
essential or non-essential location (we have described that this is not 
fool-proof; it’s very possible that some of these locations either were 
incorrectly labeled, or changed their status due to changing policies 
during the course of the study, however, we believe this is not a major 
flaw (more on this below); 3) Identify the top 25 most visited non- 
essential POI’s for each of the 5 locations, leading to a total of 125 
POIs (5*125 POIs). To arrive at this process of obtaining the list of 125 
POI’s, approximately 1000 POI’s had to be manually reviewed on google 
searches. We chose the top 25 most visited locations in each region, 
excluding healthcare, education, and other locations we thought would 
have visitors for only essential activities. For example, the list included 
bars and churches if they were in the top 25 most visited locations within 
the city, but we excluded hospitals even if they were in the top 25 most 
visited locations as people typically visit hospitals for essential needs. 
The types of POI’s differed based on city/region, as different cities/re
gions had different locations that were most visited. 

It was not possible to rule out the possibility that devices were 
visiting these locations for an essential activity (e.g., an essential worker 
at a restaurant) for various reasons, including changes in policy/defi
nition of essential during the course of the study. However, the identi
fication of these “non-essential” POI’s was intended to identify a group 
of devices that would be likely to be mobile during the course of the 
study to allow sufficient variation in mobility patterns for potential 
differences due to the intervention condition. Using this list of “non- 
essential POIs,” Cphere identified 52,000 randomly-selected devices 
that had visited these POIs within the past 2 weeks distributed across the 
5 regions (New York, n = 15,073; LA/OC, n = 992; Dallas, n = 15,428; 
Chicago, n = 12,506; Miami, n = 8494). 

2.1.2. Randomizing 
Randomization was a key component of these methods: The study 

was designed so that half of the devices (control group devices/No-Ad 
group) would only see typical advertisements that they or any other 
device would normally see that are paid by corporate brands (e.g., 
Southwest Airlines, McDonalds, or local shoe stores). The other half of 
devices (intervention group devices) would see these same ads but 
instead of some of those ads, they would see our advertisements advising 
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them to stay at home. In other words, an approximately equal number of 
devices from Chicago (or one of the other regions, as we stratified by 
region) would either see traditional corporate ads (control/No-Ad 
group) or corporate ads and our public health ads (intervention group). 
The study was designed this way to ensure that devices would either see 
our public health stay-at-home ads, or not. They were randomly 
assigned to one of these 2 groups only after all devices were collected for 
each region to improve randomization methodology. The final sample 
included the following number of intervention devices, which was 
approximately half of the total sample due to random assignment (New 
York, n = 7,537; LA/OC, n = 496; Dallas, n = 7,714; Chicago, n = 6,253; 
and Miami, n = 4,247. 

2.1.3. Intervention 
For the intervention group devices, Cphere was given advertisements 

focused on the importance of adhering to stay-at-home recommenda
tions. Three types of advertisements were created: 1) pure informational 
(e,g., “Prevent the spread of the virus, stay at home”), 2) social norms (e. 
g., “everyone is staying home”), and 3) punitive (e.g., if you don’t stay at 
home you could get fined). If users clicked on the ads, all ads directed 
them to a website at predictiontechnology.ucla.edu that provided more 
details on the importance of staying at home to prevent the spread of the 
virus. Both intervention and control/No-Ad devices only received an 
advertisement (whether it was a stay-at-home ad for the intervention 
group, or a standard ad for the control group) if and when they visited/ 
viewed a mobile app on their device that belonged to the network of 
potential corporate affiliate apps that Cphere was able to post adver
tisements and receive location data (e.g., the Weather app). The inter
vention official began on April 29th, 2021 and last for the next 7 days. 
Cphere was instructed to show the stay-at-home advertisements to 
intervention devices up to 625,000 times (impressions). Any additional 
ads over this amount that were shown to intervention group devices 
would be regular corporate advertisements, similar to the control group. 
The other half of devices (control/No-Ad devices) did not receive the 
public health advertisements from our research team related to stay-at- 
home-orders, but instead received only the regular corporate adver
tisements received by visitors of mobile apps (e.g., advertisements to 
purchase shoes, etc). 

2.2. Mobile phone location data 

The location data of the devices were collected by Cphere throughout 
the study period, from baseline (before April 29th, 2021) to post-7-day- 
intervention, including a few additional days of follow-up (through May 
10th, 2021). Similar to Cphere’s ability to place advertisements, Cphere 
was only able to collect mobility data from devices if and when those 
devices visited an app that shares mobility data with Cphere and the user 
agreed to provide these data. The data are anonymized, thus no indi
vidual can be specified, and personal information such as gender, age, 
and occupation is unknown. Each GPS record contains the unique ID, 
timestamp, longitude, and latitude of the device. The data acquisition 
frequency of GPS locations changes according to the device’s movement 
speed to minimize the burden on the device’s battery. If it is determined 
that the user is staying somewhere for a long time, the data is acquired at 
a relatively low frequency, and if it is determined that the user is mov
ing, the data is acquired more frequently. 

2.3. Data preprocessing 

Due to the weak GPS signal or low battery of devices, location data 
may have contained invalid data. Similar to other studies using methods 
attempting to filter out invalid self-report survey data, GPS, and/or so
cial media data, (Winter et al., 2019; Young, 2012; Young et al., 2020) 
we developed methods to preprocess the data to improve data quality. In 
this paper, the data cleaning for our mobile phone location data is based 
on three assumptions. First, we assumed the first location of each device 

was the correct one since we could not know which record is correct. 
Second, a certain amount of distance shifting (1 km) was allowed. Third, 
abnormal moving speed (larger than 160 km/h) between two consecu
tive data records was determined to be unacceptable and removed from 
the dataset. The distribution of the processed data across the whole 
study period is shown in Fig. 1. 

For each device, suppose the first two consecutive data records are 
location A and B. Based on our assumptions, location A is assumed as a 
correct record. Location B was determined to be invalid if satisfying two 
conditions: 1) the distance between A and B is larger than 1 km, 2) and 
the moving speed from A to B is larger than 160 km/h. We repeated this 
process for all the records of each device. For example, suppose one 
device has 4 records in one day, say point A, B, C, D, and the distance 
between these points are dAB = 4km, dBC = 0.5km, dCD = 0.1km, with 
the time duration between these points tAB = 72s, tBC = 60s, tCD = 1s. 
Under our assumptions, we assumed that the first data point is correct, 
which means the record of point A is acceptable, and after computing 
the speed from A to B, says sAB = 200km/h, which exceeds the upper 
limit of the normal moving speed (160 km/h) and we will delete point B. 
For the next record C, we compute the speed between A and C, which is 
sAC = dAC

tAC
= 100km/h, thus we assume point C is acceptable. For point D, 

the speed between C and D sCD = 360km/h, but since the distance be
tween C and D is within a tolerable shifting distance (1 km) (usually due 
to GPS shifting), we still assume point D is correct. 

2.4. Determining home location from trajectory data 

The home location for each device was determined by applying the 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
(Ester et al., 1996) algorithm to the nighttime stay points (observed 
between 8p.m. and 6 a.m.) of each device. Each location is represented 
by its geographic coordinates (longitude and latitude), and the inputs of 
the DBSCAN algorithm are a series of locations observed during night
time. DBSCAN algorithm can find several cluster centers by high density 
and expands clusters from them. Specifically, to determine one cluster, 
DBSCAN algorithm will first randomly choose one location as the cluster 
center and retrieve this location’s neighborhood locations within ε dis
tance far, and if this cluster contains sufficiently many points (minPts), a 
cluster is founded. Since multiple cluster centers may be generated by 
the DBSCAN algorithm, we determine the home location as the cluster 
center has the largest number of data points. In this paper, ε is set to 1 
km, and minPts is 10. The implementation of DBSCAN is based on scikit- 
learn packages on Python and the distance and neighborhood was 
determined by haversine formula and ball tree algorithm, respectively, 
where haversine formula is used to compute the Euclidean distance 
based on geographic coordinates and ball tree algorithm is used for 
spatial division of data points and their allocation into certain clusters. 
For more details of the DBSCAN algorithm, please refer to the Supple
mentary Information. 

2.5. Individual mobility indices 

Given a sequence of GPS locations Pi = p1
i , p2

i ,⋯, pN
i } in a single day 

of one device i, we apply three indices to characterize individual 
mobility patterns: 

Radius of Gyration (Rg) (Gonzalez et al., 2008) is used to measure the 
depth of a trajectory, that is how far the entity went. 

Rg =
1
N

∑N

n=1
dist

(
pn

i , pi
)
, (1) 

Where pi is the center of the sequence and dist() denotes the distance 
measure. 

Average travel distance (ATD) (Yabe et al., 2020) is the average of 
great circle distance (geographic distance) between all subsequent pairs 
of GPS observations on a given day. 
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ATD =
1
N
∑N

n=1
dist

(
pn

i , p
n+1
i

)
, (2) 

Stay-at-home ratio within a spatial threshold k (SAHk) (Yabe et al., 
2020) is the ratio of individual device who had stayed the entire day 
within a distance k from the estimated home location. 

SAHk =
1
N

∑N

n=1
I{dist

(
pn

i , p
H
i ) ≤ k

}
, (3) 

Where I{} is the indicator function and pH
i is the home location of 

device i, which is determined by DBSCAN algorithm. 

2.6. Difference-in-Differences (DiD) analysis 

We adopted a DiD analysis (Dimick and Ryan, 2014) to measure the 
effects of the devices receiving only, versus receiving and clicking on the 
advertisements. It was important to distinguish between these behaviors 
as clicking on an ad is a more active behavior compared to just receiving 
the ad, and it is possible that users of devices receiving ads did not 
actually see the received ad (e.g., they might have quickly moved past 
the ad). Specifically, the observations are divided into two groups: 
control/No-ad group and treatment/intervention group, where treat
ment indicates the groups receiving and clicking advertisements. A 
regression model is formulated to estimate the average treatment 
effects. 

yijt = β0 + β1treatj + β2postjt + δ
(
treatj × postjt

)
+ ε, (4) 

Where yijt denotes the value of one specific individual mobility index 
i (such as radius of gyration or average travel distance) for one device j at 
time t, β0, β1, β2, δ are all parameters in this regression model, and ε 
denotes the random error term. In Equation (4), treatj and postjt are both 
dummy variables, where treatj denotes whether device j has specific 
treatment (received or received and clicked on the ad), and postjt in
dicates whether device j has received treatment by time t, and postjt = 0 
if time t before treatment and postjt = 1 if time t after treatment. Thus, 
treatj × postjt is an interaction term, where treatj × postjt = 1 if one device 
j has already received treatment at time t, and treatj × postjt = 0 other
wise. The parameter δ indicates the average treatment effect of one 
specific treatment (Ryan et al., 2015). Note that the statistical analysis of 
δ is implemented by two-tailed test. 

2.7. Statistical analysis 

We sought to identify the change in these mobility indices (i.e., the 
radius of gyration, stay-at-home ratio (within 500 m, 1000 m and 3000 
m), and average travel distance) from baseline (April 27th, 2021) to 
post-intervention (May 10th, 2021) between control/No-ad and inter
vention (including received and clicked) groups. For the devices in 

different groups (such as the control/No-ad devices that did not receive 
any public health advertisements and the devices that received and also 
clicked on the advertisements), we utilized the Kolmogorov Smirnov test 
(KS-test) to check whether two groups follow the same distribution and 
compare their mean values to see whether the difference is statistically 
significant. Because there are many more (control/No-ad) devices that 
did not receive public health advertisements than those that received 
and clicked, we utilized the Bootstrap sampling method to estimate both 
the mean and median values of mobility indexes for the devices that did 
not receive advertisement to make a more balanced comparison. P- 
values of p <.05 were generated to determine significant differences in 
these mobility indices. 

3. Results 

542 of the devices in the intervention group received at least one 
COVID-19 stay-at-home advertisement. 468 intervention devices only 
received these advertisements without any further operations (e.g., 
didn’t click on them), which are denoted as Received. 74 intervention 
devices received and clicked on the advertisements; these devices are 
represented as Clicked. For the control/No-ad devices that did not 
receive any public health advertisements and only received standard 
corporate advertisements, we denote them as No-AD. 

Fig. 2 and Figure S1 show the mean and median values between April 
27th, 2020 (before advertisements were sent) and May 10th, 2020 (after 
the intervention was completed) of the radius of gyration (Rg), average 
travel distance (ATD), and stay-at-home ratio within 500 m (SAH500) 
and stay-at-home ratio within 3000 m (SAH3000), respectively. Note that 
the mean values of the No-AD group shown in Fig. 2 (blue solid curves) 
are generated by the Bootstrap sampling method and the confidence 
interval can be found in Fig. 3. As shown in both Fig. 2 and Figure S1, 
there are obvious differences between the devices that did not receive 
our public health advertisements (No-AD, control group devices, blue 
solid curves), the devices that only received our public health adver
tisements (Received, green solid curves), and the devices that both 
received and also clicked on our public health advertisements (Clicked, 
red solid curves) in view of all the individual mobility indices. Specif
ically, compared to devices that didn’t receive any advertisements, the 
devices that received advertisements (Received and Clicked) had a sta
tistically significant smaller radius of gyration, average travel distance, 
and larger stay-at-home ratios. To be more intuitive, we chose one day 
(May 7th, 2020) as an example to show the differences between these 
groups which is shown in Table 1. The individual mobile activity of the 
devices in Received group is between the ones of No-Ad group and the 
Clicked group. There were no statistical differences between the devices 
that only received advertisements (Received) andthe devices that 
received and also clicked on the advertisements (Clicked) SAH500, 
SAH1000, SAH3000) Table 2. 

Fig. 1. Data distribution in view of the daily number of records (A) and the total number of records (B) throughout the whole study period. Note the x-axis of the two 
plots are both the logarithmic value of the corresponding number of records with a base of 10. 
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To verify whether the difference in lower individual mobility index 
for the devices who received advertisements (Received and Clicked) was 
caused by their unique data distributions (for example, more/fewer data 
records, or outliers), we randomly sampled an equal number of devices 
for the Received and Clicked devices from No-AD devices, respectively. 
Specifically, for each device in Received and Clicked, the sampled device 
in No-AD group must satisfy the requirement that it has the most similar 
number of daily records to reduce the possibility that differences were 
due to devices with a larger or smaller number of daily records. The 
sampling results are shown as dashed curves in Fig. 2 and Figure S1. As 
we can see, after only including devices with a similar number of re
cords, the devices in Clicked still showed a significantly smaller radius of 
gyration (p-value < 0.0001), total travel distance (p-value < 0.001), and 
larger stay-at-home ratios (p-value < 0.0001 in view of SAH500) 
compared with the corresponding Clicked sampling devices. Due to a 
small number of overall clicks, we did not conduct analyses analyzing 
differences in click-through-rates by specific message type. 

Further, DiD analysis revealed that all the average treatment effects 
are in line with the aforementioned findings. However, due to the small 
number of devices that eventually received and clicked the advertise
ments, the effects were typically not significant, except for the reduced 
ATD as a result of receiving the advertisements. 

4. Discussion 

Results suggest the feasibility and efficacy of using online advertising 
to increase adherence to government-mandated stay-at-home orders, 
along with use of mobility data to track behavior change resulting from 
online advertising. As a result of the lifting of stay-at-home orders during 

the intervention period, mobility metrics increased among both the 
intervention and control groups. However, mobility remained lower 
among the intervention group devices (especially those that not just 
received a public health ad but also clicked on it) compared to those 
(control group devices) that did not receive them, suggesting efficacy of 
the intervention in reducing mobility and increasing adherence to stay- 
at-home orders. The results generated in DiD analysis are in line with 
these findings. The additional analyses conducted among Received and 
Clicked devices with a similar number of records confirmed these re
sults. These additional analyses suggest that the reduction in mobility 
during COVID-19 among these devices that received advertisements was 
not caused by outliers in these data attributes, but by willingness of 
these device owners to adhere to stay-at-home orders. 

There are several immediate actionable insights from this work that 
can be taken by researchers and health departments. First, researchers 
and health departments should make use of online advertising methods 
for public health behavior change, especially at the early stages of a 
public health emergency, by exploring the potential of placing adver
tisements on people’s mobile phones that encourage people to mitigate 
risk behaviors and improve health promotion. In addition, similar to 
studies that have shown that social media, internet search, and other 
digital data can be used to remotely monitor health behaviors and 
outcomes (Young et al., 2019), cell phone mobility data should be 
explored as a method for near real-time monitoring of public health 
behavior change. Finally, given the privacy issues in monitoring using 
mobile devices, researchers should explore the ongoing ethical and 
implementation science questions associated with these approaches. 

We initially found that the control group/No-ad devices had a larger 
stay-at-home ratio but a similar distance traveled. To explore and 

Fig. 2. Changes in individual mobility patterns. Temporal transition of mean values in view of radius of gyration (A), average travel distance (C), stay-at-home ratio 
with a 500 m threshold (B) and 3000 m threshold (D). The colors denote the devices in different states: the devices in the (control/No-ad) group that only received 
standard corporate ads but not public health (intervention group) ads (No-AD) (blue), the intervention group devices that received public health ads but didn’t click 
on them in Received (orange), and the intervention group devices that received and clicked on the public health ads in Clicked (purple). The solid and dashed curves 
in this figure represent the original and sampled data, respectively. The grey bars denote the weekends. Note that the mean values of the No-AD group are generated 
by the Bootstrap sampling method and the confidence interval can be found in Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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address this issue, we set the home location for each device using the 
DBSCAN algorithm, and then assumed that the area within 1 km radius 
was also home (to account for the GPS shifting). Therefore, the possible 
explanation for the larger stay-at-home ratio but similar distance trav
eled could be that the users had outdoor activities within a 1 km radius. 

For example, people may have wanted to exercise close to their home by 
going for short walks to get out of the house but staying in very close 
proximity. 

Although early and requiring additional research beyond this pilot 
prior to implementation, these methods and results are already of 
potentially high impact to the field of public health and related inter
vention research. For example, related to the methods, no known 
research has explored the integration of online advertisements and 
mobility data, making this an important first study. In addition, 
although there has been a lot of work on the use of online advertisements 
in marketing, including for public health, these studies have typically 
focused on measuring more immediate responses to the advertisements, 

Fig. 3. Bootstrap estimated mean values of four individual mobility indexes for No-AD/control groups. (A). Radius of gyration. (B). Average travel distance. (C). 
Stay-at-home ratio within 500 m. (D). Stay-at-home ratio within 3000 m. The shadow areas in the subplots denote the 95% confidence intervals. 

Table 1 
Statistics of different groups in view of different individual mobility indices on 
05/07, 2020 (Thursday). Received, Clicked and No-AD/control group ads in this 
table denotes the devices in the intervention group that received public health 
ads but did not click the advertisements, the devices in the intervention group 
that received public health ads and clicked on the advertisements, and the de
vices in the control/no public health advertisement group that did not receive 
public health stay-at-home advertisements and only received standard ads, 
respectively. The p-values are derived by KS-test by comparing the observations 
of different groups. * denotes a significant difference between two observations.  

Statistics Rg(km) ATD(km) SAH500 SAH1000 SAH3000 

Mean of No-AD  15.80  6.76  0.52  0.55  0.61 
Mean of 

Received  
13.22  3.24  0.56  0.58  0.63 

Mean of 
Clicked  

9.11  2.06  0.58  0.59  0.64 

p-value 
between 
Received and 
No-AD  

<0.0001*  <0.0001*  <0.0001*  <0.0001*  <0.0001* 

p-value 
between 
Clicked and 
No-AD  

0.001*  <0.001*  0.007*  0.002*  <0.001* 

p-value 
between 
Received and 
Clicked  

0.513  0.49  0.82  0.56  0.66  

* Significant at p <.05. 

Table 2 
The estimated average treatment effects in view of different individual mobility 
indexes. The values in the brackets denote the p-values of parameter δ generated 
by two-tailed test. In view of the radius of gyration (Rg) and average travel 
distance (ATD), the negative δ s suggest a trend in the direction that receiving the 
public health advertisements would reduce these two indexes, with a statisti
cally significant difference such that the devices that received the public health 
(intervention group) ads had a lower travel distance than those that only 
received the standard ads and not the public health ads (No-Ad/control group). 
In contrast, the positive δ s given three stay-at-home ratios suggest that devices 
that received and/or clicked on advertisements (i.e., any devices in the inter
vention group who were sent public health ads) were trending (not significant) 
in the direction of being more likely to stay at home.  

Treatment Groups δRg 
δATD δSAH500 δSAH1000 δSAH3000 

Receiving Received 
vs No-AD 

− 1.53 
(0.52) 

− 0.85 
(0.02*) 

0.02 
(0.38) 

0.01 
(0.55) 

0.02 
(0.30) 

Clicking Clicked vs 
No-AD 

− 3.82 
(0.62) 

− 0.08 
(0.94) 

0.12 
(0.19) 

0.13 
(0.14) 

0.13 
(0.13) 

Clicking Clicked vs 
Received 

− 4.03 
(0.61) 

− 1.33 
(0.46) 

0.11 
(0.30) 

0.12 
(0.21) 

0.11 
(0.26)  

* Significant at p <.05. 
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such as “clicks,” website visits, or purchases on a website. The fact that 
we were able to link online advertisements to reductions in mobility that 
may have occurred more than a week later provide a unique benefit to 
the field of marketing and public health on potential methods that can 
be used to measure the impact of online advertisements. When adding 
the finding that these advertisements reduced people’s mobility (an 
important behavioral and public health outcome), it further strengthens 
the potential impact of the study by demonstrating an easy method of 
intervention to improve adherence to COVID-19 and other future public 
health recommendations. In fact, as mobility and other smartphone data 
continue to grow and become accessible to researchers, studies may 
increasingly begin to use these digital footprints to measure changes in 
people’s behaviors as a result of interventions. Finally, although this 
study focused on adherence to stay-at-home orders, a policy which is no 
longer in place in most regions, the methods and findings could easily be 
applied to other government recommendations. For example, as 
tracking and reducing mobility remains an important issue to prevent 
the spread of COVID-19 and other/future infectious diseases, these on
line intervention and mobility monitoring methods might be suitable 
tools to be studied in the future and integrated into public health efforts. 

It is worth noting that LA/OC had a smaller number of enrolled de
vices that had visited the 25 POIs compared to other locales, even LA/OC 
has a large population. We are unable to know why we found this result. 
One hypothesis is that we chose a large number of POI’s from LA/OC 
that were along the beach because we expected these would be 
considered non-essential locations. However, during the time of the 
study the state required beaches to shut down, making it possible that 
very few individuals visited these specific POIs. 

This study is limited by a number of factors. First, we were unable to 
gain personal information about the device users which may influence 
their views on COVID-19 and willingness to adhere to government 
recommendations, such as their race, age, ethnicity, political affiliation, 
etc. However, this limitation is largely offset by having a control group 
of randomly assigned devices to not receive advertisements. Similarly, 
we do not have information on the devices who received advertisements 
and didn’t click on them. Having this additional information would help 
us to understand potential biases within the study and may also help us 
to better understand the role of the online advertisements in reducing 
mobility and to understand how to plan future interventions to get 
people to seek more public health information by clicking on adver
tisements. We also did not have data on the number of advertisements 
received by each device. As devices that received more advertisements 
would be more likely to actually view and click on those ads, it will be 
important for future research attempting to better understand this 
approach seek to address those questions. We were also limited by our 
reliance on a corporate partner who was bound to non-disclosure and 
sales agreements preventing them from sharing more detailed infor
mation about device owners (e.g., demographic information). As this is a 
first study exploring these types of methods, we encourage future 
research to consider these issues with data sharing agreements to 
explore more research questions about the sample (e.g., political ide
ology, age, etc) (Grossman et al., 2020). We were also limited by the 
short time frame of the study, designed to react quickly to the pandemic, 
but not allowing us to follow-up with devices longitudinally. We were 
also limited by the quality of data provided by the provider, including 
accuracy of the location data. Future research can better explore the 
accuracy of data provided by advertising technology companies. The 
study was also limited by the sample size of devices that received ad
vertisements, including the small size of the Received group and Clicked 
group. Although the results generated by DiD analysis are in line with 
exploratory findings, these results are not statistically significant, likely 
due to the limited devices in Received and Clicked groups. This is further 
supported as the one statistically significant difference was found among 
the device groups with the largest number of devices (received vs no ad 
groups). In our study, to receive an advertisement, during the study 
period, devices had to open an app that was accessible for our ad 

technology partner to send an advertisement and had to have their 
setting checked to continue receiving ads and having their mobility data 
tracked. Although devices had these settings in place when they were 
recruited, it is possible that they changed their privacy settings during 
the weeks of the study or did not open an eligible app, meaning that they 
would not have been able to receive an advertisement/notification. 
Future research can further explore how to best work with advertising 
partners to send digital public health and safety outreach communica
tions to devices in ways that will be seen and have the most reach, as 
well as implementation science research on how to appropriately 
conduct large-scale public health research like this in real-world set
tings. For example, more studies are needed to explore how to track face 
mask wearing and vaccination uptake in real world settings. 

5. Conclusion 

New methods are needed to help reduce COVID-19 and other in
fectious diseases transmission. This study suggests that it is feasible and 
potentially effective to use online advertisements to increase people’s 
adherence to public health behavior change orders (i.e., staying at home 
and/or reducing mobility during COVID-19) and to use mobility data to 
monitor adherence. As technologies, modeling methods, and technology 
data continues to increase, health departments will increasingly seek to 
integrate and optimize their existing methods (e.g., online health pro
motion outreach) by integrating it with novel data and modeling 
methods, such as mobility data. 
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