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ABSTRACT OF THE DISSERTATION

Subalgebras of Golod-Shafarevich Algebras

by

Thomas B. Voden

Doctor of Philosophy in Mathematics

University of California San Diego, 2006

Professor Efim Zelmanov, Chair

In 1964, Golod and Shafarevich found a sufficient condition for an algebra

presented by generators and relators to be infinite dimensional. This condition

gives rise to an analogous condition for a pro-p group to be infinite. Groups and

algebras that satisfy this condition are called GS groups and algebras.

In 1983, A. Lubotzky exhibited a class of GS groups with the property that all

of their finite index subgroups are also GS. The underlying topological structure

was essential in Lubotzky’s examples. This dissertation is an account of our search

for algebraic analogs to these examples and our exploration of conditions under

which subalgebras of GS algebras are themselves GS.

In Chapter 3 it is proved that finite codimensional subalgebras of finitely pre-

sented algebras are finitely presented. However, subalgebras of finite codimension

in graded GS algebras are not necessarily GS (Chapter 4).

In Chapter 5 we prove that infinitely many Veronese powers of a graded algebra

presented by m generators and r relators are GS if r < 1
4

(
m
2
− 1
)2

. For quadratic

algebras, the bound is improved to r < 4
25

m2. We prove that for a generic quadratic

algebra A presented by m generators and r relators, all Veronese powers of A are

GS if r ≤ 4
25

m2 and all but finitely many Veronese powers of A are not GS if

r > 4
25

m2 (Chapter 6).
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1 Introduction and Definitions

We define an algebra as a vector space over a fixed ground field, endowed with

a bilinear multiplication which gives it the structure of an associative ring with

unity. Throughout this work we use K to denote our ground field. We restrict our

attention to finitely generated algebras.

An algebra A is called graded if

A =
∞⊕
i=0

Ai,

where each Ai is a finite dimensional K-vector space, such that AiAj ⊆ Ai+j. We

further assume that A0 = K. We will have occasion to use the notation

A+ =
∞⊕
i=1

Ai.

We will also use the Hilbert Series of a graded algebra A, which is defined as

HA(t) =
∞∑
i=0

dimK(Ai)t
i.

For any graded subset S of a graded algebra A, let Si = S ∩ Ai.

Much of the work presented here is motivated by a search for similarities and

differences between analogous theories in the category of groups, or more precisely,

pro-p groups, and the category of algebras. We begin the discussion with some

preliminary definitions and results.

1.1 Presentation by Generators and Relators

The free group FX on a set X can be thought of as the set of all reduced words

in X and X−1 = {x−1 |x ∈ X}, where X−1 is a set in one-to-one correspondence

1
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with X. Multiplication in FX is simply by juxtaposition of words. A word is said

to be reduced if every instance of xx−1 or x−1x is deleted from the word.

Free groups are characterized by the property that any function X → G, where

G is an arbitrary group, uniquely extends to a group homomorphism FX → G.

Definition 1. A group G is said to have presentation 〈X|R〉 if G ∼= FX/N where

N is the normal subgroup of FX generated by the subset R ⊆ FX .

Similarly, the free K-algebra on a set X, denoted K〈X〉, is the algebra of all

K-linear combinations of words in X. Again we have that any function X → A,

where A is an arbitrary algebra, uniquely extends to an algebra homomorphism

K〈X〉 → A.

Definition 2. Let X be a set and let R be a subset of K〈X〉. 〈X|R〉 is a presen-

tation of an algebra A if A ∼= K〈X〉/I, where I is the ideal of K〈X〉 generated by

R.

Note that the empty word in X is allowed and it plays the role of the multi-

plicative identity.

Suppose that X is a finite set and that each x ∈ X is assigned a positive integer

degree denoted deg(x) (if no degrees are specified, we will assume that all x have

degree one). K〈X〉 is graded by total degree. An element f ∈ K〈X〉i is said to be

homogeneous of degree i. Let R be a subset of K〈X〉 consisting of homogeneous

elements of degree at least two. By saying that 〈X|R〉 is a graded presentation of

A (we will often omit the word graded) we mean that there exists an epimorphism

ϕ : K〈X〉 −→ A

of graded algebras such that ker(ϕ) is generated by R as an ideal of K〈X〉. The

graded vector spaces generated by X and R are respectively called the generating

space and relation space for A.

It is well known that the minimal number of generators of a graded algebra

A is dimK(A+/A2
+) (proposition 1.5.2 of [20]). We will only consider minimal

presentations (i.e., presentations 〈X|R〉 with |X| = dimK(A+/A2
+)).



3

Note that we have not lost any generality by assuming that R consists of ele-

ments of degree at least two since a relator of degree one is actually an elimination

of one of the generators. Also, in saying that 〈X|R〉 is a graded presentation it

follows that R consists of homogeneous elements.

An algebra is said to be finitely presented if it admits a presentation with finitely

many generators and finitely many relators (i.e., the generating and relation spaces

are finite dimensional). We will refer to a graded algebra A which is generated by

A1 as one-generated. This means that the natural map

π : K〈E〉 −→ A

is surjective, where E denotes any basis of the vector space A1. If in addition the

kernel of π is generated, as a two-sided ideal of K〈E〉, by its subspace ker(π) ∩
K〈E〉2, then A is called quadratic. See [19, 20] for detailed discussions of quadratic

algebras.

If B is a subalgebra of A, then the codimension of B in A is defined to be

|A : B| = dimK(A/B). J. Lewin [12] proved that a subalgebra of finite codimension

of a finitely generated free associative algebra is finitely presented. In Chapter 3

we show how Lewin’s result implies that a subalgebra of finite codimension of a

finitely presented algebra is finitely presented.

1.2 The Golod-Shafarevich Theorem

The notion of a Golod-Shafarevich (GS) algebra is central to this work. We begin

the discussion in the context of profinite algebras, that is, algebras which arise as

inverse limits of families of finite dimensional algebras.

Throughout this section let X = {x1, . . . , xm} be a fixed set with m ≥ 2.

Since there are situations that require it, we will allow for the possibility that the

elements of X are assigned positive integer degrees other than one. If no degrees

are mentioned, assume that all elements of X have degree one. Let gi denote the

number of elements of degree i in X and set HX(t) =
∑
i

git
i. Note that HX(t) is

a finite sum, and if all the elements of X have degree one, then HX(t) = mt.
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Let I = K〈X〉+, that is, I =
⊕
i≥1

K〈X〉i. Then the ideals

In =
⊕
i≥n

K〈X〉i, n = 1, 2, . . .

are a neighborhood base at 0 for a topology on K〈X〉. The completion of K〈X〉
with respect to this topology is K〈〈X〉〉, the algebra of infinite series over F in m

noncommuting variables. We can also think of K〈〈X〉〉 as the inverse limit of the

following family of finite dimensional algebras

{K〈X〉/In |n ≥ 1}.

We use În to denote the closure of In in K〈〈X〉〉.
Since

⋂
n≥1

În = (0), to each nonzero f ∈ K〈〈X〉〉 corresponds a unique integer

d such that f ∈ Îd \ Îd+1. We define the degree of f , denoted deg(f), to be d.

Observe that deg(f) is the minimal degree of all monomials involved in f .

Let R be a (linearly independent) subset of Î2 containing ri elements of degree

i, and define the Hilbert series

HR(t) =
∑
i≥2

rit
i.

Definition 3. 〈X|R〉 is a presentation of a profinite algebra A if A ∼= K〈〈X〉〉/I(R),

where I(R) denotes the closed ideal of K〈〈X〉〉 generated by R.

Observe that by setting An = (În + I(R))/I(R) for n = 1, 2, . . ., we endow a

profinite algebra A = 〈X|R〉 with a filtration A = A0 ⊃ A1 ⊃ A2 ⊃ · · · , such that

AiAj ⊆ Ai+j. The graded algebra associated with A is defined to be

gr(A) = K · 1 +
⊕
i≥1

Ai/Ai+1,

and its Hilbert series is Hgr(A)(t) = 1 +
∑
i≥1

dimK(Ai/Ai+1)t
i.

We formally interpret an inequality of power series with real coefficients by

∑
ait

i ≥
∑

bit
i ⇐⇒ ai ≥ bi for all i.

In [6] Golod and Shafarevich proved the following theorem.
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Theorem 4.
Hgr(A)(t)

1− t
(1−HX(t) + HR(t)) ≥ 1

1− t
(1.1)

Definition 5. A presentation 〈X|R〉 is said to satisfy the Golod-Shafarevich (GS)

condition if there exists a t0 ∈ (0, 1) for which HR(t0) converges and

1−HX(t0) + HR(t0) < 0. (1.2)

A profinite algebra is called Golod-Shafarevich (GS) if it admits a presentation

which satisfies the GS condition.

A GS algebra is necessarily infinite dimensional. Indeed, suppose that there

is a t0 ∈ (0, 1) at which HR(t) converges and 1 − HX(t0) + HR(t0) < 0. Then

Hgr(A)(t) must diverge at t0 since otherwise the formal inequality (1.1) implies the

numerical inequality

Hgr(A)(t0)

1− t0
(1−HX(t0) + HR(t0)) ≥

1

1− t0
.

This is a contradiction since the left hand side is negative and the right hand side

is positive.

For additional discussion of the Golod-Shafarevich theorem, see [9, 21, 23, 25,

27].

1.3 Graded Golod-Shafarevich Theorem

In the previous section we presented the Golod-Shafarevich theorem in the context

of profinite algebras because it has nice applications to the analogous notions for

pro-p groups. These applications will be discussed in more detail in the following

section. Of course, we could have had this discussion for discrete algebras (i.e.,

quotients of K〈X〉 rather than K〈〈X〉〉) and all of the results mentioned above

work in the same way. But rather than repeating everything already mentioned,

we will turn our attention to the important special case of graded GS algebras.

Virtually all of the work presented in this thesis is done in the context of graded

algebras.
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Again, fix a set X = {x1, . . . , xm} with m ≥ 2. Let A be a graded algebra

with presentation 〈X|R〉. Still assume that all elements of R are homogeneous of

degree at least two. Let HX(t), HR(t), and HA(t) be as before. In [6] Golod and

Shafarevich also proved the following stronger version of the Theorem 4.

Theorem 6.

HA(t)(1−HX(t) + HR(t)) ≥ 1 (1.3)

This inequality is indeed stronger than (1.1) since a formal inequality

1
1−t

∞∑
i=0

ait
i ≥ 1

1−t

∞∑
i=0

bit
i

is equivalent to the numerical inequalities

n∑
i=0

ai ≥
n∑

i=0

bi ∀ n.

With the definition of a GS presentation and algebra as in the last section, we

see that GS algebras are infinite dimensional in this context as well.

The following well-known special case will be used heavily throughout this

dissertation.

Proposition 7. A graded presentation consisting of m generators of degree one

and r relators of degree at least two satisfies the GS condition if

r < m2/4. (1.4)

Proof. If r < m2/4, then 1−mt0 + rt20 < 0 for some t0 ∈ (0, 1), and

1−mt0 + HR(t0) < 1−mt0 + rt20.

In fact, in Lemma 33 it is shown that one of the two distinct roots of 1−mt + rt2

is in the interval (0, 1).

If A is a quadratic algebra presented by m generators and r relators, then

1−mt + HR(t) = 1−mt + rt2,
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which is negative for some t ∈ (0, 1) if and only if inequality (1.4) is satisfied. Also,

noting that m = dim(A1) and r = m2 − dim(A2), we see that inequality (1.4) is

equivalent to
3

4
(dim(A1))

2 − dim(A2) < 0. (1.5)

This gives us a definition of GS algebras in the context of one-two algebras which

does not make reference to a presentation.

The importance of the Golod-Shafarevich theorem became immediately evi-

dent when Golod used it to give the first counterexample to the General Burnside

problem [5] and Shafarevich used it to construct the first example of an infinite

tower of class fields [6].

Once a suitable definition of degree is given, these notions have meaning in

the category of groups. Pro-p groups provide a natural context in which to define

degree.

1.4 Pro-p Groups

For any prime number p, a pro-p group is the inverse limit of a family of finite

p-groups. Pro-p groups are compact, Hausdorff topological groups whose open

subgroups form a neighborhood base at the identity and in which every open

subgroup has index a power of p.

Definition 8. If G is a group and p is a prime number, then the pro-p completion

of G, denoted Ĝp, is the inverse limit of the following family of p-groups

{G/N |N C G; the index of N in G is a power of p}.

The free pro-p group on m generators is the pro-p completion of the free group

on m generators.

Definition 9. Let X = {x1, . . . , xm} be a set, F̂p = F̂p(m) the free pro-p group on

X, and R a subset of F̂p. 〈X|R〉 is a presentation of a pro-p group G if G ∼= F̂p/N

where N is the normal closed subgroup of F̂p generated by R.
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Let F̂p denote the free pro-p group on m generators and, for the remainder of

this section only, let K be the field of order p. Consider the group algebra KF̂p

and let ω be its augmentation ideal. The Zassenhaus filtration

F̂p = (F̂p)1 > (F̂p)2 > · · ·

is defined by

(F̂p)i = {g ∈ F̂p | 1− g ∈ ωi}.

In section 4.2 of [10] it is shown that

⋂
i≥1

(ω)i = (0),

and hence ⋂
i≥1

(F̂p)i = (1).

So, as in the case of profinite algebras, a nontrivial element g ∈ F̂p is said to have

degree i if g ∈ (F̂p)i \ (F̂p)i+1.

Fix a set X = {x1, . . . , xm} and consider K〈〈X〉〉, where K is still the field

with p elements. Let the ideals În be as in section 1.2. 1 + Î is a subgroup of

the group of invertible elements of K〈〈X〉〉. 1 + Î is indeed a pro-p group since

1 + Î, along with the quotient maps 1 + Î −→ (1 + Î)/(1 + În), is the inverse

limit of the inverse system of finite p-groups (1 + Î)/(1 + În) and surjections

(1 + Î)/(1 + În) −→ (1 + Î)/(1 + Îm) for n ≥ m.

The closed subgroup of 1 + Î generated by 1 − x1, . . . , 1 − xm is free since

any nontrivial relation among the elements 1 − x1, . . . , 1 − xm in 1 + Î yields a

nontrivial relation among the elements x1, . . . , xm in K〈〈X〉〉. Hence, this subgroup

is isomorphic to F̂p = F̂p(m), the free pro-p group on m elements. So an element

f ∈ F̂p can be viewed as an element of 1 + Î ⊆ K〈〈X〉〉. Also observe that

f(1− x1, . . . , 1− xm) = 1 + f ′(x1, . . . , xm), (1.6)

where f ′ ∈ Î. The degree of f in F̂p equals the degree of f ′ in K〈〈X〉〉.
Let G be a pro-p group presented by m generators (of degree one) and a defining

set of relators R. Define the set R′ = {f ′ | f ∈ R} ⊂ K〈〈X〉〉 using (1.6). Define the
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algebra A presented by 〈x1, . . . , xm |R′〉 in the category of profinite algebras. For

any open normal subgroup H of G, define ω(H) to be the ideal of KG generated

by {1− h |h ∈ H}. These ideals define a topology on KG and as it turns out, the

completion of KG with respect to this topology is isomorphic to A (see section 2.5

of appendix 1 in [7]). Therefore,

HA(t) = 1 +
∑
i≥1

dim(ω(G)i/ω(G)i+1)ti.

With HR(t) as in section 1.2, Theorem 4 implies that

HA(t)

1− t
(1−mt + HR(t)) ≥ 1

1− t
.

See [25] and [27] for more information.

Defining a GS group as in Definition 5, this inequality implies that a GS pro-p

group is infinite. We also have an analogous version of inequality 1.4 for GS groups.

Another sense in which GS groups are known to be large is given by a theorem

of Zelmanov which states that any GS pro-p group contains a non-abelian free

pro-p group [25].



2 Connections and Summary of Re-

sults

A. Lubotzky made the observation that if 〈X|R〉 is a presentation of a finitely

generated discrete group G, then 〈X|R〉 is a presentation in the category of pro-p

groups for the pro-p completion of G [13]. It is known that the fundamental group

of a 3-manifold is balanced (i.e., that it admits a finite presentation with equal

numbers of generators and relators), and hence GS if its rank is at least five (see

[13] for more details). Let X be a 3-manifold and let G be the fundamental group

of X. Then any finite index subgroup H of G is the fundamental group of a finite

sheeted cover of X and is therefore balanced. So if the index of H in G is large

enough, then H is GS, and by the same argument, all finite index subgroups of H

are also GS. Groups with this property are called hereditary GS groups. Lubotzky

used these ideas to prove that if the fundamental group of a compact hyperbolic

3-manifold is arithmetic, then it does not have the congruence subgroup property.

This was an important open problem known as Serre’s conjecture [22]. Later

Lubotzky and Sarnak formulated a conjecture of an even stronger result. There

are some definitions required before the conjecture can be stated.

Definition 10. For ε > 0, a finite graph Γ is called an ε-expander if whenever the

set of vertices is written as a disjoint union vert(Γ) = A∪̇B, the number of edges

between A and B is at least ε ·min{|A|, |B|}.

Definition 11. Let G be a group generated by a set X with X = X−1. The Cayley

Graph of G (with respect to X) is the graph whose vertices are the elements of G.

Two vertices g and h are connected by an edge if g = xh for some x ∈ X. We use

10
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Cay(G, X) to denote this graph.

Definition 12. A group G generated by a finite set X = X−1 has property (τ) if

there exists an ε > 0 such that

{Cay(G/N,XN) |N C G, |G : H| < ∞}

is a family of ε-expanders, where XN denotes the image of X in G/N .

Some examples of groups with property (τ) are SLn(Z) for n ≥ 3 [8]. For more

information on this and related topics, the reader is referred to [14, 17].

Lubotzky-Sarnak Conjecture [15]. The fundamental group of a hyperbolic

3-manifold does not have property (τ).

One hope is that a solution to this conjecture would help lead to a solution

of the Virtual Haken conjecture, which predicts that every irreducible compact

hyperbolic 3-manifold has a finite sheeted cover which is Haken. Some work of M.

Lackenby suggests the use of techniques involving the GS condition and property

(τ) for these two conjectures [11]. In this direction Zelmanov asked whether it

is true that a GS group does not have property (τ) [26]. Since property (τ) is a

condition inherited by finite index subgroups, an affirmative answer to this would

imply the Lubotzky-Sarnak conjecture. However, in a recent paper, M. Ershov

gives an explicit construction answering this question in the negative [4]. It is

interesting to note that Lubotzky and Zelmanov answered the analogous question

in the context of algebras in the affirmative [16]. So the interplay between these

notions is proving to be quite subtle.

Lubotzky’s examples of hereditary GS groups employ topological arguments

with no known algebraic analogs, and not all GS groups are hereditary GS. The

research in this dissertation was motivated by the natural question of what distin-

guishes hereditary GS groups and algebras from their non-hereditary counterparts.

It was found that not all GS algebras have the property that all of their finite

codimensional subalgebras are also GS (chapter 4).

A natural analog to a subgroup of finite index in the context of graded algebras

is the Veronese Power. If A is a graded algebra, define the nth Veronese power of
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A to be

A(n) =
∞⊕
i=0

Ani.

Clearly, for any n, A is finitely generated as a module over A(n). Indeed, if B is

any basis of
n−1⊕
i=0

Ai (which is a finite dimensional space), then an arbitrary element

of A is expressible as a linear combination of elements of B with coefficients in

A(n). In chapters 5 and 6 we demonstrate some fairly general settings in which

infinitely many (and sometimes all but finitely many) Veronese powers of a graded

GS algebra are themselves GS.

2.1 Summary of Results

For convenience, we now summarize all the results obtained in this thesis.

In Chapter 3 we generalize a theorem of J. Lewin by showing that a finite

codimensional subalgebra of a finitely presented algebra is finitely presented.

Let I be the ideal of the finitely generated free algebra K〈X〉 defined in Sec-

tion 1.2. Chapter 4 is devoted to showing that the GS condition is not generally

inherited by subalgebras of finite codimension.

Turning to Veronese Powers of finitely presented graded algebras, in Chapter

5 we prove the following theorem.

Theorem 13. Let A be a graded algebra with a presentation consisting of m gen-

erators and r relators. If r < 1
4

(
m
2
− 1
)2

, then A(n) is GS for infinitely many

n.

In the case that A is quadratic, we have the following stronger version of this

theorem.

Theorem 14. Let A be a quadratic algebra with a presentation consisting of m

generators and r relators. If r < 4
25

m2, then A(n) is GS for infinitely many n.

In Chapter 6 we look at generic algebras to show that the bound in the hypoth-

esis of Theorem 14 is the best possible. Definitions and background information

on generic algebras are given in Chapter 6. There we prove
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Theorem 15. Let A be a generic quadratic algebra with m generators and r rela-

tors and assume that r < m2/4.

1. If r ≤ 4
25

m2, then A(n) is GS for all n.

2. If r > 4
25

m2, then A(n) is not GS for all but finitely many n.

This theorem provides examples of hereditary GS algebras. The results pre-

sented here are in preparation to be submitted for publication [24].

2.2 Further Questions

It would be interesting to explore whether Theorem 15 can be used to construct

non-topological examples of hereditary GS pro-p groups. Such examples could

shed some light on what distinguishes hereditary GS groups from non-hereditary

GS groups.

It is likely that the conclusions of Theorem 15 hold for general finitely presented

graded algebras (i.e., that Theorems 13 and 14 can be strengthened to a result

like Theorem 15). The techniques used in this thesis did not yield these stronger

versions of Theorems 13 and 14, but it would certainly be interesting to find out

if they hold.



3 Subalgebras of Finite Codimen-

sion

In this chapter we show that a subalgebra of finite codimension of a finitely pre-

sented algebra is finitely presented. This will be obtained as a slight extension of

the following theorem of J. Lewin [12].

Theorem 16. If A is a subalgebra of finite codimension in K〈X〉, then A is finitely

presented.

It is interesting to note that the techniques Lewin used to prove this theorem

are similar to those used by Schreier in his proof of the fact that any subgroup of

a free group is itself free (which was a stronger version of a theorem of Nielsen).

In this particular instance, the situation in the context of algebras is more delicate

than the analogous situation for groups since of course, not all subalgebras of free

algebras are free. See pages 4–13 of [18] for further discussion of the Nielsen-

Schreier theorem.

Lemma 17. Let A be a finite codimensional subalgebra of K〈X〉 and let I be an

ideal of K〈X〉 which is contained in A. If I is finitely generated as an ideal of

K〈X〉, then I is finitely generated as an ideal of A.

Proof. Let R = {r1, . . . , r`} be a set of generators for I as an ideal of K〈X〉. Let

B = {b1, . . . , bd} be a basis for K〈X〉 mod A. Define S = R ∪ BR ∪ RB ∪ BRB.

We will show that S generates I as an ideal of A. It suffices to show that frjg is

in the ideal of A generated by S for all f, g ∈ K〈X〉 and all j = 1, . . . , `.

14



15

Let f, g ∈ K〈X〉 and write f = f ′ +
∑

αibi and g = g′ +
∑

βkbk, where

f ′, g′ ∈ A, and αi, βk ∈ K. Then

frjg = (f ′ +
∑
i

αibi)rj(g
′ +
∑
k

βkbk)

= f ′rjg
′ + (

∑
i

αibirj)g
′ + f ′(

∑
k

βkrjbk) +
∑
i,k

αiβkbirjbk,

which is visibly in the ideal of A generated by S.

Recall that for algebras B ≤ A, we use |A : B| to denote the codimension of B

in A (i.e., dimK(A/B)).

Corollary 18. If A is a finitely presented K-algebra and B is a subalgebra of finite

codimension in A, then B is finitely presented.

Proof. Let 〈X|R〉 be a finite presentation of A and let I be the ideal of K〈X〉
generated by R. Let B′ be the pre-image of B in K〈X〉. So B′ is a subalgebra

of K〈X〉 containing I. Now |K〈X〉 : B′| = |A : B| < ∞. So by Theorem 16,

B′ is finitely presented. By Lemma 17, I is finitely generated as an ideal of B′.

Therefore, B is finitely presented. A finite set of generators is given by Lewin’s

theorem. A finite set of relators is given in combination by Lewin’s theorem and

Lemma 17.

The hope here was that if A and B are as in the previous corollary and A is GS,

then the proof will give us bounds on the number generators and relators ensuring

that B is also GS. This turned out to be too hopeful. In the next chapter we give

counterexamples to a general result of this type.



4 Subalgebras of K〈X〉

In this section we exhibit a finite codimensional subalgebra of K〈X〉 which is not

GS. Let X = {x1, . . . , xm} and let I = K〈X〉+. For any positive integer n we have

the ideal

In =
∞⊕

i=n

K〈X〉i

We show that the graded subalgebra K ·1+I2 is not GS with respect to the grading

inherited from K〈X〉. Compelling computer evidence suggests that this is true of

all K · 1 + In for all n ≥ 2.

4.1 A Presentation of K · 1 + In

Here we take the convention that each xi has degree one. For every sequence of

integers π = i1i2 · · · ik with the ij ∈ {1, . . . ,m}, define aπ = xi1 · · ·xik and use the

following notation for the length of π: |π| = k. Given two such sequences π and ρ,

we form a third sequence πρ by juxtaposition. Use the usual degree function from

K〈X〉 as the degree function for In.

The set

Y = {aπ |π is any sequence in {1, . . . ,m} with n ≤ |π| ≤ 2n− 1}

is a generating set for K · 1 + In. Notice that this generating set is not contained

in K〈X〉n. In fact, K ·1+ In cannot be presented as a graded subalgebra of K〈X〉
in such a way that the generating set is contained in K〈X〉n. This is why we

allowed degrees of generators to be different from one in the formulation of the GS

theorem.

16
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We say that a word w in X of length at least n is in canonical form if w = w′aπ,

where w′ is a product of elements in Yn and aπ ∈ Y (of course w′ may be the

empty word). An arbitrary element f =
∑

αvv of In is in canonical form if all

v are canonical words. Recall that in the introduction we defined the notation

Si = {s ∈ S| deg s = i} for any graded subset of a graded algebra.

We have two basic types of relations among elements of Y :

Type 1: aπaρ = aπ′aρ′ where πρ = π′ρ′ and |π′| is minimal while ensuring that

n ≤ |π′|, |ρ′| ≤ 2n− 1. These occur in each degree 2n + 1, 2n + 2, . . . , 4n− 3.

Type 2: aπ′aρ′ = aπaρaσ where πρσ = π′ρ′, aπaρaσ is in canonical form (i.e.,

|π| = |ρ| = n), and |π′| is minimal while ensuring that n ≤ |π′|, |ρ′| ≤ 2n− 1.

These occur in each degree 3n, 3n + 1, . . . , 4n− 2, for n ≥ 3. No relations of

this type occur for n = 2.

Let R denote the set of all relators described by relations of types 1 and 2. Note

that elements in R are homogeneous as elements of K〈X〉. If one simply defined all

the elements of Y to have degree one, relators of type 2 would not be homogeneous.

Example 19. Consider the case n = 3. The following are examples of relations of

type 1.

a(1,2,3,4)a(5,6,7) = a(1,2,3)a(4,5,6,7)

a(1,2,3,4,5)a(6,7,8) = a(1,2,3)a(4,5,6,7,8) (4.1)

a(1,2,3,4,5)a(6,7,8,9) = a(1,2,3,4)a(5,6,7,8,9) (4.2)

Note that (4.2) does not include a canonical word, but the word on the right-hand-

side can be put in canonical form by a relation of type 2:

a(1,2,3,4)a(5,6,7,8,9) = a(1,2,3)a(4,5,6)a(7,8,9)

Also note the following relation, which is neither of type 1 nor 2.

a(1,2,3,4,5)a(6,7,8) = a(1,2,3,4)a(5,6,7,8) (4.3)

This does not qualify under our definition of a relation of type 1 since we may

place a sequence of length three in place of (1, 2, 3, 4) while keeping the length of
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all involved sequences between three and five as in (4.1). However, relation (4.3)

follows from relations of type 1:

a(1,2,3,4,5)a(6,7,8) = a(1,2,3)a(4,5,6,7,8) = a(1,2,3,4)a(5,6,7,8)

Claim 20. Any word in Y can be put into canonical form using relations of types

1 and 2.

Proof. Let w = aπ1 · · · aπk
be any word in Y . First observe that the claim holds

for k = 2:

• If d(w) < 3n, then applying one relation of type 1 (once) yields

w = aπ1aπ2 = aπ′1
aπ′2

where |π′1| = n. This puts w in canonical form.

• If d(w) ≥ 3n, then applying one relation of type 1 followed by one relation

of type 2 yields

w = aπ1aπ2 = aπ′1
aπ′2

= aπaρaσ

where |π|, |ρ| = n. The result is in canonical form.

Suppose k > 2, and w = aπ1 · · · aπk−1
aπk

. By induction on k, we can put

aπ1 · · · aπk−1
into canonical form using relations of types 1 and 2. This gives

w = aπ1 · · · aπk−1
aπk

= w′aπaπk

and as already seen, aπaπk
can be put into canonical form using relations of types

1 and 2.

Since two distinct canonical words in Y are distinct as elements of K〈X〉, we

see that the set of all canonical words in Y is linearly independent. Therefore,

〈Y |R〉 is indeed a presentation for K · 1 + In.
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4.2 Minimality of 〈Y |R〉

Now we check that Y is indeed a minimal set of generators.

Claim 21. If Z is any homogeneous set of generators for K · 1 + In, then

Yk ⊆ spanK(Zk)

for all k = n, . . . , 2n− 1.

Proof. Suppose that Z is any set of homogeneous generators for K · 1 + In and let

aπ ∈ Yk. We can write

aπ =
∑
v

αvv

where the αv ∈ K and the v are distinct words in Z. By comparing degrees in X,

we can see that all the words v can be assumed to have degree k. The claim now

follows.

We also have the following minimality condition on R.

Claim 22. Let S be any set of relators in Y which define K ·1+In, and let r ∈ Rk

with 2n + 1 ≤ k ≤ 3n. Then r ∈ spanK(Sk).

Proof. As S is a set of defining relators for K · 1 + In, we have

r =
∑
i

αivisiv
′
i (4.4)

where αi ∈ K and the vi, v
′
i are words in Y . Note that Si is empty for i ≤ 2n.

If any of the vi or v′i are nonempty words, then the right hand side of (4.4) has

degree > 3n, which is a contradiction. Therefore,

r =
∑
i

αisi ∈ spanK(Sk).
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4.3 〈Y |R〉 is not a GS presentation

We need to count the number of generators and relators in 〈Y |R〉. For each

i = n, . . . , 2n − 1, there are mi elements of degree i in Y , since any sequence of i

elements of X gives us such an element, and the order of X is m.

Elements of R arise in every degree 2n + 1, 2n + 2, . . . , 4n− 2. Let r ∈ R be of

degree k. Distinguish between two cases:

• 2n + 1 ≤ k ≤ 3n − 1: In this case r must be of type 1, and it arises from

a partition of a sequence π, of length k, into two subsequences: π = τ1τ2.

Since n ≤ |τi| ≤ k − n, there are k − 2n + 1 such partitions, yielding k − 2n

distinct relations. |X| = m so there are mk sequences π, therefore there are

(k − 2n)mk distinct possibilities for r.

• 3n ≤ k ≤ 4n−2: Here we have exactly one relation of type 2 for each sequence

of length k, giving us mk distinct possibilities of type 2 for r. Again, type

1 possibilities for r arise from partitions of a sequence of length k into two

parts whose lengths are between n and 2n−1 (inclusive). There are 4n−k−1

such partitions, yielding 4n− k− 2 distinct relations of types 1. In all, there

are (4n− k − 1)mk distinct possibilities for r.

By the minimality claims in Section 4.2, we see that

1−HY (t) + HR(t) > 1−
2n−1∑
i=n

(mt)i +
3n−1∑

i=2n+1

(i− 2n)(mt)i.

So, in order to show that 〈Y |R〉 is not a GS presentation, it suffices to show that

for all t in the interval (0, 1),

1−
2n−1∑
i=n

(mt)i +
3n−1∑

i=2n+1

(i− 2n)(mt)i ≥ 0. (4.5)

For any real number x and positive integer n, define

S(x, n) = 1−
2n−1∑
i=n

xi +
3n−1∑

i=2n+1

(i− 2n)xi. (4.6)

Lemma 23. S(x, 2) ≥ 0 for all x > 0.
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Proof. S(x, 2) = 1− x2 − x3 + x5 = (1− x2)(1− x3) ≥ 0 for all x ≥ −1.

Computer experiments strongly support the following conjecture.

Conjecture 24. S(x, n) ≥ 0 for all x > 0 and all n ≥ 2.

In conclusion, we see that any set of generators of K ·1+In contains Y , and any

set of relators in Y contains
3n⋃

i=2n+1

Ri, which in the n = 2 case is already too large

for 〈Y |R〉 to be GS. Moreover, there is no redundancy of elements in
3n⋃

i=2n+1

Ri.

Therefore, there is no GS presentation for K · 1 + I2 (and probably for K · 1 + In)

consisting of generators which are homogeneous in K〈X〉.
This result makes it clear that in the search for a setting in which the GS

condition is inherited by subalgebras, finite codimensional algebras are not good

analogs of finite index subgroups. Veronese powers are better analogs of finite

index subgroups and in the next two chapters we see that they behave better with

respect to the GS condition.



5 Veronese Powers of Graded Al-

gebras

In this chapter and the next we turn our attention to Veronese powers of graded

associative algebras. Let us recall that if A =
∞⊕
i=0

Ai is a graded algebra, then the

nth Veronese power of A is defined to be

A(n) =
∞⊕
i=0

Ani.

In section 5.2 we prove Theorem 13. That is, we show that if a graded algebra

A is finitely presented by m generators and r relators and

r <
1

4

(m

2
− 1
)2

(5.1)

then infinitely many Veronese powers of A are GS.

In the case that this is specialized to quadratic algebras, we prove that the

same conclusion holds, but with slightly weaker assumptions (section 5.3). We

show that if a quadratic algebra A is finitely presented by m generators and r

relators and

r <
4

25
m2 (5.2)

then infinitely many Veronese powers of A are GS.

For further discussions of Veronese powers, see [2, 3, 20].

5.1 A Presentation

Let A be a one-generated graded algebra and set ai = dim(Ai). Suppose that A

has a finite presentation 〈X = {x1, . . . , xm}|R〉 with ri relators of degree i ≥ 2.

22
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Let k be maximal such that rk 6= 0. Set r =
k∑

i=2

ri.

It is easy to see that any basis for An will generate A(n) as an algebra.

By proposition 3.2.2 of [20], A(n) is quadratic for all n ≥ k−1. We can see that

if f ∈ R is of degree i, then ufv is a relator for A(n), where u and v are any two

elements of K〈X〉 whose degrees add up to 2n− i. This proposition is proved by

obtaining a presentation for A(n) via the following construction (although they use

slightly different language). The set X is identified with a basis of A1, call it E1.

Then we can write bases of A2, . . . , An in terms of E1 (as linear combinations of

words in E1). Denote these bases by E2, . . . , En, respectively. As already remarked,

we may choose En as a set of generators. So there are an generators of A(n). For

any given relator f ∈ R of degree i, consider the set of relators in A(n)

S(f) = {ufv |u ∈ Ej, v ∈ E`, j + ` = 2n− i}.

The proof of proposition 3.2.2 of [20] is completed by showing that

⋃
{S(f) | f ∈ R}

is a defining set of relators for A(n). Note that all of these relations are quadratic

in the generators En.

For n ≥ k − 1, this construction has yielded a presentation of A(n) with an

generators and

Rn =
k∑

i=2

(
i−1∑
j=1

an−jan−i+j

)
ri (5.3)

quadratic relators.

Remark 25. Throughout the rest of the dissertation, let us assume that m > 2 and

r ≥ 1. The case with r = 0 is far simpler since this means that A is free. Since

this implies that Rn = 0 for all n, we have that A(n) is also free for all n.

5.2 The GS Condition

In this section we prove the following theorem.
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Theorem 13. Let A be a graded algebra with a presentation consisting of m

generators and r relators. If r < 1
4

(
m
2
− 1
)2

, then A(n) is GS for infinitely many

n.

If A is GS, then inequality (1.3) implies

HA(t) ≥ (1−mt + HR(t))−1. (5.4)

Lemma 26. If r < m2/4, then (1−mt+rt2)−1 ≥
∞∑
i=0

α−iti, where α is the smaller

root of 1−mt+rt2. Further, this inequality is strict for all the non-constant terms

(the constant terms on both sides are 1).

Proof. Let α and β be the roots of 1 −mt + rt2 and α < β. Note that these are

distinct and 0 < α < 1 (see proof of Lemma 33), since r < m2/4. So we can factor

1−mt + rt2 = r(α− t)(β − t). Hence,

(1−mt + rt2)−1 = (1− α−1t)−1(1− β−1t)−1

=

(
∞∑
i=0

α−iti
)(

∞∑
j=0

β−jtj

)

=
∞∑̀
=0

( ∑
i+j=`

α−iβ−j

)
t`.

Now compute:

∑
i+j=`

α−iβ−j = α−` + α−(`−1)β−1 + · · ·+ α−1β−(`−1) + β−`

= α−`
∑̀
i=0

αiβ−i

> α−`, for all ` ≥ 1.

The following formula, which was obtained in the proof of the previous lemma,

is highlighted for later use.

(1−mt + rt2)−1 =
∞∑̀
=0

( ∑
i+j=`

α−iβ−j

)
t` (5.5)
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Lemma 27. Let i1, . . . , ir ≥ 2 be integers, suppose r ≤ m2/4, m ≥ 2, and write

(1−mt + ti1 + · · ·+ tir)−1 =
∞∑

j=0

bjt
j. (5.6)

Then bj+1 ≥ m
2
bj for all j ≥ 0.

Proof. First observe that from (5.6) we have the formal equality

1 = (1−mt + ti1 + · · ·+ tir)
∞∑

j=0

bjt
j

= b0 + (b1 −mb0)t +
∞∑

j=2

(bj −mbj−1 + bj−i1 + · · ·+ bj−ir)t
j,

where we set bj = 0 for all j < 0. Thus, b0 = 1, b1 = m, and

bj = mbj−1 − (bj−i1 + · · ·+ bj−ir), (5.7)

for all j > 0. Now proceed with the proof by induction on j. The case j = 0 is

done. Suppose bj+1 ≥ m
2
bj for all j = 0, 1, . . . , n − 2. From (5.7), our induction

hypothesis, and our assumption that r ≤ m2/4, we have

bn = mbn−1 − (bn−i1 + · · ·+ bn−ir)

≥ mbn−1 − rbn−2

≥ mbn−1 −
m2

4
bn−2

≥ mbn−1 −
m

2
bn−1

=
m

2
bn−1.

Remark 28. Consider the setting of the previous lemma in the case that i1 = i2 =

· · · = ir = 2. From the proof of the lemma we can notice the following recursion

relation for the coefficients bj.

b0 = 1

b1 = m

bj = mbj−1 − rbj−2, for all j ≥ 2.

This fact will be useful in our study of generic quadratic algebras in Chapter 6.
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Lemma 29. If r < m2/4, then (1−mt + HR(t))−1 ≥ (1−mt + rt2)−1.

Proof. Write

(1−mt + HR(t))−1 = (1−mt + ti1 + · · ·+ tir)−1

=
∞∑

j=0

bjt
j

and

(1−mt + rt2)−1 =
∞∑

k=0

ckt
k.

For each n ≥ 0 define dn = bnc0 + bn−1c1 + · · · + b0cn. From the previous lemma

we have bj+1 ≥ m
2
bj and ck+1 ≥ m

2
ck. This gives

dn+1 = bn+1c0 + bnc1 + · · ·+ b1cn + b0cn+1

≥ m

2
(bnc0 + bn−1c1 + · · ·+ b0cn) + b0cn+1

≥ m

2
dn.

Now compute

1

1−mt + ti1 + · · ·+ tir
− 1

1−mt + rt2
=

rt2 − ti1 − · · · − tir

(1−mt + ti1 + · · ·+ tir)(1−mt + rt2)

=
r∑̀
=1

(t2 − ti`)
∞∑

j=0

bjt
j
∞∑

k=0

ckt
k

=
r∑̀
=1

(t2 − ti`)
∞∑

n=0

dnt
n

=
∞∑

n=0

r∑̀
=1

(dn−2 − dn−i`)t
n,

where again we set dj = 0 for all j < 0. From this we can see that all the coefficients

are non-negative since ij ≥ 2 and the dn are increasing.

By applying (5.4) along with the previous two lemmas, and still assuming

r < m2/4, we have

HA(t) ≥ (1−mt + HR(t))−1 ≥ (1−mt + rt2)−1 ≥
∞∑
i=0

α−iti.

Hence,

ai > α−i, for all i ≥ 1. (5.8)
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Lemma 30. For any integer k ≥ 2 and any positive real number c,

fk(x) = xk − c(xk−2 + 2xk−3 + 3xk−4 + · · ·+ (k − 2)x + k − 1)

has a root in the interval [
√

c, 1 +
√

c).

Proof. We will begin by showing that fk(
√

c) < 0 for all k ≥ 3 (note that f2(
√

c) =

0). Observe that we have the recursion relation

fk(x) = xfk−1(x)− c(k − 1)

for all k ≥ 3. For k = 3 we have

f3(
√

c) = c3/2 − c(c1/2 + 3− 1) = −2c < 0.

Inductively, if k ≥ 4 and fk−1(
√

c) < 0, then

fk(
√

c) =
√

cfk−1(
√

c)− c(k − 1) < 0 + 0 = 0.

Now we will show that fk(1 +
√

c) > 0 for all k ≥ 2. Again we’ll use the same

recursion relation to show that

fk(1 +
√

c) ≥ 1 + k
√

c

for all k ≥ 2. To start induction observe that

f2(1 +
√

c) = (1 +
√

c)2 − c

= 1 + 2
√

c.

Suppose that fk−1(1 +
√

c) ≥ 1 + (k − 1)
√

c. Then

fk(1 +
√

c) = (1 +
√

c)fk−1(1 +
√

c)− c(k − 1)

≥ (1 +
√

c)(1 + (k − 1)
√

c)− c(k − 1)

= 1 + k
√

c + c(k − 1)− c(k − 1)

= 1 + k
√

c.

The lemma now follows from the Intermediate Value Theorem.
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Remark 31. It can be shown that for any ε > 0, there exists a K such that

fk(1 − ε) < 0 for all k ≥ K. This is mentioned only to point out that 1 +
√

c is

the best possible upper bound (not depending on k) on the roots of all the fk(x),

but since it is not required for the argument, a proof is omitted.

To show that A(n) is GS, by Proposition 7 it suffices to show that Rn < a2
n/4.

That is,

a2
n > 4

k∑
i=2

(
i−1∑
j=1

an−jan−i+j

)
ri. (5.9)

We will do this by proving the following stronger inequality.

a2
n > 4r

k∑
i=2

(
i−1∑
j=1

an−jan−i+j

)
, (5.10)

where as before, r =
∑
i

ri.

Lemma 32. Let b, c > 1 be constants with b > 1 +
√

c and let (an) be a sequence

such that an > bn for all n ≥ 1. Then a2
n > c

k∑
i=2

(
i−1∑
j=1

an−jan−i+j

)
for infinitely

many n.

Proof. Suppose that the conclusion of the lemma is false. So there exists an

N such that a2
n ≤ c

k∑
i=2

(
i−1∑
j=1

an−jan−i+j

)
for all n ≥ N . Define a sequence

sN , sN+1, sN+2, . . . by choosing

sN ≥ aN , sN+1 ≥ aN+1, . . . , sN+k−1 ≥ aN+k−1, (5.11)

then defining

s2
n = c

k∑
i=2

(
i−1∑
j=1

sn−jsn−i+j

)
(5.12)

for all n ≥ N + k. It follows that sn ≥ an for all n ≥ N .

For this choice of the sequence (sn), we want to find constants d and s such

that sn = dsn for all n ≥ N . From (5.12) it follows that s must satisfy

s2n = c(s2n−2 + 2s2n−3 + 3s2n−4 + · · ·+ (k − 1)s2n−k),



29

which reduces to

sk = c(sk−2 + 2sk−3 + · · ·+ (k − 2)s + k − 1). (5.13)

Using Lemma 30, let us choose a number s in the interval [
√

c, 1 +
√

c) which

satisfies equation (5.13). Now choose a constant d large enough to satisfy (5.11).

Overall we have

bn < an ≤ dsn < d(1 +
√

c)n

for all n ≥ N . This implies that

b ≤ 1 +
√

c,

which contradicts our assumption.

As before, set

α =
m−

√
m2 − 4r

2r
.

Lemma 33. Fix m ≥ 2 and let r ≤ m2/4. Then α ≤ 2/m.

Proof. Let f(t) = 1−mt + rt2. Notice that we have

f(1/m) =
r

m2
> 0

and

f(2/m) = −1 +
4r

m2
≤ −1 +

4

m2
· m2

4
= 0.

Hence, by the Intermediate Value Theorem, f has a root in the interval (1/m, 2/m].

Proof of Theorem 13. Assuming that r < m2/4, the inequalities in (5.8) hold. So

using b = α−1 and c = 4r in Lemma 32, we see that (5.10) holds for infinitely

many n (and hence A(n) is GS for infinitely many n) if

α−1 > 1 + 2
√

r. (5.14)
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It is possible to solve for r in this inequality, but the solution is a cumbersome

(but quadratic) expression in m. Instead, notice that Lemma 33 implies that

α−1 > m/2. Thus

r <
1

4

(m

2
− 1
)2

⇒ m

2
> 1 + 2

√
r

⇒ α−1 > 1 + 2
√

r

⇒ A(n) is GS for infinitely many n.

�

5.3 Quadratic Case

It is interesting to point out the following special case of the above situation.

Suppose that A is a quadratic algebra (i.e., r = r2). In this case, the technique

used to prove the above proposition requires that r < 1
16

m2 in order to conclude

that infinitely many Veronese powers of A are GS. This bound comes from the

fact that if k = 2, Lemma 30 is greatly simplified because the root is actually
√

c,

not merely in the interval [
√

c, 1 +
√

c). Thus, Lemma 32 can be proved with the

weaker assumption that b >
√

c (rather than using the assumption b > 1 +
√

c).

So the argument can be finished in the same way it was done above:

r <
1

16
m2 ⇒ m

2
> 2

√
r

⇒ α−1 > 2
√

r

⇒ A(n) is GS for infinitely many n.

However, we can get a slightly better result.

Theorem 14. Suppose A is a quadratic algebra with m generators and r relators.

If r < 4
25

m2, then A(n) is GS for infinitely many n.

With A being a quadratic algebra, the count of relators for A(n) given in (5.3)

becomes ra2
n−1. So A(n) will be GS if Rn < a2

n/4 by Proposition 7. That is,

ra2
n−1 <

1

4
a2

n. (5.15)

Let α and an still be defined as above and note that (5.8) still holds assuming

that r < m2/4. That is, ai > α−i for all i.
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Lemma 34. Let ε > 0. Then an > (α−1 − ε)an−1 for infinitely many n.

Proof. Assume that the lemma is false. Then there exists an ε in the interval

(0, α−1) and a natural number N such that

an ≤ (α−1 − ε)an−1

for all n ≥ N . Thus,

α−(N+k) < aN+k ≤ aN(α−1 − ε)k,

and hence,

α−k < (aNαN)(α−1 − ε)k,

for all k ≥ 0. This is a contradiction since for any constant c,

α−k > c(α−1 − ε)k.

for k sufficiently large, as α−1/(α−1 − ε) > 1.

Proof of Theorem 14. Recall that

α =
m−

√
m2 − 4r

2r
.

Observe that we have the following equivalence of inequalities.

α−2 > 4r ⇐⇒ 4α2 < 1/r = αβ

⇐⇒ 4α < β =
m

r
− α

⇐⇒ m

r
> 5α

⇐⇒ 2m > 5m− 5
√

m2 − 4r

⇐⇒ 3m < 5
√

m2 − 4r

⇐⇒ 9m2 < 25m2 − 100r

⇐⇒ r <
4

25
m2

So for r < 4
25

m2 and positive ε sufficiently small, Lemma 34 gives(
an

an−1

)2

> (α−1 − ε)2 > 4r
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for infinitely many n. With this, Theorem 14 is proved using (5.15). �

This is a curious situation because intuitively, the case where A is quadratic

should be the worst case. Loosely speaking, quadratic relators should have more

consequences in A(n) than relators of higher degree. Also, it is likely that the

conclusions of Theorems 13 and 14 can be strengthened to, “A(n) is GS for all n.”

We state this as the following conjecture, the proof of which has been elusive to

the techniques employed here.

Conjecture 35. Let A be a graded algebra with a presentation consisting of m

generators and r relators. If r ≤ 4
25

m2, then A(n) is GS for all n.

In the next chapter it is shown that this conjecture is true if A is a generic

quadratic algebra.



6 Generic Quadratic Algebras

In [1], the author considers a general view of the notion of a generic, finitely

presented graded algebra. Such an algebra is defined to be an algebra with

a coefficient-wise minimal Hilbert series. The following question immediately

presents itself. Given non-negative integers d1, . . . , dk and r1, . . . , r`, what is the

minimal Hilbert series among algebras presented by di generators of degree i and

rj homogeneous relators of degree j? This and other related questions are explored

in considerable detail in [1].

Since we will only deal with the case of generic quadratic algebras, we will

not discuss generic algebras in full generality. Instead, we shall think of a generic

quadratic algebra as any algebra arising in the following way. Fix positive integers

m and r. Consider an extension of our ground field by finitely many algebraically

independent variables

{t(k)
ij | i, j = 1, . . . ,m; k = 1, . . . , r}.

Denote it by K̃ = K(t
(k)
ij ). Then the K-algebra presented by (degree-one) genera-

tors X = {x1, . . . , xm} and quadratic relators

R = {fk =
m∑

i,j=1

t
(k)
ij xixj | k = 1, . . . , r}

is the generic quadratic K-algebra.

In [1] D. Anick proves that there exists a quadratic algebra with m generators

and r relators whose Hilbert series is precisely (1 − mt + rt2)−1 if and only if

r < m2/4. By the Golod-Shafarevich theorem, if A is a quadratic algebra presented

by m generators and less than m2/4 relators, then HA(t) ≥ (1 −mt + rt2)−1. So

Anick’s result shows us that in the case that r < m2/4, generic quadratic algebras

33
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presented by m generators and r relators are precisely those algebras with Hilbert

series equal to (1−mt + rt2)−1.

For a graded algebra A, we will continue to use the notation ai = dim(Ai). As

mentioned in the introduction in (1.5), we have the following nice characterization

of quadratic GS algebras.

Remark 36. The number of relators in any presentation of a quadratic algebra is

a2
1 − a2. Therefore, a quadratic algebra is GS if and only if

3

4
a2

1 − a2 < 0. (6.1)

Another useful application of this count of the number relators of a quadratic

algebra arises when considering Veronese powers of quadratic algebras. If A is a

quadratic GS algebra presented by m = a1 generators and r relators, then all of

its Veronese powers are also quadratic. So A(n) is presented by an generators and

a2
n−a2n relators. On the other hand we already saw that A(n) can be presented by

the same an generators and ra2
n−1 relators. Hence, a2

n − a2n = ra2
n−1. So we have

the following handy recursion relation.

a2n = a2
n − ra2

n−1

Remark 37. If A is a quadratic algebra, then A(n) is also quadratic. However, if

A is a generic algebra, then A(n) is not necessarily generic. Consider the following

example. Let A be a generic quadratic algebra presented by m generators and

r relators, and assume that r < m2/4. Then, by following Remark 28 and the

previous remark, we see that

a2 = m2− r, a3 = m3− 2rm, a4 = m4− 3rm2 + r2, a6 = m6− 5rm4 + 6r2m2− r3

But notice that

HA(2)(t) = 1 + a2t + a4t
2 + a6t

3 + · · · 6= (1− (m2 − r)t + rm2t2)−1

since the coefficient of t3 in HA(2)(t)(1− (m2 − r)t + rm2t2) is

a6 − a4(m
2 − r) + a2rm

2 = r2m2 6= 0.

Similar computations can be done for higher values of n to show that A(n) is not

generic.
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6.1 Veronese Powers

In this section we prove Theorem 15. Let β > α be the roots of 1 −mt + rt2. In

the case that r ≤ m2/4, it is easy to see that α is positive.

Lemma 38. If r ≤ m2/4, then(
4

r
− α2

)
α2n <

4

rn+1
, for all n ≥ 0

Proof. The following inequalities are equivalent.(
4

r
− α2

)
α2n <

4

rn+1

(4− rα2)α2nrn < 4.

We will verify the second one. Begin by noting that since rαβ = 1 and α ≤ β, we

have

rα2 ≤ rαβ = 1. (6.2)

Hence,

(rα2)n ≤ 1 ⇒ (4− rα2)α2nrn ≤ 4− rα2 < 4.

Theorem 15. Let A be a generic quadratic algebra with m generators and r

relators and assume that r < m2/4.

1. If r ≤ 4
25

m2, then A(n) is GS for all n.

2. If r > 4
25

m2, then A(n) is not GS for all but finitely many n.

Proof. Following Remark 36, and referring to the presentation described in Chapter

5, we see that A(n) is GS if and only if

3

4
a2

n − a2n < 0. (6.3)

From formula (5.5) we have

∞∑
n=0

ant
n = (1−mt + rt2)−1 =

∞∑
n=0

( ∑
i+j=n

α−iβ−j

)
tn.
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Using this along with the familiar formula∑
i+j=n

xiyj = xn+1−yn+1

x−y
,

we see that

an =
∑

i+j=n

α−iβ−j = β−(n+1)−α−(n+1)

β−1−α−1 = βn+1−αn+1

αnβn(β−α)
.

With this description of the coefficients an we check to see when (6.3) is satisfied.

Each of the following inequalities are equivalent.

3

4

(
βn+1 − αn+1

αnβn(β − α)

)2

− β2n+1 − α2n+1

α2nβ2n(β − α)
< 0

3(βn+1 − αn+1)2 − 4(β − α)(β2n+1 − α2n+1) < 0

3(β2n+2 − 2(βα)n+1 + α2n+2)− 4(β2n+2 − βα2n+1 − αβ2n+1 + β2n+2) < 0

−β2n+2 − α2n+2 + 4βα2n+1 − 6(βα)n+1 + 4αβ2n+1 < 0(
4

r
− β2

)
β2n +

(
4

r
− α2

)
α2n − 6

rn+1
< 0 (6.4)

So A(n) is GS if and only if inequality (6.4) is satisfied.

Recall that

α =
m−

√
m2 − 4r

2r
,

and notice

4

r
− α2 =

4− rα2

r
> 0,

since rα2 ≤ 1 by (6.2).

Using

β =
m +

√
m2 − 4r

2r

along with our assumption that r < m2/4 we see that we have the following

equivalence of inequalities.

4

r
− β2 ≤ 0 ⇐⇒ β2 ≥ 4/r = 4αβ

⇐⇒ β ≥ 4α

⇐⇒ r ≤ 4

25
m2

Note that the last equivalence was seen in the proof of Theorem 14.
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Case 1: Assume that r ≤ 4
25

m2. By the above computation,

4

r
− β2 ≤ 0.

By Lemma 38, (
4

r
− α2

)
α2n − 6

rn+1
≤ 0, for all n ≥ 0.

Therefore, inequality (6.4) holds for all n ≥ 0.

Case 2: Assume that r > 4
25

m2. In this case

β, α,
4

r
− α2,

4

r
− β2 > 0.

Note that β2 > αβ = 1/r and hence(
4

r
− β2

)
β2n − 6

rn+1
=

(
4

r
− β2

)
(β2)n − 6

r
· 1

rn
> 0

for all n � 0. Therefore, inequality (6.4) fails to hold for all n � 0.
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[9] H. Koch. Zum Satz von Golod-Schafarewitsch. Math. Nachr., 42:321–333,
1969.

[10] H. Koch. Galoissche Theorie der p-Erweiterungen. Springer-Verlag, Berlin,
1970.

[11] M. Lackenby. Large groups, Property (tau) and the homology growth of
subgroups, preprint. arXiv:math.GR/0509036.

38



39

[12] J. Lewin. Free modules over free algebras and free group algebras: The
Schreier technique. Trans. Amer. Math. Soc., 145:455–465, 1969.

[13] A. Lubotzky. Group presentation, p-adic analytic groups and lattices in
SL2(C). Ann. of Math. (2), 118(1):115–130, 1983.

[14] A. Lubotzky. Discrete groups, expanding graphs and invariant measures, vol-
ume 125 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1994. With
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