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Clustering of a kinesin-14 motor enables
processive retrograde microtubule-based
transport in plants
Erik Jonsson1,2, Moé Yamada1,3, Ronald D. Vale1,2 and Gohta Goshima1,3*

The molecular motors kinesin and dynein drive bidirectional
motility along microtubules (MTs) in most eukaryotic cells.
Land plants, however, are a notable exception, because they
contain a large number of kinesins but lack cytoplasmic
dynein, the foremost processive retrograde transporter. It
remains unclear how plants achieve retrograde cargo transport
without dynein. Here, we have analysed the motility of the six
members of minus-end-directed kinesin-14 motors in the
moss Physcomitrella patens and found that none are processive
as native dimers. However, when artificially clustered into as
little as dimer of dimers, the type-VI kinesin-14 (a homologue
of Arabidopsis KCBP (kinesin-like calmodulin binding
protein)) exhibited highly processive and fast motility (up to
0.6 μm s−1). Multiple kin14-VI dimers attached to liposomes
also induced transport of this membrane cargo over several
microns. Consistent with these results, in vivo observations of
green fluorescent protein-tagged kin14-VI in moss cells
revealed fluorescent punctae that moved processively
towards the minus-ends of the cytoplasmic MTs. These data
suggest that clustering of a kinesin-14 motor serves as a
dynein-independent mechanism for retrograde transport
in plants.

Organelle transport in plant cells has generally been considered
to be actin and myosin dependent (for example cytoplasmic stream-
ing)1. However, MT-based motility has also been observed in some
plant systems and is plausibly dependent on kinesin, another class of
cytoskeletal motor1–4. Kinesins constitute a large superfamily, the
founding member of which (kinesin-1) forms homodimers that
take many steps along a MT towards the plus end before dissociat-
ing. Such processive movement allows this kinesin to function effi-
ciently in the long distance anterograde transport of cargo5–8.
Within the kinesin superfamily, the kinesin-14 motors are
distinct from other kinesin families in that they display minus-
end-directed movement, and are therefore potential retrograde
transporters9. Recently Kar3, an atypical kinesin-14 present in
budding yeast, was shown to move processively towards minus-
ends via heterodimerization with a non-motor subunit10,11.
However, none of the animal or plant kinesin-14s characterized to
date, which form homodimers, have shown fast and processive
motility. The best-studied protein is Ncd, the sole kinesin-14
member in Drosophila, which exhibits short residency times that
coincide with the length of time it takes to bind and hydrolyse
ATP12. Ncd is required for mitotic and meiotic spindle MT cross-
linking, but is sequestered in the nucleus in interphase13,14; thus, it
is unlikely that Ncd plays a major role in cargo transport in the
interphase cytoplasm. In plants, kinesin-14 genes have been

heavily duplicated, and there are 21 and 15 genes in the seed
plant Arabidopsis and the moss Physcomitrella patens, respect-
ively15,16. Some kinesin-14 members appear to have non-mitotic
roles, such as KCBP in trichome morphogenesis17 and the
KCA/KAC kinesin in positioning of the chloroplast in the
cytoplasm18,19. It is unknown whether any members of the kinesin-14
subfamily in plants are capable of processive motility and/or are
involved in MT-based cargo transport.

Fifteen kinesin-14s of P. patens are further subdivided into six
subgroups, based on the amino acid sequence similarity of the
motor and the adjacent neck domains (Fig. 1a)15. Within these sub-
groups, the amino acid sequences are very similar to each other (for
example kin14-Ia and kin14-Ib share nearly 87% sequence identity)
and are therefore thought to function redundantly, as was previously
shown for the kin14-V proteins18. On the other hand, the lengths,
sequences and domain organization are markedly different
between the subgroups (Fig. 1a). To test whether any of the
kinesin-14 motors show processive minus-end-directed motility,
we selected one representative member from each of the six
protein subgroups for biochemical analysis. Characterization of
kinesins has generally been achieved with truncated constructs in
which the neck and motor domains are included. We therefore
engineered truncations of P. patens kinesin-14s fused with an
N-terminal green fluorescent protein (GFP) (Fig. 1b). Gel filtration
chromatography showed that they eluted at a similar fraction to a
dimeric Ncd motor construct (236–700 a.a., tagged with GFP),
suggesting that they are also dimeric (Supplementary Fig. 1b).

The purified proteins were assayed for motility in a MT gliding
assay, in which motors were adhered to a cover glass and then
MTs and ATP were added to the reaction chamber. Four of the
six truncated chimeras translocated MTs with velocities ranging
from 4 to 130 nm s−1 (Fig. 1d and Supplementary Movie 1). The
fastest motor (kin14-VIb) showed a gliding velocity similar to
Ncd and KCBP20. Kin14-IIIa did not translocate MTs along the
glass surface, although they bound to MTs in an ATP-dependent
manner in a sedimentation assay (Supplementary Fig. 1c). Kin14-Va
did not efficiently bind to MTs, consistent with its Arabidopsis
orthologue (Supplementary Fig. 1c)18. To determine the directional-
ity of the moving MTs, we also performed a gliding assay with
polarity marked MTs (Fig. 1c). As the MTs predominantly moved
with their plus-ends leading (Supplementary Fig. 1a), we concluded
that the four motile kinesin-14 subgroups are all minus-end-
directed motors.

We asked whether any of the active motors might also be proces-
sive in a single-molecule motility assay. This assay involves attaching
MTs to a coverslip and then adding low levels of GFP-tagged kinesin
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to examine the interactions of single motors with MTs. We per-
formed this assay with high (2 mM) and low (10 µM) concen-
trations of ATP, but did not observe processive motion for any
construct (Fig. 2a shows a representative kymograph for kin14-VIb).

We measured gliding velocity as a function of surface motor
density for kin14-VIb (Supplementary Fig. 2a). The velocity was
insensitive to a wide range of surface densities. However, at low
surface densities (less than approximately 1 molecule per µm2),
MTs attached to the surface but no longer exhibited unidirectional
motion. The gliding velocity decreased slightly for the two highest
surface density measurements, indicating that the motors can inter-
fere with each other when present in sufficiently high numbers.

We then wondered whether the full-length proteins might
contain some additional domain that confers processivity. We
therefore expressed full-length versions of the two fastest motors
(kin14-IIa and kin14-VIb). While we failed to purify full-length
kin14-IIa after several attempts, we successfully purified the full-
length kin14-VIb (kin14-VIb FL) (Fig. 1b). Kin14-VIb FL showed
minus-end-directed MT gliding activity, and the gliding velocity
was faster than the truncated form (∼300 nm s−1; Fig. 1d). To test
whether the increase in velocity is due to higher ATPase rate of
the FL, we measured the steady-state ATPase activity of truncated
and FL constructs (Supplementary Fig. 2b). The truncated kin14-VIb
had a similar rate to those previously reported for Ncd21,22.
However, the rate was ∼10-fold lower for the FL. A likely interpret-
ation of this data is that the full-length protein in solution is in an
auto-inhibitory form with a low ATPase rate, as is well documented
for kinesin-1 and other anterograde kinesin motors23. We speculate
that the overall protein size affects its velocity, as is the case for
Ncd22. Although it translocated MTs at a faster rate, the full-
length dimeric proteins were still non-processive in the single-
molecule motility assay (Supplementary Fig. 2c). On rare occasions,
we observed a GFP particle that moved processively (Supplementary

Fig. 2c). However, these motile particles were significantly brighter
than the non-motile particles, suggesting that they are small aggre-
gates and not single native dimers.

These results suggested that a small cohort of kin14-VIb motors
could potentially move processively. We therefore engineered the
‘dimer of dimers’ construct by introducing the coding sequence
for a GCN4 parallel tetramer motif 24 into the N-terminus
(Fig. 2b). To confirm that the kin14-VIb GCN4 construct is
indeed a tetramer, we measured its photobleaching characteristics
(Fig. 2c,d). Figure 2c compares representative traces for kin14-VIb
GCN4 and dimeric kin14-VIb FL, which showed four- and
two-step photobleaching processes, respectively. The observed
photobleaching step distribution of kin14-VIb GCN4 (n = 199)
was distinct from that of dimeric Ncd or kin14-VIb FL (Fig. 2d),
and was more consistent with that of other tetrameric proteins ana-
lysed in a similar manner25. Prevalence of three or fewer bleaching
steps over four steps in the tetramer is probably due to GFP photo-
inactivation prior to image acquisition, as is commonly reported26.
Taken together we conclude, as expected, that kin14-VIb GCN4 is
tetrameric, while kin14-VIb FL, like Ncd, is dimeric.

In the single-molecule motility assay, kin14-VIb GCN4 exhibited
frequent processive motility (Fig. 2b and Supplementary Movie 2).
The velocity was 336 ± 97 nm s−1, which was significantly higher
than its gliding velocity of 125 nm s−1 (Fig. 1d). Kin14-VIb GCN4
exhibited long run lengths of 1.27 ± 0.03 µm, (exponential fit par-
ameter ± error of fit, R2 = 0.995), which is comparable to the run
length of human kinesin-1 processivity in vitro (Fig. 2f)27. When
we attached the GCN4 tetramer motif to kin-14IIa, the second
fastest kin14 (Fig. 1d), we did not observe processive motion
(Supplementary Fig. 2d). We therefore focused on kin-14VIb for
further characterization.

As an alternative in vitro clustering assay, we adhered multiple
kin14-VIb motors to liposomes. To this end, we assembled
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liposomes with incorporated DOGS-NTA-Ni lipids, such that mul-
tiple histidine-tagged kin14-VIb proteins could bind to the lipo-
somes (Fig. 3a and Supplementary Fig. 2e). The liposomes were
transported along MTs for long distances (Fig. 3b,c and
Supplementary Movie 3). Some moving liposomes switched
between MT tracks, indicating that multiple motors were indeed
present on their surface. The velocities (266 ± 69 nm s−1 for
kin14-VIb and 597 ± 134 nm s−1 for kin14-VIb FL; Fig. 3d) were
twice as fast as the gliding velocities, and the FL transport length
was several microns, which is comparable to mammalian dynein28

(Supplementary Fig. 2f).
Finally, we tested whether native kin14-VIb moves processively

in vivo. Taking advantage of the very high frequency of homologous
recombination in P. patens29, we tagged the Citrine (a GFP variant)
gene to the N-terminus of the endogenous kin14-VIb gene without
inserting any other sequences such as selection markers; the estab-
lished transgenic moss lines expressed these tagged motors under
the control of the endogenous promoter and 3′ UTR sequences at
the native locus (Supplementary Fig. 3a–c). We observed interphase
cells in the protonemal tissue (Fig. 4a) using oblique illumination
fluorescence microscopy; this technique has been used successfully

to visualize endoplasmic MTs as well as the associated γ-tubulin-
Citrine with minimum interference by autofluorescence derived
from the chloroplast7. For Citrine-kin14-VIb, we observed discrete
fluorescent punctate along the MTs, many of which showed uni-
directional motility (Fig. 4b,c and Supplementary Movie 4).
Because only the motors and MTs were visualized by fluorescence,
we could not ascertain whether or not the Citrine-kin14-VIb were
bound to and moving a cargo. The mean velocity of this movement
was 413 ± 18 nm s−1 (mean ± s.d.; n = 29), which was comparable to
the in vitro velocity, and the run length was 1.01 ± 0.31 µm (expo-
nential fit parameter ± error of fit; R2 = 0.942; n = 26) (Fig. 4d,e).
Run lengths shorter than those that were observed in the liposome
assay might reflect the fact that MT binding of this kinesin can be
negatively regulated by calmodulin binding proximal to the motor
region20. In some instances, we could identify the polarity of the
MT along which the Citrine-kin14-VIb moved. The signals
moved away from the dynamic MT plus-end in all 12 cases analysed,
indicating that the Citrine-kin14-VIb moved towards minus-ends
(Fig. 4c). Under the same imaging condition, the fluorescence
intensity of the Citrine-kin14-VIb punctae was about half of
γ-tubulin-Citrine and slightly higher than γ-tubulin complex protein
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Figure 2 | Artificially tetramerized kin14-VIb showed processive motility. a, A kymograph for dimeric kin14-VIb motors reveals no processive movement.
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(mean ± s.d., n = 267). f, 1 − cumulative frequency for run lengths of the GCN4 tetramer construct, which were fitted to an exponential yielding a fit
parameter of λ = 1.27 ± 0.03 μm (error was determined from goodness of fit parameters; R2 = 0.995, n = 267 particles).
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4 (GCP4) tagged with Citrine in punctae corresponding to individual
γ-tubulin ring complexes (Supplementary Fig. 3d; both were
expressed from endogenous promoters). Assuming that 13–15 mol-
ecules of γ-tubulin and 2–4 molecules of GCP4 are present in the
γ-tubulin ring complex of P. patens, as has been estimated for animal
and yeast cells30,31, then it is likely that the Citrine-kin14-VIb punctae
consist of more than one but relatively few dimeric kin14-VIb motor
proteins. Thus, we conclude that a small number of kin14-VIb
motors, clustered into a diffraction-limited spot, canmove processively
along the MT towards minus-ends in moss cells.

In conclusion, we have obtained evidence that the collective
actions of as few as two non-processive kinesin-14s achieve retro-
grade transport in vitro and most likely in plant cells as well.
Based on its rapid speed of transport (up to 600 nm s−1; the
fastest ever reported for a kinesin-14 motor) and high processivity
achieved upon motor clustering, we propose that kin14-VIb acts
as a cargo transport motor in plants, serving an analogous role to

cytoplasmic dynein in animal and fungal cells. In the protonemal
cells, we recently observed retrograde motility of newly generated
MTs along the existing MTs7 and MT-dependent translocation of
the nucleus8. In the latter process, the responsible anterograde
kinesin was identified and the involvement of a minus-end-directed
transporter was suggested8. Thus, MT-dependent bidirectional
transport is present in moss cells in addition to the actomyosin-
based mechanism. Kin14-VIb would be a candidate retrograde
motor in these processes. Previous loss-of-function and gain-of-
function analyses suggested a variety of roles of kin14-VI in seed
plants, such as trichome morphogenesis, pollen tube growth, orga-
nelle positioning and cell division17,32,33. The versatility might be
explained if kin14-VI associates with and transports various
cargoes. A proof for this model would require identifying a specific
cargo for kin14-VI in vivo.

This study also reveals similarities between kin14-VIb and other
types of motors. Ncd was recently found to move with run lengths
greater than 1 μm when clustered on a DNA scaffold in vitro34.
Therefore, other subgroup members of kinesin-14, even ones
not involved in cargo transport, can potentially become processive
in vivo in a similar manner to kin14-VIb. As for anterograde
motors, kinesin-3 (Unc-104/KIF1), which is responsible for long-
distance transport of neuronal vesicles, transports liposomes
in vitro only after motor clustering on the liposome surface35,36. In
this instance, processivity is probably achieved by promoting the
association of two monomeric kinesin-3 motors into a dimer,
which is the highly processive form of the motor35,36. Similarly
myosin VI, an actin-based motor, is monomeric and non-
processive, but small clusters of this motor can efficiently produce
cargo transport37. Thus, the cargo-dependent clustering may be a
widely utilized mechanism for cytoskeletal motors to produce
long-distance transport along cytoskeletal polymers.

Methods
Constructs. PCR primers for constructing the plasmids for protein expression and
transgenic line generation are listed in Supplementary Table 1. EGFP, mGFP
(in vitro) or Citrine (in vivo) was attached. The information on the linker sequences
is also available in the footnote to Supplementary Table 1.

Protein purification. Plasmids containing the coding sequences for each of the
GFP-kinesin-14 motors were transformed and expressed in BL21-AI cells.
Expression was induced by addition of 0.2% arabinose and 0.2 mM IPTG and were
left overnight at 18 °C. Cells were pelleted and harvested in lysis buffer (25 mM
MOPS pH 7.0, 2 mM MgCl2, 250 mM NaCl, 30 mM imidazole, 5 mM
β-mercaptoethanol, 5% sucrose), and lysed by the EmulsiFlex homogenizer in the
presence of protease inhibitors. After lysis, the extract was loaded onto a Ni-NTA
column, washed with additional lysis buffer, and then eluted by increasing the
imidazole concentration to 400 mM. Proteins were dialysed for 4 h to remove
imidazole and then snap frozen in liquid nitrogen and stored at −80 °C.

Motility assays. The standard assay buffer contained 25 mMMOPS pH 7.0, 75 mM
KCl, 2 mM MgCl2, 1 mM EGTA. Addition of the PCA/PCD/Trolox oxygen
scavenging system38 was used in all in vitromicroscopy experiments. Purified motor
proteins were subjected to a ‘bind-and-release’ reaction, in order to select for active
motors, in all motility assays used in this study. Motors were first bound to MTs for
10 min in the absence of ATP. The reaction was then layered over a 60% glycerol
cushion in 1× assay buffer, supplemented with 20 µM taxol, and centrifuged at
80,000 rpm in a TLA 100 rotor for 10 min. The supernatant was discarded and the
pellet was washed and resuspended in 1× assay buffer plus added KCl (to a final
concentration of 150 mM) with 20 µM taxol and 5 mM ATP and left to incubate for
5 min. The solution was recentrifuged at 80,000 rpm for 10 min and the supernatant
(containing motors released from the MTs with ATP) was kept on ice and used in
the motility assays. Fractions at each step were analysed by SDS-PAGE and
Coomassie blue staining (Supplementary Fig. 1c). For gliding assays, motors were
added to a microscope slide flow chamber (∼10 µl in volume) made with an
untreated glass coverslip, a microscope slide and double-stick tape. After a brief
incubation (2–5 min), the flow chamber was washed with assay buffer containing
1 mM casein, followed by incubation with the motility buffer containing casein,
2 mM ATP and polymerized Cy5-labelled MTs. For single-molecule assays27, 5 mg
ml−1 biotin-BSAwas added to a flow chamber made with acid-washed coverslips and
allowed to incubate for 2–3 min. The flow chamber was washed and supplied with
0.5 mg ml−1 streptavidin (another 2–3 min incubation). The flow chamber was then
washed with the assay buffer containing 1 mg ml−1 casein, followed by a 5 min
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incubation with labelled MTs (10% Cy5-labelled tubulin and 10% biotin-labelled
tubulin). Finally, kinesin motors in the assay buffer (with 2 mM ATP, 20 µM taxol
and 1 mg ml−1 casein) were added. Polarity-marked MTs were made by preparing
Alexa 561-labelled MT seeds, blocking the minus-ends with NEM-treated tubulin,
and allowing a mixture of unlabelled and Cy5-labelled tubulin (10%) to polymerize
exclusively at the plus-end. For the surface density titration, the same attachment
chemistry was used as in the photobleaching experiments (see below). The surface
density was successively titrated by preparing coverslips with the same adhered
antibody concentration followed by incubating serial dilutions of GFP motor. For
very low concentrations of motor, the surface could be determined directly by
counting the number of clearly visible GFP particles in a defined area. The higher
surface densities (which were too high to accurately count motors individually) were
estimated based on the added motor concentration and extrapolation from the
surface densities that were counted directly.

In vitromicroscopy instrumentation and analysis. All in vitromotility assays were
performed at room temperature (∼23 °C) using total internal reflection fluorescence
(TIRF) microscopy on a Nikon Eclipse Ti microscope fitted with a 100× (1.45 NA)
objective and an Andor iXON EMCCD camera. The acquisition software was
Micromanager39, and the analyses of velocities and run lengths were performed

using Fiji. Briefly, we made kymographs for a series of motile MTs (or translocating
particles) in a field of view. Velocity was then determined from these kymographs
based on the acquisition parameters and the known pixel size of the microscope
camera. Run lengths were also determined from kymographs of processively
translocating particles. 1 − cumulative frequency distribution was plotted against run
length40 and fit to a single exponential.

Liposome preparation and motility assay. Liposomes were prepared by dissolving
lipids (79.7% POPC, 10% POPS, 10% DOGS-NTA-Ni, 0.3% rhodamine PE
(Avanti)) in chloroform, drying them under a constant stream of N2 and desiccating
in a vacuum for at least 1 h, and then resuspending in 1× assay buffer. To make
liposomes of uniform size, the solution was extruded through polycarbonate filters
with a 200 nm pore size. Motors were then added to liposomes (with at least 10-fold
molar excess of motor to DOGS-NTA-Ni lipids) and incubated on ice for at least 1 h.

Photobleaching. For the photobleaching assay, HEPES pH 7.5 was substituted in the
assay buffer for MOPS, because the higher pH gives a brighter GFP signal and
reduces blinking. Flow chambers, made with acid-washed coverslips, were incubated
with 0.1 mg ml−1 protein G (Sigma Chemical Co.) for ∼3 min. The flow chamber
was then washed, followed by a 3-min incubation with an antibody against 6x
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histidine (0.1 mg ml−1; Roche). After a wash, soluble motor was added at an
appropriate concentration to achieve a surface coating of no more than ∼1 particle
per μm2. The GFP intensity was plotted in time and sequences were analysed with
custom-designed Matlab software. In Fig. 2d, ∼200 traces were observed and scored
according to the number of discernible bleaching events (∼20% of traces were
rejected due to noise).

ATPase measurement. Steady-state ATP turnover was determined by a standard
PK/LDH coupled assay. We diluted the standard assay buffer to 0.5× (12.5 mM
MOPS pH 7.0, 37.5 mM KCl, 1 mMMgCl2, 0.5 mM EGTA) in order to decrease the
ionic strength, which can interfere with motor–MT interactions. Final
concentrations of motor were 100 nM for kin14-VIb and 225 nM for kin14-VIb FL
and the MT concentration was 20 μM (which we verified was sufficiently high for
maximal MT-stimulated ATP turnover). Concentrations for the other components
of the assay were as follows: MgATP (2 mM), NADH (0.2 mM), phosphoenol
pyruvate (1 mM), pyruvate kinase (0.01 U), lactate dehydrogenase (0.03 U), taxol
(20 μM). Absorbance at 340 nm was continuously measured in an Eppendorf
Spectrophotometer (UV-Vis BioSpectrometer) to determine the rate of ATP
turnover.

Moss lines. Transgenic lines were selected by the conventional PEG-mediated
transformation41,42 with some modification (see Supplementary Fig. 3a; detailed in
Yamada et al.43). Briefly, a plasmid in which the Citrine gene was flanked by
∼1-kb 5′-UTR and N-terminal sequences of the kin14-VIb was constructed. After
linearization, it was co-transformed into the mCherry-tubulin-expressing line with a
circular plasmid with the hygromycin-resistant gene cassette. The transformants
were selected by hygromycin (2 weeks), followed by transferring to the drug-free
medium to allow cells to proliferate without the circular plasmid (10 d). In the end,
we selected 200 transgenic lines that were no longer hygromycin resistant, and
assessed the integration of Citrine at the N-terminus of kin14-VIb by PCR and
immunoblotting (Supplementary Fig. 3b,c). We obtained two independent Citrine-
kin14-VIb replacement lines, which grew normally on the regular culture medium.

In vivo microscopy. Protonemata, the tissue containing actively dividing cells, were
imaged in this study, following the method described in Nakaoka et al.7 Briefly, cells
were homogenized and plated on the cellophane-coated BCDAT agar medium for
5–7 d. Protonemal cells and 20 µl distilled water were placed on a slide glass and
covered by a coverslip. Extra water was wiped out. A TIRF microscope (Nikon Ti;
100× 1.49 NA lens) with a GEMINI split view (Hamamatsu) and an EMCCD
camera Evolve (Roper) or iXON (DU888E; Andor) was used with oblique
illumination fluorescence. The endoplasm of the sub-apical cells (or in rare cases
apical cells) that was most closely located to the coverslip was in focus. Imaging was
performed at 24–25 °C. The microscope was controlled by Micromanager software39

or Nikon’s NIS-Elements. The velocity of moving particles was measured based
on kymographs.
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