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Abstract

Aberrant protein aggregation is a hallmark of many age-related diseases, yet little is known about whether proteins
aggregate with age in a non-disease setting. Using a systematic proteomics approach, we identified several hundred
proteins that become more insoluble with age in the multicellular organism Caenorhabditis elegans. These proteins are
predicted to be significantly enriched in b-sheets, which promote disease protein aggregation. Strikingly, these insoluble
proteins are highly over-represented in aggregates found in human neurodegeneration. We examined several of these
proteins in vivo and confirmed their propensity to aggregate with age. Different proteins aggregated in different tissues and
cellular compartments. Protein insolubility and aggregation were significantly delayed or even halted by reduced insulin/
IGF-1-signaling, which also slows aging. We found a significant overlap between proteins that become insoluble and
proteins that influence lifespan and/or polyglutamine-repeat aggregation. Moreover, overexpressing one aggregating
protein enhanced polyglutamine-repeat pathology. Together our findings indicate that widespread protein insolubility and
aggregation is an inherent part of aging and that it may influence both lifespan and neurodegenerative disease.
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Introduction

The regulation of protein homeostasis (proteostasis) plays an

essential role in preventing protein aggregation. As organisms age,

the tightly regulated balance of gene expression levels, quality

control, and protein disposal is disrupted. For example, cellular

systems responsible for protein degradation become less efficient

with age [1,2]. In addition, chaperone levels change in older

animals [3]. Aging is also associated with increased oxidative

stress, leading to irreversible oxidation and nitration of proteins,

which impairs their degradation [4,5]. These age-dependent

changes in proteostasis are thought to facilitate the aberrant

aggregation of specific proteins in the context of neurodegener-

ation and amyloidoses [6]. However, it is not clear to what extent

this altered cellular environment also leads to protein aggregation

during normal aging, in a non-disease context [7].

Although protein aggregation has mainly been associated with

disease, a wide variety of proteins have the capacity to aggregate

under extreme conditions in vitro [8]. Recent evidence suggests

that partial unfolding of globular proteins can occur under

physiological conditions and is sufficient to lead to protein

aggregation [9]. Furthermore, almost all proteins contain buried

self-complementary sequences that could promote the assembly

of identical proteins into aggregates if exposed at the protein

surface [10]. The aggregation of recombinant proteins is

commonly observed in bacteria [11], and these inclusion bodies

consist at least partly of amyloid-like structures [12]. Soluble

proteins are found to aggregate in both S. cerevisiae and

mammalian cells when these cells are challenged by inhibition

of the proteasome [13,14]. The eukaryotic cell has a built-in

mechanism to deal with misfolded, aggregation-prone proteins,

which becomes activated when the protein disposal system

becomes impaired or overwhelmed. This mechanism involves

the formation of the aggresome, an inclusion body located at the

microtubule-organizing center that actively sequesters insoluble

proteins [15].

The fact that proteostasis mechanisms decline with age suggests

that normal cellular proteins might become more prone to

aggregation. Furthermore, various proteins have been found to co-

aggregate, albeit at low levels, together with major disease-

aggregating proteins during age-dependent neurodegeneration

[16,17,18]. However, a systematic evaluation of inherent protein

aggregation during normal aging has been lacking [7]. In this

study, we used a global proteomics approach to investigate the

extent of age-dependent protein insolubility, a hallmark of protein

aggregation, in wild-type C. elegans. We identified several hundred
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proteins that became more insoluble with age, and as predicted,

almost all of the proteins we tested in vivo formed aggregates. We

found that inhibiting the insulin/IGF-1 system, which slows aging,

decreased the rate and extent of inherent protein insolubility and

aggregation. Intriguingly, a significantly large fraction of RNAi

clones that increase lifespan are predicted to target mRNAs

encoding aggregation-prone proteins, raising the possibility that

decreasing aggregation levels could prolong lifespan.

As misfolded proteins could potentially enhance disease-protein

aggregation by disrupting proteostasis [19], we also asked whether

age-dependent inherent protein aggregation would modify the

course of aberrant disease-related protein aggregation. We found

that increased expression of an aggregation-prone protein

aggravated the paralysis caused by polyglutamine repeat aggrega-

tion, in spite of the fact that the two proteins did not co-aggregate.

Moreover, a large fraction of proteins previously identified in a

genome-wide screen for factors that influence polyglutamine

repeat aggregation [20] consisted of proteins that we identified

as insoluble. Especially strikingly was our finding that homologs of

31%–54% of the proteins previously identified in human disease

aggregates were identified in our study. These findings reveal, for

the first time, the large extent and the nature of age-dependent

protein insolubility and aggregation in a non-disease context. Our

results suggest that inherent protein aggregation has the potential

to influence lifespan and protein aggregation disease.

Results

Proteomic Identification of Detergent-Insoluble Proteins
in C. elegans

Proteins known to aggregate in disease, such as tau protein and

amyloid-b, remain insoluble in strong-detergent buffers [21,22,23]

but can be solubilized by formic acid or urea and analyzed on

SDS-PAGE gels. We used similar conditions to look for proteins

that might be prone to aggregate during the normal aging process.

We observed that a significant fraction of the C. elegans proteome

remained insoluble in a strong-detergent buffer (Figure 1A). Many

of these insoluble proteins were present at a higher level in old

animals, suggesting that aging potentiates the tendency of proteins

to become insoluble. Specifically, the mean fold change of proteins

that became more insoluble with age in sterile [gonad-less gon-

2(2)] animals was ,3.560.8 (SD). The patterns of bands on the

SDS-PAGE gel in the total and insoluble fractions were not the

same, indicating that the propensity to become insoluble with age

does not affect all proteins equally. Some insoluble protein bands

were present at similar levels in young and aged animals,

suggesting these include proteins that are not aggregation-prone

but rather proteins such as tubulin and cuticular collagen proteins

that are functional in an insoluble state.

To determine the identity of the insoluble proteins, we collected

young and old animals and adapted a stringent sequential protein

solubilization protocol established previously to extract disease-

aggregated proteins. Briefly, following removal of dead worms by

sucrose separation, we repeatedly removed cytosolic-soluble

proteins in high-salt buffer and membrane proteins in a detergent

buffer containing both strong anionic and nonionic detergents

(Figure S1A). The remaining, insoluble, proteins were solubilized

with formic acid. Some proteins, such as those associated with the

worm cuticle, remained in the pellet. This acid soluble fraction was

digested with trypsin, and multidimensional LC-MS/MS was used

to identify 1,125 and 856 proteins in two biological replicates.

Sixty-four percent of the proteins identified in the insoluble

fraction in the first biological experiment were also found in the

second experiment, and conversely 85% of the proteins identified

in the second experiment were identified in the first experiment

(Figure S1B). This overlap between biological replicates is

comparable to previously published proteomic data [24,25,26].

For comparison, if we sampled randomly 1,125 and 856 proteins

in the C. elegans proteome (consisting of 7,826 proteins previously

detected by mass spectrometry), we would expect to detect at most

123 proteins in both samples (11% and 14%, respectively) by

chance. The cumulative hypergeometric probability of detecting

725 or more proteins in both experiments is less than 1E-100. For

further analysis, we focused on 711 proteins that were identified in

both experiments and passed a stringent set of mass spectrometry

related quality-control criteria (see Methods) (Table S1).

Protein Insolubility Increases with Age in C. elegans
To quantify changes with age in both of the two biological

replicates described above, we compared the levels of insoluble

proteins extracted from young adult C. elegans (Day 3 of adulthood)

to those extracted from an aging population (determined as the

time point when half of the population remained alive). To obtain

a large synchronized population of aged animals, we used

temperature-induced sterility mutants (described below), which

were maintained at 25uC. The extent of age-dependent insolubility

in these strains was quantified by conducting quantitative mass

spectrometry using the stable-isotope iTRAQ reagents [27], which

allowed us to analyze four different samples simultaneously (Figure

S2). In each of the two experiments, we analyzed fem-1(2)

mutants, which are defective in sperm production [28]. We found

that 691 proteins (Experiment 1) and 710 proteins (Experiment 2)

out of the 711 insoluble proteins accumulated by 1.5-fold or more

with age. In Figure 1B, we used a logarithm base 2 scale to

represent the wide distribution of age-dependent changes in the

levels of insoluble forms of the different insoluble-prone proteins.

Because fem-1(2) mutants accumulate unfertilized oocytes, as do

wild-type animals to a lesser extent, we hypothesized that the

extent of insolubility could be explained partially by decreased

oocyte quality with age [29]. To control for this, we also analyzed

changes in insolubility with age in mutant strains lacking oocytes

(Figure 1B). For added stringency, we chose to analyze two

different strains as biological replicates: the gonad-less mutant gon-

Author Summary

In neurodegenerative diseases, such as Alzheimer’s disease
and Huntington’s disease, specific proteins escape the
cell’s quality-control system and associate together,
forming insoluble aggregates. Until now, little was known
about whether proteins aggregate in a non-disease
context. In this study, we discovered that the aging
process itself, in the absence of disease, leads to the
insolubilization and increased aggregation propensity of
several hundred proteins in the roundworm Caenorhabditis
elegans. These aggregation-prone proteins have distinct
structural and functional proprieties. We asked if this
inherent age-dependent protein aggregation impacts
neurodegenerative diseases. We found that proteins
similar to those aggregating in old worms have also been
identified as minor components of human disease
aggregates. In addition, we showed that higher levels of
inherent protein aggregation aggravated toxicity in a C.
elegans Huntington’s disease model. Inherent protein
aggregation is a new biomarker of aging. Understanding
how to modulate it will lead to important insights into the
mechanisms that underlie aging and protein aggregation
diseases.

Age-Dependent Protein Aggregation in C. elegans
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Figure 1. The majority of insoluble-prone proteins are consistently more insoluble with age in C. elegans. (A) Total and detergent-
insoluble protein staining of gon-2(2)/gonad-less extracts using Sypro Ruby. Total protein fraction was diluted 1:3 compared to the insoluble fraction.
Quantification of insoluble proteins in the red outlined areas revealed a fold change of 3.560.8 (SD) on average between young and aged animals
(two biological and two experimental repeats). (B) Distribution of the fold change shown in logarithm base 2 in levels of insoluble proteins identified
in aged animals (when half the population is alive) compared to young animals (Day 3 of adulthood at 25uC). Each dot represents the fold change for
one insoluble-prone protein. Red bar indicates the mean. The fold changes of proteins that were identified in both independent experiments are
shown for each strain in Experiment 1 and Experiment 2. These results show that proteins identified in the formic acid soluble fraction have a
tendency to accumulate with age. 711 proteins were present in all four samples (defined as having an iTRAQ peak above 25 counts in young and/or
in old animals) (Experiment 1 and Experiment 2). Of these, some were excluded from the fold change calculations because their iTRAQ peak was too
low (#25 counts) in young animals. Fold changes were calculated in Experiment 1 for 698 of 711 insoluble proteins in fem-1(2) animals and 670 of
711 insoluble proteins in gon-2(2) animals and in Experiment 2 for 692 of 711 insoluble proteins in fem-1(2) and 695 of 711 insoluble proteins in glp-
1(2). (C–D) Changes in insolubility with age in the two independent biological replicates were strongly correlated. Age-dependent insolubility fold
changes are plotted for both Experiments 1 and 2, comparing fem-1(2) animals (C) and comparing gon-2(2) to glp-1(2) animals (D). Spearman r
correlation and two-tailed p values were calculated for each set: fem-(2): r = 0.81, p,0.0001; gon-2(2)/glp-1(2): r = 0.63, p,0.0001.
doi:10.1371/journal.pbio.1000450.g001

Age-Dependent Protein Aggregation in C. elegans
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2(2), and the germline-deficient mutant glp-1(2). In these two

strains without oocytes, we found that 621 proteins (Experiment 1)

and 486 proteins (Experiment 2) out of the 711 insoluble proteins

present in both samples accumulated by 1.5-fold or more with age.

Conversely, the levels of only two insoluble proteins (CSQ-1 and

PAT-10) decreased by over 1.5-fold with age in both strains

without oocytes. Combining the quantification of both experi-

ments (examining insoluble proteins from animals with and

without oocytes), we have found a set of 461 proteins that

consistently become 1.5-fold or more insoluble with age (Table

S1). We will refer to these 461 proteins as the ‘‘age-dependent

insoluble’’ set. Overall, these results show that the aging process is

associated with a large increase in protein insolubility.

To ask whether individual proteins behave in a reproducible

fashion between experiments, for each protein, we plotted the fold

change in insolubility with age for both biological repeats

(Figure 1C and 1D). We found a highly significant correlation

between fold changes in insolubility measured by iTRAQ in both

replicate analyses of fem-1(2) animals (r = 0.8, p,0.0001). The

correlation between fold changes in insolubility in gon-2(2) and

glp-1(2) animals was slightly lower but still very significant (r = 0.6,

p,0.0001). This reproducibility indicates that age-dependent

protein insolubility is not a stochastic process, but rather that

certain proteins have properties that make them more prone to

insolubility with age.

In somatic tissues (assayed using either gon-2(2) or glp-1(2)

animals), we observed a group of 250 insoluble-prone proteins that

were not more insoluble with age, which we will refer to as the

‘‘age-independent insoluble’’ set. Among these, 60 insoluble-prone

proteins remained at similar levels with age in both strains. This

group contains the majority of the cytoskeleton proteins identified

(with the notable exception of intermediate filaments and lamin-1)

(Table S2). Some cytoskeletal proteins such as gamma-tubulin

have been shown to be present in an insoluble but functional state

in the cell [30]. We note that under specific conditions, tubulin can

also assemble irreversibly into non-specific polymers (i.e. aggre-

gates) [31]. Interestingly, intermediate filaments form cages

delimiting the aggresome [32] and therefore their accumulation

with age may represent an effort to segregate age-related

aggregating proteins. By extrapolation, other proteins present in

our insoluble set may be functional and yet insoluble. Conversely,

we predict that misfolded proteins that assemble together to form

aggregates will also be found in our insoluble fraction, as shown for

disease aggregated proteins. The tendency of ,2/3 of the

insoluble proteins identified to become more insoluble with age

in all strains examined strongly suggests that protein insolubility is

facilitated by the aging process. In experiments described below,

we found that, when fluorescently tagged, all but one (very small)

protein we examined formed insoluble aggregates in the animal.

Therefore, we will refer to these insoluble proteins provisionally as

aggregation-prone proteins.

Overall, we have identified a reproducible set of several

hundred insoluble proteins predicted to include aggregation-prone

proteins that become more insoluble with age.

Age-Dependent Aggregation Occurs in Different Tissues
To better understand inherent protein aggregation in vivo, we

selected two proteins, RHO-1 and KIN-19, for more detailed

analysis. These proteins became 2-fold or more insoluble with age

in all the strains as quantified by mass spectrometry. Both proteins

are highly conserved in mammals: their mammalian homologs are

transforming protein RhoA and casein kinase 1 isoform alpha

(CK1a). Interestingly, CK1a is found tightly associated with

pathological intracellular inclusions in Alzheimer’s disease that

mainly contain tau protein, as well as in sporadic inclusion body

myositis (sIBM) [33,34].

Our proteomic analysis identified a considerable increase in

insolubility with age in strains that contained oocytes. To test

whether aggregation occurs in the reproductive tissue, we

examined the aggregation-prone protein RHO-1 tagged with

GFP under the control of the germline-specific pie-1 promoter

(Figure 2A) [35]. In disease models for aberrant protein

aggregation, protein aggregation is characterized by the assembly

of the misfolded protein into microscopically visible aggregates

[36]. We found that GFP::RHO-1, localized to the oocyte

membranes in young adults, accumulated with age in dense

patches in the sclerotic oocytes of older animals (Day 9) (Figure 2B

and 2C). Another hallmark of protein aggregation is the

transition from a soluble to an insoluble state, resulting in

reduced mobility of the aggregated protein. Fluorescent recovery

after photobleaching (FRAP) is a standard method for visualizing

this transition to a state of aggregation [37,38]. FRAP analysis

indicated that GFP::RHO-1 became immobile in these sclerotic

structures, consistent with its aggregating with age (Figure 2D and

2E). In contrast, GFP::RHO-1 remained mobile in the mem-

branes of the germline stem cells both in young and aged animals

(respectively, t1/2 = 35 s and t1/2 = 17 s). Thus, RHO-1 aggrega-

tion is restricted to the oocytes. This finding supports the idea

that oocyte-specific aggregation could explain the difference

between the relatively high levels of age-dependent insolubility in

fem-1(2) animals (which contain oocytes) versus the lower levels

present in glp-1(2) and gon-2(2) animals (which do not). Thus,

degenerating oocytes in wild-type animals may create a favorable

environment for protein aggregation. Consistent with this

interpretation, as in wild type, the oocytes acquired a sclerotic

appearance in old fem-1(2) animals, when viewed with

Normarski optics.

To evaluate somatic tissue aggregation, we expressed KIN-19

tagged with the recently developed monomeric fluorescent protein

‘‘tagRFP’’ using its endogenous promoter [39]. We found that this

fusion protein was most highly expressed in the pharynx and in a

pair of neuronal processes identified by their position as BDU

neurons (Figure S3A). We determined that the level of transgenic

KIN-19::tagRFP in the whole animal was similar to that of

endogenous KIN-19, as measured by Western blot (Figure S3B).

Transgenic animals showed no notable defects and had a lifespan

similar to that of wild-type controls (Figure S3C). With age, we

observed the formation of fluorescent-KIN-19 puncta throughout

the anterior pharyngeal bulb, indicative of KIN-19 aggregation

(schematized in Figure 2K) (Figure 2F and 2G). KIN-19::tagRFP

puncta were found throughout the cytoplasm in pharyngeal

muscle and marginal cells. We evaluated KIN-19::tagRFP puncta

formation in the pharynx at different time points throughout life in

a population of animals (Figure S3D). A small proportion of the

population started to accumulate puncta at Day 3 of adulthood,

implying a critical threshold for aggregation at this time point.

Thereafter, the number of animals displaying pharyngeal KIN-19

puncta increased rapidly until Day 9, when over 80% of the

population contained puncta. To test whether the proteins within

the KIN-19::tagRFP puncta were immobile, we measured FRAP

in defined areas of individual punctae. Even after 270 s, we

observed no recovery in fluorescence in the majority of puncta

examined, demonstrating that KIN-19::tagRFP could not diffuse

back into the bleached area and consistent with a state of

aggregation (Figure 2L and 2M). A small proportion of the KIN-

19::tagRFP puncta were composed of mobile protein (Table 1). In

contrast, control animals expressing only the tagRFP reporter

formed only a few puncta with age (Figure 2I and 2J), and all these

Age-Dependent Protein Aggregation in C. elegans
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puncta contained mobile tagRFP as determined by FRAP

(Figure 2M). We also performed FRAP on two KIN-19::tagRFP

punctate-like structures in the base of the pharynx that were

always present in Day 1 animals (Figure 2F). We observed partial

recovery of KIN-19::tagRFP fluorescence after photobleaching

with a recovery half-life of 107 s in young animals (Figure 2M).

The relatively slow recovery rate of KIN-19::tagRFP compared to

the rapid recovery rate of GFP::RHO-1 fluorescence in young

animals suggests that a fraction of KIN-19::tagRFP is already

immobile in these animals, consistent with our Western blot

analysis (Figure 3).

In addition, we measured KIN-19::tagRFP mobility in the

BDU neurons, where it was relatively highly (and uniformly)

expressed compared to other neurons. We did not observe the

formation of distinct KIN-19::tagRFP puncta in these processes

in young or in aged animals, but nevertheless FRAP analysis

showed that KIN-19::tagRFP becomes immobile in older BDU

neurons (Figures 2M and S4A). In young animals (Day 3), we

found partial recovery after photobleaching at a rate similar to

that observed in the young pharynx (t1/2 = 151 s, Figures 2M and

S4B). The generally low expression levels of KIN-19::tagRFP in

other neuronal processes prevented us from conducting sufficient

FRAP analysis to determine whether their KIN-19::tagRFP was

mobile or not.

Overall, our in vivo data confirm that proteins prone to

insolubility with age that were identified by our proteomic analysis

have the potential to aggregate in different tissues in an age-

dependent manner in the animal.

Age-Dependent Protein Aggregation Is Not Correlated
with a Change in Total Protein Levels

The overall increase in aggregation propensity with age could

be enhanced by a proportional increase in the total levels of these

aggregation-prone proteins. To test this hypothesis, we chose four

proteins for which antibodies were available, the C. elegans

homologs of casein kinase I alpha, CK1a (KIN-19), Rho1,

Hsp90 (DAF-21), and 14-3-3 (PAR-5), and asked whether their

levels increased with age. Young and aged animals were

solubilized either in Urea/SDS buffer to obtain total protein

extracts or sequentially extracted in RIPA followed by Urea/SDS

buffer to isolate insoluble proteins in the pellet. Quantification of

total protein for each candidate showed that levels remained either

constant or decreased slightly with age (Figure S5A). We observed

the largest change for total DAF-21 levels, which were reduced on

average by 1.47-fold with age. [The reduction in DAF-21 levels

was correlated with a small shift in molecular weight and the

appearance of a cleavage product in the total and RIPA-soluble

fraction in the aged population (Figure 3 and S5C)]. Quantifica-

tion of the insoluble levels relative to total levels of these candidates

revealed a significant increase in insolubility with age in animals

with and without reproductive tissues (Figure 3, Mann Whitney

test, fem-1(2), p = 0.003; gon-2(2), p = 0.01). Our results demon-

strate that, at least for these four proteins, increased protein levels

are not the direct cause of age-dependent protein aggregation.

Interestingly, our analysis also showed that only a fraction of the

total amount of protein available will become insoluble in aged

animals. Averaging our Western blot results for all four candidates

Figure 2. Age-dependent protein aggregation can occur in different tissues. (A–B) Ppie-1::gfp::rho-1-expressing animal, Day 1 (A) and Day 9
(B–C). In our proteomic analysis, we identified RHO-1 as a protein prone to aggregate with age both in the reproductive and somatic tissues.
GFP::RHO-1, expressed in the germline, was localized to germline stem cell (open arrowhead) and oocyte (full arrowhead) membranes in young
animals. With age, GFP::RHO-1 also accumulated in sclerotic oocytes in the uterus (full arrowhead). Scale bar: 20 mm. (D) FRAP-immobile GFP::RHO-1
in aged oocytes. GFP::RHO-1 is pseudocolored in magenta. Laser setting: 25% in 0.85 mm2 (white open box). Scale bar: 2 mm. (E) Quantification of
relative fluorescence intensity (RFI) during recovery. We found no recovery of GFP::RHO-1 in sclerotic oocytes in aged animals (Day 12, N animals = 5,
N puncta evaluated = 5) but rapid fluorescence recovery for GFP::RHO-1 localized to the germ-line cell membrane in young animals (t1/2 = 35 s, Day 1,
N animals = 5, N puncta evaluated = 5) and in aged animals (t1/2 = 17 s, Day 12, N animals = 3, N puncta evaluated = 4). (F–K) Formation of KIN-
19::tagRFP puncta in the anterior pharyngeal bulb (metacorpus) with age. Pkin-19::kin-19::tagrfp animals (F and G); daf-2(e1370); Pkin-19::kin-19::tagrfp
animals (H); control Pkin-19::tagrfp animals (I and J). (F–J) 10 ms exposure, 1006. (K) Schematic of C. elegans’ pharynx, boxed area is shown in F–J. (L)
FRAP-immobile KIN-19::tagRFP puncta in the anterior pharyngeal bulb of 15-day-old Pkin-19::kin-19::tagrfp animal. Laser settings: 40% in 0.46 mm2

(white open box). Scale bar: 1 mm. (M) We found no fluorescence recovery of pharyngeal or BDU neuronal KIN-19::tagRFP in aged animals (Day 12, N
animals = 5, N puncta evaluated = 5 and Day 12 and 14, N animals = 5, N puncta evaluated = 5, respectively). KIN-19::tagRFP was able to diffuse back at
a slow rate in young animals both in the pharynx and neurons (t1/2 = 107 s, Day 1, N animals = 4, N puncta evaluated = 5 and t1/2 = 151 s, Day 3, N
animals = 5, N puncta evaluated = 5, respectively). The few puncta formed by tagRFP alone contained highly mobile protein in aged animals (Day 12;
N animals = 5, N puncta evaluated = 5).
doi:10.1371/journal.pbio.1000450.g002

Table 1. Pharyngeal fluorescent puncta in daf-2(2) mutants contain mobile KIN-19.

Total KIN-19::tagRFP
Puncta Evaluated

Number of
Animals

Boxed Area
Bleached(1)

Boxed Area
Bleached(1)

Whole Puncta
Bleached(2)

Immobile
(No recovery)

Mobile
(Recovery)

Mobile (No recovery or partial
recovery)

wild-type 36 16 25 5 6

daf-2(e1370) 34 18 6 6 22

The assay was done in a blind fashion in which the identity of the samples was concealed. FRAP was performed on KIN-19::tagRFP puncta in a wild-type background
between Day 12–15 and in a daf-2(e1370) background between Day 13–15 of adulthood. Recovery after photobleaching was estimated between 2.5 to 4 min after
bleaching.
(1)This category comprises puncta where the laser beam bleached the targeted boxed area without affecting the non-targeted area to the same extent. Puncta in (1)

where we observed no recovery after photobleaching were determined to contain immobile KIN-19::tagRFP protein. Conversely, KIN-19::tagRFP protein was estimated
to be mobile when we observed recovery of the area bleached.

(2)This category comprises puncta where the laser beam uniformly bleached both targeted and non-targeted parts of the puncta. We observed either no-recovery or a
partial recovery in fluorescence of the whole puncta. These puncta were estimated to contain mobile KIN-19::tagRFP protein.

Mobile compared to immobile KIN-19::tagRFP puncta in daf-2(+) and daf-2(2) background: Fisher’s exact test p,0.0001.
doi:10.1371/journal.pbio.1000450.t001
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examined, we found that 10.4% of the protein available in gon-

2(2) animals and 35.9% of the protein available in fem-(2)

animals is insoluble in aged animals (Figure S5B). Therefore, these

results suggest that the majority of the pool of aggregation-prone

proteins remains detergent-soluble.

Although we did not observe higher total KIN-19 protein levels

in the whole animal with age, we found a 1.6-fold up-regulation of

kin-19 promoter-directed expression in the pharynx, as measured

by quantification of the transcriptional Pkin-19::tagRFP fluorescent

reporter (Figure 4A). To exclude the hypothesis that KIN-19

aggregation in the pharynx was caused solely by an increase in the

level of KIN-19, we reduced KIN-19::tagRFP levels using RNAi

(Figure 4B) and asked whether the protein would still aggregate

with age. Adult-only kin-19-RNAi treatment reduced the levels of

KIN-19::tagRFP in 6-day-old adults to a level similar to that

measured in 2-day-old controls. Under these conditions, we still

Figure 3. Insoluble but not total levels of four aggregation-prone proteins increased with age. (A and C) Western blot detection of KIN-
19 (CK1a), RHO-1, DAF-21 (Hsp90), and PAR-5 (14-3-3) in young and aged animals containing either somatic and germline tissue [fem-1(2), (A)] or
containing only somatic tissues [gon-2(2), (C)]. The total fraction (Urea and SDS buffer) contains all proteins and the detergent-insoluble fraction
contains aggregation-prone proteins. The total protein fraction was diluted 1:3 compared to insoluble fraction. Arrowheads mark the protein bands
corresponding to the aggregation-prone candidates. Overall, Western blot analysis confirms our mass spectrometry results demonstrating a large
increase in insolubility with age. With age, we noted a slight decrease in the size of full-length DAF-21 (less than 10 kDa). (B and D) Quantification of
the fractional increase in aggregated levels compared to total levels of each candidate evaluated by Western blot. These results demonstrate that
age-dependent insolubility for each of the four proteins we examined occurs independently of an increase in total protein levels. Extracts from two
biologically independent experiments were evaluated. Error bars indicate SEM.
doi:10.1371/journal.pbio.1000450.g003
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observed significantly more KIN-19::tagRFP aggregation in older

animals than in young animals (Figure 4C and 4D). We confirmed

by FRAP that aggregates in 6-day-old kin-19 RNAi-treated

animals were formed by immobile KIN-19::tagRFP (Figure

S4C). These findings show that preventing protein levels from

increasing does not abrogate KIN-19 aggregation.

Overall, our data show that age-dependent protein aggregation

is not necessarily caused by increased protein levels. Instead, other

events associated with age can promote aggregation.

Protein Insolubility in Young Animals
Whole-protein staining shows that many of the insoluble

proteins detected in aged animals are also present in relatively

young animals (Day 3 of adulthood at 25uC) at a time when no

obvious signs of aging are visible (Figure 1A). Similarly, Western

blot analysis revealed the presence of KIN-19, DAF-21/HSP90,

and PAR-5 in the insoluble fraction from young gon-2(2) and fem-

1(2) animals (Figure 3 and Figure S5C). In addition, our mass

spectrometry analysis showed that the vast majority of both fem-

1(2) and gon-2(2)/glp-1(2) age-aggregated proteins were also

insoluble to some extent in the young animals (Figure 1B). Overall,

the presence of insoluble proteins in the younger animals, albeit at

relatively low levels, suggests that protein aggregation is not limited

to mid-life or old animals but already occurring in healthy young

animals. It is conceivable that these insoluble proteins have a

function in young adults, but these findings are also consistent with

recent reports showing that a decline in proteostasis begins in

young C. elegans animals [40].

Reduced Insulin/IGF-1 Signaling Can Delay and Prevent
Inherent Protein Aggregation

To further evaluate the importance of the aging process in

mediating protein aggregation, we asked whether a mutation that

slows aging would affect the rate of inherent protein aggregation.

Mutation of the daf-2/insulin/IGF-1-receptor gene doubles the

lifespan of C. elegans [41] and delays proteotoxicity in C. elegans’

Figure 4. Reducing KIN-19::tagRFP levels does not prevent age-dependent protein aggregation in the pharynx. (A) The activity of the
kin-19 promoter was up-regulated with age. Fluorescence from the tagRFP reporter driven by the kin-19 promoter increased by 1.6-fold between Day
2 and Day 6 in Pkin-19::tagrfp animals (Unpaired t test *p = 0.03). Relative fluorescence quantification in the anterior pharyngeal bulb is shown, 5 ms
exposure. Numbers of animals quantified are given in the histogram bars. Error bars indicate SEM. (B) kin-19 RNAi treatment prevented an increase
in KIN-19::tagRFP levels with age (Day 2 versus Day 6 with kin-19 RNAi, unpaired t test p.0.1). In comparison, KIN-19::tagRFP levels increased in
the anterior pharyngeal bulb by 2.4-fold between Day 2 and Day 6 in Pkin-19::kin-19::tagrfp animals treated with control RNAi (Unpaired t test
*** p,0.0001). Error bars indicate SEM. (C) Representative animals treated with kin-19 RNAi or control RNAi. (D) Reducing KIN-19::tagRFP levels did not
prevent its age-dependent aggregation. Animals were classified into three groups depending on the number of KIN-19::tagRFP puncta present in
their anterior pharyngeal bulbs. For statistical analysis, we grouped both categories with more than 10 puncta and compared them to the category
with less than 10 puncta. At Day 6, animals treated with control or kin-19 RNAi had significantly more KIN-19::tagRFP aggregation than did control or
kin-19(RNAi) animals on Day 2 (with kin-19 RNAi, Day 2 and Day 6, Yates’ Chi-square test: p,0.0001; with control RNAi, Day 2 and Day 6, Yates’ Chi-
square test: p,0.0001). Numbers of animals evaluated are shown in the histogram bars.
doi:10.1371/journal.pbio.1000450.g004
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disease models of aberrant protein aggregation [42,43]. Therefore

we tested whether down-regulation of the insulin/IGF-1 pathway

would delay inherent protein aggregation. As strong reduction-of-

function mutations affecting insulin/IGF-1 signaling can influence

reproduction [41,44,45], we chose to focus on aggregation in

somatic tissues in the gon-2(2) mutants. When daf-2 RNAi

treatment is initiated at hatching or at the last larval stage, the

animals grow to become long-lived adults [46]. The pattern of

insoluble proteins in young-adult animals subjected to daf-2 RNAi

(from the first larval stage) resembled that of wild type (Figure 5A).

However, we found only a slight increase in insolubility with age

(1.6-fold) compared to control animals (3.6-fold). More strikingly,

the insolubility pattern of proteins extracted from daf-2(RNAi)

animals did not change with age, whereas the two patterns (young

versus old) were very different in wild type. Exposure to daf-2

RNAi from the last larval stage produced very similar results

(unpublished data). Similarly, Western blot analysis showed that

daf-2 RNAi treatment greatly reduced the extent of both RHO-1

and DAF-21 insolubility with age and moderately reduced the

extent of KIN-19 and PAR-5 age-dependent insolubility

(Figure 5B).

The differences between protein insolubility in daf-2(RNAi) and

control-RNAi animals could potentially have been caused by

different levels of total protein available to aggregate. However, we

found no change in KIN-19 or PAR-5 total levels and a slight

increase in RHO-1 and DAF-21 total levels in aged daf-2(RNAi)

animals compared to aged control animals (1.4-fold) (Figure 5C).

Therefore, it is unlikely that reduced levels of protein insolubility

produced by daf-2 RNAi treatment was the result of less total

protein. Overall, these results suggest that reduction in insulin/

IGF-1 signaling specifically prevents the increase in protein

insolubility that normally occurs with age without affecting the

pattern of protein insolubility already present (in gel-based

detectable amounts) in younger animals.

We also examined the effect of daf-2 inhibition on protein

aggregation in vivo, focusing on KIN-19. A relatively strong daf-2

mutation, e1370, significantly delayed KIN-19::tagRFP puncta

formation in the pharynx (Figures 2H and 5D). At Day 12,

relatively few puncta were present in the long-lived mutants,

whereas nearly all of the daf-2(+) animals had high levels of

puncta. Unexpectedly, reduced insulin/IGF-1 signaling protected

these animals against the formation of any further puncta after

Day 12, even to Day 31, at which time all wild-type animals were

dead and the daf-2 mutants were beginning to die. Moreover, the

puncta in the daf-2(2) mutant tended to contain mobile KIN-19

(even in very old Day 38 animals) (Figure 5E and Table 1). Indeed,

FRAP analysis of 12- to 15-d-old animals revealed mobile KIN-

19::tagRFP protein in 28 out of 34 puncta examined in the daf-

2(2) mutant background compared to only 11 out of 36 puncta in

the daf-2(+) animals (Fisher’s exact test p,0.0001). These findings

imply that the daf-2(e1370) insulin/IGF-1-receptor mutation

protects against KIN-19 aggregation not only by slowing the rate

of aging but also by preventing the aggregation process itself.

Although inhibition of DAF-2 signaling did not lead to a

reduction in total aggregation-prone protein levels, by comparing

our list of insoluble proteins to lists of genes identified in

microarray analysis of long-lived daf-2 mutants versus slightly

short-lived daf-16; daf-2 double mutants (daf-16 encodes a FOXO-

family transcription factor required for the longevity of daf-2-

pathway mutants) [47], we found that daf-2(e1370) mutants had

relatively low levels of transcripts encoding certain aggregation-

prone proteins. In particular, we found that proteins prone to age-

dependent insolubility were significantly over-represented among

genes down-regulated in daf-2(2) mutants and under-represented

among genes up-regulated in daf-2(2) mutants (Table S3, chi-

square test p = 0.0002). Together, our findings suggest that

reduced insulin/IGF-1 signaling could prevent protein aggrega-

tion in two ways: by promoting protein solubility and, for certain

proteins, by modulating transcription.

Protein Aggregation Occurs at Diverse Subcellular
Localizations

To examine the subcellular localization of inherent protein

aggregates, we expressed a selection of candidates in the same cell

type, the body-wall muscle cells, using the myo-3 myosin promoter.

C. elegans body-wall muscle has been the tissue of choice for the

expression of disease-aggregating proteins such as amyloid-b and

polyglutamine repeats [42,48] and is relatively easy to visualize

without considerable autofluorescence build-up with age. We

observed the presence of puncta during development and

adulthood of the aggregation-prone candidates KIN-19, arginyl-

tRNA synthetase (RRT-1), a ribosomal subunit (RPS-8), and a

proteasomal protein (RPT-2) (Figure 6A–D). These puncta

contained immobile protein, as analyzed by FRAP (Figure 6F).

We note that both ribosomal proteins and aminoacyl-tRNA

synthetases have been shown to have a relatively low mobility

when present within the nucleolus [49,50]. However, we observed

no recovery 240 s after photobleaching, a time frame that should

allow full recovery for a low-mobility protein. It was noteworthy

that these proteins all formed insoluble puncta during develop-

ment when overexpressed in muscle. This finding indicates that

these proteins are capable of aggregating in very young animals, at

least in this tissue. Similarly, disease-aggregating proteins such as

expanded pathological polyglutamine repeats (over 35 polygluta-

mine repeat expansions) aggregate in the muscle during develop-

ment [37,42]. The lack of aggregation of the fluorescent tag alone

when over-expressed in the muscle (Figure 6E) suggests that this

early aggregation is related to the aggregation propensity of the

candidates examined. We also expressed the aggregation-prone

protein dynein light-chain 1 (DLC-1) fused to tagRFP in the

muscle, but this fusion protein remained soluble. Because DLC-1

is a very small protein (only 10.3 kDa), it is possible that the much

larger fluorescent tagRFP (27 kDa) masked the aggregation

propensity of this protein.

As the integrity of muscle tissue degenerates sharply with age

[51,52], intracellular localization of age-dependent aggregates

becomes challenging. Therefore, early aggregation in the muscle

gave us the opportunity to employ differential-interference

contrast microscopy to determine the positions of the puncta in

the cell. We observed KIN-19 aggregation throughout the

cytoplasm but not in the nucleus (Figure 6A). RRT-1/tRNA-

synthetase was located diffusely throughout the muscle and

accumulated in regions adjacent to the nucleus (Figure 6B)

possibly in the proximity of the endoplasmic reticulum or in the

aggresome. [We note that several known components of the

aggresome, such as intermediate filaments (IFA-1, IFA-3, IFB-2),

dynein (DLC-1, DLC-2, DHC-1), and 14-3-3 (PAR-5) [53] were

identified among the proteins prone to aggregate with age.] RPS-8

was present at low levels throughout the cytoplasm and

nucleoplasm and accumulated to form a bright mass in the

nucleolus (Figure 6C). Ribosomal subunits localize to the nucleolus

to assemble with rRNA and other subunits to form the mature

ribosome. Therefore, aggregation at the nucleolus suggests that

ribosomal subunits could be aggregating as FRAP-insoluble pre-

ribosomal particles. Finally, we found that the proteasomal 19S

protein RPT-2 formed FRAP-insoluble ring-like structures in the

nucleolus (Figure 6D). Under normal conditions, proteasomes are

found in the nucleoplasm and are not localized to the nucleolus

Age-Dependent Protein Aggregation in C. elegans

PLoS Biology | www.plosbiology.org 9 August 2010 | Volume 8 | Issue 8 | e1000450



Figure 5. Reduced insulin/IGF-1-like signaling protects against age-dependent protein insolubility and aggregation. (A) Sypro Ruby
staining revealed a decrease in overall age-dependent protein insolubility in gon-2(2)/gonad-less animals treated with daf-2 RNAi compared to
control RNAi (1.6-fold compared to a 3.6-fold increase with age, quantified in the red outlined areas). daf-2 RNAi treatment prevented the insolubility
of multiple proteins that appear with age in the total staining of insoluble proteins in control animals. (B) Western blot detection of specific
candidates showed a slight delay in insolubility or the absence of insolubility in animals treated with daf-2 RNAi. Quantification of the Western blots:
KIN-19: daf-2 RNAi, 2-fold increase with age; control RNAi, 3.4-fold. PAR-5: daf-2 RNAi, 1.8-fold increase with age; control RNAi, 2.1-fold. (C) Decreased
insolubility with reduced insulin/IGF-1 signaling is not correlated with a decrease in total protein levels of these proteins. Interestingly, daf-2 RNAi
treatment prevented the shift in size of DAF-21 in older animals. (D–E) The strong mutation daf-2(e1370) prevented KIN-19::tagRFP aggregation in the
pharynx. (D) daf-2(e1370); Pkin-19::kin-19::tagrfp animals had significantly fewer KIN-19::tagRFP puncta in their anterior pharyngeal bulbs than did
wild-type animals expressing Pkin-19::kin-19::tagrfp (Day 6: p,0.0001, Day 12: p,0.0001, Yates’ Chi-square test). No further increase in the number of
puncta was observed after Day 12 in the daf-2(e1370) background, suggesting that reduced insulin/IGF-1-like signaling somehow caps the process of
KIN-19::tagRFP puncta formation. The number of animals is indicated in the bars. (E) KIN-19::tagRFP puncta remained mostly soluble in a daf-2 mutant
background. FRAP analysis of a KIN-19::tagRFP puncta in the anterior pharyngeal bulb of daf-2(e1370); Pkin-19::kin-19::tagrfp animal, Day 38 (Laser
setting: 10% in 0.8 mm2). As with this example, most KIN-19::tagRFP puncta present in a daf-2 mutant background uniformly lost fluorescence in the
whole punta when bleached in a restricted area (Table 1). These results suggested that KIN-19::tagRFP does not aggregate in these puncta. Scale bar:
2 mm.
doi:10.1371/journal.pbio.1000450.g005
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Figure 6. Aggregation occurs in many regions of the cell. (A–E) Localization of aggregation-prone candidates and control tagRFP expressed in
body-wall muscle cells using the myo-3 promoter. First panel shows Nomarski photograph overlayed with the fluorescent view for each aggregation-
prone candidate. Scale bar: 10 mm. The next three panels show an enlargement of the boxed area in the first panel. Muscle nuclei are indicated in the
enlarged Normarski photograph by open arrowheads. To obtain sufficient resolution with Normarski, we examined animals either at the last stage of
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[54]. Therefore, their aggregation could lead to their mislocaliza-

tion to the nucleolus. It is possible that the cellular sites of

aggregation differ between young and old animals. However, we

observed a very similar pattern of intracellular KIN-19 puncta

localization during development (in muscles) and in old animals (in

the pharynx), suggesting that aggregation may occur in the same

cellular locations in young and old animals.

Overall, our results suggest that inherent protein aggregation is

not restrained to a single subcellular localization such as the

aggresome but that multiple centers of aggregation exist,

potentially affecting different cellular processes.

Muscle KIN-19 Aggravates Paralysis Caused by
Polyglutamine Repeats

Expressing disease-associated aggregation-prone proteins such

as polyglutamine-repeat proteins in the muscle paralyzes the

animal as it ages [42,55]. As described above, fluorescent-tagged

KIN-19 aggregated abundantly throughout the muscle cells in a

similar fashion to polyglutamine repeats or amyloid-b [42,56]

(Figure 6A). Therefore we asked whether these animals would

become paralyzed with age. However, we found that the increased

levels of KIN-19 aggregation in these animals did not cause

paralysis (Figure 7A). Therefore it was particularly interesting to

test whether KIN-19 aggregation in muscle cells also containing

polyglutamine-repeat proteins could enhance polyglutamine-

repeat-related pathology. To examine this possibility, we expressed

Pmyo-3::kin-19::tagrfp in animals expressing 35 polyglutamine

repeats (Q35) under the control of the muscle-specific unc-54

promoter [42]. Q35 transgenic animals exhibited an age-

dependent paralysis beginning on Day 6 of adulthood. As KIN-

19 formed aggregates in the muscle before the onset of Q35

aggregation, we asked whether KIN-19 aggregation could act as a

seed for Q35 aggregation. However, we found that Q35 and KIN-

19 puncta were distinct, so the two proteins clearly did not co-

aggregate (Figure 7C–F). Another possibility was that high levels of

aggregation-prone KIN-19 would inhibit the cellular proteostasis

systems, thereby increasing the number of Q35 aggregates, as

appears to occur when misfolded temperature-sensitive mutant

proteins are co-expressed with Q35 [19]. We evaluated the

numbers of large visible Q35 aggregates in 3-d-old adult Q35

transgenic animals containing KIN-19 aggregates compared to

Q35 control animals over-expressing tagRFP alone. Surprisingly,

we found a slight, albeit statistically significant, decrease in Q35

aggregates in animals with the aggregation-prone protein (Figure

S6, Kruskal-Wallis test, p,0.0001). Despite no large changes in

levels of polyglutamine-repeat aggregation, increased levels of

Figure 7. Muscle KIN-19::tagRFP accelerates the paralysis caused by polyglutamine-repeat proteins. (A) Animals expressing Pmyo-3::kin-
19::tagRFP, which exhibit KIN-19::tagRFP aggregates in the muscle, were not more likely to become paralyzed with age than were animals expressing
only tagRFP. (B) On the first day of paralysis with Q35 (Day 6), 42% of animals also expressing KIN-19::tagRFP in the muscle were paralyzed, compared
to only 19% of control animals expressing the tagRFP reporter (Yates’ Chi-square test, ** p,0.0005). A significant difference was also observed at Day
7 (Yates’ Chi-square test, * p,0.01) but not at Day 8. (A–B) The number of animals is indicated in the bars. For the five additional trials we performed,
see Table S4. (C–F) Muscle-aggregated KIN-19 and Q35 do not co-aggregate. Overlay of bright-field and fluorescent images of adult muscle (Day 3),
scale: 50 mm (C). Enlarged boxed area with KIN-19::tagRFP in red (D), Q35-YFP in green (E), and overlay (F), scale: 10 mm.
doi:10.1371/journal.pbio.1000450.g007

development (L4) or as young adults. Comparison of Normarski and fluorescent photographs show that KIN-19 and RRT-1 formed puncta in the
cytoplasm (A and B), whereas RPS-8 and RPT-2 aggregated in the nucleolus (C and D). Control tagRFP expressed alone in the muscle was diffusely
localized throughout the muscle cells (E). (F) FRAP assay in puncta formed by the muscle-expressed aggregation-prone candidates demonstrated that
these puncta contained immobile protein consistent with a state of aggregation. Muscle tagRFP remained mobile. Five puncta were evaluated in four
to five young animals by FRAP for each aggregation-prone candidate.
doi:10.1371/journal.pbio.1000450.g006
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KIN-19 aggregation in the muscle caused at least twice as many

Q35 transgenic animals to become paralyzed by Day 6 in several

trials (Figure 7B, Table S4). No significant difference in paralysis

was observed at the advanced disease-state 2 days later. Taken

together, the data suggest that KIN-19 specifically modulates the

initial paralysis threshold in Q35-containing animals. As a

consequence, increasing the level of this aggregation-prone protein

impacts the pathology caused by disease aggregating polygluta-

mine-repeats.

Specific Functional Protein Categories Are Prone to
Aggregate with Age

In addition to examining the properties of several insoluble-

prone proteins in vivo, we looked within the entire set of

aggregation-prone proteins for common functional or structural

features. Using the NIH-DAVID software [57], we found that

many of the proteins present in our insoluble fraction were

proteins that are known to function early in life, where they play

an important role in embryonic development, growth, translation,

and protein homeostasis (Table 2). These categories could

potentially represent proteins aggregating more specifically in the

oocytes. However, we found an over-representation of develop-

mental processes among the top 25th percentile of proteins prone

to aggregate with age in the somatic tissues of strains lacking

oocytes (p = 2.3E-5; unpublished data). Furthermore, DAVID

analysis of SwissProt and PIR terms revealed a significant over-

representation of the proteasome (21 proteins, EASE p = 3.8E-10),

ribosomal proteins (62 proteins, EASE p = 6.6E-28), and chaper-

ones (17 proteins, EASE p = 3.2E-5), including HSP90/DAF-21,

an HSP70 (HSP-1), several small heat shock proteins (HSP-16.11,

HSP-16.49, and SIP-1), as well as six chaperonin subunits. These

cellular components ensure proteostasis in young animals and thus

explain in part the over-representation of growth and translation

GO categories among aggregation-prone proteins.

Comparing functional categories over-represented in the age-

dependent and age-independent insoluble sets, we found overall

similar categories (Table S5A–B). However, proteins responsible

for protein folding and presumably normally soluble proteins such

as RHO-1 that regulate cytoskeleton organization were specifically

enriched in the age-dependent insoluble set, whereas proteins

related to cellular respiration were only enriched in the age-

independent insoluble set.

Interestingly, we found an over-representation of the GO

‘‘determination of adult life span’’ term, suggesting that aggrega-

tion-prone proteins tend to play a role in the aging process. If the

presence of aggregation-prone proteins is detrimental to the

organism, we should also observe an over-representation of these

candidates in RNAi screens previously carried out to identify

factors whose inhibition increases lifespan. We observed a

significant overlap between genes found to prolong lifespan when

inhibited after development and genes encoding proteins prone to

aggregate with age (Table S6, 11 out of 56 genes, cumulative

hypergeometric probability: p(X$11) = 0.0003) [58]. We found an

even larger overlap when comparing to the whole insoluble set

(Table S6, 18 out of 56 genes, cumulative hypergeometric

probability: p(X$18) = 5.8E-7). In addition, we observed a

significant overlap between the whole insoluble protein set and a

genome-wide RNAi library screen for longevity genes (Table S6, 9

out of 27 genes, cumulative hypergeometric probability:

p(X$9) = 0.0003) [59]. The products of these genes included

proteins that function in translation and mitochondrial respiration,

whose inhibition is known to increase lifespan [60,61,62]. In

addition, the set included nine genes not directly related to these

two main categories. For example, we found gex-15, a gene

encoding a GEX-3 interacting protein [63], which plays a role in

development [64]; maoc-1, which encodes Mao-c-like dehydratase

domain protein 1, predicted to function in peroxisomal fatty acid

beta-oxidation; sams-1, which encodes S-adenosyl methionine

synthetase, a protein that functions as a universal methyl group

donor; and pat-6, a gene encoding actopaxin, which binds an

integrin-linked kinase [65].

Overall, functional similarities among aggregation-prone pro-

teins, in particular proteins related to proteostasis regulation, show

that the process of aggregation is not random. The significant

overlap between aggregation-prone proteins and proteins whose

inhibition increases lifespan raises the possibility that the process of

aggregation itself tends to negatively impact the organism.

Aggregation-Prone Proteins Are Distinct in Structure
from the Proteome

To determine whether proteins prone to aggregate exhibit

sequence or structural properties that distinguish them from the

rest of the C. elegans proteome, we compared amino acid residue

composition, predicted secondary-structure content, and fold

classification. As a background proteome dataset, we compiled a

list of all C. elegans proteins detected in mass spectrometry

experiments available in PeptideAtlas [66]. This allowed us to

avoid potential bias caused by including proteins that would not be

normally detected by mass spectrometry. However, we note that

all our results are also significant if using the whole C. elegans

proteome (unpublished data). First, examining amino acid

composition, we observed a significant enrichment in aliphatic

amino acids among aggregation-prone proteins—in particular,

alanine, glycine, and valine (Figure 8A). Conversely, several amino

acids were significantly under-represented—in particular, proline,

which disrupts secondary structures such as b-sheets (Figure S7A).

Next, we predicted the secondary structure for each protein using

PSIPRED [67]. We observed a highly significant increase in b-

sheet content (Figure S7B) but no difference in a-helical content

(Figure S7C) in aggregation-prone proteins relative to the

proteome. Additional scanning window analysis showed that

aggregation-prone proteins are significantly enriched in long

Table 2. Specific functional categories are over-represented
in the whole aggregation-prone protein set.

Gene Ontology Term
Number of
Proteins

% of
Total p Value

Embryonic development 334 51% 1.1E-43

Translation 100 15% 6.3E-42

Growth 257 39% 1.3E-23

Cofactor metabolic process 38 6% 1.2E-08

Protein folding 31 5% 2.2E-07

Cellular respiration 12 2% 3.2E-07

tRNA aminoacylation 18 3% 5.3E-07

Determination of adult life span 30 5% 1.2E-04

Cytokinesis 24 4% 1.3E-04

Cytoskeleton organization and
biogenesis

32 5% 4.6E-04

Functional annotation of the aggregation-prone protein set was carried out
using the DAVID software. A total of 657 out of 711 aggregated proteins were
recognized by DAVID and 492 of these fell into one or more significant gene
ontology biological process category. EASE score p value: modified Fisher Exact
p value.
doi:10.1371/journal.pbio.1000450.t002
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stretches of b-sheet propensity—in particular, 20–30 amino acid

stretches (Figure 8B).

To identify any biases in the aggregation-prone proteins toward

particular tertiary structures, we assigned fold classifications to

each C. elegans protein with significant sequence homology to a

known structure in the CATH database, which is a comprehensive

hierarchical classification of protein domain structures [68]. This

revealed a significant structural bias in the aggregation-prone

proteins relative to the proteome towards folds with b-sheets

(Figure S7D). In particular, we found a small enrichment in

proteins containing mixed a-helix and b-sheet folds as well as b-

barrel folds. Conversely, proteins with orthogonal bundle folds

(CATH 1.10), which are a-helix rich, were under-represented

among aggregation-prone proteins.

Finally, we evaluated whether age-dependent insolubility was

linked to a different profile in amino acid composition or

predicted secondary structure compared to age-independent

insolubility. We found that structural differences identified in

the whole insoluble set were conserved in both the age-

dependent and age-independent insoluble set (Table S7). In

general, these structural enrichments tended to be slightly

less significant in the age-dependent compared to the age-

independent insoluble set. In particular, age-dependent insolu-

ble proteins had significantly less glycine compared to age-

independent insoluble proteins.

Together, our analysis indicated that protein insolubility and

age-dependent aggregation propensity is correlated with an

enrichment of specific residues and increased b-sheet propensity.

Discussion

Widespread Protein Insolubility Occurs in a Multicellular
Organism

A small number of aberrant aggregating proteins have been

associated with disease. Our results demonstrate, for the first time to

our knowledge, that several hundred proteins become insoluble

during normal aging in the multicellular organism, C. elegans. A few

of these proteins, such as gamma-tubulin [30], are known to be

functional in the cell in an insoluble state. However, the majority of

the proteins that we identified are functional in a soluble state.

Therefore, we believe that they are becoming misfolded with age

and aggregating. Indeed, studies have shown that many proteins

have the potential, when misfolded, to aggregate via self-

complementary sequences [9,10]. Consistent with this, we observed

the aggregation of five out of six fluorescently tagged proteins that

we examined in vivo (the exception being a protein that was much

smaller than the fluorophore). Conversely, the majority of age-

insoluble proteins were maintained as soluble by reducing daf-2/

insulin/IGF-1 signaling, which also extends lifespan, again arguing

against these proteins’ being functional in the insoluble state.

Inherent Protein Aggregation Increases with Age
Temperature-sensitive mutant proteins are prone to misfold

even in healthy young animals; thus a decline in proteostasis

begins at a relatively early age in C. elegans [40]. Likewise, we

observed large numbers of insoluble protein species in relatively

young animals (Day 3 of adulthood at 25uC). Quantitative mass

spectrometry and Western blot analysis revealed a considerable

increase in protein insolubility in older animals. We found that an

increase in the overall level of a protein is not necessary to induce

age-dependent protein insolubility and aggregation. Future

experiments will be required to learn whether age-dependent

protein aggregation is caused by increased levels of damage in

long-lived proteins over time and/or by a change in the cellular

environment.

Our analysis of four candidates suggests that approximately 10%

of the aggregation-prone protein available becomes highly insoluble

in aged somatic tissues. Our extraction method does not distinguish

soluble and membrane-bound proteins from soluble oligomers,

which could potentially nucleate the formation of large, insoluble

aggregates. Further investigation into the oligomer levels of these

proteins will be needed to give a better estimate of the proportion of

non-functional aggregation-prone proteins in the cell.

Inherent Protein Aggregation Is Modulated by the
Insulin/IGF-1 Signaling Pathway

Reducing insulin/IGF-1 signaling is known to trigger the

expression of many cell-protective proteins and processes

[69,70,71,72] that prevent the collapse of proteostasis. Reduced

insulin/IGF-1 signaling also improves the paralysis phenotype

caused by disease-aggregating proteins such as polyglutamine

Figure 8. Aggregation-prone proteins are enriched in aliphatic
amino acids and extended stretches of b-sheet propensity.
(A–B) Bioinformatic analysis of aggregation-prone proteins (red)
compared to the total set of C. elegans proteins detected by mass
spectrometry (black). (A) Aggregation-prone proteins were significantly
enriched in aliphatic residues (p = 4.7E-40) as evaluated by an unequal
variance t test. (B) Scanning window analysis showed that aggregation-
prone proteins are enriched in long stretches of b-sheet propensity
(unequal variance t test p = 2.5E-5).
doi:10.1371/journal.pbio.1000450.g008
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repeats and amyloid-b [42,43]. Suppression of insulin/IGF-1

signaling by RNAi was sufficient to prevent or greatly reduce age-

dependent protein insolubility in aged animals at a time point

when half the control animals are dead. Life-long and stronger

suppression of insulin/IGF-1 signaling changed the nature of the

aggregation process, as we found the majority of KIN-19::tagRFP-

labeled puncta to contain mobile protein even near the end of

these long-lived animals’ lives. Interestingly, these results suggest

that at least for KIN-19, the puncta could be delimited by a

structure such as membrane or intermediate filament network to

prevent diffusion of mobile KIN-19 away from the puncta. One

intriguing possibility is that conditions that inhibit insulin/IGF-1

signaling stimulate the recruitment of cellular factors to these

puncta that maintain physically associated aggregation-prone

proteins in a soluble state.

Another possibility to explain the decrease in protein insolubility

mediated by reduced insulin/IGF-1 signaling is that the

transcription of the corresponding genes is down-regulated,

thereby reducing the total levels of protein available to aggregate.

When grown at 25uC, daf-2(e1370) mutants enter the dauer state

during development, which is associated with reduced protein

synthesis. However, we showed previously that the global rates of

protein synthesis are not reduced in daf-2(e1370) mutants grown at

20uC [60], where the animals do not become dauers. daf-2(RNAi)

animals grown at 25uC do not become dauers, thus resembling

daf-2(e1370) animals grown at 20uC. We did not observe a change

in total protein levels detected by Sypro ruby in daf-2(RNAi)

animals grown at 25uC (unpublished data). Moreover, none of the

proteins we examined individually by Western blot was present at

lower levels in daf-2(RNAi) animals than in control animals. Thus

mechanisms that do not involve reductions in the levels of specific

aggregation-prone proteins levels must influence their aggregation.

Nevertheless, it was intriguing to find that daf-2(2) mutants

preferentially down-regulate the transcription of certain genes

encoding proteins prone to insolubility with age. This finding

raises the novel possibility that part of the longevity of daf-2

mutants is due to the reduced level of aggregation of certain

proteins, rather than simply to the reduced levels of their normal

cellular functions. Mechanistically, it would be particularly

interesting to investigate whether autophagy, which increases in

daf-2 mutants, protects against specific protein aggregation, as is

the case for b-amyloid aggregation in these mutants [73]. It will

also be interesting to learn whether mutants whose lifespans are

extended for other reasons, such as reduced TOR or respiration

levels, also have reduced levels of aggregated proteins.

Aggregation-Prone Proteins Regulate Proteostasis and
Prevent Disease Protein Aggregation

Interestingly, we found that age-dependent protein insolubility

affects a wide variety of systems involved in maintaining

proteostasis. We identified major chaperones such as HSP90/

DAF-21 and an HSP70 (HSP-1), several small heat shock proteins,

and several chaperonin subunits. We also found that a significant

fraction of the proteasome subunits are prone to aggregate with

age. Chaperones and the proteasome play a major role in

preventing the accumulation of misfolded proteins and are directly

implicated in preventing protein aggregation [13,74,75,76].

We also identified a significant fraction of ribosomal proteins

among our aggregation-prone proteins. Subcellular localization

showed that ribosomal proteins aggregate in the nucleolus. This

aggregation could potentially reduce the number of mature

ribosomes available to perform translation. Indeed, ribosomal

protein aggregation caused by reductive stress is associated with

decreased protein synthesis [77]. In addition, we found an over-

representation of mitochondrial proteins, among which were

several ATP synthase subunits, although these tended not to

become more insoluble with age. The significance of this

insolubility is not completely clear. Mitochondrial dysfunction

has been implicated in several neurodegenerative diseases

[78,79,80] and maintaining ATP levels has been suggested to

protect against a-synuclein aggregation [81]. Conversely, inhibit-

ing respiration and ATP synthase activity can have the beneficial

effect of extending lifespan.

It remains unclear why so many essential proteins involved in

proteostasis become aggregation-prone during the aging process.

One possibility is that these proteins aggregate as a consequence of

their interaction with misfolded aggregation-prone protein sub-

strates. However, it has been demonstrated previously that

chaperones can interact transiently with polyglutamine aggregates

without aggregating themselves [82]. Furthermore, the protea-

some remains active even if associated with aggregated proteins at

the aggresome [83].

As multiple aggregation-prone proteins play an important role

in maintaining proteostasis, their aggregation could potentiate the

aggregation of other proteins, including disease-aggregating

proteins. Indeed, subunits of the proteasome, ribosome, and

chaperonin were identified among the RNAi clones in a genome-

wide screen that were reported to increase polyglutamine

aggregation in C. elegans [20]. In fact, we found 69 of the 156

proteins (44.9%) identified in this RNAi screen and represented in

our compiled mass spectrometry proteome were among our set of

aggregation-prone proteins (Table S8, cumulative hypergeometric

probability p(X$69)<0). Forty-six of these proteins were age-

dependent aggregation-prone proteins. The overlap between

aggregation-prone proteins and suppressors of polyglutamine

aggregation supports the notion that inherent age-dependent

protein aggregation would impact protein-aggregation disease.

Inherent Protein Aggregation Aggravates the Pathology
Caused by Polyglutamine-Repeat Aggregation

In this study, we analyzed the age-dependent aggregation of

KIN-19, the C. elegans homolog of casein kinase (CK)1a, which

has been identified in tau deposits in both Alzheimer’s disease

and sIBM [33,34]. Our results shed new light on this observation

by implying that CK1a could itself be aggregating with age in the

nervous system and the muscle, as occurs in C. elegans. We found

that KIN-19 was capable of influencing disease-aggregation

protein toxicity even in the absence of any detectable co-

aggregation. Specifically, we found that animals co-expressing

KIN-19 and Q35 did not have increased Q35 aggregate levels

and yet displayed increased paralysis. Why might this be? Many

recent studies show that low-MW oligomers formed by disease-

misfolded proteins are at least as, if not more, toxic as high-MW,

visible, aggregates [43,84,85,86]. The presence of aggregation-

prone KIN-19 in the muscle could enhance the formation of toxic

low MW intermediate species of Q35 in at least two ways: First,

misfolded KIN-19 could sequester chaperones and/or impair the

degradation system. Second, misfolded aggregation-prone KIN-

19 could overload a system that favors aggregate formation, such

as the aggresome, or it could sequester a pro-aggregation factor.

Both possibilities would result in more toxic low-MW oligomers,

causing enhanced paralysis. Finally, KIN-19 could influence Q35

paralysis through its enzymatic function as a protein kinase.

However, over-expression of KIN-19 in the muscle did not cause

increased paralysis, indicating that it is not toxic in otherwise

normal animals. Moreover, in mammalian cells, CK1a/KIN-19

promotes cellular survival and enhances the response to certain

stressors [87,88,89]. Therefore, factors associated with KIN-19
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aggregation may be more relevant in this situation, especially as

the property of aggregation is prominent and shared between

KIN-19 and Q35.

Aggregation-Prone Proteins Tend to Modulate Lifespan
In principle, increased protein aggregation with age could

have a beneficial effect by sequestering damaged proteins and

toxic low-MW oligomers. Alternatively, they could contribute to

the aging process by reducing the cell’s capacity for proteostasis,

triggering a vicious cycle that leads to further protein misfolding

and aggregation. Intriguingly, we found a highly significant

overlap between our aggregation-prone proteins and proteins

whose reduction increases lifespan. These included (but were

not restricted to) proteins involved in translation and mitochon-

drial respiration [58,59]. Our findings offer a new possible

explanation for the longevity of these animals, namely, that the

aggregation process is itself toxic and therefore, preventing the

aggregation of these proteins by reducing their levels could

protect the organism.

Structural Characteristics of Aggregation-Prone Proteins
Disease-related protein aggregation is characterized by amy-

loid fibrils consisting of a cross-b structure formed by the

association of identical proteins [86]. Hydrophobic residues and

b-sheets are known to be critical determinants of amyloid

formation [86], and both were over-represented in the insoluble

proteins identified in C. elegans. The over-representation of the

hydrophobic residue valine could in part explain the increased

levels of predicted b-sheets in these proteins. In addition, we

found a highly significant under-representation of prolines in

aggregation-prone proteins. Proline functions as an important

structural modulator by disrupting secondary structures such as

b-sheet strands. Therefore the longer stretches of b-sheets

observed in aggregation-prone proteins could in part be the

result of fewer prolines in the primary sequence. Although we

cannot conclude whether inherently aggregated proteins are in an

amorphous or structured aggregated form, our results are

compatible with the idea that some aggregation-prone proteins

may transition into an amyloid state. Indeed, these extended b-

sheets could promote protofibrils that then could nucleate to form

amyloid aggregates. Furthermore, for one of the candidates we

examined on Western blots, DAF-21, we detected the presence of

urea-insoluble material, indicative of a highly structured aggre-

gate (Figure S5C).

A recent study showed that self-complementary sequences

with high aggregation propensity are enriched in valine, alanine,

isoleucine, and serine [10]. In addition, short sequences of six to

eight residues have been shown to promote fibril formation in

disease-aggregating proteins [90], some of which are enriched in

glycine, alanine, and valine residues [91,92]. Therefore, the

overrepresentation of glycine, alanine, and valine residues in our

insoluble protein set could promote their aggregation.

We note that the structural features that distinguish

aggregation-prone proteins from other proteins were overrep-

resented in both age-dependent and age-independent insoluble

proteins identified in somatic tissues. Because nearly all

insoluble proteins became more insoluble with age in animals

with oocytes, it is possible that all these proteins are prone to

misfolding and aggregation with age. Therefore it would not be

unexpected to find similar structural features. However it is also

possible that age-dependent aggregation propensity can be

explained by a structural or other characteristic yet to be

discovered.

Aggregation-Prone Proteins Identified in C. elegans Are
Overrepresented in Human Disease Aggregates

An important question is whether age-related protein aggrega-

tion is an evolutionarily conserved process that also occurs in

higher organisms and, if so, to what extent inherent protein

aggregation can influence diseases related to aggregation. In the

context of disease, aggregates are mainly composed of hallmark

proteins such as b-amyloid, tau protein, huntingtin, and a-

synuclein. However, mass spectrometry analysis of amyloid

structures from neurodegenerated human brain tissue has shown

that other proteins are present at lower amounts in these

aggregates [16,17,18]. Strikingly, we found that homologs of 13

out of 24 proteins identified in amyloid plaques (p(X$13) = 2.5E-8)

and homologs of 32 out of 65 proteins identified in neurofibrillary

tangles from Alzheimer’s disease patients (p(X$32)<0) were prone

to aggregate in C. elegans (Tables S9 and S10). Similarly, we

observed that homologs of 11 out of 35 proteins discovered in

Lewy bodies from patients with a Lewy body variant of

Alzheimer’s disease were aggregation-prone in C. elegans

(p(X$11) = 0.0002) (Table S11). In addition, detergent-insoluble

proteins enriched in a mouse model for amyotrophic lateral

sclerosis (ALS) showed striking overlap with C. elegans proteins with

a propensity for insolubility [93]. The homologs of 26 out of 31

detergent-insoluble proteins accumulating in spinal cords from

these mice were identified in the aggregation-prone protein set in

C. elegans (p(X$22)<0) (Table S12). This remarkable overlap

between insolubility in C. elegans and disease-dependent insolubility

in mammals strongly suggests that the basic proprieties and

underlying mechanisms causing these proteins to misfold and

aggregate in C. elegans are evolutionary conserved, at least in the

context of disease. These results raise the possibility that inherent

protein aggregation might directly influence the aggregation and

pathology of the main disease-aggregating proteins in humans.

Conclusion
In summary, we have found that several hundred proteins,

many of which are associated with cell growth, become

aggregation-prone in C. elegans as it ages. Our findings suggest

that the aging process itself can be a causative factor for protein

aggregation and that reducing the rate of aging can prevent

aggregation. Our results open a new field of research into the role

of inherent protein aggregation in normal aging and in disease-

related aggregation. Further investigation into the factors

influencing the cell’s normal protein-aggregation landscape will

be important to understand the process of inherent protein

aggregation and could lead to the identification of therapeutic

targets for disease intervention. In addition, levels of inherent

protein aggregation could be used as a new biomarker to evaluate

the changes in proteostasis with age or in disease conditions.

Material and Methods

Note: Age is defined by the number of days of adulthood

starting from the last larval stage L4. Unless the number of days is

mentioned, ‘‘aged’’ animals are defined as the time point when

half of the population is alive.

Strains
Wild type: N2.

Mutants
CF2137: fem-1(hc17) IV, CF2253: gon-2(q388) I, CF1903: glp-

1(e2141) III, CF1041: daf-2(e1370) III.
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Transgenics
CF3166: muEx473[Pkin-19::kin-19::tagrfp+Ptph-1::gfp], CF3227: daf-

2(e1370) III; muEx473[Pkin-19::kin-19::tagrfp+Ptph-1::gfp], CF3317:

muEx512[Pkin-19::tagrfp+Ptph-1::gfp], CF3327: muEx513[Pmyo-3::kin-

19::tagrfp+Ptph-1::gfp], CF3328: muEx514[Pmyo-3::rpt-2::tagrfp+Ptph-

1::gfp], CF3549: muEx515[Pmyo-3::rps-8::gfp+Podr-1::cfp], CF3505:

muEx563[Pmyo-3::rrt-1::tagrfp+Ptph-1::gfp], CF3330: muEx516[Pmyo-

3::tagrfp+Ptph-1::gfp], AM140: rmIs132[Punc-54::q35::yfp], SA115: unc-

119(ed3) III; tjls1[Ppie-1::gfp::rho-1+unc-119(+)], CF3372: rmIs132;

muEx513, CF3373: rmIs132; muEx516.

Cloning and Strain Generation
Cloning was carried out using the Gateway system (Invitrogen,

Carlsbad, CA, USA). Promoters and cDNA of the genes we used

were obtained from Open Biosystems (Thermo Scientific,

Huntsville, AL, USA). All constructs contain the unc-54 39 UTR.

The tagrfp vector was obtained from Evrogen (AXXORA, San

Diego, CA, USA). Constructs were sequenced at each step. Pkin-

19::kin-19::tagrfp or Pkin-19::tagrfp were injected at 5 ng/ml together

with the coinjection marker, Ptph-1::gfp (at 50 ng/ml) into N2

animals. Pmyo-3::kin-19::tagrfp, Pmyo-3::tagrfp, Pmyo::rpt-2::tagrfp,

Pmyo::rps-8::tagrfp were injected at 30 ng/ml together with the

coinjection marker, Ptph-1::gfp (at 50 ng/ml) into N2 animals.

Aggregation-Prone Protein Extraction
To obtain large synchronized populations of aged animals, we

used temperature-induced sterile mutants. We chose not to use

FUDR-induced sterility, as this treatment was not as effective in

our hands as temperature-induced sterile mutants and resulted in

morphological abnormalities in a fraction of animals. We note that

the sterile strains were, to different extents, longer-lived than wild-

type animals (Figure S8). It is possible that conditions that extend

lifespan reduce aggregation, as we saw greatly reduced levels in the

very long-lived gon-2 mutants treated with daf-2 RNAi (see text).

Therefore, it is possible that the extent of protein aggregation may

have been even greater in wild-type animals. Eggs were collected

from adult animals and L1 arrest was performed overnight at

20uC. For gon-2(ts) animals, we transferred the parent animals at

the L4 stage to 25uC. 3,200 L1s were distributed per 14 cm

diameter plate with normal growth agar and kept at 25uC until

collection to avoid temperature-dependent artifacts. ,45,000

animals were collected at Day 3 of adulthood (young animals) or

when half the animals were estimated to be dead (aged animals;

evaluated by counting the alive/dead animal ratio in several areas

of the plates to be collected).

Sucrose separation. Dead animals and bacteria were

removed by flotation on a 30% sucrose solution. Animals were

incubated in a nutator for another 30 min to eliminate all residual

bacteria. Animals were washed rapidly once with RAB buffer

(0.1 M MES, 1 mM EGTA, 0.1 mM EDTA, 0.5 mM MgSO4,

0.75 M NaCl, 0.02 M NaF) without protease inhibitors and then

an equal volume of RAB buffer with Roche Complete Inhibitors

26 (Roche Molecular Biochemicals, Indianapolis, IN, USA) was

added. Animals were immediately drip frozen in liquid nitrogen

and ground to powder in a mortar.
Sequential extraction for proteomic analysis. The entire

extraction procedure was carried out on ice and centrifugation

steps were at 4uC. Because of losses during grinding, we choose to

normalize by sample weight. If the young and old worms are the

same size, then this does not cause any distortion. However, the

older worms are very slightly smaller (see below) and assuming that

they have not lost insoluble protein during the shrinkage (rather,

for example, water or fat), then our estimation of the increase in

insolubility with age is slightly higher than it should be. Indeed,

measurements of length and width (at vulva) of Day 3 young adults

compared to aged adults show that the width of the animal does

not change with age, but the length decreases very slightly. gon-

2(2): aged adult length = 94.5%66.9% of young adult length

(Student’s t test p = 0.04), width = 101.5%612.9% of young adult

width (Student’s t test p = ns), n = 15; glp-1(2): aged adult

length = 91.2%66.8% (Student’s t test p = 0.002), width =

103.8%69.9% (Student’s t test p = ns), n = 15; fem-1(2): aged

adult length = 87.5%65% (mean 6 SD) (Student’s t test p,0.001),

width = 95%613% (Student’s t test p = ns), n = 15. 300 mg of

young or aged animals were solubilized in two volumes of RAB

(0.1 M MES, 1 mM EGTA, 0.1 mM EDTA, 0.5 mM MgSO4,

0.75 M NaCl, 0.02 M NaF) with Roche Complete Inhibitors 26,

DNaseI and RNaseI, and extracted using a syringe (27G1/2,

Becton-Dickinson, Fischer scientific, Cincinnati, OH, USA).

Cytosolic soluble proteins were removed by centrifugation at

20,000 g. The pellet was reextracted in RAB with 1 M sucrose to

help remove lipids. The resulting pellet was extracted in RIPA

buffer (50 mM Tris pH 8, 150 mM NaCl, 5 mM EDTA, 0.5%

SDS, 0.5% SDO, 1% NP-40, 1 mM PMSF, Roche Complete

Inhibitors 16) three times using a syringe and centrifuged each

time at 20,000 g to remove membrane proteins. This final pellet

was solubilized in 70% formic acid and centrifuged at 50,000 g to

remove worm cuticlar debris. The supernatant was collected and

dialyzed on membrane filters disks, 0.025 mm pore size (Millipore,

Billerica, MA, USA) against 50 mM Tris, 1 mM DTT, 0.1 mM

PMSF, pH 7.5.

Extraction for whole protein stain and Western blot

analysis of protein insolubility. For Western blot analysis,

fem-1(2) animals grown on OP50 or gon-2(2) animals grown on

control RNAi (targeting GFP or the vector L4440) or daf-2 RNAi

were collected in RAB buffer. To extract aggregated proteins,

50 mg of the frozen animals after sucrose separation were directly

resuspended in 150 ml RIPA buffer (supplemented with Roche

Complete Inhibitors 26). RAB and RIPA soluble proteins were

collected after centrifugation at 20,000 g, 4uC. The pellet was

resuspended in 100 ml RIPA buffer (supplemented with Roche

Complete Inhibitors 26) and centrifuged again to remove any

detergent-soluble proteins remaining. The final pellet containing

detergent-insoluble proteins was solubilized in 75 ml 8 M Urea,

2% SDS, 50 mM DTT, 50 mM Tris pH 7.4 at room

temperature.

For the total protein fraction, we solubilized 50 mg of the frozen

animals from the sucrose separation directly into 225 ml 8 M

Urea, 2% SDS, 50 mM DTT, 50 mM Tris pH 7.4. Levels of

specific aggregating candidates were analyzed using the NuPAGE

invitrogen gel system (Invitrogen, Carlsbad, CA, USA) with 4%–

12% gradient gels. We chose six candidates for which antibodies

were available and we detected bands of the appropriate size for

the antibodies against 14-3-3 (Santa Cruz Biotechnology, Santa

Cruz, CA, USA), RHO-1 (gift from Asako Sugimoto), HSP90

(Abcam, Cambridge, MA, USA), and casein kinase I-a (Cell

Signaling, Danvers, MA, USA). Absolute intensity of each band

was quantified using Photoshop (Adobe Photoshop CS) by

subtracting the mean intensity from the background intensity

and multiplied by the total pixels. Total protein levels were

detected on the PVDF membrane, after transfer, by Sypro Ruby

blot staining (Invitrogen, Carlsbad, CA, USA) following manu-

facturer’s instructions. Fluorescence was detected using a Typhoon

9400 imager (GE Healthcare, Piscataway, NJ, USA) and

quantified using Photoshop. To account for any differences in

protein loading, we normalized the total levels of each protein

detected by Western blot with whole lane protein levels measured

by Sypro Ruby. As the overall levels of RIPA-insoluble proteins
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changed with age, we chose to normalize to four bands at ,45,

90–95, and 200 kDa visible by Sypro Ruby that remained

relatively constant with age. To estimate the fractional change in

insolubility with age, we quantified the levels of protein in the

insoluble fraction and divided this by the total protein levels for

each candidate detected by Western blot, accounting for

differences in extraction volumes and in quantities loaded on

each gel. To determine the overall fold change with age in

insoluble protein levels in gon-2(2) mutants subjected to control

RNAi or daf-2 RNAi, we quantified the Sypro Ruby staining

between ,45 and 80 kDa and below ,45 kDa.

Protein Digestion and iTRAQ Labeling
Dialyzed formic acid soluble proteins were resolubilized in

25 mM ammonium bicarbonate containing 6 M guanidine

hydrochloride. Samples were further processed to reduce and

alkylate cysteine side chains and digested with trypsin as described

previously [24]. Peptides were labeled with iTRAQ following the

manufacturer’s instructions (Applied Biosystems, Pleasanton, CA,

USA). We checked that over 95% of the peptides were labeled

with iTRAQ by analyzing the sample on a 1-h LC-MS/MS run

and searching the spectra, allowing iTRAQ as a variable

modification.

Strong Cation-Exchange Chromatography (SCX)
In order to identify as many peptides as possible, we performed

extensive separation of the combined iTRAQ-labeled sample by

SCX chromatography as described previously [24]. Briefly, we ran

90-min gradients from 0 to 350 mM KCl in 30% acetonitrile,

5 mM KH2PO4, pH 2.7 through a Tricorn 5/200 column (GE

Healthcare, Piscataway, NJ, USA) packed in-house with 5 mm

300 Å polysulfoethyl A resin (Western Analytical, Lake Elsinore,

CA, USA) using an ÄKTA Purifier (GE Healthcare, Piscataway,

NJ, USA). We collected 60 fractions for further analysis and

desalted these fractions using a MAX-RP reverse phase C18

cartridge (Phenomenex, Torrance, CA, USA). Varying the extent

of SCX fractionation did not significantly increase the number of

peptides identified. Desalted fractions were further diluted in 0.1%

formic acid depending on their UV absorption.

Nano-LC-ESI-Qq-TOF Tandem Mass Spectrometry
Analysis

Method. Mass spectrometry analysis was performed as

described previously [24]. Briefly, SCX fractions were further

separated by reverse phase C18 column (LC Packings, Sunnyvale,

CA, USA) with 90 min 3%–32% acetonitrile gradient cycles in

0.1% formic acid on an Agilent 1100 series HPLC (Agilent

Technologies, Palo Alto, CA, USA). The LC eluent was coupled

to a micro-ionspray source attached to a QSTAR Pulsar mass

spectrometer (MDS Sciex, Foster City, CA, USA).

Data analysis. Data were visualized using Analyst QS

software (version 1.1), and MS/MS centroid peak lists were

generated using the Mascot.dll script (version 1.6b18). The MS/

MS spectra were searched against the entire UniprotKB C. elegans

database release 15.9 (downloaded 2009.10.13) using Protein

Prospector v.5.3.2. Initial peptide tolerances in MS and MS/MS

modes were 200 ppm and 0.2 daltons, respectively. Two missed

cleavages were allowed for trypsin digestion. Carba-

midomethylation and iTRAQ labeling of lysine residues were

searched as fixed modifications. The peptide amino termini were

fixed as either iTRAQ-modified or protein N-terminal acetylated.

We allowed the following variable modifications: methionine

oxidation, N-terminal acetylation, N-terminal acetylation and

oxidation, N-terminal pyro-glutamate, and N-terminal methionine

loss with or without acetylation. Other than N-terminal or

methionine oxidation, we did not search specifically for

oxidation of other amino acids, glycation, or nitrosylation.

Therefore it is possible that we are missing some damaged

peptides in our analysis, but the detection of the non-modified

peptide as well as other peptides from the same protein should

allow us to identify the majority of potentially damaged proteins.

All high scoring peptide matches (expectation value,0.01) from

individual LC-MS/MS runs were then used to internally

recalibrate MS parent ion m/z values within that run.

Recalibrated data files were then searched with a peptide

tolerance in MS mode of 50 ppm. For each peptide MS/MS

spectra, the raw area of the peaks at m/z 114.1, 115.1, 116.1, and

117.1 (60.1 m/z) was determined by Protein Prospector from the

raw data files. We kept only peptides that had at least one

iTRAQ peak area over 25 counts. We performed a stringent

quality control of the proteomic data by eliminating all

proteins identified by one single peptide with an expectation

value higher than 1E-3. For proteins identified by two or more

peptides, we discarded peptides with an expectation value

higher than 1E-2. The false positive rates were estimated

by conducting the search using a concatenated database

containing the original UniProt database as well as a version of

each original entry where the sequence has been randomized.

Using this stringent cut-off, we did not identify any proteins in

the decoy-randomized database. For our list of aggregation-

prone proteins, we kept only proteins identified in both

experiments. In this list, we examined the MS/MS spectra

manually for every protein quantified by a single iTRAQ-

labeled peptide. Of these 38 proteins, 14 were discarded either

because of poor quality spectra or due to the presence of a

peptide other than the one of interest that was fragmented

simultaneously. To determine the relative level of each protein

in young or aged animals, we averaged the ratio of (peak area

in young)/(peak area in young+peak area in aged) and,

respectively, the ratio of (peak area in aged)/(peak area in

young+peak area in aged) for all peptides identified for each

protein. To measure the fold change in levels of aggregation-

prone proteins with age, we divided the ratio for aged-animal

proteins by the ratio for young-animal proteins.

Bioinformatics Analysis
The C. elegans proteome set was prepared by obtaining all

proteins identified by mass spectrometry available in PeptideAtlas

(http://www.peptideatlas.org) with a PeptideProphet probability

over 0.9. Proteins identified in our experiment but not in the

PeptideAtlas database were added to this proteome set (final total:

7,826 proteins). To exclude possible biases in sequence or

structural properties due to the presence of transmembrane

helices or signal peptides, we removed all proteins predicted to

contain transmembrane helices or signal peptides using TMHMM

v2.0 [94] and SignalP v3.0 [95], respectively. To prevent bias due

to redundancy, we reduced the sequence identity of the set to 50%

using CD-HIT v3.1.1 [96], resulting in 5,094 proteins. These

procedures were also applied to our aggregation-prone set,

resulting in 530 proteins. Aliphatic amino acid residues were

defined as A,G,I,L,V. Secondary structure content was predicted

using PSIPRED v2.6 [67], and fold classifications were obtained

from CATH v3.2 [68]. p values were calculated using the unequal

variance t test.

Functional annotation of the aggregation-prone set was done

using the freely available DAVID software (http://david.abcc.

ncifcrf.gov/). The C. elegans proteome set of mass spectrometry
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detectable proteins was chosen as the background list. All gene

ontology biological process terms were used for the analysis.

Redundant categories were removed using the functional

annotation clustering option.

To examine the overlap between proteins identified in human

disease aggregates or insoluble proteins identified in the ALS

mouse model and those in the C. elegans insoluble protein set, we

identified the C. elegans orthologs using the Inparanoid eukaryotic

ortholog database version 7.0 [97]. For human or mouse proteins

not found in the Inparanoid database, we used BLAST to identify

the closest homolog in C. elegans with an E-value,1E-5. The

significance of overlap between the set of aggregation-prone

proteins identified in this study and each set of insoluble proteins

was calculated using the cumulative hypergeometric test.

FRAP Analysis
Animals were anesthetized on agarose pads containing

levamisole. FRAP analysis was performed using the Nikon C1si

spectral confocal microscope (Nikon Center, UCSF). tagRFP and

GFP fluorescence were detected using 561 nm and 488 nm lasers,

respectively. Objective used: Plan Apo VC 1006/1.40 Oil (Nikon,

Melville, NY, USA). Gain was kept between 6.5 and 8.5. Relative

fluorescence intensity (RFI) was analyzed as described previously

following the equation RFI = (Tt/Ct)/(T0/C0), where T0 is the

intensity in the region of interest (ROI) before photobleaching; Tt,

the intensity in the ROI at a defined time after photobleaching;

C0, the intensity in the non-bleached part of the puncta before

photobleaching; and Ct, the intensity in the non-bleached part of

the puncta after bleaching [37]. Half-life recovery was determined

using the GraphPad Prism 5 software by fitting the recovery curves

with a least-squares regression.

Western Blot Analysis of KIN-19 Expression Levels in
Transgenic Animals

A standard SDS-PAGE protocol was followed. 100 N2 and 100

pkin-19::kin-19::tagrfp transgenic animals were collected, washed

once in ddH2O, resuspended in NuPAGE loading buffer

(Invitrogen, Carlsbad, CA, USA), and boiled. The equivalent of

20 animals was loaded on a 4%–12% gradient gel. The membrane

was probed with anti-casein kinase I-a (Cell Signaling, Danvers,

MA, USA) to detect endogenous and fluorescently tagged KIN-19.

Relative Fluorescence Quantification
Animals were anesthetized on agarose pads in levamisole.

Whole-worm images were taken using a Retiga EXi Fast1394

CCD digital camera (QImaging, Burnaby, British Columbia,

Canada) using the 106objective on a Zeiss Axioplan 2 compound

microscope (Zeiss, Germany). Fluorescence quantification was

performed using the Openlab 4.0.2 software by measuring the

intensity of each pixel in the anterior pharyngeal bulb.

RNAi Treatment
RNAi by feeding was performed as described previously [59].

The kin-19 RNAi clone was obtained from the Marc Vidal library

and sequenced. We began kin-19 RNAi treatment at the last larval

stage (L4) to avoid any developmental defects. Bacteria containing

the empty vector L4440 were used as control.

Aggregation Counting
Numbers of animals with less than 10, between 10 and 100, or

more than 100 KIN-19::tagRFP puncta in the anterior pharyngeal

bulb were determined using a Leica MZ16FA microscope (Leica,

Bannockburn, IL, USA). pkin-19::kin-19::tagrfp in wild-type and daf-

2(2) backgrounds were maintained at 15uC until the L4 stage and

selected at this stage to avoid differences in developmental timing.

Otherwise, animals were kept at 20uC. Q35 aggregate numbers

were evaluated from photos taken of adult animals at Day 3

visualized with a Leica MZ16FA microscope. Day 3 is this first

time point when more than a few aggregates could be observed in

the transgenic animals. All counting was done in a blind fashion in

which the identity of the samples was concealed.

Paralysis Assay
Animals were kept at 20uC. punc-54::q35::yfp; pkin-19::kin-

19::tagrfp, and punc-54::q35::yfp; pkin-19::tagrfp animals were selected

at L4 stage. Animals were scored as paralyzed if they could move

only their heads when poked with a platinum wire. The assay was

done in a blind fashion in which the identity of the samples was

concealed.

Lifespan Analysis
Lifespan analysis was performed at 20uC as previously described

[98]. Stata 8.2 (SAS) software was used for statistical analysis. p

values were calculated using the Log-rank (Mantel-Cox) method.

Statistics
Statistics were performed using Excel and GraphPad Prism 5.

Cumulative hypergeometric probabilities were calculated using the

free online Stat Trek software (http://stattrek.com) or MATLAB

and using the proteome detectable by mass spectrometry as the

population size (total: 7,826 proteins).

Supporting Information

Figure S1 Flowchart describing the insoluble-protein
extraction procedure and overlap between experiments.
(A) Flowchart of the sequential extraction to isolate aggregation-

prone proteins (detailed in the Methods section). The insoluble

fraction is expected to contain aggregated proteins and insoluble

but functional proteins. (B) Venn diagram showing that we

identified 1,125 proteins in Experiment 1 and 856 in Experiment

2, of which 725 proteins were identified in both experiments (see

text). The cumulative hypergeometric probability of observing an

overlap of 725 proteins is less than 1E-100. These results show that

we could reproducibly identify the large majority of proteins in the

insoluble fraction.

Found at: doi:10.1371/journal.pbio.1000450.s001 (0.11 MB PDF)

Figure S2 Flowchart describing the proteomic experi-
ment with iTRAQ quantification. Flowchart of procedures

from extraction to mass spectrometry analysis and quantification.

The experiment was carried out twice: Experiment 1 with fem-

1(2) animals and gonad-less [gon-2(2)] animals and Experiment 2

with fem-1(2) animals and germline-less [glp-1(2)] animals. fem-

1(2) animals lack sperm but contain both somatic and germline

tissue including oocytes.

Found at: doi:10.1371/journal.pbio.1000450.s002 (0.01 MB PDF)

Figure S3 Expression of KIN-19::tagRFP in transgenic
animals. (A) KIN-19::tagRFP expression pattern in young Pkin-

19::kin-19::tagrfp animal. KIN-19::tagRFP was highly expressed in

the pharynx and dorsal, ventral, and lateral neuronal processes.

The right panel shows a Nomarski photograph of the same animal.

(B) Western blot detection of endogenous and fluorescent-tagged

KIN-19::tagRFP with anti-casein kinase I-a antibody in young

adults. Quantification of endogenous and fluorescent-tagged KIN-

19::tagRFP bands with ImageJ (NIH) showed similar mean values

for both bands (integrated density: KIN-19::tagRFP, 2.4; KIN-19,
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2.5). This suggests an equivalent expression of the transgene and

endogenous proteins. (C) Lifespan analysis of Pkin-19::kin-19::tagrfp

and N2 animals at 20uC. Pkin-19::kin-19::tagrfp animals had a mean

lifespan of 18.4 days (59 events observed/82 total) and N2, 20 days

(82 events observed/96 total). Transgenic compared to control:

p = 0.085. (D) Time-course of KIN-19::tagRFP aggregation in a

population of Pkin-19::kin-19::tagrfp animals aging at 20uC.

Animals were counted as containing KIN-19::tagRFP aggregates

if over ten such aggregates were present in the anterior pharyngeal

bulb. Experiment was started with 50 animals.

Found at: doi:10.1371/journal.pbio.1000450.s003 (0.05 MB PDF)

Figure S4 KIN-19::tagRFP becomes immobile in aged
BDU neuronal processes and reducing KIN-19 levels
does not prevent aggregation in the pharynx. (A) KIN-

19::tagRFP became immobile with age in one lateral neuron

(BDU). FRAP in Pkin-19::kin-19::tagrfp animals, Day 15 (Laser

setting: 20% in 0.5 mm2). (B) In young animals, KIN-19::tagRFP

was mobile in the BDU process, Day 3 (Laser setting: 40% in

0.76 mm2); Scale bar: 2 mm. (C) KIN-19::tagRFP puncta in

animals subjected to kin-19 RNAi contained immobile protein as

measured by FRAP. Pkin-19::kin-19::tagrfp treated with kin-19

RNAi, Day 6. No recovery in fluorescence was observed between

8 and 338 s after photo-bleaching. Laser setting: 20% in 0.5 mm2.

Scale bar: 1 mm.

Found at: doi:10.1371/journal.pbio.1000450.s004 (0.05 MB PDF)

Figure S5 Total protein levels are not correlated with
age-dependent changes in protein insolubility. (A) Total

levels of aggregation-prone candidates in aged compared to

young animals remained similar or decreased in older animals.

Histogram represents the quantification of total protein levels that

were detected by Western blot in two biological independent

samples. Total protein level is represented as a percentage of total

protein detected in young animals. Total DAF-21 levels were

reduced on average by 1.47-fold with age. (B) Insolubility affects a

small proportion of the total amount of aggregation-prone

protein available. In aged animals, 35.9% of total proteins

probed in fem-(2) and 10.4% of total proteins probed by Western

blot in gon-2(2) animals are in an insoluble form. Overall,

insolubility affects a higher proportion of total protein in the

animals containing reproductive tissues versus only somatic

tissues. It remains unclear why RHO-1 does not follow this

trend (Figure 3), although we clearly show its aggregation in

oocytes. One explanation could be the high variability of the

detection of RHO-1 insolubility in aged gon-2(2) animals by

Western blot (3.9% and 16.7% of total protein in independent

experiments). (C) With age, DAF-21/HSP90 becomes truncated

and highly insoluble. Western blot detection of DAF-21/HSP90

in soluble (in RIPA buffer) and insoluble (pellet in Urea and SDS

buffer) fractions from animals with only somatic tissues [gon-

2(2)]. Full arrowhead indicates full-length DAF-21/HSP90. An

open arrowhead shows urea-insoluble DAF-21/HSP90 localized

in the gel well detected in aged animals and an asterisk points to a

17 kDa cleavage product formed both in the soluble and

insoluble fractions in aged animals.

Found at: doi:10.1371/journal.pbio.1000450.s005 (0.06 MB PDF)

Figure S6 Over-expression of the aggregation-prone
protein KIN-19 is correlated with a small decrease in
Q35 aggregates. Animals with muscle-aggregated KIN-19 have

slightly fewer large Q35 aggregates. Low magnification visible

Q35 aggregates were counted blind in Punc-54::q35::yfp; Pmyo-

3::tagrfp animals and Punc-54::q35::yfp; Pmyo-3::kin-19::tagrfp. Num-

ber of animals evaluated shown on x-axis. Day 3. Error bars: SEM.

Kruskal-Wallis test, p,0.0001.

Found at: doi:10.1371/journal.pbio.1000450.s006 (0.01 MB PDF)

Figure S7 Bioinformatic analysis of structural similar-
ities among aggregation-prone proteins. (A–D) Bioinfor-

matic analysis of aggregation-prone proteins (red) compared to the

C. elegans proteome compiled from proteins detected by mass

spectrometry (black). (A) We found a significant change in amino

acid composition in aggregation-prone proteins compared to the

proteome. Statistical significance was determined as a difference

greater than 0.3%, * p,0.001 between amino acid composition in

the insoluble set versus the proteome. Alanine (A), glycine (G), and

valine (V) were significantly over-represented (unequal variance

t test: A, p = 2.4E-26; G, p = 1.7E-26 and V, p = 1.9E-18) and

cysteine (C), phenylalanine (F), methionine (M), asparagine (N),

proline (P), and serine (S) were significantly under-represented in

the aggregation-prone set (unequal variance t test: C, p = 1.8E-11;

F, p = 8.7E-7; M, p = 5.4E-15; N, p = 5.8E-9; P, p = 1.3E-8, and S,

p = 1.6E-26). (B) We found a significant increase in predicted b-

sheets content in aggregation-prone proteins (unequal variance

t test, p = 6.2E-6). We note that the difference in b-sheets content is

distributed throughout the range, suggesting that this enrichment

is not caused by a small class of proteins. (C) We found no

significant difference in levels of a-helical content (unequal

variance t test, p = 0.35). (D) Our aggregation-prone protein set

was enriched in proteins with mixed a-helix and b-sheet folds (in

particular 3.40 and 3.50 CATH folds) and proteins with b-sheet

folds (in particular 2.40 CATH fold) but contains fewer proteins

with a-helix rich (in particular 1.10 CATH folds). The number of

proteins per fold observed in the aggregation-prone protein set and

the respective number of proteins expected in the proteome are

shown (only folds identified in at least 12 proteins are displayed).

Significance was evaluated by chi-test comparing all folds

identified in the aggregation-prone protein set to expected

numbers in the proteome: p = 1.9E-5.

Found at: doi:10.1371/journal.pbio.1000450.s007 (0.09 MB PDF)

Figure S8 Lifespan analysis of strains used. Lifespan
analysis of sterile mutants compared to N2 animals at
25uC. All sterile mutants used for the proteomic study had a

significantly longer lifespan than control when kept at 25uC.

Lifespan of fem-1(hc17): mean = 14.4, n = 101 (observed)/104(to-

tal), p versus control = 0.002; glp-1(e2141): m = 13.7, n = 103/107,

p versus control = 0.01; gon-2(q388): m = 15.8, n = 95/100, p versus

control,0.0001; control N2: m = 11.9, n = 73/94. We found no

significant differences in lifespan between sterile mutants at 25uC.

Found at: doi:10.1371/journal.pbio.1000450.s008 (0.01 MB PDF)

Table S1 Insoluble proteins identified in C. elegans.
Grey highlight marks the set of 461 proteins that consistently

became 1.5-fold or more insoluble with age in all four datasets.

Found at: doi:10.1371/journal.pbio.1000450.s009 (1.27 MB XLS)

Table S2 Cytoskeletal proteins identified in the insolu-
ble fraction.
Found at: doi:10.1371/journal.pbio.1000450.s010 (0.07 MB XLS)

Table S3 Age-dependent aggregation-prone proteins
identified as significantly regulated in daf-2(e1370)
versus daf-16(mu86); daf-2(e1370) microarrays (Shaw
et al. 2007 [47]). Microarray data from Shaw et al. comparing

daf-2(e1370) versus daf-16(mu86); daf-2(e1370) identified 1,570 genes

up-regulated and 796 down-regulated in daf-2 mutants (q,0.1,

17,965 genes in total). The mRNA levels of 457 age-dependent

aggregation-prone proteins were evaluated in these microarrays.

We note that mRNA levels of rho-1 were down-regulated in

daf-2(2) mutants, but the protein levels of RHO-1 remained

unchanged as detected by Western blot possibly reflecting the
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variation between mRNA and protein levels as previously described

in Gygi et al. (1999) Mol Cell Biol 19: 1720–1730.

Found at: doi:10.1371/journal.pbio.1000450.s011 (0.10 MB XLS)

Table S4 Paralysis of C. elegans expressing muscle
polyglutamine Q35 with or without muscle KIN-19. The

assay was done in a blind fashion in which the identity of the

samples was concealed. (*): Animals were maintained at 15uC until

L4 stage and then transferred to 20uC. All other experiments were

continuously kept at 20uC. (#): Between the times we performed

experiments 3 and 6, we carried out two experiments that showed

no difference in paralysis between the experimental and control

animals. We noted that the paralysis in the control animals was

higher than average, which could explain why we saw no

difference. However it remains unclear which experimental

variable could account for these results. Furthermore, variability

in the phenotype of polyglutamine-repeat transgenics has been

previously reported [19].

Found at: doi:10.1371/journal.pbio.1000450.s012 (0.05 MB PDF)

Table S5 (A) Specific functional categories are over-
represented in the age-dependent insoluble protein set.
Functional annotation was carried out using the DAVID software.

A total of 450 out of 461 age-dependent insoluble proteins were

recognized by DAVID and 349 of these fell into one or more

significant gene ontology biological process category. EASE score

p value: modified Fisher exact p value. (B) Specific functional

categories are over-represented in the age-independent insoluble

protein set. Functional annotation was carried out using the

DAVID software. A total of 243 out of 250 age-independent

insoluble proteins were recognized by DAVID and 214 of these

fell into one or more significant gene ontology biological process

category. EASE score p value: modified Fisher exact p value.

Found at: doi:10.1371/journal.pbio.1000450/s013 (0.02 MB

PDF)

Table S6 Proteins identified as aggregation-prone and
identified in RNAi screens for extended lifespan. 27 out of

29 genes identified in Hansen et al. (2005) [59] and 56 out of 64

genes identified in Curran et al. (2007) [58] were present in our

compiled mass spectrometry proteome. Grey highlight marks

proteins found in the age-dependent insoluble set.

Found at: doi:10.1371/journal.pbio.1000450.s014 (0.08 MB XLS)

Table S7 Primary and predicted secondary structures
identified in aggregation-prone proteins. p values were

calculated using the unequal variance t test.

Found at: doi:10.1371/journal.pbio.1000450.s015 (0.03 MB XLS)

Table S8 Proteins identified as aggregation-prone and
identified in RNAi screens for increased polyglutamine
aggregation (Nollen et al., 2004 [20]). 156 out of 186 genes

identified in Nollen et al. (2004) were present in our compiled mass

spectrometry proteome dataset. Grey highlight marks proteins

found in the age-dependent insoluble set. (*) Also found to increase

lifespan when inhibited by RNAi.

Found at: doi:10.1371/journal.pbio.1000450.s016 (0.14 MB XLS)

Table S9 Amyloid plaque components identified as
aggregation-prone in C. elegans. (#) Proteomic character-

ization of postmortem amyloid plaques isolated by laser capture

microdissection (Liao L et al., J Biol Chem. 2004 Aug 27; 279

(35):37061–8 [16]). Organism: human. (*) identified with BLAST

(closest homolog with e-value,1-e05). Cumulative hypergeo-

metric test p(X$13) = 2.5E-8.

Found at: doi:10.1371/journal.pbio.1000450.s017 (0.03 MB XLS)

Table S10 Neurofibrillary tangle components identified
as aggregation-prone in C. elegans. (#) Proteomic analysis

of neurofibrillary tangles in Alzheimer disease identifies GAPDH

as a detergent-insoluble paired helical filament tau binding protein

(Wang, Q et al., Faseb J. 2005 May;19(7):869–71 [18]). Organism:

human. (*) identified with BLAST (closest homolog with e-

value,1-e05). Cumulative hypergeometric test p(X$32)<0.

Found at: doi:10.1371/journal.pbio.1000450.s018 (0.03 MB XLS)

Table S11 Lewy body components identified as aggre-
gation-prone in C. elegans. (#) Proteomic identification of

novel proteins associated with Lewy bodies (Xia Q et al., Front Biosci.

2008 May 1;13:3850–6 [17]). Organism: Human. (*) identified

with BLAST (closest homolog with e-value,1-e05). Cumulative

hypergeometric test p(X$11) = 0.0002.

Found at: doi:10.1371/journal.pbio.1000450.s019 (0.05 MB XLS)

Table S12 Detergent-insoluble proteins identified in
mouse model for ALS and in C. elegans. (#) Characteriza-

tion of detergent-insoluble proteins in ALS indicates a causal link

between nitrative stress and aggregation in pathogenesis (Basso M

et al., PLoS One. 2009 Dec 2; 4(12):e8130 [93]). Organism:

mouse. (*) identified with BLAST (closest homolog with e-

value,1-e05). Cumulative hypergeometric test p(X$22)<0.

Found at: doi:10.1371/journal.pbio.1000450.s020 (0.05 MB XLS)
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