
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
jTRACE: A Reimplementation and Extension of the TRACE Model of Speech Perception and
Spoken Word Recognition

Permalink
https://escholarship.org/uc/item/09s166g0

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 27(27)

ISSN
1069-7977

Authors
Harris, Harlan D.
Magnuson, James S.
Strauss, Ted

Publication Date
2005

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/09s166g0
https://escholarship.org
http://www.cdlib.org/

jTRACE: A Reimplementation and Extension of
the TRACE Model of Speech Perception and Spoken Word Recognition

Ted J. Strauss (ted.strauss@uconn.edu)
James S. Magnuson* (james.magnuson@uconn.edu)

Harlan D. Harris (harlan.harris@uconn.edu)
Department of Psychology, University of Connecticut, 406 Babbidge Road, Unit 1020

Storrs, CT 06269 USA

 Abstract*

This paper describes jTRACE, a freely-available, cross-
platform reimplementation of the TRACE model of speech
perception and spoken word recognition in Java. The goal
of the reimplementation is to facilitate the use of
simulations by researchers who may not have the skills
necessary to use the original C implementation of TRACE.
In this paper, we report a large scale validation project, in
which we have replicated a number of important previous
simulations, and then we describe several new features in
jTRACE designed to help researchers conduct original
TRACE research as well as to replicate earlier findings.
These include visualization tools, powerful scripting, built-
in data analysis and graphing, stochasticity, and save/load
functions that facilitate archiving and sharing simulations.

Overview
TRACE (McClelland and Elman, 1986) is arguably the

best psychological model of speech processing to date, as
it is able to simulate the deepest and broadest range of
empirical phenomena. However, it is not widely used.
One obstacle is that the original implementation in the C
programming language is opaque to the average
psychologist (or even the average programmer). We
present jTRACE, a user-friendly, cross-platform and free
software tool that reimplements the TRACE model in the
Java programming language. Researchers at different
technical levels have different modeling needs. jTRACE
accommodates most of these needs, hiding details from
the beginner, giving powerful scripting tools to the
advanced user, and providing a basis for easy extensibility
by programmers.

The introduction gives a primer on TRACE and the
motivations for creating this tool. The second section
reviews some old and new simulations that we have
replicated with jTRACE. The third section describes the
principal functions that make this an effective and
versatile tool. Readers are encouraged to download
jTRACE from:

http://maglab.psy.uconn.edu/jtrace.html

Introduction
In their seminal paper, McClelland and Elman (1986)

describe TRACE and successful modeling of human
behavior on a wide array of speech processing tasks. Prior
to TRACE, the Cohort model (Marslen-Wilson & Tyler,
1980) laid the groundwork for modeling spoken-word

* Also at Haskins Labs, New Haven, CT.

recognition in real-time. TRACE takes the main ideas of
Cohort theory and implements them within the Parallel
Distributed Processing framework (McClelland &
Rumelhart, 1981), thus allowing the model to be
implemented as a computer program, and generate
detailed, falsifiable predictions about human behavior.
TRACE successfully models many aspects of real-time
spoken language processing, including categorical
perception of phonemes, word segmentation, lexical
effects on phoneme processing, lexical competition
(McClelland & Elman, 1986), and even fine-grained time
course data from eye tracking (e.g., Allopenna,
Magnuson, & Tanenhaus, 1998; Dahan, Magnuson, &
Tanenhaus, 2001; Dahan, Magnuson, Tanenhaus, &
Hogan, 2001), among many other phenomena (see
Protopapas, 1999, for a review of TRACE and its place in
the literature, and Frauenfelder & Peeters, 1998, for
analyses of various TRACE parameters).

How TRACE Works The TRACE model is a
connectionist network with an input layer and three
processing layers: feature, phoneme and word. There are
bottom-up excitatory connections between input-feature,
feature-phoneme and phoneme-word layers. There are
lateral inhibitory connections between units within the
feature, phoneme and word layers. There are top-down
excitatory (feedback) connections between word-
phoneme and phoneme-feature layers (although phoneme-
feature feedback is typically set to 0.0; McClelland &
Elman, 1986). An external stimulus is given to the input
layer and on each processing cycle, and activation passes
along the weighted connections, changing the activation
values of units in the processing layers.

The input to TRACE is a pseudo-spectral representation
(McClelland & Elman, 1986). The input takes the form of
a 63-dimensional vector at each time increment. Each
time increment in TRACE is intended to approximate
about 10 milliseconds of real time, and the 63-
dimensional vector describes the activation of 7 acoustic
features, each comprised of 9 continua. Feature units have
excitatory connections to phonemes. TRACE uses a 14
phoneme subset of English phonemes plus a “silence”
phoneme: /p/, /b/, /t/, /d/, /k/, /g/, /s/, /S/, /r/, /l/, /a/, /i/, /u/,
/^/, and the silence phoneme, /-/. Phoneme units have
excitatory connections to word units. Simulations can be
run with no items in the lexicon, just a few, or hundreds,
depending on simulation needs (simulations are faster
with smaller lexicons). The original, standard lexicon
(slex) has 212 items, though fairly large lexicons have

2086

Figure 1: The jTRACE simulation panel, during presentation of “abrupt” (at about the middle of the /t/). Word and phoneme
symbols are color coded in the two right panels in jTRACE. The right two panels can also be toggled to show grey-scale
matrix representations like those in the two left panels. The solid black area in the lower left panel indicates time slices where
no input has yet occurred.

also been used (Frauenfelder & Peeters, 1998, used 1024
words, and Magnuson, Strauss, & Harris, 2005 [this
volume] used 901).

The user need only provide a string of phonemes and
silence units and the model converts these into blocks of
pseudo-spectral activation values. To illustrate what these
inputs are like, consider Figure 1, which is a screen shot
of the jTRACE simulation panel. The bottom-left window
shows the input activations, where the x-axis represents
time, the y-axis represents the 63 acoustic feature values,
and the darkness of the squares corresponds to the
magnitude of activation. The stimulus in this example is
the phoneme sequence /-^br^pt-/ which corresponds to the
English word “abrupt” with a short silence at both ends.

TRACE has a very particular way of representing time
in the phoneme and word layers, which has been the
target of substantial criticism (though the problems were
first noted by McClelland & Elman, 1986). Each word
and each phoneme is represented by a series of
overlapping units aligned with different time increments.
For example, when TRACE processes /-^br^pt-/ it will
“hear” /^/ occurring once early on and again later in the
word. The phoneme layer has multiple /^/ units
distributed evenly across time that allow TRACE to
activate the phoneme simultaneously at different temporal

positions. The same temporal representation exists in the
word layer, allowing TRACE to interpret its input as
words distributed over time. In practical terms, this means
the layers representing words and phonemes are
duplicated every 3 time slices (so for a 100-cycle
simulation, there are 33 copies of each phoneme and each
word). This brute force approach is key to TRACE’s
solution to the segmentation problem. Rather than
explicitly trying to detect word onsets, words are
implicitly recognized. The word unit that is both most
similar to the input and best aligned with it in time will
become highly active and inhibit other units.

While TRACE’s phoneme and word units are aligned
with temporal positions, a TRACE simulation also occurs
over a period of time, measured in processing cycles. So
there are two notions of time associated with simulations:
temporal alignment of phoneme and word units, and
processing time – i.e., the temporal duration (or temporal
extension) of each simulation, which proceeds in discrete
cycles.

Every TRACE simulation begins at cycle zero, when no
input has been presented to the model, and extends over
time. At successive time steps, the input vectors are
applied to the input units, which feed forward to the
feature units, providing an analog to the temporal nature

2087

of real speech. The input is processed in 8 consecutive
steps as follows: (1) input to feature activation, (2) lateral
feature inhibition, (3) feature to phoneme activation, (4)
lateral phoneme inhibition, (5) phoneme to feature
feedback activation (if turned on), (6) phoneme to word
activation, (7) word to phoneme feedback activation, (8)
lateral word inhibition. The feature, phoneme and word
activations also decay linearly in time. These steps are
calculated for each time cycle and progress is stored in
each layers’ activation values (see McClelland & Elman,
1986, for details about all parameters).

Behavioral claims about TRACE simulations are
usually made with respect to the phoneme and word
layers’ activations over time. The right side of Figure 1
shows the phoneme and word layer activations, in which
units surpassing an activation threshold are displayed. In
the phoneme layer (bottom-right) the magnitude of
activation for an individual phoneme unit is represented
by its vertical height and its alignment in time is
represented by its horizontal position. Therefore, two or
more phoneme units aligned to the same time slice with
comparable activations would reflect ambiguity as to the
identity of the presented phoneme. The word layer is
represented the same way: height equals activation and
horizontal position equals temporal alignment. In the
word window we see that TRACE has more-or-less
identified the input as the lexical item “abrupt”, although
“agree” and “blood” are still somewhat activated.

TRACE, as an interactive activation network, is not a
learning model. All connection weights and other
processing parameters are set by hand before running a
simulation. However, a user will typically adjust a few or
no parameters from their default values when setting up a
simulation.

We have just described how TRACE simulates speech
perception and spoken word recognition. TRACE was
originally implemented by McClelland and Elman as a C
program (called cTRACE hereafter) which has been the
basis of all TRACE research to date. cTRACE is run as a
UNIX command line program; parameters and simulation
data are saved to text files and analyzed separately from
the program. cTRACE is efficient, can be used effectively
by UNIX users with some programming expertise, and
has contributed to many publications. The next section
explains why we found it necessary to move on from the
cTRACE implementation of TRACE.

Motivations for creating jTRACE. We had two primary
motivations for creating jTRACE. First, the original code
is fairly difficult to use and quite difficult to change.
cTRACE was implemented in the early 1980s in C. While
a technically proficient psychologist can use the main
functions of the program, even minor extensions to the
model require significant programming skill and
considerable time. Furthermore, the cTRACE code is
sparsely commented and does not conform to modern
programming style, and this makes extensions to the
model difficult to implement. The existence of a user-
friendly TRACE program that includes visualization tools
would encourage wider use of the model by non-
specialists and researchers in related fields. Similarly, a

programmer-friendly implementation would encourage
researchers to extend TRACE in new ways. jTRACE
meets both these needs.

Our second motivation was that many researchers hold
strong expectations about what TRACE should predict for
particular tasks. But because it is so difficult to conduct
TRACE simulations, researchers often test these intuitive
predictions with experiments with human subjects without
confirming them via simulation. Quite often, these
intuitive predictions turn out to be wrong – in the sense
that the intuitions are wrong, not the model (see, for
example, the discussion of predictions about frequency
effects in Dahan et al., 2001). If an easy-to-use version of
TRACE were available, we expect more researchers
would be able to use actual simulations to generate
TRACE predictions. However, the ability to run
simulations is not a panacea; see Magnuson, Dahan and
Tanenhaus (2001) and Mirman, McClelland, and Holt
(2005) for cautionary examples of the importance of
linking TRACE and human tasks as closely as possible,
and the importance of evaluating what aspects of a
simulation are responsible when the model fails to predict
human data.

All the same, jTRACE improves the situation by
allowing users to set up and run TRACE simulations in
minutes without any knowledge of programming. Once
set up, simulation parameters can be saved to a simple
output files (in XML format) and shared with colleagues.
In this way, reported simulations can be replicated and
analyzed more easily, encouraging understanding of the
model’s behavior, as reported throughout the literature.
jTRACE comes preloaded with several foundational
simulations (see below), making it ideal for self or
classroom tutorial use.

Validating jTRACE
This section summarizes a number of TRACE simulation
replications that we have performed using jTRACE. Each
of these simulations was originally done using cTRACE
or an extension thereof. We will describe the validation
process and measures, and then summarize the
simulations.

We used two methods to validate jTRACE simulations
against their cTRACE equivalents. The first and most
comprehensive involved comparing the activation of
every unit in each layer in the two simulations. In these
cases identical simulation parameters were loaded into
both cTRACE and jTRACE and the activation values of
the two simulations were compared directly using a
difference metric we call scaled mean absolute difference
(SMAD). The difference metric results in a value between
0 and 100 that summarizes the difference between the two
simulations; 0 means the two simulations are identical and
100 means they are maximally different (e.g., for a unit
that can have activation ranging from –0.3 to 1.0,
maximally different would mean the unit had a value of
–0.3 in one implementation but 1.0 in the other). This
direct comparison of cTRACE and jTRACE results was
made possible by implementing the difference metric in

2088

Table 1: Simulations with the original version of TRACE that
have been replicated with jTRACE. SMAD is a measure of

difference between jTRACE and the original TRACE
implementation (cTRACE); see text for details.

Simulation description SMAD
1. Basic lexical effect on phonemes

(McClelland & Elman, 1986, p.24)
0.0016

2. Elimination of the lexical effect by
time pressure (ibid, p.26)

0.0009

3. Late lexical effects (ibid, p.27) 0.0023
4. Dependence of lexical effect on

phonological ambiguity (ibid, p.28)
0.0011

5. Lexical effects in reaction-time
studies (ibid, p.29)

0.0036

6. Absence of lexical effect in some
reaction-time studies (ibid, p.30)

0.0031

7. “Lexical conspiracy” (ibid, p.33) 0.0022
8. Time-course of word recognition

effects (ibid, p.57)
0.0022

9. Lexical basis for word segmentation
(ibid, p.62)

0.0017

10. Word segmentation and non-words
(ibid, p.65)

0.0011

11. Recognizing words in short sentences
(ibid, p.69)

0.0067

12. Recognition of all items in the slex
lexicon (Ibid, p.62)

0.0055

13. Phoneme context effect with a
stochastic version of cTRACE
(McClelland. 1991, Figure 9)

n/a,
stochastic

data

14. Time-course of frequency effects in
eye-tracking experiment (Dahan et al.,
2001, Fig. 6)

n/a,
aggregate

data

15. Effects of lexical feedback in TRACE
(Frauenfelder & Peeters, 1998, Figure
4.9; see also Magnuson et al., 2005)

n/a,
aggregate

data

jTRACE as well as implementing a function that reads in
data files created by cTRACE.

The SMAD procedure operates by reading in the two
sets of simulation data, cSIM (from cTRACE) and jSIM
(from jTRACE). The two sets are 4-dimensional arrays of
real numbers having identical dimensions. The exact
dimensions of a simulation depend on parameters, but a
typical set of simulation dimensions (for a 100-cycle
simulation) would be: feature layer (63 feature continua x
100 slices); phoneme layer (15 phonemes x 33 slices,
since phonemes are aligned with the input every 3 slices);
word layer (212 words x 33 slices). All of the latter are
iterated over 100 processing cycles, yielding a total array
size of 1,379,100 real numbers for each simulation.
Processing this many comparisons requires approximately
5 minutes in jTRACE.

Each unit’s activation is a real number ranging between
–0.3 and 1.0, TRACE’s standard minimum and maximum
activation values. The SMAD metric compares each
corresponding pair in cSIM and jSIM by subtraction, and
the absolute value is taken for each. The mean of all
absolute differences is computed. Since the mean absolute
difference must be a number between 0 and 1.3, we scale
it to range between 0 and 100 for clarity, and interpret this
scaled mean absolute difference as a percent difference
between the two simulations.

The SMAD metric was applied to all of the individual
simulation replications and the percent difference was
never greater than 0.007%. The largest individual unit
difference (the absolute difference between a particular
pair of cells in the two data sets cSIM and jSIM) was
below 3%, although the majority of simulation
comparisons had a maximum unit difference below 1%.
We conclude that a difference between each simulation
pair of less than 0.007% is small enough to conclude that
jTRACE is a faithful reimplementation of cTRACE. The
minor differences between the two stem from some
necessary algorithmic changes (e.g., cTRACE relies
heavily on pointer arithmetic, which is not available in
Java) and subsequent rounding differences. (A more
thorough treatment of the SMAD and difference data is
presented in Strauss et al., in preparation.)

The SMAD validation method was applied for
Replications 1-12 (see Table 1), which were drawn from
the original TRACE paper and represent the core
evidence used by McClelland and Elman to argue for the
interactive activation framework. The parameter and
stimulus sets for each of these simulations are bundled
with the jTRACE download file [may not be hard-coded,
but will be provided -- some of these will be scripts, and
some will be single simulations]. Each of these
replications involved between one and 213 TRACE
simulations. The SMAD column for each gives the largest
difference observed for each replication.

The second validation method applies to replications
that involve doing multiple simulations and then
averaging over their respective data, or doing another
analysis that yields a multi-simulation result. In these
cases (Replications 13-15), we compared the final

aggregate data, and found virtually no differences
between the two implementations in each case.

Consider replication 13, which comes from
McClelland’s (1991) stochastic extension of TRACE, in
which Gaussian noise could be added to both the input
and to the interactions between processing units. This
extension of TRACE simulated effects of lexical context
on phoneme perception that the non-stochastic version
could not. To replicate McClelland’s result, stochasticity
was implemented in jTRACE and can now be used with
any simulation. To validate, we replicated McClelland’s
4500 simulations and analyses. Because the output from
TRACE is stochastic in this case, it does not make sense
to compare individual simulations. Instead, we compared
the aggregate overall results.

Replication 14 required adding three different
implementations of frequency. Dahan et al. (2001)
conducted eye-tracking experiments to assess the
contribution of lexical frequency to word recognition
throughout the time-course of lexical activation. After
obtaining data supporting the claim that frequency affects
lexical access from earliest moments of processing, they
modeled their results in a version of TRACE that was

2089

Figure 2: The graphing panel, showing Luce choice rule response probabilities as “abrupt” is presented to jTRACE. Note that
the lines are color-coded in jTRACE.

extended to incorporate frequency effects. Each word in
TRACE’s lexicon is given a frequency value (based on a
corpus). Three implementations were compared by Dahan
et al. (resting levels, connection strengths, and post-
lexical bias) jTRACE now includes the 3 frequency rules
as normal parameters and we used them to replicate the
simulations of Dahan et al. (2001).

The final replication listed in Table 1 is Frauenfelder
and Peeters’ (1998) investigation of the lexical feedback
parameter. Frauenfelder and Peeters investigated whether
feedback helps TRACE recognize lexical items more
quickly. They found that feedback did not consistently
help; about half the 21 items they tested were recognized
more quickly without feedback (but see Magnuson et al.,
2005 [this volume], who report that when the entire
lexicon is examined, 73% of items are recognized more
quickly with feedback, and that feedback makes the
model more accurate and faster when noise is added to the
input).

jTRACE’s Features
This final section describes 10 of jTRACE’s features

that make it powerful, versatile and user-friendly. These
features have greatly facilitated the replications described
in Table 1, and currently are leading to the development
of new TRACE modeling results in a few labs.

1. First and foremost is the addition of a graphical user
interface, as shown in Figures 1 and 2. A jTRACE
simulation “document” consists of the parameters of a
simulation and the options used to visualize it. Each

simulation's parameters can be easily modified, the
simulation can be run with real-time visualization of
activation levels, and the results can be interactively
analyzed by creating graphs of activation and response
probabilities of words and phonemes. Additionally, a
scripting window allows complex sets of simulations to
be run in a batch mode, with results exported to files for
further analysis or displayed within jTRACE.

2. jTRACE has been coded with modern programming
practices, and should be easy for programmers to
understand and enhance. A programmer’s guide is
available from http://maglab.psy.uconn.edu/jtrace.html.

3. The jTRACE graphing panel (Figure 2), generates
flexible graphs of phoneme or word unit activations or
Luce choice rule response probabilities (Luce, 1959).
Several options for how to calculate this measure are
implemented and can be adjusted on the fly. A process
that previously required custom programming or hours
with a spreadsheet is now done automatically.

4. The scripting panel (not shown) automates
simulation preparation, execution and analysis. Groups of
simulations can be performed with iteration over ranges
of parameter values, input values, phoneme continua or
even analysis settings. A range of options is available for
saving and formatting data. The scripting function is the
most powerful feature in jTRACE, and easy to use.

5. Two categories of decision rules have been
implemented in the scripting function based on work by
Frauenfelder and Peeters (1998). A decision rule helps

2090

provides a linking hypothesis between word and phoneme
activations and human data.

6. In the simulation panel, word activations and
phoneme activations can be visualized as “floating units”,
as pictured in Figure 1, wherein a unit’s vertical height
corresponds to the magnitude of its activation. This type
of visualization is based on the diagrams of the original
TRACE paper. In jTRACE, as the simulation runs, the
floating units are animated, showing word and phoneme
activations evolving in time. Matrix representations like
those shown in the left panels of Figure 1 can also be used
for words and phonemes.

7. As reported in the replications section, several
extensions to the original TRACE model have been
implemented in jTRACE. These extensions are input
noise and unit stochasticity as per McClelland (1991),
three implementations of frequency as per Dahan et al.
(2001), and the decision rules and particular Luce choice
rule calculations described in Frauenfelder and Peeters
(1998).

8. Because jTRACE was implemented in Java, the
program is completely platform-independent. (Most
personal computers already have Java installed for web
applications; Java is easily downloaded and installed.)

9. jTRACE can create several types of data file for
analysis, sharing, and archival purposes. Raw results of
simulations can be saved to text files for external
analyses. Results of built-in analyses can be exported.
Graphical representations of the simulation and analysis
can also be saved for presentations and publications.

10. jTRACE has the ability to load simulation data
generated by cTRACE (an augmented version of
cTRACE that can export activation information in a
format that jTRACE can read is available at the jTRACE
web site). This allows comparison between the two
models for any simulation based on the original
parameters. Thus, any researchers with doubts about the
accuracy of jTRACE as a reimplementation have the
ability to make their own comparisons between the two
programs.

11. jTRACE is freely available, and distributed under
an open source license. We hope that users will tweak
existing features and add new ones – not just to the
interface and tools, but to the underlying model, and that
TRACE will continue to inspire research in speech
perception and spoken word recognition.

Conclusions
As TRACE continues to stimulate healthy debate in the

field, the need for an easy-to-use, platform independent
tool that can be used for education, replications, and full-
scale modeling tasks is apparent.

Furthermore, as new experimental results challenge the
modeling capabilities of the original TRACE model,
increasingly complex extensions to the model are being
proposed and implemented. jTRACE offers a framework
wherein diverse types of extensions to the original model
can be implemented and combined with one another via
simple parameters.

Acknowledgments
Supported by National Institute on Deafness and Other
Communication Disorders Grant DC-005765 to JSM.

References
Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K.

(1998). Tracking the time course of spoken word
recognition using eye movements: Evidence for
continuous mapping models. Journal of Memory and
Language, 38, 419-439.

Dahan, D., Magnuson, J.S., & Tanenhaus, M.K. (2001).
Time course of frequency effects in spoken-word
recognition: evidence from eye movements. Cognitive
Psychology, 42, 317–367.

Dahan, D., Magnuson, J.S., Tanenhaus, M.K., and Hogan,
E.M. (2001). Tracking the time course of subcategorical
mismatches: Evidence for lexical competition.
Language & Cognitive Processes, 16, 507-534.

Frauenfelder, U. H. & Peeters, G. (1998). Simulating the
time course of spoken word recognition: an analysis of
lexical competition in TRACE. In J. Grainger and A.
M. Jacobs (Eds.), Localist connectionist approaches to
human cognition (pp. 101-146). Mahwah, NJ: Erlbaum.

Ganong, W. F. (1981). Phonetic categorization in auditory
word perception. Journal of Experimental Psychology:
Human Perception & Performance, 6, 110-125.

Luce, R. D. (1959). Individual choice behavior. New
York: Wiley.

Magnuson, J. S., Dahan, D., & Tanenhaus, M. K. (2001).
On the interpretation of computational models: The
case of TRACE. In J. S. Magnuson & K. M. Crosswhite
(Eds.), University of Rochester Working Papers in the
Language Sciences, 2 (1) , 71–91.

Magnuson, J. S., Strauss, T. J., Harris, H. D. (2005)
Interaction in spoken word recognition models:
feedback helps. To appear in the Proceedings of the
Annual Meeting of the Cognitive Science Society.

Marslen-Wilson, W. & Tyler, L. K. (1980). The temporal
structure of spoken language understanding. Cognition,
8, 1-71.

McClelland, J.L. (1991). Stochastic interactive processes
and the effect of context on perception. Cognitive
Psychology, 23, 1-44.

McClelland, J.L. & Rumelhart, D.E. (1981). An
interactive activation model of context effects in letter
perception, Part 1: An account of basic findings.
Psychological Review, 88, 375-407.

McClelland, J.L., & Elman, J. L. (1986). The TRACE
model of speech perception. Cognitive Psych., 18, 1-86.

Mirman, D., McClelland, J. L., & Holt, L. L. (2005).
Computational and behavioral investigations of
lexically induced delays in phoneme recognition.
Journal of Memory and Language, 52, 416-435.

Protopapas, A. (1999). Connectionist modeling of speech
perception. Psychological Bulletin, 125, 410-436.

Strauss, T.J., Magnuson, J. S., & Harris, H. D. (in
preparation). jTRACE: A reimplementation and
extension of TRACE for research and education.

2091

