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Abstract of the Dissertation

Drift Diffusion Modeling of Morphological Effects in

Organic Photovoltaic Devices

by

Benjamin Yuji Finck

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2016

Professor Benjamin Joel Schwartz, Chair

As humanity’s energy consumption continues to increase for the coming decades, with our

knowledge of traditional fossil fuels’ deleterious effects on our planetary ecosystem, it is

evident that development of clean, economical, and renewable energy sources is one of the

great remaining problems faced by our species. Photovoltaic technologies, particularly those

based on organic materials, have been suggested as potentially viable solutions to our energy

demands. However, several deficiencies of organic photovoltaic devices, specifically their rel-

atively low power conversion efficiency, has hampered their adoption for large-scale energy

production. One of the main causes of these deficiencies is the imprecise control of the distri-

bution of the active materials within these photovoltaic devices. This dissertation presents

a series of semiconductor device modeling simulations, which were conducted to elucidate

the various effects of the morphology of active components on organic photovoltaic devices’

charge transport properties and photovoltaic performance. Our simulations illustrate how

subtle variations in the active layer morphology can both hinder and benefit device perfor-

mance in surprising ways. This indicates the need for novel processing techniques, which

allow precise control of device morphology, in order for organic photovoltaic devices to be

competitive with other contemporary renewable energy technologies.
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CHAPTER 1

Introduction

1.1 Organic Photovoltaics as a Renewable Energy Technology

Sustainable and affordable energy production persists as one of the great technological prob-

lems remaining for humanity to solve. Traditional energy sources, primarily fossil fuels, are

unsustainable, since there is essentially a finite amount of them remaining on the planet.[2]

Even if the cost of collecting and processing fossil fuels could be diminished, the fact remains

that eventually we will have to shift to predominantly renewable energy sources. Many have

argued that solar power is the most promising renewable energy source[176] and several

technologies, specifically photovoltaics and concentrated solar power, have been developed

to harness that power. However, these technologies are still too costly to justify a wholesale

shift away from traditional energy sources.[1] To expedite the shift towards renewable en-

ergy technology, a new class of photovoltaic devices based on organic materials has garnered

significant research effort in the preceding decades.[136, 59, 194, 66] These devices are in

contrast to traditional photovoltaics which are based on inorganic semiconductors.

Organic photovoltaics (hereafter referred to as OPVs) have several advantages over their

inorganic counterparts. The first and foremost advantage is their significantly reduced cost

in comparison to traditional inorganic photovoltaics. The majority of OPVs utilize light-

absorbing semiconductor polymers which can be synthesized in vast quantities from readily

available materials.[95, 105] Furthermore, the physical properties of the materials allow for

the utilization of existing plastics fabrication technology, such as roll-to-roll processing[164],

doctor-blading[115], etc. Along these lines, the materials in most OPVs are flexible, which

should allow for easier transport and installation of such devices. The flexibility of OPVs
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also allows for the production of devices with unusual form factors, extending their applica-

bility to consumer electronics. Despite these advantages, OPVs have not seen mass adoption

over other energy technologies because of their main deficiency: significantly lower power

conversion efficiency compared to traditional photovoltaics. Organic photovoltaics typically

exhibit power conversion efficiencies (PCE) of less than 10%[70, 190], although some more

sophisticated device architectures have been developed with PCEs of ∼12%.[192] Improv-

ing the efficiency of these devices is paramount to their successful adoption as an energy

technology and extensive research effort has been expended to this end. In addition to prac-

tical research, aimed solely at raising efficiencies, much research effort has been devoted to

investigating the underlying causes of OPVs’ low power conversion efficiencies.

1.2 Basic Construction and Operating Principles of Organic Pho-

tovoltaics

Before further discussion of the limitations of OPVs and the research methods applied to

understand them, we turn to a brief description of the construction of a typical OPV de-

vice. The principle organic component in an OPV device is a light-absorbing semiconducting

polymer. For decades, the most extensively used and studied OPV polymer has been poly-

3-hexylthiophene (hereafter referred to as P3HT). Polymers typically employed in OPVs,

including P3HT, usually consist of long chains of conjugated hydrocarbons. The delocal-

ized π system allows these polymers to readily absorb photons in the visible region of the

electromagnetic spectrum. Many of these polymers also have charge carrier mobilities that

are exceptionally high for organic materials (up to 10−1 cm−2 V−1 s−1[160]). The polymer

is sandwiched between two metal electrodes, one of which is almost invariably transparent

tin-doped indium oxide (ITO), since one of the electrodes must be transparent to allow light

to access the active organic layer. The difference in the two electrodes’ workfunctions results

in a built-in electric field, which drives current flow. However, initial attempts to construct

polymer solar cells with this device architecture were mostly unsuccessful, with power con-

version efficiencies well below 1%.[191] The cause of these low efficiencies lies in the nature of
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how these polymers absorb light. Upon absorption of visible photons, conjugated polymers

do not immediately lose electrons as free charges, but rather undergo a π to π∗ transition.

This means that the newly excited electron remains Coulombically bound to the positive

hole left behind on the polymer. This bound electron-hole pair (also known as an exciton)

has net-neutral charge and thus the generation of excitons alone does not result in electrical

current.

To obtain net current flow, the excitons must be split into separate charge carriers. There-

fore, the majority of OPV devices consist of a binary blend of a light-absorbing, semiconduct-

ing polymer and an electron accepting material that facilitates charge separation.[190] The

electron acceptor is typically a fullerene derivative, of which the most extensively studied and

used is phenyl-C61-butyric acid methyl ester (hereafter referred to as PCBM). The addition

of an electron acceptor to the OPV active layer significantly increases exciton dissociation

rates to the point that most OPV blends typically exhibit an internal quantum efficiency (ra-

tio of free carriers generated to incident photons) of over 90%.[133] This approach, utilizing

a binary blend of organic materials, became known as a bulk heterojunction (BHJ) and saw

the power conversion efficiencies of typical P3HT:PCBM devices increase to 3-6%.[146] The

two organic components (polymer and fullerene) are initially solution processed together and

then layered between the two metallic electrodes.

Unfortunately, although the introduction of a second conducting material significantly

improves overall device performance, it also has major ramifications for the charge transport

properties of the organic layer. Upon fabrication, the two components (initially intimately

mixed) spontaneously phase segregate into polymer-rich and fullerene-rich domain. Since

exciton dissociation occurs only when polymer and fullerene are in close proximity, exces-

sive phase segregation results in poor photon harvesting, and thus poor device performance.

Conversely, if the polymer and fullerene are too evenly dispersed (low degree of phase seg-

regation), device performance also suffers. Organic polymers and fullerene derivatives are

normally charge carrier transport selective, meaning that holes flow readily through polymer,

but not fullerene, and vice-versa for electrons. If the two components are too extensively

mixed, carriers have more difficulty finding a continuous pathway to their respective extrac-

3



tion electrode. If the carriers are unable to find a continuous pathway, or if a pathway is

too tortuous to result in efficient charge transport, then the carriers are likely to recom-

bine, resulting in loss of usable electrical current and thus poor device efficiency. As such,

while the introduction of an electron acceptor can improve device efficiency by improving

exciton dissociation rates, it also results in a more complicated device architecture which

may not be conducive to efficient charge transport. Therefore, optimum device performance

is contingent upon the formation of a bicontinuous network of donor and acceptor mate-

rial. The distribution of conducting materials (i.e., the device’s morphology) is thus a major

complication for OPV devices’ overall performance and is the focus of this dissertation.

Extensive research effort has been dedicated to both controlling and understanding the

role of morphology in OPV performance. The phase segregation dynamics of the organic

components are highly sensitive to multiple factors, including the identity of the organic

materials, fabrication technique (spin-coating vs. dip-coating vs. blade-coating, etc.), fab-

rication parameters (temperature, atmosphere, etc.), and thermal annealing of the active

layer.[164, 115, 193] A significant amount of research effort has been focused solely on de-

termining which combination of these parameters results in optimum device performance.

Researchers have also attempted to indirectly control active layer morphology through sol-

vent additives and solvent annealing.[71, 101] With these efforts, maximum OPV device

performance has been pushed as high as 10% for single-junction solar cells.[70]

1.3 Evaluating Organic Photovoltaic Device Performance: J–V

Characteristics

There are three figures of merit which determine a solar cell’s capability to convert radiant

solar power into electrical power. These figures of merit are determined by the device’s

current density vs. voltage (J–V ) characteristic under illumination. A device’s J–V char-

acteristic is measured by recording the electrical current which flows through the device at

different applied voltage biases. A typical J–V characteristic is presented in Fig. 1.1. The

J–V characteristic appears approximately as a diode. There are several crucial points along
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Figure 1.1: An example J–V characteristic illustrating the crucial figures of merit for OPV
device performance. Note that in the absence of light, the solar cell behaves essentially as a
diode.

this J–V curve that determine the power conversion efficiency as well as reflect the under-

lying charge transport properties of the solar cell. The first is the magnitude of the current

density when no voltage bias is applied (i.e., the y-intercept of the J–V curve), which is

referred to as the short-circuit current (JSC). In organic solar cells, the short-circuit current

is dependent on the fraction of incident photons that are absorbed as excitons and subse-

quently split into free charges (internal quantum efficiency), as well as the fraction of free

charges that are successfully extracted from the device as electrical current (external quan-

tum efficiency). However, operating a solar cell at short-circuit conditions does not result

in electrical power; since there is no applied bias, no power can be dissipated by the device.

In order to obtain useful electrical power, the device must be operated under a voltage bias.

At low biases, increasing the applied voltage increases the power output of the device. How-

ever, at sufficiently high biases, the applied voltage counteracts the photocurrent until at a

certain point, referred to as the open-circuit voltage (VOC), the photocurrent drops to zero.

Like the short-circuit condition, no electrical power can be generated at this point. The

maximum power point must therefore occur at some applied bias less than VOC, at a current
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density less than the JSC. The VOC is determined by several factors, including the bandgap

of the active materials, the degree and type of carrier recombination, and the identity of the

device’s metallic electrodes.

When examining a J–V characteristic, the ratio of the product of current density and

voltage at the maximum power point to the product of JSC and VOC (the theoretical power)

is known as the device’s fill-factor (FF ):

FF =
Jmax × Vmax

JSC × VOC

(1.1)

Graphically speaking, the fill factor of a solar cell is a measure of how rectangular the device’s

J–V characteristic is. In organic solar cells, the fill-factor is considered to be a measure of

how beneficial a device’s morphology is to charge transport. These three figures of merit

determine the device’s efficiency, η, which is given by:

η =
Pmax

Pincident

=
JSC × VOC × FF

Pincident

(1.2)

where Pincident is the incident radiant power, which is typically measured with the standard

AM1.5 solar spectral irradiance. These three figures of merit (JSC, VOC, and FF ) will be

the discussed and analyzed in detail for special cases throughout this dissertation, since they

not only determine the a solar cell’s overall power conversion performance, but also provide

information about the charge transport properties of organic solar cells, as we shall soon

illustrate.

1.4 Modeling Charge Transport in Organic Photovoltaics: Drift-

Diffusion Modeling Overview

In addition to the massive amount of empirical research into OPV device performance, a

significant amount of theoretical work also has been applied. The scope of such theoretical

investigations is wide, including ab initio studies of individual OPV molecules, Monte-Carlo
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modeling of charge transport, equivalent circuit analysis, and more.[8, 183, 26, 153] One of

the most popularly applied methods is drift-diffusion modeling of charge transport.[74] At

its heart, a drift-diffusion simulation involves solving the charge carrier continuity equations:

∂n

∂t
= G+R +

1

q
∇ · Jn (1.3)

∂p

∂t
= G+R− 1

q
∇ · Jp, (1.4)

which account for all possible gain and loss mechanisms for the electron and hole densities,

given by n and p, respectively. For organic solar cells (under illumination) the dominant

generation mechanism, G, of free carriers is via exciton dissociation events following the

absorption of photons. The R term in Eqs. (1.3) and (1.4) represents the loss rate of charges

due to recombination events and is usually a function of electron and hole density. Recom-

bination of free charges can occur either directly (between free electrons and free holes) or

indirectly through a trap-mediated process. Although both recombination mechanisms are

known to occur in OPV devices, there is still some debate over which mechanism is dom-

inant; therefore, we will consider both at various points in this dissertation. The current

density gradient term (∇Jn,p) in Eqs. (1.3) and (1.4) accounts for any local current imbal-

ance which may lead to either an accumulation or depletion of charge density. This term

can therefore function as either a gain or loss mechanism of carrier density, depending on

the local environment.

According to the drift-diffusion model, the charge carrier current densities are given by:

Jn = −qµnn∇V + µnkBT∇n (1.5)

Jp = −qµpp∇V − µpkBT∇p (1.6)

where µn,p is the mobility of electrons and holes, V is the electrostatic potential, and kB

and T are Boltzmann’s constant and the absolute temperature, respectively. The drift-

diffusion model asserts that there are two types of charge carrier motion which contribute
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to the current density: a drift term, whereby charges move in response to an electric field

( ~E = −∇V ) and a diffusive term, whereby charges move in response to a carrier density

gradient.

A final complicating factor for solving Eqs. (1.3) and 1.4 is that the carrier densities are

inherently coupled to each other via Gauss’s Law:

∇ · ~E =
ρ

εrε0
=

q

εrε0
(p− n+ C) (1.7)

where ε0 and εr are the vacuum and the relative permittivity and C is the density of immobile

or trapped charges. When expressed in terms of the electrostatic potential, as it is typically

treated computationally, this reduces to Poisson’s equation:

∇2V =
q

εrε0
(n− p+ C) (1.8)

Equations 1.3, 1.4, and 1.8 represent a coupled set of nonlinear, partial differential equations

in multiple dimensions with three dependent variables (n, p, and V ). We choose to solve

the above set of equations by decoupling and solving them in an iterative, self-consistent

manner.[58] The individual equations are solved by discretizing them and solving for the

dependent variables on a finite difference mesh, which represents the active layer of the

device.[162] For further details on the implementations of this method, as well as a basic

operations guide to our software, see the Appendix D. Similar approaches to solving the

semiconductor equations have been extensively applied to model organic photovoltaics.[75,

94, 172, 141] With this methodology in hand, we now turn to applying it to study the effects

of an organic photovoltaic’s active layer morphology on its transport properties.

1.5 Case studies of morphological effects in OPV charge transport

In this dissertation, we present a series of drift-diffusion modeling studies focused on exploring

the effects of OPV morphology on the charge transport properties of OPV devices and

their subsequent device performance. One anomalous feature of organic solar cells is the
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appearance of the so-called S–curve.[38] As mentioned in section 1.3, most OPVs exhibit a

diodic J–V curve that is approximately rectangular. However, occasionally an OPV device

will exhibit a inflection point near the device’s VOC, resulting in a S–shaped J–V curve.

Although such devices may posses high JSC and high VOC, the inflection point in their

J–V characteristic results in an unusually low FF, and thus low power conversion efficiency.

Several hypotheses have been suggested as to the underlying cause of these spontaneously-

occurring S–curves, such as imbalanced carrier mobilities[174] or energetic barriers for charge

extraction at the contacts.[61, 53] Experimental evidence suggested that S–curve devices were

characterized by a dearth of fullerene near the cathode (i.e., little fullerene at the top of the

film, which is the point of electron extraction), as the result of vertical phase segregation.[38]

To better understand the origins of the S–curve, we decided to examine simulated OPV

devices using the D-D model, particularly because early versions of our modeling software

were limited to considerations of charge transport in only one dimension, making this an

opportune system to simulate. To test the hypothesis that vertical phase segregation of

conducting material away from an extraction contact could produce S–curve devices, we

simulated a series of devices that were characterized by high mobility for carriers throughout

the majority of the device, but with a precipitous drop in electron mobility in proximity to

the cathode. Simulated devices with this characteristic mobility profile did indeed result in

S–shaped J–V curves. We also simulated devices with imbalanced charge carrier mobilities,

exponentially decaying mobility profiles, and excessively high Schottky barriers. Although

all of these methods resulted in poorly performing devices (lowered JSC and VOC), none of

them exhibited S–shaped J–V characteristics. The results of this study and the conclusions

drawn from them were published in the journal of Applied Physics Letters in 2013.[51] The

results of this modeling study not only verified our collaborators’ original hypothesis, but

clearly illustrated how an OPV’s compositional morphology can have a striking impact on

its resulting performance.

In the next chapter of this dissertation, we present a modeling study that further examines

the effects of OPV devices’ compositional morphology on their resulting power conversion

performance. In particular, this study aimed to elucidate the exact effects of the structural
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disorder of the BHJ morphology on an OPV’s charge transport properties. At the time of this

study’s publication, our drift-diffusion modeling software was still limited to 1-dimensional

devices. To overcome this limitation, we developed an approach to model the tortuous charge

transport pathways of the BHJ morphology based upon an ensemble-averaging technique,

which we published in the journal of Physical Review Applied in 2015.[52] In this approach, a

collection of charge carrier mobility profiles were generated by randomly sampling mobility

values from a normally distributed probability distribution. With this approach, each of

the device “replicas” generated from random sampling have a unique mobility profile and

may possess regions of excessively high or low carrier mobilities. Each device replica can be

viewed as a single charge transport pathway through the active layer of the device; some are

conducive to charge transport while others are highly unfavorable to charge transport and

represent the tortuous pathways present in BHJ devices. By averaging over many of these

replicas, we were able to draw conclusions about the general effects of structural disorder on

OPV charge transport. Our simulations showed that the introduction of structural disorder

to an OPV’s active layer results in a significant drop in performance, depending on the

degree of disorder. The largest detriments to performance were seen in the JSC and FF,

while the VOC remained relatively impervious to the debilitating effects of structural disorder.

Examination of the replicas’ carrier densities revealed that the inclusion of structural disorder

results in the accumulation of charges as carrier more slowly traverse tortuous pathways.

The accumulation of charges within a device results in greater losses of free carriers to

recombination, causing the observed drops in JSC and FF. This illustrates the critical role

that an OPV’s morphology plays in its charge transport characteristics

Although the our 1-D ensemble approach allowed us to probe the general effects of mor-

phological disorder, it was still a relatively crude approximation of the convoluted and tortu-

ous morphologies present in an actual BHJ. Furthermore, 1-D modeling is unable to examine

more subtle, yet important structural details of OPV devices and their effects on charge trans-

port and device performance. For instance, although donor and acceptor materials normally

phase segregate into distinct domains in BHJ morphologies, there exists a third, mixed-

composition phase at the interface between the pure component domains. It is unclear what
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effect this mixed-phase has on the charge transport properties of OPV devices, although some

have argued that the presence of a mixed phase is crucial to device performance.[73, 21] Our

1-D ensemble approach was completely incapable of examining such effects to any acceptable

degree of accuracy. Therefore, we extended our drift-diffusion modeling software to account

for 2-dimensional charge transport. We utilized morphological data obtained by high angle

annular dark field (HAADF) scanning tunneling electron microscopy (STEM) to investigate

the effects of an mixed-phased, interfacial region on device performance.[186] In addition

to empirical morphologies, we also simulated a series of computer generated morphologies

created by modeling the phase separation dynamics of binary fluid mixtures (Cahn-Hilliard

integration). These Cahn-Hilliard morphologies were implemented to study the effects of

the mixed-phase over a wide range of configurations representing different ratios of pure to

mixed-composition domain size. Our simulations showed that the inclusion of a mixed-phase

may both improve and hinder device performance. At low degrees of mixing, the mixed-phase

region lessened the tortuosity of the conduction pathways, reducing charge accumulation and

generally aiding charge transport. The act of mixing can also create new conduction path-

ways from regions that were previously disjointed. However, at higher degrees of mixing,

the mixed-phase actually narrowed the highest conductivity pathways, resulting in poorer

charge transport overall and diminished power conversion efficiency in particular. The max-

imum power conversion efficiency occurred at different degrees of mixing, depending on the

average domain size of the morphology and various other morphological details. The opti-

mum fraction of mixing was determined to range between 15–25%, though one particular

simulated device benefited from as much as 50% mixing. This demonstrates that a sub-

tle balancing act occurs when attempting to engineer the optimum morphology for a given

donor/acceptor pairing: either insufficient or excessive mixing of the two components can

significantly hinder an OPV device’s resulting power conversion performance. At the time

of this dissertation’s writing, we are in the process of submitting a manuscript presenting

these results for publication.

Our drift-diffusion modeling studies were not only limited to investigations of the ef-

fects of morphology on OPV performance. It was also used to simulate a variety of time-
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dependent device measurements, specifically the photo-CELIV and transient photocurrent

techniques.[121, 109] A collaborator of this researcher, Dr. Stephen Hawks, had developed

an analytic formalism for reinterpreting these techniques. His formalism involved identify-

ing and separating the different charge transport processes (direct loss of carrier density,

recombination through traps, displacement currents, surface recombination currents, etc.)

which occur within thin-film organic solar cells and how these processes each contribute

to the total measured current. To assess the veracity of this model, we simulated similar

transient techniques. Data extracted from those simulations (carrier densities, electrostatic

potential, recombination rates, etc.) were analyzed and used to reconstruct the different

current contributions described by Dr. Hawks’s formalism. Our simulated data was found

to be completely self-consistent with Dr. Hawks’ formalism and we published the results of

this study in the journal of Physical Review Applied in 2015.[68] This served to verify both

the analytic model and the numerical simulation and further extend the applicability of our

drift-diffusion modeling capabilities to a wider range of experimental techniques.

In summary, the main focus of this dissertation has been to determine how one of an

organic solar cell’s main idiosyncrasies, the internal morphology of its active components at

the ∼10 nm length scale, affects its charge transport properties and resulting power con-

version efficiency, by means of semiconductor device modeling via the drift-diffusion model

of charge transport. We have shown how phenomena particular to OPVs (the random oc-

currence of S–shaped J–V characteristics, their high sensitivity to variations in processing

conditions, difficulties in scaling up to larger active areas, etc.) may be attributed to an

individual OPV device’s nanoscale morphology. Although one of the initial hopes for OPV

technology would be that it would serve as a panacea to the world’s energy problems, the

truth is that the bulk-heterojunction architecture is inherently susceptible to morpholog-

ical defects. This underscores the need for new processing techniques, such as sequential

processing of BHJ films[4], that may allow for precise and reproducible tuning of film mor-

phology if polymer-based solar cells are to become competitive with other renewable energy

technologies.
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CHAPTER 2

Understanding the Origin of the S–curve in

Conjugated Polymer/Fullerene Photovoltaics from

Drift-Diffusion Simulations

Organic solar cells have emerged as a potentially viable source of renewable energy, with

power conversion efficiencies (PCEs) reported to be as high as 10%. Unfortunately, it is

difficult to maintain such high efficiencies when scaling organic photovoltaics (OPVs) from

laboratory scales to mass production because the nanometer-scale morphology of the bulk

heterojunction (BHJ) active layer depends sensitively on the kinetics of how the films are

processed. This sensitivity to processing kinetics is so extreme that it is often difficult to

reproducibly obtain PCEs for a given set of materials from day to day. As an example of

this lack of reproducibility, organic solar cells sometimes exhibit an S–shaped current-voltage

curve, resulting in low PCE because of a significantly reduced fill factor (FF ), even if the

short circuit current (JSC) and open circuit voltage (VOC) remain high. Thus, understanding

the cause of S–shaped JV curves would help to allow for the rational design of OPV devices,

thus improving their reproducibility and potential industrial feasibility.

Several groups have proposed hypotheses to explain the appearance of S–shaped J–V

curves in OPVs. Early work suggested that the problem involved diminished electron ex-

traction due to defects at the cathode interface.[61, 53] Others have argued that an imbalance

of the individual charge carrier mobilities would induce S–shaped J–V curves, and this has

been demonstrated for planar junctions (bilayer solar cells).[174] This explanation does not

appear to extend to typical BHJ devices, however, since organic donor/acceptor blends of-

ten have uneven hole and electron mobilities, which would mean that S–shaped J–V curves
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would be more common if charge mobility imbalance alone was the primary culprit. We

previously have argued that S–shaped J–V curves in OPVs result from vertical phase sep-

aration of the two organic components,[38] for example, when the fullerenes that carry the

electron current sink towards the bottom contact and away from the cathode. Our evidence

included surface topographic measurements that indicated that the interface between the

active layer and the cathode in S–curve devices was deficient in fullerene, that S–curve de-

vices had a double peak in the current extracted in photo-CELIV experiments, and that

the S–curve could be subsequently removed if additional fullerene was deposited on the top

surface before application of the cathode contact.[38]

In this letter, we utilize drift-diffusion modeling to investigate the cause of S–shaped J–V

curves in BHJ organic solar cells. We take advantage of the approach of Häeusermann et al.

to simulate OPVs, approximating the BHJ as a 1-D device treated as an effectively uniform

medium.[62] We used the Gummel method[58] to decouple the charge carrier continuity

and Poisson equations which make up the drift-diffusion model and assumed thermionic

injection at the contacts as boundary conditions for the electron and hole densities.[150]

In order to account for thin-film interference effects, we used the Petterson transfer matrix

method[135] to calculate the spatially dependent absorption profile that determines the initial

generation of charge carriers for the continuity equations. For this calculation, we assumed

that the active layer had the optical characteristics of poly-3-hexylthiophene (P3HT) and

that every exciton immediately splits into an electron and a hole (an assumption justified by

the fact that the exciton diffusion length in P3HT is thought to be small compared to the

spatial variation of the carrier generation profile).[60] Finally, we also assumed a bimolecular

Langevin mechanism[93] to account for the recombination of electrons and holes. All the

pertinent parameters for our simulations are collected in Table 2.1.

We began by testing the supposition that imbalanced charge extraction rates as a result of

a carrier mobility mismatch might be responsible for the appearance of S–shaped J–V curves

in BHJ devices. We simulated the J–V characteristics of a series of BHJs with increasingly

mismatched carrier mobilities. Our initial calculation assumed matched electron and hole

mobilities with a numerical value of 1×10−4 cm2/Vs. We then decreased the electron mobility
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Parameter Symbol Value
Hole mobility µp 1× 10−4 cm V−1 s−1

Electron mobility before drop-off µn0 1× 10−4 cm V−1 s−1

Electron mobility after drop-off y 1× 10−6 cm V−1 s−1

Abruptness of drop-off σ 1.0
Distance of drop-off from cathode contact X 20 nm

Thickness d 100 nm
Relative permittivity ε 3.5

Injection barrier for electrons and holes ϕn, ϕp 0.3 eV
Recombination efficiency η 0.5

Built in voltage VBI 0.6 V
Density of chargeable sites NC 1× 1026 m3

Temperature T 298 K

Table 2.1: The boundary conditions and parameters used for the D-D simulations presented
in the figures, except where otherwise noted.

by over 5 orders of magnitude, producing the J–V characteristics shown in Fig. 2.1(a).

Our calculations plainly show that although mismatched carrier mobilities can significantly

reduce the PCE and FF of BHJ solar cells, mismatched carrier mobilities alone are not

responsible for the characteristic S–shaped J–V curve, in line with our arguments above.

We next investigated the hypothesis that difficulty with extraction of one of the carriers at

a contact is responsible for the appearance of S–shaped J–V curves. To simulate the effects

of poor electron extraction near the cathode, we modeled the spatial mobility profile of the

electrons using a sigmoid function

µ(x) =
µn0

1 + exp(σ(x−X))
+ y (2.1)

Such a function results in a smooth drop-off in electron mobility in one region of the active

layer. In this sigmoid function, σ and X control the sharpness and position of the mobility

drop-off, respectively, while y represents for the non-zero mobility of electrons in P3HT

as they are extracted from the cathode; for y, vertical phase separation characterized by

fullerenes drifting away from the cathode, an interfacial extraction barrier, blocking contact,

or surface recombination all could cause this mobility to be up to several orders of magnitude

less than µn0, the electron mobility in the region before the drop-off. We chose to leave the
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hole mobility constant in this region and throughout the device.

There are three parameters in the mobility profile of Eq. (1) that could potentially

influence the character of the resulting simulated J–V curve: the position within the device

where the mobility drop-off begins (X), the mobility of the carrier beyond the drop-off point

(y), and the steepness of the drop-off (σ). We explore the effects of varying each of these

parameters on the device J–V curves in Figs. 2.1(b)–2.1(d); the insets show the mobility

profiles used for each J–V curve. Since Fig. 2.1(a) can be compared directly to Fig. 2.1(b)

in terms of the effectively reduced carrier mobility at the cathode contact, our simulations

clearly show that it is not reduced carrier mobility alone but rather the presence of a mobility

drop-off (even a relatively small one) that is responsible for producing S–shaped J–V curves

in, otherwise, normal BHJ devices. Of particular note is that the S–curve appears when the

mobility in the drop-off region is 2 orders of magnitude less for electrons than for holes.

To understand why a mobility drop-off leads to S–shaped J–V curves, we examined

the individual (but spatially averaged throughout the device) carrier current densities as a

function of the applied voltage, as shown in Fig. 2.2. Even though the hole current exhibits

typical diodic behavior (albeit with slightly reduced efficiency), Fig. 2.2 illustrates that

the presence of the mobility drop-off for the electrons leads to an electron current with a

significant S–shaped character and reduced VOC. Since the total current density is a sum of

the individual carrier current densities, the result is a device J–V curve with pronounced

S–shaped character. This is in contrast to a normal BHJ device (also plotted in Fig. 2.2),

in which both carrier currents exhibit typical diodic behavior.

The cause of the reduction in the spatially averaged current can be further understood by

examining the spatial dependence of the current densities at key points along the J–V curve

for devices with and without the electron mobility drop-off, as shown in Figure 2.3. At short-

circuit conditions, Fig. 2.3(a) shows that the total current is limited by the electron current

near the cathode contact. Photogenerated electrons drift towards the cathode until they

reach the low mobility region, where they slow to a constant and relatively slow speed. The

hole current is also limited in this region, but this does not have an appreciable effect on the

total current since the hole density (and thus hole current) is typically low here under short
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Figure 2.1: Simulated J-V curves analyzed in this study. The electron and hole mobilities
are initially equalized to 1 × 10−4 cm2 V−1 s−1. The electron mobility is subsequently re-
duced by several orders of magnitude in two manners: (a) by decreasing the electron mobility
throughout the device and (b) by only decreasing the mobility only near the cathode through
the use of a sigmoid profile. Fig. 2.1(a) illustrates the inability of mismatched carrier mo-
bilities to induce an S–curve; Fig. 2.1(b) illustrates that a sigmoid-shaped electron mobility
profile is capable of inducing an S–curve. The effects of the different features of the mobility
profile are explored by increasing the size (c) and abruptness (d) of the mobility drop-off, as
illustrated in the insets over an expanded spatial region of the 100-nm thick device active
layer. Increasing the region of reduced mobility and the abruptness of the drop in mobility
results in a more pronounced S–curve character.
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Figure 2.2: Individual charge carrier currents for S–curve (solid symbols, device parameters
given in Table 2.1 and normal OPV (open symbols, no mobility drop-off) devices. The normal
device shows typical J–V diodic behavior for the individual carriers, but the device with the
mobility drop-off has a severely distorted J–V character, particularly for the electron current
(blue curves).

circuit conditions. As the voltage is increased, Fig. 2.3(b) shows that the electron and hole

currents gain a positive and negative slope, respectively. According to the current gradient

term in the continuity equation, this reverse in slope results in a buildup of space charge

near the cathode, explaining why the electron current becomes limited at this voltage. At

higher applied biases (VOC and beyond), this gradient inversion is diminished, and the J–V

characteristic behaves as a normal OPV device as the charge carriers begin moving towards

their reverse contacts. In this case, electron transport is no longer hampered by the mobility

drop-off as the electrons are extracted through the anode instead of the cathode. Similarly,

hole extraction is not restricted at the cathode since hole mobility is kept at sufficiently high

in the pure P3HT there, in accordance with the phenomenon of vertical phase segregation.

Taken together, this explains why the electron current has such a strong S–shape: the

electron current becomes limited at intermediate voltages where there is significant space-

charge build-up but then approaches normal values once VOC is exceeded.

In summary, we have shown that a simple mobility profile characterized by drop in

conductivity near one of the contacts is sufficient to induce an S–shaped J–V curve in a

simulated organic photovoltaic device. Such a mobility profile, in which there is an imbalance

18



200 40 60 80 100
−2

0

2

4

6

8 Jn S-curve
Jp S-curve

Jn Normal
Jp Normal

−10

−8

−6

−4

−2

0

2

Bias = 0 V −6

−4

−2

0

2

4

8−

Bias = 0.  V70

Active Layer Position (nm)

Bias = 0.  V45

200 40 60 80 100200 40 60 80 100C
ur

re
nt

 D
en

si
ty

 (
m

A
/c

m
2
)

Figure 2.3: Spatially discretized electron current (Jn) and hole current (Jn) at various
applied voltages for both an S–curve device (solid symbols, parameters given in Table 2.1)
and a normal BHJ device (open symbols, no mobility drop-off). The currents are shown
at applied voltages corresponding to (a) short circuit conditions, (b) near the inflection
point of the J–V curve, and (c) beyond VOC. In panel (b), there is severe distortion of the
individual carrier currents for the S-curve device, which results in a reduced total current
and an inversion of the current gradients, resulting in a buildup of charge. At higher biases,
the severity of this inversion is reduced, and normal behavior is re-established.

in carrier mobility at only one of the contacts, would certainly arise as a result of vertical

phase segregation, a blocking contact or other interfacial effects. The results are consistent

with our earlier suggestion that subtleties in processing conditions that produce vertical

phase segregation are a likely culprit for the appearance of S–curves in BHJ devices.[62]

Thus, to avoid irreproducibility in device performance from changes in processing conditions,

it would make sense to employ techniques that are less susceptible to kinetics, such as

sequential deposition of the donor and acceptor materials.[9]
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CHAPTER 3

Drift-Diffusion Modeling of the Effects of Structural

Disorder and Carrier Mobility on the Performance of

Organic Photovoltaic Devices

3.1 Introduction

Organic photovoltaic (OPV) technology has seen marked improvement in recent years, with

device power conversion efficiencies (PCEs) surpassing 11% [194]. The most efficient devices

are constructed from blends of a semiconducting polymer, which acts as the light absorber

and hole transporter, and a fullerene derivative, which serves to separate the excitons created

on the polymer and to transport the electrons. Such polymer/fullerene mixtures, known as

bulk heterojunctions (BHJs), must be both intimately blended to assure good charge separa-

tion, yet phase separated enough to ensure that there are physically continuous conducting

pathways for both the electrons and holes to reach their respective electrodes [189]. The

BHJ morphology, however, is difficult to control, and as a result, the relationship between

the morphology of the disordered donor/acceptor blends in OPVs and the underlying mech-

anisms of charge generation, recombination, and transport in such disordered systems is not

well understood [107].

In addition to all of the experiments that have been performed to elucidate struc-

ture/property relationships in OPVs, there also has been a significant amount of theoretical

work, particularly in the field of device modeling [74, 173, 171]. The most commonly em-

ployed approach is the drift-diffusion (D-D) model, which has been utilized to simulate a

wide variety of OPV device physics experiments, such as J–V characteristics, photo-CELIV,
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transient photocurrent measurements, etc. [11, 127, 75]. One feature that is often neglected

in D-D simulations, but is of particular importance for OPV devices, is the role of disorder of

the organic active layer. Most D-D simulations treat the BHJ blend as a uniform, continuous

medium that is characterized by a single mobility for each carrier [74, 173, 180, 172, 174, 134].

Disorder has been accounted for primarily from the perspective of energetic disorder in BHJ

blends, which arises from the fact that the polymers in OPV active layers twist and bend

along their conjugated backbone and the fact that both the polymer and fullerenes in BHJ

blends reside in distinct chemical environments [178, 16]. Several groups have modeled this

energetic disorder by including a Gaussian-shaped density of energy states in their D-D sim-

ulations, which affects both carrier mobility and recombination [178, 16]. In addition to a

Gaussian-distribution, groups also have considered an exponential distribution of trap states

[87, 30, 76] These groups find that the simulated performance of devices with energetic dis-

order is reduced as a result of diminished short-circuit current, fill-factor, and open-circuit

voltage.

Despite the progress made towards understanding the role of energetic disorder in BHJ

devices, few drift-diffusion simulations have addressed the structural disorder that is also

present in BHJ devices or how this disorder impacts carrier transport. By structural dis-

order, we mean the random spatial distribution of polymers and fullerenes that is found

in a BHJ, resulting in tortuous pathways for carrier transport. The existence of structural

disorder clearly affects the net carrier mobility. For example, many experiments, including

photogenerated charge extraction by linearly increasing voltage (photo-CELIV), transient

photocurrent (TPC), and space charge limited current (SCLC) measurements, have shown

that on device length scales, the carriers in polymer:fullerene OPVs have relatively low

mobilities, on the order of 10−4 cm2 V−1 s−1 [136, 109, 182]. In contrast, time resolved

microwave conductivity (TRMC) measurements indicate that over short length scales, the

photogenerated charge carriers in these systems have relatively high mobilities (∼10−2 cm2

V−1 s−1), comparable to what is seen in FET-based mobility measurements [3, 160, 110].

Clearly, when carriers move on length scales that sample the spatial disorder inherent in

BHJ OPV devices, the result is a lowering of the effective carrier mobility by roughly two
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orders of magnitude. These differences in mobility at varying length scales can be under-

stood from the fact that intrachain transport is characterized by significantly higher mobility

than interchain hopping, yet interchain hopping is the dominant transport mechanism for

disordered semiconducting polymers [97, 128]. All of this suggests that due to structural

disorder, the conducting pathways in a BHJ have a distribution of regions with high and low

carrier mobility, as opposed to a single continuous mobility.

Structural measurements based on X-ray diffraction and various microscopies have in-

dicated that both the polymers and fullerenes in a BHJ phase segregate into crystallites

with sizes on the order of several nanometers, with amorphous and potentially intermixed

regions surrounding the crystallites [193, 177, 117, 38, 187]. This means that structural

disorder is inherent to polymer:fullerene OPVs. The goal of this work is to use D-D mod-

eling specifically to understand the effects of this structural disorder on the performance of

BHJ photovoltaic devices. We note that previous studies that have included a functional

dependence of mobility on factors such as the electric field, carrier density, or the energetic

density of states, have still been limited to smooth, non-spatially varying mobility profiles

and thus have not accounted for the spatial distribution of conductivities present in a BHJ

architecture [178, 90, 91]. This means that previous studies have not considered how the

grain boundaries between conducting materials or between crystalline and amorphous re-

gions affect mobility and obstruct charge transport. It is clear that to accurately model a

BHJ device, one should consider structural disorder in addition to energetic disorder.

In this work, we present a new approach to account for structural disorder in 1-D drift-

diffusion modeling of OPV devices. Our work at this stage intentionally neglects the effects

of energetic disorder, which would be expected to accompany structurally disordered mor-

phologies, in order to isolate the effects of structural disorder alone on OPV device physics.

We present two methods for generating spatially-disordered mobility profiles: one method

where each profile is generated by random sampling from a probability distribution of possi-

ble carrier mobilities, and a second method where profiles are generated from the disordered

morphologies generated by Cahn-Hilliard (C-H) modeling [50, 17]. Both sampling methods

result in mobility profiles that contain regions of exceptionally high and/or low mobilities for
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the carriers. A high mobility region represents transport along a single chain or through a

region of the material with high crystallinity and thus high carrier conductivity. Conversely,

a low mobility region represents transport of a carrier through the ‘wrong’ conducting ma-

terial or through a grain boundary or defect, or represents the occurrence of dead-ends and

other features of the meandering conduction pathways present in BHJ architectures [153].

Our method then treats devices as ensembles of these 1-D disordered carrier pathways.

We demonstrate that as the parameters for both methods (the characteristics of the

mobility distribution and the parameters used to transform the 1-D C-H morphologies into

structurally-disordered mobility profiles) are varied, there are profound effects on the result-

ing performance of the ensemble-average modeled disordered devices. We also show that no

matter how the disordered mobility profiles are generated, the resultant effects on device

performance are similar, indicating that our findings are robust to the details of how struc-

tural disorder is included in drift-diffusion simulations. Our simulations show that, similar

to studies of energetic disorder, structural disorder leads to an overall degradation of device

performance, particularly in regards to the short-circuit current (JSC) and fill factor (FF ).

However, unlike studies on energetic disorder, we do not find a significant degradation of the

open circuit voltage (VOC), and we discuss in detail the reasons why structural disorder has

these particular effects on device performance. We also see that the length scale of disorder

is important, with the most severe effects on device performance accompanying disorder on

length scales of ∼10 nm, exactly the size expected in real BHJ OPV devices.

3.2 Computational Methods

3.2.1 Drift Diffusion Model

For this work, we perform all of our device simulations using the D-D model, in which the

electron and hole current densities are treated as:

Jn = −qnµn∇V + kTµn∇n (3.1)
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Jp = −qpµp∇V − kTµp∇p (3.2)

where q is the fundamental charge, V is the electrostatic potential, n and p refer to the

electron and hole densities, and µn and µp refer to the mobility of electrons and holes,

respectively [90]. In order to simulate a device, one needs to solve the continuity equations

for both carriers:

∂n

∂t
=

1

q
∇ · Jn −R +G (3.3)

∂p

∂t
= −1

q
∇ · Jp −R +G (3.4)

where R is the net recombination rate of electrons and holes, which we treat with Langevin

recombination of the form R(x) = q
εrε0

(µn + µp)np, where εr is the dielectric constant of

the medium and ε0 is the vacuum permittivity. The G term in Eq. (3.3) is the generation

profile within the active layer of the device. Since free carriers are assumed to be generated

primarily as a result of photon absorption, we calculate this generation profile via a transfer

matrix formalism to account for thin-film interference and the absorption/refraction of light

by the various layers of an OPV device [135]. To solve the above carrier continuity equations,

they need to be coupled through the Poisson equation:

∇2V =
q

εrε0
(n− p) (3.5)

The set of Eqs. (3.1)-(3.5) forms the basis of the drift-diffusion model.

We used the Gummel method to decouple the above set of partial differential equations

and solve the D-D model in an iterative manner [58, 147, 152, 162]. Our simulations provide

a 1-D model for a typical OPV architecture, where the organic active layer is sandwiched

between two metal contacts. The drift-diffusion model equations were solved numerically

for this active layer by discretizing the equations on a finite difference mesh. Because our
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structural disorder model examined the effects of feature sizes of only a few nanometers, we

tested grid spacings as low as 0.1 nm, but found that as long as the mesh size was less than

1/4 of the disorder length scale, the results were numerically robust. Thus, in most of what is

shown below, a 1-nm mesh spacing was used. As boundary conditions for the carrier density

equations, we assume thermionic injection at the metal-organic semiconductor interfaces

[150]. As boundary conditions for the Poisson equation, we assume that the voltage drop

across the device is equal the built-in voltage. We chose the other devices parameters to be

comparable to those previously used in the literature, and all the parameters we used in our

calculations are collected in Table 3.1. Additional computational details regarding our D-D

simulations are given in Appendix A.

We note that similar approaches for OPV device modeling based on the D-D model

have been previously implemented by many groups with great success [74, 173, 178, 90].

The primary difference between the previous studies and ours is the explicit inclusion of

spatially-dependent carrier mobilities (µn and µp). The vast majority of previous 1-D drift-

diffusion studies have simply assumed a constant mobility value for electrons and holes,

without taking into account the meandering conduction pathways (i.e., structural disorder)

that carriers are known to traverse in a BHJ architecture. Spatial disorder of the mobility

profiles has its greatest effect through the current gradient terms of Eqs. (3.3) and (3.4), as

both the drift and diffusion current contributions are proportional to the carrier mobilities.

The recombination rate also will be affected due to its functional dependence on the struc-

turally disordered mobility profiles. Generation of free carriers also should be dependent

on morphology, since carriers should be predominantly generated near the interface of the

donor and acceptor materials. However, we have chosen to neglect the spatial dependence

of free carrier generation on the mobility profile for these simulations and instead assume an

effective medium approach via the transfer matrix formalism. We believe this is a reason-

able approximation since the diffusion length of excitons in OPV materials (∼10 nm) [115]

is generally larger than the feature sizes considered in our disordered mobility profiles.
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3.2.2 Disordered Mobility profiles and Ensembles

3.2.2.1 Random Sampling from a Mobility Distribution

As one way to approximate structural disorder in one dimension, we utilize an ensemble of

spatially variable mobility profiles. To create such an ensemble, we first generate mobility

profiles by randomly sampling mobility values from a distribution of possible mobilities. We

will discuss the details of this distribution shortly. Starting from one end of the device and

progressing to the opposite end, we assign a new, randomly sampled mobility value every

δ nm to each of our carrier mobility (µn and µp) profiles. Our motivation for choosing

spatially-dependent mobility profiles in this way is based on the fact that a charge carrier

moving through a disordered BHJ architecture can be expected to encounter many potential

obstacles, such as grain boundaries, different conducting components, amorphous regions,

and structural dead-ends where the charge carrier is no longer capable of conducting through

a continuous pathway towards its extraction contact without reversing direction. Experi-

mental measurements have shown that carrier conduction through the ‘wrong’ conducting

material (i.e., holes through the fullerene or electrons through the polymer) has an effective

mobility that is several orders of magnitude lower than carrier mobility through the ‘correct’

conducting material [89, 6]. Thus, while traversing even the most conductive possible path-

way(s) through an OPV device, a carrier may experience a range of mobilities that vary by

several orders of magnitude.

It is worth noting that simple distributions, such as a Gaussian distribution, cannot

generate mobilities that sample such a large range of mobility values. Instead, we chose the

exponent of the mobility distribution to follow a Gaussian distribution in order to generate

random mobility profiles than span several orders of magnitude. In this way, we create

mobility profiles such that:

µn,p(x) = 10(µ0+σ·Y (x)) (3.6)

where Y (x) is a normally-distributed random variable that determines the mobility at spatial
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Figure 3.1: (a) An example mobility profile of a device replica generated by randomly
sampling a mobility ensemble characterized by the parameters µ0 = −8.0, σ = 0.7, δ =
3 nm. (b) An example mobility profile of a device replica generated by sampling from a
Cahn-Hilliard morphology, with µCH = −8.0, σCH = 1.0, and average δCH ≈ 3.3 nm (C-H
ε = 1.6× 10−5).

position x. Thus, Eq. (3.6) provides a mobility distribution whose logarithm has a mean and

median of µ0 and a standard deviation of σ. In this way, we can tune the set of parameters

(µ0, σ, and δ) to define an ensemble from which to generate OPV device replicas, each with

a different spatial mobility profile. We present an example mobility profile of one of these

replicas in Fig. 3.1. This mobility profile was generated by sampling an ensemble with the

parameters (µ0 = −8.0, σ = 0.7, δ = 3 nm). Since many such effectively 1-D conducting

pathways exist in real OPVs, by averaging over many of these replicas, we can then draw

conclusions about the effects of structural disorder on device performance.

Perhaps the single biggest drawback of this approach is that it is still limited to 1-D

carrier transport. Thus, our method cannot account for the fact that carriers in real devices

are not required to translate through low-mobility regions in 1-D, but may instead move in

three dimensions to find a more continuous pathway of relatively high mobility. We note,

however, that that charge transport through off-normal dimensions effectively elongates the

charge extraction pathway, which results in higher probability that charges will be lost to

recombination before extraction. Moreover, the presence of dead ends in 3-D conduction
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pathways would result in the buildup of charge carriers, which have no option except to

recombine, be transported through the ‘wrong’ material, or diffuse against their drift vector

in order to be extracted. As such, the increased transit time necessary for a charge carrier

to find and traverse an OPV device through a continuous pathway can be accounted for

as an effective lowering of mobility in the direction of the bulk current flow. Thus, each

simulation we perform with a single spatially-dependent 1-D mobility profile can be thought

of a single, tortuous pathway through a 3-D device. It is for this reason that we simulate

multiple pathways sampled from the same ensemble and only make claims based on the

ensemble-averaged behavior.

3.2.2.2 1-D Mobility Profiles Built from Cahn-Hilliard Morphologies

Since the mobility profiles generated by our random distribution may or may not be rep-

resentative of what a carrier encounters in a working device, we also investigated a second

way of generating spatially-disordered mobility profiles. Our second method is based on the

Cahn-Hillard (C-H) model, which is used to describe the spontaneous phase separation of

binary fluids [17]. We note that the C-H formalism has been used in the past to model the

spatial structure of the components in bulk heterojunction solar cells [108, 140, 185]. Our

choice to also generate mobility profiles via the C-H formalism allows us to further test the

effects of spatial disorder on device performance, by seeing if the way mobility profiles are

generated has any significant effect on the results. Thus, we also utilized an ensemble of

mobility profiles generated from cross-sections of morphologies determined by solving the

Cahn-Hilliard equation [17]:

∂C

∂t
= D∇2(C3 − C − ε∇2C). (3.7)

In this equation, C is the spatial composition of the binary mixture, which varies from one

pure component to another such that C(x, y) ∈ [−1, 1]. We utilize 1-D slices through these

morphologies to as a means to generate 1-D mobility profiles with randomized regions of

enhanced and diminished mobility. Details of our C-H calculations are given in Appendix A.

28



The values of the phases generated from the solution to Eq. (3.7) vary in value from −1

to 1, allowing us to generate the ith replica mobility profile as:

µi(x) = 10µCH
+C(x,i)·σ

CH (3.8)

In this expression, σCH and µCH are analogous to those used in Eq. (3.6). In Eq. (3.6),

σ is the standard deviation of the mobility distribution from which mobility profiles were

generated, and thus sets the range of possible mobility values that could be found in the

ensemble of replica devices. In Eq. (3.8), σCH is a multiplicative factor that also sets the

range of possible mobility values. The quantity µCH also serves a corresponding role as µ0

in Eq. (3.6) as the mid-point around which a distribution of mobility values may be found.

The mobility profiles generated via Eq. (3.8) differ from those generated by Eq. (3.6) in

two important ways. First, the mobility profiles obtained from Cahn-Hilliard morphologies

exhibit a relatively smooth variation in mobility, as opposed to the abrupt changes in our

randomly-sampled mobility profiles (see Fig. 3.1). Second, the C-H mobility profiles gen-

erated by Eq. (3.8) do not possess a single, constant feature size, δ, in contrast to those

generated by Eq. (3.6) that have δ as an explicit an adjustable parameter. The average size

of the compositional domains of Cahn-Hilliard morphologies is determined by the interfacial

energy term, ε, in Eq. (3.7). In C-H calculations, a lower interfacial energy results in a larger

interfacial surface area and thus smaller average domain sizes. Therefore, by altering ε, we

may generate mobility profiles with a varying average domain size, in much the same way

that δ is utilized in our random mobility sampling method.

Once the value of ε is chosen, we determine the average domain size of our Cahn-Hilliard

generated morphologies, δCH by calculating their radial pair distance distribution function :

P (r) =
2

N(N − 1)

N∑
j>k

N−1∑
k

δ(r − rjk) (3.9)

The average domain size, δCH is then determined as the distance at which P (r) = 0.5 [108].

Thus, the C-H formalism provides a second, independent way to generate an ensemble of
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Parameter Symbol Value
Active Layer Thickness d 100 nm
Relative Permittivity εr 3.5

Schottky Injection Barriers φn, φp 0.3 eV
Langevin Reduction Factor γ 0.1

Built-in Voltage VBI 0.6 V
Effective Density of States NC, NV 1× 1020 cm−3

Temperature T 298 K
Band Gap Eg 1.2 eV

Table 3.1: The boundary conditions and parameters used for the D-D simulations presented
in the figures, except where otherwise noted.

tunable mobility profiles that can be used to understand the effects of structural order in

D-D simulations.

3.3 Results and Discussion

We begin by using both of our methods to generate ensembles of spatially-varying mobil-

ity profiles to understand the effects of spatial disorder in drift-diffusion simulations. The

initial ensemble of mobility profiles we examined from our random distribution method is

characterized by parameters µ0 = −8.0, σ = 0.7, and δ = 3 nm. An example of one such

spatially-variable mobility profile is presented in Fig. 3.1(a). For our initial Cahn-Hilliard

mobility profiles, we sampled a C-H morphology that had an average feature size of δCH ≈ 3.3

nm, corresponding to an ε value of 1.6×10−5. We then used those cross-sections to generate

C-H mobility profiles that varied around a central mobility value of 10−4 cm2 V−1 s−1 and

range with composition by two orders of magnitude (µCH = −8.0, σCH = 2.0). For further

details on our Cahn-Hilliard simulations, see Appendix A.

Once the two ensembles were generated, we then solved the D-D equations for each

mobility profile using the boundary conditions collected in Table 3.1 to generate the J–V

characteristics of 1000 device replicas for each method. We present a sample of 100 of

these replica devices’ J–V characteristics for each method in Figs. 3.2(a) and 3.2(b) for

the randomly-generated and Cahn-Hilliard calculated profiles, respectively. Each device

replica (i.e., each distinct spatially-variable mobility profile) exhibits a different short circuit
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current (JSC), open circuit voltage (VOC), and fill factor (FF ). Many of the replicas have

J–V characteristics that do not appear diodic and thus lead to reduced OPV efficiency in the

ensemble average. In particular, the spatial disorder in some of these replica devices produces

the so-called ‘S-curve’, in which there is an inflection point in the fourth J–V quadrant that

leads to a particularly poor fill factor and thus poor power conversion efficiency [53].

To understand precisely how spatial disorder affects OPV devices, we examine the average

J–V curve for both methods’ ensembles in Fig. 3.2(c). For comparison, Fig. 3.2(c) also

includes the calculated J–V curve of a ‘pristine’ device (solid black curve). The pristine

device is characterized by a uniform mobility profile whose mobility value is chosen to equal

the mean of the distribution from which the device replicas were generated (i.e., µn = µp =

10−4 cm2 V−1 s−1). Clearly, even though the average mobilities of both the ensemble devices

and the pristine device are the same, the inclusion of spatial mobility disorder leads to a

decrease in device performance. In particular, both the fill factor and short circuit current

of the spatially-disordered devices suffer in comparison to their pristine counterpart. The

open circuit voltage of the ensemble-averaged spatially-disordered devices, however, shows

no decrease compared to the pristine device, an observation that we rationalize below.

3.3.1 The Effects of the Range of Disordered Mobilities on Ensemble-Averaged

Device Behavior

Now that we have seen the detrimental effects of spatial disorder on device performance,

we can examine the how altering the type and degree of disorder affects affects the device

physics. The σ and σCH parameters define the range of possible mobilities and thus the

degree of disorder in a given replica. We illustrate the effect of changing the degree of disorder

parameter on device performance in Figs. 3.3(a) and (b), which show ensemble-averaged J–V

curves with different values of σ and σCH, respectively. All of these ensembles were chosen

to have the same average mobility and spatial feature size, but each has a different range

of potential mobility values. For both sampling methods examined, increasing the degree of

spatial disorder by increasing the range of possible mobilities monotonically decreases the
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(a) (b)

(c)

Figure 3.2: (a) A collection of J–V characteristics for an ensemble of replicas randomly gener-
ated via the random mobility distribution method using the ensemble parameters µ0 = −8.0,
σ = 0.7, and δ = 3 nm. (b) A collection of J–V characteristics for an ensemble of repli-
cas sampled from Cahn-Hilliard Morphologies with µCH = −8.0, σCH = 1.0, and average
δCH ≈ 3.3 nm (c) The ensemble averaged J–V characteristics for both methods (red-dashed
curve for random mobility profiles; blue dotted curve for C-H generated profiles). For com-
parison, the solid black curve shows J–V characteristic of a non-disordered, ‘pristine’ device
with (µn = µp = 10−4 cm2 V−1 s−1 throughout the active layer).
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ensemble-averaged device performance.

To more thoroughly examine how changes in the degree of disorder affect device per-

formance, Figs. 3.4(a) and (b) illustrate trends in the pertinent figures of merit for device

performance as a function of σ and σCH, respectively. In these plots, the device figures

of merit are displayed as the fraction of their value relative to the pristine (i.e., uniform

mobility profile) device with the same average mobility. Both the JSC and the FF drop

as the degree of disorder parameter is increased, resulting in a concomitant drop in power

conversion efficiency. Although VOC does eventually begin to decrease for high values of σ

and σCH, this decrease is very small compared to the drops in JSC and FF. In fact, by

the time σ is large enough to see a significant effect of disorder on VOC, the values of JSC

and FF are so incredibly low that the device is already effectively non-functional. Thus,

VOC can be considered essentially impervious to disorder for the degrees of disorder that are

representative of typical performance OPV devices.

Of particular interest is the similarity of performance trends between mobility ensembles

generated by random sampling (Fig. 3.4(a)) and those generated by sampling Cahn-Hilliard

morphologies (Fig. 3.4(b)). The distributions of possible mobilities for both of these sampling

methods are decidedly different. In the former case, the ensembles’ mobilities are normally

distributed around a mean value, µ0 of 10−4 cm2 V−1 s−1, with values that range from ∼10−2

to ∼10−6 cm2 V−1 s−1. In the latter case, the ensembles’ mobilities are roughly bimodally

distributed, with the majority of mobilities distributed near 10−2 and 10−6 cm2 V−1 s−1 (see

Appendix A for histograms of these distributions). This is a direct result of the fact that

Cahn-Hilliard morphologies vary from the extremes of one pure component to the other. The

fact that these two very different mobility distributions lead to essentially the same result

suggests that the exact shape of the mobility distribution being sampled is less important to

device performance than the range of possible mobility values and the way such values are

spatially distributed, as we discuss further below.
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(a) (b)

Figure 3.3: Ensemble-averaged J–V characteristics for several series of replica devices. Each
curve is the average of 1000 replicas. (a) Mobility profiles generated from the random
distribution method with µ0 = -8.0 and δ = 3 nm but different values of the degree of
disorder parameter, σ, which ranges from 0.1 to 1.9 in steps of 0.2. (b) Mobility profiles
generated from C-H morphologies with ε = 1.6× 10−5 and thus δCH ≈ 3.3 nm but different
values of σCH ranging from 0.1 to 3.0 as indicated.

(a) (b)

Figure 3.4: Relevant figures of merit of ensemble-averaged J–V characteristics for the series
of replicas presented in Fig. 3 as a fraction of a pristine device’s taken as (a) the disorder
parameter for the random mobility distribution method, σ, is increased from 0.1 to 2.0, and
(b) the disorder parameter σCH for the Cahn-Hillard morphology method is varied from 0.1
to 3.0.
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3.3.1.1 The Effects of Spatial Mobility Disorder on JSC and FF

The large decrease in device performance with increasing disorder arises from the lower limits

of the possible device figures of merit in the case of extreme disorder. The lower limit for JSC

is clearly zero, and we see the device current approaching this as σ or σCH increases. This

results from the fact that for high values of the disorder parameter, a significant fraction of the

replicas have occasional domains of exceptionally low mobility (∼10−7 to 10−8 cm2 V−1 s−1).

These domains are so limiting to charge transport that charges cannot be extracted before

they inevitably recombine, resulting in essentially zero net photocurrent. The lower limit

for the FF with increasing disorder appears to be roughly 0.25. At this point, the average

J–V characteristic of the devices ceases to be diodic and instead resembles a resistor with

a nearly linear J–V relationship. This is because for high values of the disorder parameter,

the presence of low mobility domains dominates the overall charge transport, resulting in

devices with low conductivity and thus high resistivity.

To better elucidate the way spatial disorder impacts the performance of an ensemble

of devices, in Fig. 3.5 we present histograms of the figures of merits of an ensemble of

devices whose mobility profiles were generated via the random sampling method (we present

the corresponding histograms for the C-H method in Appendix A). Because the random

sampling and Cahn-Hillard methods produce qualitatively similar results and lead to the

same conclusions, in the sections that follow we show only the data for the random sampling

method in the main text without loss of generality. Figure 3.5 shows that both the JSC and

the FF exhibit skewed distributions that cause their means to be lower than their medians.

This skewness is perhaps not surprising given that there is an effective upper bound to both

the JSC and the FF. The fill factor has traditionally been seen as measure of how beneficial

the morphology of the device is to charge transport, and clearly the pristine morphology

exhibits the highest possible FF for the chosen set of D-D parameters. Thus, inserting

regions of low mobility within a pristine material lowers the fill factor. Conversely, it is

hard to imagine that inserting occasional regions of relatively high mobility could drastically

improve charge transport if there were low mobility domains elsewhere in the transport
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(a) (b)

(c) (d)

Figure 3.5: Histograms illustrating the distribution of: (a) the short-circuit current, (b) the
fill factor, (c) the power conversion efficiency, and (d) the open circuit voltage for individual
device replicas sampled from the randomly-generated spatial mobility distribution ensemble
of Fig. 3.1a (µ0 = −8.0, σ = 0.7, δ = 3 nm); see Appendix A for the corresponding plots for
spatially-disordered mobility replicas generated by the C-H method.

pathway. These same arguments also hold for the JSC, explaining why the JSC and FF have

an effective upper bound (corresponding to a pristine device with uniform carrier mobility),

which results in a skewed distribution that biases the average towards lower values.

Figure 3.6 summarizes the behavior of the skewness of the JSC (dark blue curve), FF

(green curve) and power conversion efficiency (PCE, light blue curve) distributions for dif-

ferent randomly-generated mobility ensembles with changing disorder parameter (σ). The

skewness of a population can be estimated from a sample of the population by:

γ =
m3

s3
=

1

n

n∑
i=1

(xi − x̄)3

[
1

n− 1

n∑
i=1

(x− x̄)2

]3/2
(3.10)
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Figure 3.6: Skewness of device replicas’ figures of merit as a function of the disorder param-
eter, σ (same randomly-generated mobility replicas whose individual properties and ensem-
ble-averaged behavior are summarized in Figs. 3.2 through 3.5).

where m3 is the sample third central moment and s is the sample standard deviation of the

population of values. We emphasize that this standard deviation corresponds to the sample

of the values of the device figures of merit (JSC, FF, and VOC) and not the standard deviation

of the mobility distribution from which the sample of replica devices is generated. For lower

values of the disorder parameter σ, both the JSC and FF distributions are negatively skewed;

that is, they have a tail towards lower values and their mean is less than their median. At

higher values of σ, the direction of this tail reverses and the distributions become positively

skewed. This reversal in skewness results from a change in the replicas’ performance from

being upper-bound dominated to lower-bound dominated. For both the short-circuit current

and fill factor, the lower bound corresponds to zero current flowing or the 0.25 effectively

linear FF in the device as a result of the presence of low mobility regions in the average

mobility profile.

3.3.1.2 The Effects of Spatial Mobility Disorder on VOC

Figures 3.5 and 3.6 also examine the skewness of the distribution of open circuit voltages

for the randomly-generated spatially-disordered mobility replicas (red curve, bars), which is

expected to depend primarily on the nature of carrier recombination [159]. For all values of

σ that we explored, the VOC distribution has a skewness of nearly zero and thus follows a
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nearly normal distribution. The normal distribution of VOC results from the fact that we are

utilizing a Langevin recombination mechanism of the form:

R(x) =
q

εrε0
[µn(x) + µp(x)] · n(x) · p(x) (3.11)

which depends directly on the mobility. Despite the explicitly linear dependence in Eq. (3.11),

we note that recombination is actually nonlinearly dependent on mobility since the electron

and hole densities are implicitly functions of their respective carrier mobilities. Thus, decreas-

ing the mobility for either carrier in a particular spatial region leads to a locally diminished

recombination rate, and therefore a lower recombination term in Eq. (3.3). This same low

mobility, however, also leads to a buildup of charge in that spatial region, which leads to a

locally increased recombination rate.

This subtle balance between carrier build-up and carrier recombination can result in

replicas with either enhanced recombination or lowered recombination, which by the central

limit theorem we expect to be normally distributed. This results in an ensemble with approx-

imately the same average amount of recombination per device as a non-disordered device.

Since VOC occurs at the voltage for which the recombination rate equals the generation rate

(and since the generation rate is constant for all replicas), it follows that ensemble-averaged

VOC should be roughly the same as that of a non-disordered device. As a result, the average

VOC is relatively impervious to increasing spatial mobility disorder. This finding is in stark

contrast to what happens in the case of energetic disorder, where previous studies have found

that VOC decreases with increasing energetic disorder [16]. The D-D simulations we present

here consider only structural disorder, so we can conclude that VOC is not affected by struc-

tural disorder, and should be thought of as susceptible only to the energetic disorder that

inherently accompanies structural disorder and the way this energetic disorder affects the

recombination kinetics. A side effect of our choice of a Langevin recombination mechanism

is that there may be excessive recombination. The assumption of a Langevin recombina-

tion mechanism has been shown to over estimate the recombination rate of OPV devices

[137, 91, 96]. As such, drift-diffusion studies which employ such a mechanism typically in-
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clude a recombination reduction factor, which can range from 10−1 to 10−3[42, 22]. Our

simulations employ a relatively mild reduction factor of 10−1, which might result in excess

recombination and diminished fill factors. It is possible that utilizing a stronger recombina-

tion reduction factor would allow a simulated device to possess greater structural disorder

(that is, a larger value of σ) before manifesting a comparable degree of performance degra-

dation as what we have simulated in this work. Still, the general conclusion of structural

disorder’s deleterious effects on device performance should be unchanged, and may simply

manifest to a lesser degree.

3.3.2 The Effects of the Spatial Disorder Length Scale on OPV Device Perfor-

mance

We next turn our investigation to how the length scale of spatial disorder affects device

performance. X-ray diffraction and various microscopy measurements have indicated that

the polymers and fullerenes in a BHJ phase segregate into domains with sizes on the order

of several nanometers, with amorphous and potentially intermixed regions surrounding the

domains [193, 177, 117, 38, 187]. To investigate the effects of the phase-separation (and thus

the spatial disorder) length scale on device performance, we varied the size of the mobility

regions in our ensembles from 2 nm to 20 nm. We do not consider disorder length scales

below 2 nm since smaller length scales would correspond to the diameter of single fullerene

molecules, thus representing a lower bound to the morphological granularity in a real device

[139].

Figure 3.7 illustrates the effect of changing the simulated domain feature size δ for the

randomly-generated mobility profiles on the ensemble-averaged figures of merit; as above,

these are presented as a fraction of the figure of merit for a pristine device with no structural

disorder. (We note that tuning the size scale of the spatial disorder is less direct with the

C-H method, as the average length scale δCH depends in a non-linear way on the ε parameter

in Eq. (3.7); see Appendix Afor details). As we saw above for the degree of disorder, VOC

is relatively unaffected by the introduction of structural features, and has nearly the same
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Figure 3.7: Relevant figures of merit for the ensemble averaged J–V characteristics pre-
sented in Fig. 3.3a as a fraction of the pristine device’s but as the spatial feature size, δ, in
the randomly generated profile ensemble is increased from 2 to 15 nm.

average value for all spatially-disordered length scales relative to a non-disordered, pristine

device. In contrast, both the JSC and the FF are negatively impacted by the inclusion

of discrete mobility regions, and they are more impacted the smaller the features become.

Clearly, the fact that real OPV devices are designed to have BHJs with structure on ∼10 nm

length scales reinforces the idea that structural disorder is too important to be overlooked

in D-D modeling of OPV devices.

To further examine the effects of structural disorder on device performance, we also

simulated an ensemble of devices characterized by µ0 = −8.0, σ = 0.7, and δ = d = 100

nm, the entire device thickness. An ensemble characterized by these parameters results in

individual mobility profiles that have a single, uniform value for their mobility. Thus each

device replica will have a have a randomly assigned mobility but no spatial disorder. This

ensemble thus decouples the effects of simple mobility disorder (σ) from structural mobility

disorder (δ), which is present only in ensembles with structural features that are smaller

than the thickness of the device. Figure 3.8 compares the averaged results for this ensemble

(red circles, curve) to that of a well-disordered ensemble with µ0 = −8.0, σ = 0.7, δ = 3

nm (blue triangles/curve). The data shows that the inclusion of spatially-varying random

mobilities diminishes the average performance of the device to a much greater extent than

a simple ensemble of random, uniform mobilities. This suggests that the negative impacts
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Figure 3.8: J–V curves comparing a randomly-generated structurally-disordered ensemble
(blue triangles) with an ensemble of structurally pristine devices with only mobility disorder
(red circles; see text for details). Note that although both ensembles’ performance diminishes
as a result of the inclusion of disorder, the inclusion of structural disorder leads to a much
more severe drop in performance.

of structural disorder are not the result of low mobility replicas alone. Rather, it is the fact

that spatial disorder includes regions of both high and low mobility that has a significant

detrimental effect on device performance. Thus, the reason device performance becomes so

diminished at larger values of σ is because the mobility difference between the high and low

mobility regions becomes more drastic; in other words, the impact that spatial disorder has

on device performance becomes larger.

3.3.3 The Effects of Spatial Disorder on the Shape of J–V Curve

As pointed out above, the introduction of spatial disorder can lead to an S-shaped J–V

curve with a very poor FF. Using the same D-D modeling approach employed here, we

have illustrated in a previous paper how such S-shaped J–V characteristics can be produced

by devices that have diminished carrier mobility near an extraction contact [51]. Our pre-

vious paper assumed a pristine mobility profile except for a precipitous drop in mobility

for electrons near the cathode contact. In the current study, in which mobility profiles are

either randomly generated or taken from Cahn-Hilliard calculations, it is easily possible for

a replica to have a mobility profile similar to that of our previous work, with low mobility

domains near one or both of the extraction contacts.
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When we analyzed our individual randomly-generated and C-H mobility profiles, we

found that those with a calculated S-shaped J–V curve were indeed almost all characterized

by a region of low mobility near one of the extraction contacts. Of particular note, not all of

these replicas had the low mobility region contiguous with the extraction contact; instead, in

several instances of replicas with S-shaped J–V curves, the low mobility regions were up to 20

nm away from the contact. Of course, Fig. 3.2 shows that the number of replicas that result

in S-shaped J–V curves were not sufficient to cause the ensemble-averaged performance to

deviate terribly far from typical diodic behavior. However, it is reasonable to assume that if

a significant number of replicas were characterized by diminished mobility near an extraction

contact, the resulting ensemble averaged J–V characteristic would exhibit an overall S-curve.

Thus, the apparently random occurrence of S-curves in experimental devices is dependent on

an ensemble morphology that results in poor mobility for a carrier near its extraction contact:

S-curves occur when there is a particular problem maintaining mobility near the extraction

contact (e.g. via undesirable vertical phase separation), or when the inherent structural

disorder in an OPV device happens to leave low mobility regions near the contacts along the

majority of the effectively 1-D conduction pathways traversed by the carriers in a particular

BHJ geometry.

3.4 Conclusions

In this work, we have used drift-diffusion modeling to examine the effects of structural

disorder on the performance of BHJ organic photovoltaic devices. We argued that it is

possible to study the effects of 3-D spatial disorder in an OPV device via an ensemble

average of 1-D drift-diffusion models. This is because photogenerated carriers in real 3-D

devices must traverse a relatively small number of effectively 1-D tortuous, high-conductivity

paths to reach the device electrodes. As these carriers encounter grain boundaries, dead-ends

or cul-de-sacs along their journey, they effectively lose mobility in the direction of the bulk

current. Our approach to accounting for the effects of this disorder involves modeling many

replica pathways with mobility profiles either randomly generated from an ensemble mobility

42



distribution or generated via Cahn-Hilliard modeling. Using this approach, we investigated

how the range of mobilities sampled and the size of typical mobility features affected the

overall (ensemble-average) device performance.

Based on looking at averages and distributions of 1-D device models with different dis-

order parameters, we have shown that the short-circuit current and fill factor are negatively

affected by the inclusion of structural disorder, but the open circuit voltage is nearly imper-

vious to disorder’s debilitating effects. This non-dependence of the open circuit voltage on

structural disorder stands in strong contrast to energetic disorder, which has been shown to

have a profound detrimental effect on VOC [16]. The strong dependence of the JSC and the

FF on structural disorder results from the fact that these figures of merit have effective lower

and upper limits for particular mobility profiles, thus forcing an asymmetry in the ensemble

that is averaged to simulate the device performance. We also have found that the inclusion

of structural disorder is imperative if the OPV architecture in question has feature sizes of

a few nm, which is indeed the case for nearly every experimental BHJ device. Finally, we

found that no matter how the individual spatially-varying mobility profiles were generated,

the results we obtained were the same, indicating that all off the effects discussed above are

universal features of spatial disorder and are not dependent on the microscopic details.

As previously discussed, our method for approximating structural disorder is still lim-

ited by 1-D charge transport. We are thus missing some of the correlated distribution of

charge conducting materials present in a true 3-D BHJ architecture. We hope to further

refine our modeling of structural disorder by eventually extending our simulations to higher-

dimensionality mobility profiles that include carriers’ ability conduct perpendicularly to bulk

current flow. We also plan to couple spatial disorder with energetic disorder to better un-

derstand the interplay of these two different types of disorder on BHJ device performance.

Until such subsequent drift-diffusion studies are carried out, we believe that this 1-D study

and analysis provide strong evidence that structural disorder is of paramount consideration

for the modeling and development of OPV devices.
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CHAPTER 4

Do Organic Photovoltaics Really Need a Mixed Phase?

Drift-Diffusion Studies of the Effect of Bulk

Heterojunction Compositional Morpholog on Optimum

Device Performance

4.1 Introduction

In recent years, photovoltaic devices based on organic materials, referred to as OPVs, have

made major gains in their efficiency. Single-junction OPVs have surpassed 10% power conver-

sion efficiency (PCE)[27] and multi-junction, tandem devices have achieved up to 12%.[192]

The majority of organic photovoltaic devices are based on a binary blend of a semiconducting

polymer and a fullerene derivative. The polymer serves as the light absorber, producing ex-

citons. To split the excitons into free carriers and generate electrical current, such polymers

are paired with an electron acceptor, typically a fullerene derivative. These two materials

are usually blended together and processed into a ∼100 nm thick film that is layered between

two electrodes. The charge carriers then migrate to their respective electrodes by traveling

through pathways constructed from their preferred conducting molecules (electrons through

the fullerene and holes through the polymer). Efficient charge transport is contingent upon

the two conducting materials forming a bicontinuous network so that the charges may move

through the device unimpeded. This mix of donor and acceptor materials within the ac-

tive layer of the OPV device to facilitate both exciton separation and subsequent charge

transport is known as a bulk heterojunction (BHJ).[100, 187, 19]

The way in which excitons are split and carriers are transported in a BHJ makes the
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performance of OPV devices highly sensitive to the kinetics of how the active organic layer

is processed.[184, 187, 149] Because charge carriers travel selectively through the electron

donor and acceptor molecules, it is evident that the structural details of an OPV device’s

internal morphology have an immediate effect on charge transport and thus a device’s pho-

tovoltaic performance. Further complicating the matter is that the binary component blend

used in BHJs results in an active layer with three distinct compositional phases: pure poly-

mer domains, pure fullerene domains, and an amorphous, mixed-composition, interfacial

domain that must lie between the pure component domains. There is debate within the

OPV community about how the relative sizes of these three domains and the way they are

distributed affect OPV device performance. In particular, some have argued that the mixed-

composition regime is crucial to OPV device operation, since charge generation occurs most

prevalently near the interface between donor and acceptor molecules.[73, 21, 72] Insufficient

fullerene intercalation into amorphous polymer domains can result in morphological electron

traps, emphasizing the need for a sufficiently intermixed region in the BHJ.[12] Conversely,

excessive mixing between fullerene and polymer can result in higher rates of charge recom-

bination, which can lower device performance.[175] Moreover, excitons generated in BHJ

devices typically have diffusion lengths of ∼10 nm, which is comparable to the average do-

main size of many polymer/fullerene BHJ devices.[20, 73] Thus, it is not immediately clear

to what degree the presence of a mixed-composition domain is beneficial or detrimental to

optimum OPV operation.

There are two main reasons why it is difficult to determine if a mixed, amorphous phase is

necessary for OPV operation, and if so, how much is needed and how it should be distributed

relative to the pure component phases. First, there is no easy experimental method for

controlling the relative amounts or spatial distribution of different phases in an OPV active

layer because the morphology is determined primarily by the kinetics of how the film is

processed.[149, 100] This kinetic sensitivity means that none of the experimental “knobs”

that can be tuned (e.g., the use of solvent additives during spin-coating[188], post-treatment

via solvent[101] or thermal annealing[83], etc.) can be used to controllably change the relative

amounts of phase separation and/or mixed-phase region in an active layer made from a given
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set of materials. Second, morphological characterization of the different organic components

in an OPVs via electron microscopy is problematic, primarily due to the low contrast between

typical OPV materials. Only a few papers have attempted to actually quantify the relative

amounts of each single-component phase and the mixed-phase,[186, 28, 129] and then only

for a few selected configurations of a very limited set of materials.

All of these complications have hampered experimental efforts to probe the effects of

OPV morphology and the presence or absence of a mixed-phase on device performance.

Thus, in this paper, we utilize semiconductor device modeling to address this question, fo-

cusing our efforts on the well-known drift-diffusion (D-D) model.[173, 74, 116] Several groups

have used the D-D approach to study the effects of morphology and morphological disorder

on OPV performance.[16, 87, 141] There are actually two types of disorder that, although

interrelated, can affect OPV device performance in different ways: energetic disorder, which

results from twists and kinks within the polymer chains that produce different energetics

for different sites in the active layer film, and structural disorder, which results from the

tortuosity of the bicontinuous network that can lead to “dead-ends” and other features that

are non-optimal for carrier transport. Many studies have examined the effects of energetic

disorder on OPV performance, usually assuming a Gaussian distribution of energetic states

and/or an exponential tail of trap states in 1-D drift-diffusion simulations.[16, 87] Other

groups have focused on the effects of structural disorder by performing 2-D drift-diffusion

simulations to simulate the effects of phase separation and component distribution on device

performance[140, 122]; we also have presented a 1-D method for examining structural disor-

der based on D-D simulations of ensembles of 1-D devices with position-dependent mobility

profiles.[52]

In this study, we present a set of 2-D drift-diffusion simulations specifically designed

to probe the effects of the presence of a controllably varied mixed-composition, interfacial

phase on device performance. We begin by utilizing morphologies generated by Cahn-Hilliard

(C-H) modeling of binary fluid phase separation, as has been employed successfully in pre-

vious 2-D D-D modeling studies of OPVs.[140, 141] The C-H morphologies allow us to tune

the component domain sizes with a single parameter, and we then introduce an interfacial
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mixed region between the pure component regions by smoothing the binary morphology in

a continuous, controllable fashion. To verify that the conclusions drawn from these artificial

morphologies also apply to real BHJ morphologies, we also utilize a single empirical mor-

phology obtained via high-angle annular dark-field scanning transmission electron microscopy

(HAADF-STEM). The phase-domains for this morphology (pure donor, pure acceptor, and

mixed-phase) have been previously characterized.[185] We then map charge carrier mobili-

ties to both the C-H and HAADF-STEM generated morphologies, allowing us to probe the

effects of having differing amounts of mixed-composition, interfacial domains present in BHJ

OPV devices at various average morphological feature sizes. We find that the presence of

interfacial mixed regions can be either beneficial or deleterious to OPV device performance

depending on the average feature size and the amount of mixed-phase introduced. Analysis

of our simulation data indicates that introducing a mixed-phase can first improve device per-

formance by reducing the number of morphological traps (i.e., dead-ends or “cul-de-sacs”)

and reducing the tortuosity of conduction pathways. In some cases, the introduction of a

mixed-phase can even create new conduction pathways by connecting previously disjointed

conduction domains. However, excessive mixing actually reduces device performance by de-

grading conduction pathways, resulting poorer charge transport and the loss of carriers to

recombination. The point at which mixing becomes deleterious, rather than beneficial, to

charge transport differs depending on the average feature size of the simulated morphology

and other morphological variations. This all results in non-monotonic trends for device per-

formance as a function of mixing and domain size. In an experimental setting, different

donor/acceptor blends exhibit distinct domain size distributions and degrees of mixing. The

non-monotonic effects of the mixed-phase on device performance may thus explain why it is

so laboriously difficult to optimize new donor/acceptor pairings and why OPV devices are

so sensitive to processing conditions and performance degradation over time.
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4.2 Computational Methods

4.2.1 Drift Diffusion Model

For this work, we perform our device simulations using the drift-diffusion model of electrical

current, in which the electron and hole current densities (Jn, Jp) are assumed to take the

functional form:[162]

Jn = −qnµn∇V + kTµn∇n (4.1)

Jp = −qpµp∇V − kTµp∇p (4.2)

where q is the fundamental charge, n and p refer to the electron and hole densities, V is the

electrostatic potential, and µn and µp refer to the mobility of electrons and holes, respectively.

[90] In order to simulate a working device, one must solve the density continuity equations

for both carriers:

∂n

∂t
=

1

q
∇ · Jn −R +G (4.3)

∂p

∂t
= −1

q
∇ · Jp −R +G (4.4)

where R is the recombination rate and G is the generation rate of electrons and holes.

Because the literature consensus is that recombination events in OPV devices are trap-

assisted processes, we follow the approach of previous groups and use the Shockley-Read-

Hall functional form to represent recombination with an exponential distribution of trap

states.[87, 16] To appropriately account for the thin-film interference effects that occur in

normal OPV device layer structures, we use a transfer matrix formalism[135] to calculate

the absorption profile and also allow for the carrier generation profile to be morphology

dependent, as discussed below in Section 4.2.2.3.
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Once generated, the carrier densities must also satisfy the Poisson equation:

∇2V =
q

εrε0
(n− p) (4.5)

where V is the electrostatic potential. This additional requirement means that all of the

above equations are inherently coupled. The set of Eqs. (4.1)-(4.5) forms the basis of the

D-D model.

We used the Gummel method to decouple the above set of partial differential equa-

tions and solved them in an iterative manner.[58] Equations (4.3)-(4.5) are appropriately

discretized and solved on 2-D finite difference mesh.[147, 152, 162] Boundary conditions at

the semiconductor-metal contacts were treated as Dirichlet type, meaning the values of the

carrier densities and potential were predetermined. For the boundary conditions for the

carrier densities at the electrodes, we assumed thermionic injection of free carriers from the

metals into the organic semiconducting materials of the active layer.[150] For the Poisson

equation’s boundary conditions, we assumed that the potential drop across the device was

equal to the device’s built-in voltage, VBI. The lateral boundary conditions were treated as

Neumann type, meaning the gradients of n, p and V were predetermined. We set the gradi-

ents of these variables to zero at the sides of the device, since there should not be excessive

lateral drift or diffusion current for reasonably wide active areas like those explored here.

Collectively, the boundary conditions for our D-D simulations were:
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n(x, 0) = NC exp(−ΦB,ano

kT
) (4.6)

n(x, d) = NC exp(−ΦB,cat

kT
) (4.7)

p(x, 0) = NV exp(−Eg − ΦB,ano

kT
) (4.8)

p(x, d) = NV exp(−Eg − ΦB,cat

kT
) (4.9)

V (x, 0) = 0 (4.10)

V (x, d) = VBI (4.11)

∂n(0, y)

∂x
=
∂n(w, y)

∂x
= 0 (4.12)

∂p(0, y)

∂x
=
∂p(w, y)

∂x
= 0 (4.13)

∂V (0, y)

∂x
=
∂V (w, y)

∂x
= 0 (4.14)

where ΦB,ano/cat are the Schottky barriers at the anode/cathode, NC/V are the density of

chargeable sites/vacancies for electrons/holes, Eg is the effective bandgap represented by the

offset between the polymer’s HOMO and the fullerene’s LUMO, and d and w refer to the

depth and width of simulated device. The dimensions of most of our simulated devices were

chosen as 100 nm deep by 300 nm wide, an active area large enough to capture the majority

of morphological effects while still being computationally tractable. We chose additional

simulation parameters that are comparable to those previously used in the literature.[75, 87]

All the parameters pertinent to our calculations are collected in Table 4.1.

4.2.2 Mapping Morphologies to a D-D OPV Device Model

4.2.2.1 Cahn-Hilliard Generated Morphologies

There has been relatively limited direct nm-scale compositional mapping of OPV active lay-

ers due to the limited contrast between typical donor and acceptor components.[186, 28, 129]

As such, the number of experimental morphologies available to map and simulate is noncom-

prehensive. To examine as many permutations of pure component and mixed-composition
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Parameter Symbol Value
Active Layer Depth d 100 nm
Active Layer Width w 300 nm
Relative Permittivity εr 3.5

Schottky Injection Barriers φn, φp 0.4 eV, 0.1 eV
Electron Mobility in Acceptor µn,A 10−7 m2 V−1 s−1

Electron Mobility in Donor µn,D 10−12 m2 V−1 s−1

Hole Mobility in Acceptor µp,A 10−12 m2 V−1 s−1

Hole Mobility in Donor µp,D 10−8 m2 V−1 s−1

Built-in Voltage VBI 0.7 V
Density of Trap States NC, NV 1× 1020 cm−3

Urbach Energy EUC,EUV 40 meV
Capture Rate Coefficient β+,−,0

n,p 1× 1013 cm−3 s−1

Temperature T 298 K
Band Gap Eg 1.2 eV

Table 4.1: Boundary conditions and values of other parameters used for all the D-D simu-
lations presented in this work, except where otherwise noted in the text.

domain size as possible, we chose to start with a series of computer generated, binary compo-

nent morphologies (i.e., containing only pure phases and no mixed-phase) of varying average

domain size and then introduced a mixed-phase, interfacial domain of a controllably varying

width. We followed the approach of several previous groups and generated an initial series

of model morphologies based on the spontaneous phase separation of a binary fluid mixture.

This involves solving the Cahn-Hilliard equation:

∂C

∂t
= D∇2(C3 − C − ε∇2C) (4.15)

where C is the spatial composition of the fluid mixture that ranges from one pure component

to the other (C(x, y) ∈ [0, 1]). In this equation, D is the diffusivity and ε is the interfacial

interaction energy between the two components. Since our primary interest in Cahn-Hilliard

morphologies is the semi-random distribution of phases at differing length scales, we set

D = 1 and instead only varied the relative interaction energy. Since the interaction energy

determines the average domain size of the resulting morphologies, this single parameter

allowed us to simulate bulk heterojunction morphologies with a controllably varying feature

size. We employed David Eyre’s linearly stabilized Cahn-Hilliard integration scheme[50, 17]
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to solve the Cahn-Hilliard equation on a 2-D grid, an approach that has previously been

applied to generate polymer-fullerene BHJ morphologies.[140, 141]

Although other Cahn-Hilliard-based studies have investigated morphology characteristics

such as average feature size[92], annealing time (represented by Cahn-Hilliard integration

time)[141], and tortuosity on OPV device performance,[24] for this study, we are primarily

interested in the effects of the amorphous, mixed-composition interfacial regions and how

such regions may be important for BHJs to function. Thus, we chose to start with a few,

base morphologies that have feature sizes of approximately 4, 8, 10, 12, and 15 nm (we

determine the average feature size via examination of pair-pair distribution functions for each

morphology).[108] To this end, we simulated all our morphologies using identical starting

parameters, listed in Table 4.2, except for the interaction energy, ε that determines the

average domain size.

It is worth noting that the morphologies generated by Cahn-Hilliard simulation neces-

sarily have an interfacial width that is related to the domain size. However, in real BHJ’s,

the mechanics of local phase separation are more complicated, since most BHJ phase sepa-

ration is driven by polymer crystallization and/or agglomeration of the fullerene, which may

not be well represented by the simple separation of immiscible fluids. Thus, the interfacial

regions generated in Cahn-Hilliard morphologies may not correspond well with the mixed

regions found in real BHJs with a comparable average feature size. To account for this and

to gain more control over our simulated mixed interfacial regions, we started by completely

binarizing our Cahn-Hilliard morphologies them (i.e., rounding C to either 0 or 1 at every

point in space), thus generating morphologies with only pure-component domains. We then

re-introduced mixed regions by “blending” the pure domains at the interface by successively

applying Gaussian smoothing operations. This results in a morphology that varies from 0

to 1 with a smooth interface (of varying and controlled width) between the pure domains.

In this way, we can explore the OPV performance of active layers that have amorphous

interfacial regions of varying dimension for BHJs with different active-layer feature sizes. An

example of a binarized Cahn-Hilliard morphology and the effects of our Gaussian smoothing

procedure on this morphology are shown below in Figure 4.2(a)-(c).
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We note that this method of Gaussian smoothing to “mix” the pure phases only intro-

duces a mixed-phase at the interface between pure regions. The amount of mixed region

introduced by a smoothing operation is thus dependent on the fraction of the device that

can be characterized as an interface. Because the initial C-H morphologies that we explored

have different feature sizes, they also have different amounts of interface in their initial

compositions, so that applying a single Gaussian smoothing operation to the different mor-

phologies does not introduce the same amount of mixed-phase. In order to easily compare

different feature-sized morphologies, we instead choose to use the standard deviation, σ, of

the morphologies’ compositions as a way to quantify the degree of mixing. In the completely

unmixed morphologies, all mesh points have a composition value of 0 or 1, since we only

have pure regions. Since the mole fraction ratio of donor to acceptor is 0.5, the standard

deviation in composition of the initial morphology is 0.5. In contrast, if we had constructed

a perfectly blended, homogeneous morphology, all mesh points should have the same com-

positional value of 0.5, leading to a standard deviation of exactly 0. The standard deviation

values between these two limits thus provide a measure of the fraction of the morphology

that has been mixed, as quoted in the caption to Fig. 4.2. Explicitly, the fraction of the

device that is mixed, fmixed is related to the standard deviation of the devices composition,

σ, by:

fmixed = 1− 2× σ (4.16)

4.2.2.2 Empirical (HAADF-STEM) Morphology

As previously discussed, it is unclear how representative our Cahn-Hilliard generated mor-

phologies are of actual BHJ morphologies. The Cahn-Hilliard formalism is an idealized

model of binary fluid phase separation. However, the phase separation kinetics of typical

OPV donor/acceptor blends is significantly more complicated.[184, 187, 149, 100] Therefore,

in addition to the bevy of artificial morphologies simulated, we also simulated an empiri-

cal morphology which has already been characterized in terms of its compositional domain

distribution.[186] This morphology, presented below in Fig. 4.3(a), was obtained by high-

angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and
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represents the compositional density profile of donor and acceptor materials, specifically

P3HT and the endohedral metallofullerene 1-[3-(2-ethyl)hexoxy carbonyl]propyl-1-phenyl-

Lu3N@C80 (Lu3N@C80-PCBEH). In their analysis, the authors of Ref. [186] were able to

specifically characterize the experimentally observed compositional domains as pure donor,

pure acceptor, or mixed. For our simulations, we represented the local composition C(x, y)

with 1 corresponding to pure donor, 0 to pure acceptor, and 0.5 to the mixed region. For this

particular 2-D slice of this particular experimental morphology, the mixed component do-

main accounted for ∼16% of the device’s active area, using our above method for measuring

the degree of mixing. We then utilized this compositional data to map out the charge carrier

generation profile, which we set to occur only in the mixed-component region and which we

based on the calculated light absorption profile determined by solving a transfer matrix for-

malism to account for thin-film interference effects, as described further in Sec. 4.2.2.4. We

also used the local composition to determine the local charge carrier mobilities, as discussed

in more detail in Sec. 4.2.2.3

4.2.2.3 Mapping Morphology to Simulated Device Parameters

With our set of morphologies in hand, our next step was to incorporate these morpholo-

gies into our drift-diffusion simulator. The device parameters that should be most directly

affected by the compositional morphology are the mobilities and generation rate of charge

carriers. The two organic components typically used in BHJ solar cells are often charge car-

rier selective in regards to their mobility. For example, the archetypal OPV polymer poly-3-

hexylthiophene (P3HT) possesses a mobility of approximately 10−4 cm2 V−1 s−1 for holes, but

P3HT’s electron mobility is many orders of magnitude lower, approximately 10−8 cm2 V−1

s−1.[114] Conversely, the archetypal OPV fullerene derivative, PCBM, possesses high electron

mobility (∼10−3 cm2 V−1 s−1), but a much lower hole mobility (∼10−8 cm2 V−1 s−1).[98]

Given this, in our simulations we chose to map the carrier mobilities from the composition

by:
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− ln(µn) = µn,A + (µn,D − µn,A) · CA(x, y) (4.17)

where µn is the electron mobility at spatial position (x, y), µn,A/D is the mobility of electrons

moving among a network of pure acceptor/donor molecules, and CA(x, y) is the compositional

profile of the active layer. We add the additional subscript to the compositional morphology

term generated from Eq. (4.15) to make explicit that we define CA(x, y) = 1 as corresponding

to pure electron acceptor material (i.e., the fullerene derivative). We define the spatially-

varying hole mobility in a similar fashion. With this functional form, the carrier mobility

can vary several orders of magnitude at different spatial positions, as determined by the local

composition. We chose this functional form specifically so that the mixed, interfacial region

possesses a moderate degree of carrier mobility, which is at an order of magnitude somewhere

in between that of the two pure components. We justify this choice based on the logic that

a mixed region should have an appreciable charge carrier mobility due to the presence of the

appropriate conducting molecule in that region. However, since these regions also tend to

be amorphous and contain the other, non-conducting component, it follows that the mixed

region should not be as highly conductive as the pure phase.

It should be noted that there are technically two different approaches for mapping mo-

bilities onto the mixed-phase domains in the interfacial regions: either by first smoothing

the compositional morphology and then mapping the charge carrier mobilities (our chosen

method), or an alternate method where the mobility mapping is performed first and then

the mobility profiles are subsequently smoothed. With the first method, which we chose to

implement, the carrier mobilities in the mixed region tend to be over an order of magni-

tude smaller than those in the pure phases with large fluctuations depending on the exact

composition. In contrast, the alternative mapping-before-smoothing approach produces mo-

bilities in the mixed-phase that are all roughly about one-half that in the pure phases with

relatively little compositional fluctuations. As the experimental values of carrier mobilities

in the mixed-phase are unknown, for the major part of this study, we chose the smoothing-

before-mapping approach since this produces mixed-phase mobilities that make the most
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physical sense to us. We have, however, explored both approaches for mobility mapping,

and examples illustrating how the different approaches yield different device performance

trends are given in Appendix B.

4.2.2.4 Transfer Matrix Approach for Calculating Carrier Generation Profiles

To determine the carrier generation profile to be used in our simulations, we began with

a transfer matrix calculation using an effective medium approximation to calculate the

wavelength-dependent absorption profile through the device. Charge carriers, however, are

generated by the absorption of light only if the resultant excitons on the absorbing donor

are subsequently split at a donor/acceptor interface. In other words, charge carriers should

be generated predominantly in proximity of the interface between the two components of

both our experimental and Cahn-Hilliard morphologies. It is well established that excitons

have a diffusion length of approximately 5-10 nm in most OPV material blends.[115] Thus,

we expect carrier generation to be maximized at the interfaces between the binary phases

and to decay in magnitude as we move outward from that interface, so that no carriers are

generated at distances ≥10 nm from the interface. To account for this in our simulations,

we convolve an exponentially decaying profile with a 10-nm decay constant centered on the

interfacial boundaries with our transfer matrix profile, resulting in spatially-dependent car-

rier generation that properly accounts for both morphological and exciton diffusion effects.

An example of such a generation profile for a C-H morphology with an average feature size

of ∼10 nm is presented in Fig. 4.1

4.3 Results and Discussion

4.3.1 Cahn-Hilliard Generated Morphologies

We begin our analysis of the effects of the mixed-composition phase on OPV charge trans-

port by simulating the J–V characteristic of the Cahn-Hilliard generated morphologies by

solving Eqs. (4.3)–(4.5) as a function of applied voltage bias (the full J–V characteristics
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Figure 4.1: An example of a spatially dependent generation rate for a morphology gener-
ated by Cahn-Hilliard modeling. By comparison of this image with the morphology images
presented in Fig. 4.2, it is clear that charges carriers are only generated in proximity to the
interface between donor and acceptor phases.

Parameter Symbol Value
Diffusivity D 1

Simulation Time tmax 1000
Time Step 4t 0.5

Interaction Energy ε 0.0018, 0.0023,
0.0024, 0.0025, 0.0030

Average Domain Size 4 nm, 8 nm
of Generated Morphologies 10 nm, 12 nm, 15 nm

Table 4.2: Boundary conditions and parameters used for the C-H binary fluid simulations,
except where otherwise noted in the text. All values serve as unitless parameters for the
simulations. The average domain sizes of the morphologies generated with this parameters
are given in the last row of this table.
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are presented in Appendix B). We present an example of one such morphology in Fig. 4.2.

Specifically, the presented images refer to a C-H morphology with an average domain size

of ∼10 nm. We present snapshots of the morphology at varying degrees of mixing: first

when only pure component domains are present (0% mixing, panel (a)) as well as two levels

of Gaussian smoothing that result in 30% (panel (b)) and 70% (panel (c)) mixing of the

active layer. The colormap for these images is such that white corresponds to pure acceptor

material (i.e., fullerene) and black corresponds to pure donor material (i.e., polymer). The

orientation is such that the top of the image corresponds to the transparent anode and the

bottom corresponds to the metallic cathode. After this initial morphology has been mapped

to mobility and generation profiles, we solved Eqs. (4.3)–(4.5) and simulated the J–V char-

acteristic measurement for each morphology. The steady-state solutions for the electron

density, the recombination rate of carriers, and the y-component electron current density (n,

R, and Jn,y) at 0 V applied bias (built-in field only) are also presented in the second, third,

and fourth rows of Fig. 4.2, respectively.

Immediately apparent from carrier density plot in Fig. 4.2(d) is how indirect conduction

pathways and morphological traps result in significant charge accumulation at various points

within the device. We note that the largest regions of charge accumulation are characterized

by both high carrier generation (i.e., near the interface between pure domains) and the

lack of a direct, continuous conductive pathway between the generation site and the electron

extraction cathode (the cathode is located at the bottom of the figure in our representation).

Perhaps not surprisingly, these regions of accumulated charge are also localized regions with

an increased rate of charge carrier recombination, as presented in Fig. 4.2(g). To further

examine the effects of the tortuous BHJ morphology on charge transport, we present the

spatially-dependent electron current density, Jn, in Fig. 4.2(j). For the sake of clarity, we only

present the y-component (i.e., vertical component) of the electron current density vector(i.e.,

Jn,y), as current in the horizontal directions do not contribute appreciably to the overall

measured device current. The colormap in this panel is chosen so that white corresponds

to electrons flowing down towards the cathode, while black corresponds to electrons flowing

upwards towards the anode. Although the device’s built-in electric field causes much of
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the electron density to drift towards the cathode, the accumulation of charges in the various

morphological traps results in significant diffusion current that flows against the built-in field.

Thus there is a significant amount of leakage current (loss of charge carriers by recombining

with charges at the “wrong” electrode[138]) as electrons leave the device at the anode. The

impact of these morphological effects on the C-H morphologies’ device performance will

discussed in detail in Sec. 4.3.5.

4.3.2 Empirical (HAADF-STEM) Morphology

To validate that our simulations of Cahn-Hilliard generated morphologies are qualitatively

representative of an actual BHJ morphology, we also simulated the J–V characteristic of

a morphology determined by HAADF-STEM microscopy. We present the same set of ob-

servables that were examined for the C-H morphologies (CA, n, R, and Jn,y) in Fig. 4.3.

The same phenomena observed in the C-H morphologies are evident in the HAADF-STEM

morphology. The tortuous charge transport pathways of the morphology result in charge

accumulation at various points inside the device, particularly when charges are generated

without a direct pathway towards their preferred extraction electrode (again, for electrons,

this corresponds the bottom of the device). The accumulation of charge results in increased

rates of recombination at localized regions of the device’s morphology. We note that there

is also significant leakage current of electrons at the anode, as the accumulation of charges

and tortuous pathways causes electrons to diffuse to and be extracted at the “wrong” metal

contact. All of these phenomena result in a rather poorly performing device with a power

conversion efficiency of 0.616%, a result of possessing a J–V characteristic with a JSC of

3.38 mA cm−2, a VOC of 0.642 V, and a FF of 0.409 (See Appendix B for the full J–V

characteristic). Unfortunately, there is no experimentally determined J–V characteristic for

this morphology, since the film this morphology corresponds to was specifically fabricated to

obtain tomographic data, which involved either the removal of or the complete lack of a top

metal contact. In other words, while this empirical morphology was meant to represent real

BHJ device films, it was not a functional OPV device. However, OPV devices fabricated

from these same materials typically exhibit much higher device performances than what we
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0% mixed 30% mixed 70% mixed

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.2: Simulation results of OPV devices based on C-H morphologies with a controllably
increasing amount of intermixed compositional regions from left (no intermixing) to right
(most intermixing). All figures represent the device at short-circuit conditions under simu-
lated AM1.5 illumination. Panels (a)-(c): overall compositional morphology; panels (d)-(f):
spatially-dependent electron density; panels (g)-(i): spatially-dependent recombination rate;
panels (j)-(l): electron current density profile. Each of these image plots shows a 100 nm
× 100 nm subsection of the entire simulated device. The ITO/PEDOT:PSS anode and the
calcium cathode are located at the top and bottom of each plot, respectively. The three
columns correspond to devices with 0%, 30%, and 70% of the active area characterized as
mixed-phase, respectively.
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observe in our simulations.[103] This low performance is likely the result of an unusually

coarse (large domain sizes) subsection of the full morphology as well as the fact that we are

only considering charge transport in 2-D. In a real 3-D device, there would be additional

transport pathways in the z-dimension (which we do not consider) and the morphology would

be less restrictive to charge transport. However, the qualitative agreement of the key sim-

ulated observables (n, R, and Jn,y) between the C-H morphologies and the HAADF-STEM

morphology suggests that the results and conclusions drawn from our computer generated

morphologies are approximately representative of real OPV devices.

4.3.3 Charge Densities and Recombination Rates

With this basic description of the effects of a mixed-composition, interfacial phase on a de-

vice’s performance in hand, we now examine the effects of introducing increasing amounts

of interfacial mixed-phase in more detail. Figure 4.2 shows the spatially-dependent electron

density and recombination rate at varying degrees of mixing for our ∼10-nm C-H morphology

with the simulated device held at short-circuit conditions under simulated AM1.5G illumi-

nation. Panel (d) shows that this morphology, without an interfacial phase present, exhibits

relatively large localized regions of charge density. This is because, in the absence of an

interfacial region, electrons accumulate at the edges of the acceptor domains as they have

difficulty traversing the abrupt boundaries to the more poorly conducting donor domains.

The highest accumulations of charge density occur in regions where there are structural

dead-ends in the morphology, circled in Fig. 4.2(d). In these regions, electrons are forced to

either slowly drift through the pure polymer phase, diffuse against the built-in electric field

to find a less resistive pathway, or be lost to recombination. Note that a even when an abrupt

interface exists, a certain fraction of the charges can still diffuse into lower-conductivity re-

gions. The excess accumulation of charge at such regions, however, results in higher local

recombination rates (panel (g)), so that structural disorder leads to an overall loss of carriers,

as has been discussed by others.[32]

In the center panels of Fig. 4.2, we see that when this same morphology is smoothed to
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(a)

(b)

(c)

(d)

Figure 4.3: Image plots of simulation data for an experimentally-determined (by HAAD-
F-STEM) BHJ morphology.[186] Panels (a)-(d) present the compositional morphology,
steady-state electron density, steady-state recombination rate and the y-component (ver-
tical component) of the electron current density vector, respectively, all presented under
short-circuit conditions (i.e., 0 V applied bias). The images show the data for a 100 nm ×
200 nm subsection of the full morphology.
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become 30% mixed, there is an overall drop in the steady-state charge density. In particular,

the charge density is reduced in the dead-end regions that previously had exhibited higher

amounts of recombination. Panel (h) shows that the introduction of the mixed-phase also

reduces the peak recombination rates. Note that although the average carrier density and

recombination rate decrease when the mixed-phase is introduced, there are some regions of

the device that actually exhibit an increase in carrier density and local recombination rate

(indicated by circled regions of Figs. 4.2(e) and(h)). This trend persists at higher degrees of

mixing, as illustrated by the right hand panels in Fig. 4.2. Panels (f) and (i) show that there

is an overall increase in charge density and recombination throughout the device as the degree

of mixing is increased to 70%. At this point, the amorphous, mixed region dominates charge

transport through the active layer. Most of the fine structural details of the observables

which was originally present at lower degrees of mixing are lost as the morphology becomes

more like that of a homogeneous medium. At this extreme, although charge accumulation

is lessened in some areas, most regions of the active layer see increased charge density. The

redistribution of charges from ‘dead-ends’ into the amorphous mixed regions results in both a

greater average electron density and higher amounts of recombination throughout the device,

both of which contribute to an overall drop in device performance, as will be discussed in

Sec. 4.3.5. The trends for the average electron density for all of our C-H morphologies as a

function of mixing are presented in Fig. 4.4. We see similar trends for most of the average

domain sizes as were noted for the ∼10-nm morphology in Fig. 4.2, where charge density

decreases upon initial mixing, but increases at higher levels mixing. Of particular note is

that the charge density of the 4-nm device only increases with mixing. It appears that at

this feature size, there are already many conducting pathways and almost no morphological

traps. As such, the introduction mixing does nothing to ease chokepoints and dead-ends and

the debilitating effects of the mixed-phase manifest immediately.

4.3.4 Conducting Pathways

So far, it appears that the introduction of a mixed-phase region most directly affects charge

transport by either reducing the severity of dead-ends that trap carriers or by constricting
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Figure 4.4: Average electron density of the five different Cahn-Hillard BHJ morphologies
at varying degrees of mixing. Although most morphology length scales exhibit a drop and
subsequent in electron density, the 4-nm device only exhibits a rise in electron density as its
conduction pathways are constricted.

preexisting pure-phase conducting pathways. This can be more clearly seen by examining

the electron current density profiles of active layers with varying degrees of mixing, which

is shown in the last row of Fig. 4.2(j)-(l). For the sake of clarity, we present only the y-

component of the electron current density vector, Jn,y. The colormap scale is such that

white corresponds to electrons flowing down towards the cathode while black corresponds

to electrons flowing up towards the anode. Note that the tortuous morphology prevents

many electrons from being extracted from the device and there is significant leakage current

in proximity of the anode, which reduces the resulting photocurrent.[138] In the non-mixed

morphology, there are more occurrences of leakage current throughout the device, particu-

larly at dead-ends and far upstream of high conductivity pathways. At these points, charge

carriers are unable to drift towards the cathode and instead must reverse direction to ei-

ther find a new conduction pathway or leak out of the device at the anode. These points

of current “reversal” appear to be exacerbated by the abrupt interface between conducting

phases. Upon the introduction of an interfacial mixed-phase region, there is an immediate

drop in leakage current and current reversal near structural dead-ends: clearly, charges are

able to flow through the device with less obstruction from the morphology with the addition

of a mixed-phase. This should manifest in the device’s increased fill-factor and JSC, which
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Average
Domain Size PCE (%) JSC (mA cm−2) FF VOC (V)

4 nm 2.87 -9.43 0.510 0.690
8 nm 1.71 -4.71 0.562 0.677
10 nm 0.783 -4.00 0.425 0.639
12 nm 1.25 -3.56 0.550 0.685
15 nm 1.42 -3.21 0.600 0.722

Experimental
Morphology 0.616 -3.38 0.409 0.642

Table 4.3: The initial absolute figures of merit for all of the simulated devices without a
mixed-composition phase present.

we will illustrate in Sec. 4.3.5. However, at higher levels of mixing, the high conductivity

pathways are narrowed, particularly in proximity to the cathode, as indicated on Fig. 4.2(k).

Transport through the mixed-phase then becomes the limiting factor for device performance

as carriers slowly traverse through the less conductive amorphous region and constricted

pure-phase conduction channels.

It appears that this balance and interplay between the amelioration of dead-ends and

the narrowing of high-current channels is more pronounced for simulated morphologies with

larger average feature sizes. In the case of morphologies with a 4-nm average feature size,

the bicontinuous network is so fractal compared to the dimensions of the device that there is

already a preponderance of conducting pathways. With features sizes this small, the device

can be viewed as being intimately mixed from the beginning as far as charge transport is

concerned, despite the absence of an explicitly-mixed region. Although the introduction of

a mixed-phase may reduce some of the of dead-ends in the device, the many conducting

pathways of this device are also significantly constricted (See Appendix B). This constric-

tion occurs at a lower degree of mixing than for the coarser morphologies, partly because

the pure-phase conduction pathways of the 4-nm morphology are already narrow to begin

with. Thus, morphologies with domain sizes of ∼4-nm are so susceptible to conduction

channel narrowing that introduction of an interfacial mixed-phase leads to no improvement

whatsoever in performance.
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4.3.5 Effects of mixed-phase on Device Performance

We now understand in general terms how the presence of a mixed-phase may both improve

and hinder charge transport through a BHJ active layer by either easing morphological

traps or narrowing conducting channels. With this understanding, we turn in this Section

to exploring precisely how the introduction of a mixed-phase affects photovoltaic device per-

formance. In Fig. 4.5, we illustrate the effect of introducing different amounts of interfacial

mixing on the power conversion efficiencies (PCE) of simulated devices with different aver-

age domain sizes. The figure plots the percent variation of the devices’ PCE’s from their

value in the absence of any mixed-phase, so that the effects of mixing can be compared

for BHJs with the pure phases separated on different length scales. The absolute values

of the simulated devices’ power conversion efficiencies and other figures of merit are given

in Table 4.3. Most of the morphologies exhibit an initial improvement in power conversion

efficiency upon the introduction of mixed-composition interfacial regions. However, this im-

provement in PCE does not persist at higher degrees of mixing, and it is clear that the

performance of overly-mixed devices suffers, dropping below the devices’ original PCE. For

most of the morphology length scales we tested, the peak in device performance occurs when

the mixed-phase accounts for approximately 15–20% of the devices’ total active area. How-

ever, the 10-nm length scale morphology, which benefits the most from mixing, reaches its

peak performance at approximately 45% mixed-phase with nearly double the unmixed power

conversion efficiency. And as discussed above, when the average feature size is very small, as

with the 4-nm feature size morphology, the addition of any interfacial mixed-phase hinders

the performance of the device, with the overall efficiency dropping by ∼50% as the finely

mixed BHJ’s transport properties become increasingly dominated by the mixed-phase.

4.3.5.1 Short-Circuit Current (JSC)

To better understand how the interplay between the degree of mixing and the overall device

morphology affect device performance, in Fig. 4.6, we plot the change in JSC of our simulated

devices as a function of the degree of mixing. As with the trend in PCE, most of the
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Figure 4.5: Change in power conversion efficiency of five Cahn-Hilliard generated BHJ
morphologies with different intrinsic separation length scales studied as a function of the
degree of mixing of the two pure phases.

devices’ JSC’s improve upon the introduction of a mixed-phase. Unlike the trend for PCE,

however, most of the simulated devices’ JSC’s reach a plateau after their initial increase,

rather than decreasing at higher degrees of mixing. The point at which this plateau occurs

is slightly different for each device morphology length scale, but most of the devices appear

to reach their JSC plateau at ∼15–35% mixed-phase. One exception is the device with 4-nm

average feature size, which show only a very small increase in JSC with increased mixing

before dropping below its original value. This is because the finely structured BHJ possesses

relatively few morphological traps, so the introduction of a mixed-phase provides little to no

benefit to charge transport, and actual diminishes charge transport as the highly conducting

pure phases are narrowed. For the coarser morphologies (greater than 8-nm average domain

size), there are enough morphological traps such that mixing improves the JSC, but at higher

degrees of mixing, this improvement is counteracted by the narrowing of the pure-phase

conducting channels, accounting for the plateau in JSC of these devices upon further mixing.
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Figure 4.6: Change in the short-circuit current of five Cahn-Hilliard generated BHJ mor-
phologies with different intrinsic separation length scales studied as a function of the degree
of mixing of the two pure phases.

4.3.5.2 Fill-Factor (FF)

Figure 4.7 shows that the fill factors (FF s) of our simulated devices each exhibit rather

distinctive trends, depending on their morphological length scale, upon the introduction of

different amounts of interfacial mixed-composition phase. Most of the BHJ length scales (8,

12, and 15 nm) follow a similar trend as seen for the overall device performance: an initial

improvement followed by a significant drop at high levels of mixing. As previously noted, for

the 4-nm C-H morphology, which has very few initial morphological traps, the introduction of

a mixed-phase only serves to constrict the devices’ conducting pathways, which manifests as

a lower fill factor. The BHJ with the 10-nm morphology, however, exhibits the most unusual

and non-monotonic trend. The active layer with the 10-nm average size scale initially follows

the same trend as the 4-nm device, in that its fill-factor drops. However, with increased

mixing, the 10-nm BHJ morphology’s fill-factor experiences a sharp rise, peaks, and then

drops off again.

This unusual trend can be understood by examining the structural changes that occur

in BHJs with this length scale morphology as its pure phases are mixed (Fig. 4.2(a)-(c)).

The BHJ initially possess several long, relatively straight conduction channels for electrons

(white, connected segments). There are also several isolated regions of acceptor material
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Figure 4.7: Percent change in the fill-factor of five Cahn-Hilliard generated BHJ morphologies
with different intrinsic separation length scales studied as a function of the degree of mixing
of the two pure phases.

(left portion of figures) that are disconnected and do not allow for proper electron transport.

A small degree of mixing hinders the current, and thus the FF, because the most prominent

effect of mixing for this morphology is the narrowing of the conducting pathways. However,

as the size of the mixed-phase is increased, previously separated conducting segments become

connected, creating new conduction pathways that restore carrier balance and improve the

FF, before the eventual blurring of the conductive pathways ultimately decreases device per-

formance. All of this illustrates how random variations in an OPV’s active layer morphology

can have a major and unexpected impact on device performance, and why there has been so

much discussion in the literature about precisely how much mixed-phase is optimum.

4.3.5.3 Open-Circuit Voltage (VOC)

The last figure of merit of note for OPV devices is the open-circuit voltage. The VOC is

the applied voltage bias necessary to counteract the flow of charge from the built-in electric

field. This means that near VOC, drift currents are minimized, so any variation in VOC

resulting from the introduction of interfacial mixed-phase should be manifest primarily via

diffusion current effects in the D-D model. The diffusion current, however, is limited by the

mobility of charge carriers, and the mobility of the carriers in OPVs is quite low regardless
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Figure 4.8: Percent change in the open-circuit voltages of five Cahn-Hilliard generated BHJ
morphologies with different intrinsic separation length scales studied as a function of the
degree of mixing of the two pure phases.

of the degree of mixing. As such, we would expect that the introduction of a mixed-phase

should have only a small effect on an BHJ device’s VOC. Our simulations support this

reasoning, as illustrated in Fig. 4.8. For all morphology length scales, the introduction of

a mixed, interfacial region has minimal effect on the simulated devices’ VOC. There are

some minor fluctuations, particularly for morphologies with the smallest and largest feature

sizes. However, these fluctuations are less than ∼5%, and are much smaller than the more

drastic changes exhibited by the other figures of merit. The relative non-dependence of an

OPV device’s VOC on active layer morphological features, such as the presence of a mixed-

phase, is in line with our previous investigations of the effect of structural disorder on device

performance.[52]

4.4 Conclusions

With this study we have illustrated that the mixed-composition phase can have both bene-

ficial and detrimental effects on the overall performance of the device. On the one hand, the

mixed-phase can, to an extent, reduce the tortuosity of a morphology that is obstructive to

charge transport by reducing dead-ends and creating new conduction pathways, leading to

improved performance. However, at higher degrees of mixing, overall performance suffers as
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conduction pathways are constricted and charges are forced to conduct through the relatively

nonconductive mixed-phase. The point at which the mixed-phase switches from helping to

hindering device performance is furthermore dependent on the average feature size and the

connectivity of the device’s morphology. When there are relatively few morphological traps,

as was the case for the 4-nm and 10-nm device, the introduction of a mixed-phase offers

little benefit, since there are no traps to ameliorate. However, as was seen with the 10-nm

device, the introduction of mixed-phase can also allow for the creation of new conduction

pathways between regions previously separated by non-conducting material. This shows that

a mixed-phase may have significant effects depending on the exact details of a device’s mor-

phology. Of particular note is that the greatest improvement in overall device efficiency was

exhibited by the 10-nm device. This is also the typical morphological length scale of most

BHJ-type solar cells. This suggests that the presence of an mixed-phase plays a significant

role in the charge transport properties of many high performing BHJ devices and may be

necessary for optimum device performance of most BHJ-type organic solar cells. Overall,

the impact of a mixed-composition interfacial phase on an OPV device’s performance is

highly non-monotonic. Since different donor/acceptor blends exhibit different phase sepa-

ration kinetics and degrees of mixing in a uncontrollable way, it is highly likely that the

performance impact of the mixed-phase is one of the root causes for the difficulty involved

with optimizing new OPV donor/acceptor blends for device performance. This suggests that

new fabrication techniques, such as sequential processing of donor/acceptor materials[4], are

required to manipulate and control the degree of mixing in BHJ devices in a reproducible

manner.
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CHAPTER 5

Theory of Current Transients in Planar Semiconductor

Devices: Insights and Applications to Organic Solar

Cells

5.1 Introduction

Planar semiconductor diodes form the backbone of important technologies such as solid-

state lighting and photovoltaic energy conversion. The relatively simple physics associ-

ated with these one-dimensional devices also makes them ideal for studying the proper-

ties of emerging functional materials [169, 40, 44, 124, 161, 104, 113, 99]. For instance,

in the fields of dye-sensitized solar cells and organic photovoltaics (OPVs) [40, 18, 19],

substantial insights on recombination and charge transport have been gained by examin-

ing photocurrent, photovoltage, and charge-extraction transients of planar diode devices

[157, 155, 111, 67, 64, 35, 34, 43, 47, 46, 131, 132, 130, 66, 109]. In terms of specific

analysis, examination of the temporal decay of photocurrent transients has been used to

measure the charge-transport properties of organic semiconductors [33, 168, 136], while the

integral of these transients has been taken to quantify initial amounts of photogenerated

charge [5, 10, 166]. Additionally, charge-extraction transients have been routinely used to

probe semiconductor recombination kinetics, average doping densities, and carrier mobilities

[156, 84, 69, 45, 137, 65].

Despite these and countless other studies, the physics of current transients in planar opto-

electronic devices is often overlooked or presumed to be obvious. Because such measurements

are ultimately a major determinant of benchmark material properties, it is especially impor-
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tant that their physics be thoroughly understood both conceptually and analytically. Thus,

in this paper, we present a thorough analytical analysis of current transients in planar diode-

like semiconductor devices. Although our reference point comes from the field of OPVs, the

equations we present are general and apply to any planar semiconductor device, so long as

the transients are not dominated by external RC effects.

Our approach is based on a consideration of the average charge densities within the

semiconductor layer. Although some information is lost by averaging, this is not partic-

ularly restrictive because, experimentally, one often only has access to spatially-averaged

values of the carrier concentrations. After deriving an expression for the total measured

current, we then present equations describing the subtle but highly important charge on

the electrodes as well as the time integral of a current-density transient for the purpose of

assessing the initial amount of free charge in the active layer. We find that non-intuitive dis-

placement current effects have led to misinterpretations of charge-extraction measurements,

particularly in the organic solar cell literature. As examples, we apply our new formalism

to a variety of transient current experiments commonly used to characterize the active lay-

ers of semiconductor diodes, including time-of-flight (ToF) [119, 77], transient photocurrent

[33, 165, 168, 170, 102], and photoinduced charge extraction by linearly increasing voltage

(photo-CELIV) measurements [78, 106, 121, 179]. In the context of the original CELIV

framework, our new, generalized formalism reveals a common misinterpretation of CELIV

integrals that results in an error in the estimation of the initial free carrier concentration by

at least a factor of two [106, 79, 123]. The existence of such misunderstandings and their

increasing prevalence in solar cell research underlines the importance of the general frame-

work described in this work. Finally, in order to visualize our formalism and verify that it

is built into common drift-diffusion solvers, we numerically simulate a photo-CELIV trace

and compare the total current calculated to that predicted by our analytic equations. As

expected, the two approaches yield precisely the same result, confirming that our formalism

is a simple, physically correct, and general way to think about current transients in planar

devices.
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5.2 Derivation of a General Current-Density Equation for 1-D

Planar Semiconductor Diodes

5.2.1 Contributions to the Total Measured Current

To analytically analyze current transients in semiconductor devices, we begin by consider-

ing a planar diode structure at uniform temperature that is well-described by simple 1-D

electrodynamics. The relevant equations for the electric current are therefore:

dn

dt
= G−R +GD

e −RD
e +GA

e −RA
e +

1

q

dJn
dx

(5.1)

dp

dt
= G−R +GD

h −RD
h +GA

h −RA
h −

1

q

dJp
dx

(5.2)

JD = ε
dE

dt
(5.3)

Jtot = Jn + Jp + JD (5.4)

where n, p are the mobile electron and hole concentrations, respectively, G is the generation

rate of mobile-carrier pairs, R is the recombination rate of mobile-carrier pairs, GD,A
e,h are

the generation rates of mobile carriers from localized donor- and acceptor-type trap sites,

RD,A
e,h are the recombination rates of mobile charge into localized donor- and acceptor-type

trap sites, E is the electric field, ε is the semiconductor permittivity, q is the absolute value

of the electron charge, Jn,p are the electric current due to mobile electrons and holes, JD

is Maxwell’s displacement current, and Jtot is the experimentally measured total electric

current at a given time and position in the device. Physically, Eqs. (5.1) and (5.2) account

for the continuity of free carriers and simply add or subtract the contributions of both bulk

and trap-mediated recombination/generation to the free carrier populations.

Our goal is to use the above equations as a starting point to obtain a more insightful and

experimentally-relevant expression for Jtot (Eq. (5.4)) in terms of the average generation and

recombination processes and the average carrier concentrations. In this regard, it is highly

important to note that Jtot does not vary spatially within the device (see Appendix C for
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derivation), which means that the (average) total current anywhere within the active layer

is equal to the total current everywhere at a given time.

Our sign convention is chosen such that recombination current is positive and generation

current is negative, as is commonly used when reporting experimental (photo)diode currents.

Furthermore, it is important to distinguish between the generation and recombination of

mobile carrier pairs (G,R), which are shared terms in the continuity equations, and the

individual generation and recombination rates of mobile carriers through immobile trap

sites (GD,A
e,h ,RD,A

e,h ), which are not shared because an oppositely-charged mobile carrier is not

necessarily created or destroyed simultaneously. Traditionally, the GD,A
e,h − RD,A

e,h terms in

Eqs. (5.1) and (5.2) are treated as a net recombination rate within the Shockley-Read-Hall

(SRH) formalism [154, 63], but such a treatment is not necessary for the derivation at hand.

5.2.2 Mobile-Carrier Currents

To develop a new expression for Jtot, we start by integrating Eqs. (5.1) and (5.2) across the

device thickness to spatially average the continuity equations:

Jn(d) = qd
dn̄

dt
− qd〈G−R〉 − qd(〈GD

e −RD
e 〉+ 〈GA

e −RA
e 〉) + Jn(0) (5.5)

Jp(0) = qd
dp̄

dt
− qd〈G−R〉 − qd(〈GD

h −RD
h 〉+ 〈GA

h −RA
h 〉) + Jp(d) (5.6)

where n̄d =
∫ d

0
n(x) dx and p̄d =

∫ d
0
p(x) dx are the average carrier concentrations in the

active layer, d is the semiconductor active-layer thickness, q is the elementary charge, and

〈G−R〉 and 〈GD,A
e,h −R

D,A
e,h 〉 are the spatially averaged differences in generation and recombi-

nation over the entire active-layer thickness. Figure 5.1 schematically illustrates the formal-

ism described above on a semiconductor energy band diagram. Eqs. (5.5) and (5.6) have the

advantage of removing the spatial derivative of the free-carrier current densities and replac-

ing them with the averaged quantities and processes of interest. The fact that the current

densities are evaluated at the contacts is acceptable because the quantity of interest, Jtot, is

constant at all positions throughout the active layer.
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5.2.3 The Displacement Current

In order to complete the expression for Jtot (Eq. (5.4)), we must also derive expressions for

the displacement current JD (Eq. (5.3)) at either of the contacts (x = 0 and/or d) that are

decoupled from each other. We note that simply integrating Gauss’s law, dE/dx = ρ/ε,

and combining with the displacement current (Eq. (5.3)) will not suffice because JD(0) and

JD(d) would be coupled. To ultimately decouple JD(0) and JD(d), we must use the general

1-D solution of Gauss’s law for a plane of charge [54] in order to relate the electric field at

the contacts to the average carrier concentrations within the active layer:

E(0) = −qd
2ε

(p̄− n̄+ N̄+
D − N̄−

A ) +
σEL

2ε
(5.7)

E(d) =
qd

2ε
(p̄− n̄+ N̄+

D − N̄−
A ) +

σEL

2ε
(5.8)

where N̄+,−
D,A are the average number density of immobile ionized trap sites within the active

layer, which we consider as localized electron states that can either be neutral when filled

(ND) or neutral when empty (NA), and are only singly charged. We define σEL = σ0 − σd to

represent the areal charge on the metal electrodes, with σ0,d being the areal charge densities

on the left and right metal contacts, respectively (Figure 5.1). The charge densities σ0,d can

be either positive, negative, or zero, and we use their difference, σEL, for the rest of the paper

because it is directly proportional to the total electric field contribution from the charge

on the metal electrodes. Additional considerations regarding the charge on the electrodes

are presented in Section 5.2.6. below and in the Appendix C. We note, though, that the

electric field at the contacts is dependent only on the average charge within the active layer

and not on its specific distribution, which is a unique consequence of the simple physics of

charged 1-D planes [54]. Equations (5.7) and (5.8) are also the origin of the factor of 1/2

that will carry on throughout this derivation—another consequence of the physics of charged

1-D planes [54].

With the primary electric field contributions in hand, we can now simply apply Eq. (5.3)
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to Eqs. (5.7) and (5.8) to obtain the decoupled displacement current at each of the contacts:

JD(0) =
qd

2

(
dn̄

dt
− dp̄

dt

)
+
qd

2

(
dN̄−

A

dt
− dN̄+

D

dt

)
+

1

2

dσEL

dt
(5.9)

JD(d) =
qd

2

(
dp̄

dt
− dn̄

dt

)
+
qd

2

(
dN̄+

D

dt
− dN̄−

A

dt

)
+

1

2

dσEL

dt
(5.10)

As a check of validity, the difference in the displacement current at the two contacts according

to Eqs. (5.9) and (5.10) is proportional to the time rate of change of the charge density within

the semiconductor layer, which is expected from a simple integration of Gauss’s law. Just

like the electric fields, these simple expressions for the displacement current at the contacts

depend only on the average internal charge density and not on the charge-density profile—a

consequence of the simple physics of planar geometries.

We would now like to substitute Eqs. (5.9) and (5.10) along with Eqs. (5.5) and (5.6)

into Eq. (5.4) in order to obtain the total measured current density (Jtot) at the contacts

and therefore everywhere. However, in order to simplify the final result, we first derive

relationships between N̄+,−
D,A and the kinetic processes that connect them, GD,A

e,h and RD,A
e,h .

Fortunately, this is done straightforwardly by summing the generation and recombination

events that create and annihilate ionized trap sites, leading to the following kinetic equations:

dN̄+
D

dt
= 〈GD

e −RD
e 〉+ 〈RD

h −GD
h 〉 (5.11)

dN̄−
A

dt
= 〈RA

e −GA
e 〉+ 〈GA

h −RA
h 〉. (5.12)

As noted above, these equations only consider singly ionized states.

5.2.4 The Total Measured Current

We can now combine all of the relevant relations obtained above to produce a more insightful

expression for the total measured electric current density in terms of the averaged quantities

of interest. We do this by combining Eqs. (5.5) and (5.6) with Eqs. (5.9-5.12) at each contact
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Figure 5.1: A schematic band diagram illustrating the device model used in this derivation in
forward (positive) bias. The semiconductor (photoactive) layer is sandwiched between metal
contacts at x = 0 and x = d. The i and s scripts on the Jn (electron current) and Jp (hole
current) arrows stand for injection and sweep out, respectively. The average carrier densities
are n̄ for electrons and p̄ for holes. The generation and recombination rates of electron-hole
pairs, G and R, are distinct from the rates of freeing and trapping carriers from traps, GD,A

e,h

and RD,A
e,h . Jsurf takes into account the ‘surface’ current that does not effectively make a

transition though the semiconductor energy gap. Note that only the relative heights of the
anode/cathode depictions are meant to be part of the implicit energy scale.
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to obtain an expression for Jtot (Eq. (5.4)) as a function of time:

Jtot =
qd

2

(
dp̄

dt
+
dn̄

dt
+
∑
〈RD,A

e,h −G
D,A
e,h 〉
)

+ qd〈R−G〉+
1

2

dσEL

dt
+ Jsurf (5.13)

where the summation term in Eq. (5.13) covers all subscript combinations displayed in

Eqs. (5.5) and (5.6), and the other terms are discussed in detail below.

Eq. (5.13) is the first of two primary theoretical results of this paper. Its simple form—

only dependent upon average charge densities and kinetic processes—is a direct consequence

of the straightforward physics of charged planes. Eq. (5.13) and the preceding analysis pro-

vide both a simple conceptual framework for generally thinking about current transients in

planar devices as well as reveal non-trivial aspects of these measurements, such as the prefac-

tor of one-half in front of the first term. This general but non-intuitive factor is independent

of the carrier distributions and spatial generation/recombination profiles and arises from the

combination of Gauss’s law and the displacement current for planar 1-D electrodynamic sys-

tems (Eqs. (5.7)-(5.10)). The factor of one-half means that uniformly injecting or extracting

only electrons or holes, for example, results in a measured current proportional to just half

of the rate of change in average hole concentration. It also means that current measured by

vacating traps, like that in thermally-stimulated currents, I-DLTS, or even charge-extraction

experiments is only half due to mobile charge carriers if sweep-out causes negligible changes

in the carrier concentrations [81, 25, 125, 145, 69, 167, 10]. Thus, if this factor of one-half

that results from displacement current effects is not properly accounted for, the deduced

amount of charge extracted in various experiments will be off by at least a factor of two.

Although this may not be a significant correction for many applications, it at least serves as

a lesson that the interpretation of current transients is not necessarily trivial.

Despite the fact that the factor of one-half in Eq. (5.13) is generally ignored, it is clearly

necessary from a conceptual standpoint. Consider the case where mobile carriers are photo-

generated within the semiconductor layer with negligible recombination, extraction current,

leakage current, or changes in the electrode charge. In such a scenario, the spatially in-

tegrated generation rate equals the rate of change of the average concentrations of both
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carriers, 〈G〉 = dn̄/dt = dp̄/dt, and thus in Eq. (5.13) the measured current sums to zero.

This makes intuitive sense because no current should be measured if mobile carriers are

generated uniformly in a hypothetical semiconductor device with no built-in potential or re-

combination. Such a simple situation could not be understood without the factor of one-half

in Eq. (5.13).

It is also worth noting that even if the change in electrode charge (dσEL/dt), generation,

recombination, and leakage current (Jsurf) are negligible, the average carrier concentrations

can still change implicitly by charge carrier flow through the ‘correct’ contact (i.e., extrac-

tion by ‘sweep out’ and filling by injection for a diode; see Figure 5.1) [31, 33], which are

critical aspects of any solar cell or LED. Indeed Eq. (5.13) could be optionally re-written as

Jtot = Ji,s+JEL +Jsur, where Ji,s is composed of the first two terms of Eq. (5.13) and embod-

ies the net injection or sweep out (extraction) of carriers into or out of the semiconductor

material, and JEL, the third term in Eq. (5.13), represents the current density due to changes

in the electrode charge density (see Eq. (5.15), discussed below), and the last term, Jsurf,

takes into account the ‘surface’ current that does not effectively make a transition though

the semiconductor energy gap.

5.2.5 The Surface Recombination Current, Jsurf

As just alluded to, the Jsurf term in Eq. (5.13) accounts for current that effectively traverses

the active layer without making a transition though the semiconductor energy gap. Here

Jsurf is mathematically defined as Jsurf = Jn(0) +Jp(d). For a diode, Jsurf is typically dubbed

surface recombination and includes the net electron extraction/injection at the hole-selective

contact (anode) and net hole extraction/injection at the electron-selective contact (cathode,

see Fig. 5.1). In other words, positive Jsurf corresponds to net carrier extraction at the wrong

contact(s) while negative Jsurf corresponds to net carrier injection at the wrong contact(s).

The Jsurf term is often referred to as ‘shunt’ or ‘leakage’ current in diodes, LEDs, and solar

cells, and herein we use all of these terms interchangeably. In addition to Ohmic-like leakage

[48], the implied surface recombination that underlies Jsurf is expected in OPV diodes to have

an exponential voltage dependence with low ideality factor and therefore will be important
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at higher biases/charge densities [85, 180, 88]. In single-carrier devices, Jsurf is often analyzed

from the standpoint of space-charge limited current [15].

5.2.6 Areal Charge Densities on the Contacts

A highly important aspect of Eq. (5.13) is that the seemingly benign dσEL/dt term can often

significantly contribute to the total measured current. To better understand this term, here

we discuss the physical attributes of the device that determine σEL.

The free-carrier density of the metal electrodes is typically sufficiently high such that the

electric field is zero inside them at all times [55]. Under this reasonable (but not always

true [142]) limit, the total areal charge summed over both electrodes must be equal and

opposite to the total charge within the active layer, or σ0 + σd = −qd(p̄ − n̄ + N̄+
D − N̄−

A ).

A related consequence is that the surface charge is directly proportional to the electric field

immediately outside the surface, or σ0 = εE(0) and σd = −εE(d) [56], where the sign of σ0,d

depends on the sign of the charge. These relations will be used below in conjunction with

drift-diffusion calculations to determine σEL at various times during a simulated solar cell

photo-CELIV transient.

One can conceptually imagine the σEL term as a variable quantity that is used to supply

enough electric field to meet the imposed voltage conditions. As derived in Appendix C, σEL

is only a function of the space-charge distribution within the device and the electric potential

drop across the active layer (V = −
∫ d

0
E dx) according to

σEL = ρ̄d− 2

d

∫ d

0

∫ x

0

ρ(x́)dx́ dx− 2εV

d
(5.14)

JEL =
d

2

dρ̄

dt
− 1

d

∫ d

0

∫ x

0

dρ(x́)

dt
dx́ dx− ε

d

dV

dt
(5.15)

where ρ(x) = q[p(x)−n(x)+N+
D (x)−N−

A (x)], x́ is a dummy variable for spatial integration,

2JEL = dσEL/dt, and ρ̄d =
∫ d

0
ρ(x) dx.

Eqs. (5.14) and (5.15) show that dσEL/dt is non-zero only if the applied bias or the spa-
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tial distribution of net charge are changing with time. We strongly emphasize that V in

Eq. (5.14) and all other equations herein is just the electric potential difference across the

active layer and not the total potential difference (Vtot). The total potential difference in

a diode often includes an additional built-in (diffusion, composition, etc.) potential (VBI)

that is nominally constant with light intensity and applied bias [14]. Since VBI is usually

well-approximated as a constant, the electric potential and total potential are related by

V (t) = Vtot(t)− VBI, and the conclusions made herein are essentially unchanged.

Equations (5.14) and (5.15) also tell us something about the measured device capaci-

tance. This is recognized by the fact that the voltage derivative of Eq. (5.14) is related to

the electrode capacitance, though one must also account for the charge stored in the active

layer (‘chemical capacitance’) when considering the total measured capacitance of a diode

[181, 13, 118]. Interestingly, though, Eq. (5.15) reduces to the classical parallel-plate ca-

pacitor current, Cg · dV/dt, where Cg = ε/d if the internal space-charge distribution is not

changing in time, independent of the space-charge distribution. In other words, Eq. (5.15)

implies that the effective device geometric capacitance is independent of any static space-

charge profile, only deviating from its classical value of ε/d when the internal space-charge

distribution is changing in time. Unfortunately, since the difference in electric potential

between the contacts depends on the specific space-charge distribution, it is not possible

to determine a more simple relationship between the effective geometric capacitance, the

charge on the electrodes, and the potential difference across the device beyond what is pre-

sented in Eqs. (5.14) and (5.15). Additionally, as an aside, the σEL term can be eliminated

to yield a generalized relation between the electric-field profile E(x), the electric-potential

difference across the device V , and the internal space-charge/dielectric profile ρ(x)/ε(x) (see

Appendix C and Eq. (S12)).

5.2.7 Integrating the Total Measured Current

The factor of one-half in Eq. (5.13) is relevant to experiments on diodes because Eq. (5.13)

is often experimentally integrated over an extraction-current transient in order to estimate

the initial average steady-state carrier concentration in such devices [156, 111, 112, 35, 34,
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36, 144]. When integrating Eq. (5.13) over a current transient and multiplying by 1/qd, we

find that the apparent initial carrier concentration (∆n̄meas) is

∆n̄meas =
1

2
(∆n̄+ ∆p̄) +

∆σEL

2qd
+

∫ ttr

0

(
Jsur

qd
+

1

2

∑
〈RD,A

e,h −G
D,A
e,h 〉+ 〈R−G〉

)
dt (5.16)

where the difference terms are negative for an extraction current transient. These terms are

given by, for example, ∆n̄ = n̄(ttr)− n̄(0), evaluated at the start (t = 0) and finish (t = ttr)

of the transient. The left hand side of Eq. (5.16) is given by qd∆n̄meas =
∫ ttr

0
Jtot(t) dt and is

the apparent amount of charge extracted or injected from integration of the (experimental)

current transient.

Eq. (5.16) is the other primary theoretical result of this paper because integrated extraction-

current transients are widely used, particularly in the organic solar cell community, to mea-

sure average steady-state carrier concentrations [159, 157, 156, 64, 111, 112, 37]. To our

knowledge, however, a formalism describing such integrals has not been previously pre-

sented. Equation (5.16) provides significant physical insight into the most common methods

of experimentally determining the average carrier densities in diode-based devices, as it de-

tails all of the apparent sources of charge present in a 1-D (extraction) current transient

[159, 155, 144]. Notably, the factor of one-half in the first term of Eq. (5.13) persists, which

as we discuss further below has resulted in errors in the estimation of the average charge

density when such experiments were performed on organic solar cell devices.

Examples of common methods that rely heavily on integrating current transients include

the charge extraction by linearly increasing voltage (CELIV) [78], charge extraction (CE)

[156, 130], and time-delayed collection field (TDCF) techniques [5]. Although these meth-

ods allow experimenters to estimate the total average carrier concentrations relative to a

short-circuit or quasi-depleted state, they have the downside of having to correct for the

change in charge on the electrodes (∆σEL) at the beginning and end of the transient. Equa-

tions (5.14) and (5.16) clarify this previously nebulous correction. In particular, Eq. (5.14)

reveals that ∆σEL is only a function of the geometric capacitance (Cg), the change in applied

bias (∆V ), and the change in the internal charge-density profile (∆ρ(x)) from the beginning
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and end of the transient. In many polymer:fullerene BHJ OPVs, researchers have found

that consideration of only the voltage conditions and the geometric capacitance (the last

term in Eq. (5.14)) is sufficient to account for ∆σEL in their charge-extraction measurements

[159, 156, 158, 34, 36, 86]. The success of this correction implies that the OPV devices in

these experiments experienced negligible changes in the internal space-charge distribution

between the beginning and ending of the extraction transient. Since most BHJ OPVs are

thin, have low dielectric constants, and are weakly- or un-doped, this suggests that these

devices are largely space-charge free over the operational voltage regime (i.e., have a linear

band structure). This conclusion is not obvious, however, without the help of Eqs. (5.14)

and (5.16).

Finally, it is common to approximate the initial amount of photogenerated charge in

organic photovoltaic devices by integrating the a transient photocurrent (TPC) taken at a

constant DC bias [35, 34, 36]. This approach typically relies on a quick laser flash to pho-

togenerate mobile charge, which due to the built-in potential and/or externally-applied bias

results in a current transient. This transient is then integrated over time to estimate the ini-

tial amount of photogenerated charge. Equation (5.13) shows that if the bias is held constant

(∆σEL = 0) and generation, recombination, and leakage current can be ignored (or corrected

for), then the integral of the photocurrent decay is actually equal to half the sum of the av-

erage initial photogenerated charge carrier densities. Since photogeneration typically gives

∆n = ∆p, the integral of a photocurrent transient without generation, recombination, or

leakage current gives an apparent initial excess carrier concentration of ∆n̄meas = ∆n̄ = ∆p̄.

We note that these considerations are independent of the generation profile or initial carrier

concentration distributions.
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5.3 Analytical Applications of the Model: Implications for Mate-

rials Characterization

5.3.1 The Time-of-Flight Experiment

A classic approach to measuring the charge-transport properties of materials is via a time-

of-flight (ToF) or transient photoconductivity experiment [165, 33, 168, 119, 77, 29, 148].

Although ToF techniques are well documented, discussing the ToF conceptual model in terms

of Eqs. (5.13) and (5.15) is insightful and illustrative of the different possible sources of cur-

rent in such measurements/models. We note that we do not consider aspects of trap-limited

dispersive transport here, but rather emphasize that the basic physics of such measurements

must first be fully understood before new/unique physical effects can be identified. More-

over, this discussion demonstrates how readily a simple physical picture can be translated

into a theoretically measured current transient using the equations presented above and in

Appendix C.

In the ToF experiment, a planar device is used and the semiconducting material of

interest is made thick so that a laser flash photogenerates an approximately planar car-

rier packet at one side of the device. During the measurement, a constant applied bias

and/or built-in potential is used to drive the carrier plane across the sample. Theoretically,

in terms of Eqs. (5.14) and (5.15), this situation corresponds to a space-charge profile of

ρ(x) = σgenδ(x−xσ(t)), where δ is the Dirac delta function, σgen is the charge density of the

drifting plane, and xσ(t) is the spatial position of the plane of charge. Since dV/dt = 0 and V

is dependent on xσ(t), a continuous supply of charge must be given to the electrodes in order

to keep the voltage constant as the carrier plain drifts across the sample. Thus, by inspection

of Eq. (5.13), the only source of current in the ToF model arises from changes in electrode

charge. The current transient is readily derived by substituting ρ(x) = σgenδ(x− xσ(t)) into

Eq. (5.15):

Jtot = JEL =
σgen

d

dxσ(t)

dt
= qp̄µEEL (5.17)
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where µ is the mobility of the carrier plane, EEL is the electric field supplied by the elec-

trode charge (see Appendix C Eq. (S10)), and p̄ = σgen/qd is the spatially-averaged carrier

concentration, assumed here to arise from a plane of positive charge originating at x = 0.

Since the total current is rigorously constant everywhere (see Appendix C), the ToF tran-

sient also can be rewritten as just the average drift current flowing within the device (RHS

of Eq. (5.17)). The solution of Eq. (5.17) can be readily obtained with the aid of Eq. (S10)

in Appendix C upon substituting ρ(x) = σgenδ(x − xσ(t)), giving the following differential

equation and subsequent expression for the ToF current transient:

dxσ(t)

dt
= µEEL =

xσ(t)

τ
− d

2τ
− µV

d
(5.18)

JToF = −
(
qdp̄

τ
+
qp̄µV

d

)
e
t
τ (5.19)

where here τ = ε/qp̄µ is the dielectric relaxation time of the semiconductor with excess

conductive charge p̄, V is assumed to be negative, and the carrier plane starts at x = 0.

Thus, for large values of τ and high magnitudes of V , the value of JToF is, as expected,

approximately constant in time and equal to qp̄µV/d due to an approximately constant

velocity of the drifting plane of charge.

In short, this demonstrates that Eqs. (5.13), (5.14), and (S10) in Appendix C readily

capture all the essential features and fine details of the classic ToF experiment, illustrating

how a simple physical picture (a plane of charge moving across a device) results in an actual

measured current transient (Eq. (5.19)). This example thus illustrates how simple current

transient models in planar optoelectronic devices readily fit within the general relations

derived in this work.

5.3.2 Determination of the Average Carrier Concentration with CELIV

As a more detailed example of the utility of Eqs. (5.13), (5.14), and (5.16) when applied

to charge-extraction techniques that vary the applied bias, in this Section we re-examine

the assumptions underlying the CELIV framework for measuring charge densities in solar
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cell devices. The original analytical model describing CELIV transients by Juska et al [78].

considered a unipolar device with flat-band contacts and no generation, recombination, or

leakage current. This model also ignores diffusion current, considering only a slab of uniform-

density charge drifting under the influence of an electric field (Figure 5.2a). Lorrmann et

al. [106] and Sandberg et al. [143] later presented an excellent analysis of the mathematical

implications of this CELIV model using the same original assumptions and equations as

Juska et al. [78]:

Jtot =
URε

d
+ nq

(
1− l(t)

d

)
dl(t)

dt
(5.20)

dl(t)

dt
=
µURt

d
− nqµ

2εd
l(t)2 (5.21)

where UR is the voltage ramp rate, d the film thickness, n is the uniform unipolar free-carrier

density, l(t) is the time-dependent extraction depth (i.e., depletion width), µ is the unipo-

lar carrier mobility, ε the semiconductor permittivity, and Jtot the total measured current

density. The properties of l(t) are: l(0) = w, dl(0)/dt = 0, 0 ≤ l(t) ≤ d, and l(ttr) = d

where ttr is the time taken to extract all the mobile carriers within the active layer. Schottky

junctions under the full-depletion assumption are well approximated by this model through

a finite initial steady-state depletion width, w (Figure 5.2a) [143].

In examining how this model is used in the literature, we find that the integral of

Eq. (5.20) is often misinterpreted because of the factor of one-half in the first terms of

Eqs. (5.13) and (5.16) due to improper accounting of ∆σEL. Although this factor of one-half

was recently noticed by Sandberg et al. [143] for the CELIV model described above, the

origin of this term was not understood. The issue arises from attributing the second term

in Eq. (5.20) solely to mobile carriers [7]. Under this seductive but incorrect assumption,

subtracting the time independent URε/d term and integrating (shaded area in Figure 5.2b)

yields the presumed total number of free-carriers extracted and thus the initial carrier den-

sity [123, 179].

If this were true, however, then integrating the second term of Eq. (5.20) from t = 0 to

ttr and multiplying by 1/qd should give the actual initial carrier concentration n. Instead,
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Figure 5.2: a.) Schematic representation of the CELIV model device under consideration.
A uniform block of free charge with local density n and average density n(1 − w/d) is
swept out under a linearly changing reverse bias pulse (inset of b.)). Here w denotes the
steady-state initial depletion width. b.) An Example CELIV current transient showing the
typical portion of the curve that is integrated to yield the initial uniform free-carrier density
(n). Non-intuitively, the shaded region is at most proportional to half of the initial average
free-charge density and even further reduced if w is non-zero.

we find that:

n̄meas,CELIV =
n

d

∫ ttr

0

(
1− l(t)

d

)
dl(t)

dt
dt (5.22)

=
n

2

(
1− l(0)

d

)2

(5.23)

=
n̄

2

(
1− w

d

)
(5.24)

where dqn̄meas,CELIV =
∫ ttr

0
(J(t) − URε/d) dt is the apparent initial carrier concentration

in the Juska et al. [78] model obtained by integrating the CELIV transient with URε/d

subtracted away and l(0) = w as the initial steady-state depletion width [143]. Thus, we see

that integrating a CELIV transient in this model over the total evacuation time, ttr, gives at

most half of the actual mobile charges extracted, which is in exact agreement with Eq. (5.16)

under the same assumptions.

In addition to this factor of 1/2 reduction, Eq. (5.24) also shows that there is another

reduction of the apparent initial average free-charge density by an additional factor of 1−w/d.

Inspection of Eq. (5.16) readily reveals that this is due to electrode-charge effects. Indeed,
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Eq. (5.16) indicates that if there is an initial steady-state depletion width, w > 0, then the

initial charge on the electrodes (σEL(t = 0)) will be finite due to the initial presence of space

charge. Thus, the ∆σEL correction in Eq. (5.24) will be altered from the case where w = 0

since both cases end in an identical fully-depleted state. This additional reduction due to

∆σEL is generally nontrivial since in real devices the steady-state space-charge profile can take

on shapes more complex than the simple rectangular version assumed by the CELIV model.

Overall, though, these previously nebulous aspects of current transients are decoupled and

made obvious by Eqs. (5.13), (5.14), and (5.16), thus highlighting the conceptual utility of

our formalism. Overall, Eq. (5.16) readily corrects a common misinterpretation of CELIV

transients and explains why, for example, Lorrmann et al. [106] concluded that a substantial

fraction of the mobile charge within the active layer was not extracted during CELIV even

after long extraction times (∼1 ms).

It is worth noting that none of the above analysis includes RC time constant effects [82],

which inevitably makes interpretation of the current transients more complicated. However,

we have found through numerical simulations that when RC effects are included at reasonable

levels (τRC ≈ 300 ns), the conclusions we have reached for low-mobility materials are not

altered. Moreover, RC effects should mostly influence the temporal shape of the current

transient, leaving the integral (Eq. (5.16)) largely unaffected.

5.4 Understanding the Formalism Via Time-Dependent Drift-Diffusion

Modeling: CELIV Revisited

Lastly, to better understand each of the terms underlying the total current in Eq. (5.13) and

the analysis in the previous Section, we performed time-dependent drift-diffusion numerical

modeling to simulate a photo-CELIV measurement. In the following, we demonstrate that

Eq. (5.13) is compatible with detailed numerical drift-diffusion simulations, verifying that

we have obtained a physically correct expression for the total current.

The drift-diffusion approach involves solving the continuity equations (Eqs. (5.1) and

(5.2)) along with the Poisson equation to determine the individual carrier concentrations
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and the electric field during the simulation. To explicitly solve these equations, the approach

assumes that the current densities follow the drift-diffusion form

Jn = qnµnE + µnkT
dn

dx
(5.25)

Jp = qpµpE − µpkT
dp

dx
(5.26)

where µn and µp refer to the mobility of electrons and holes, respectively, and kT is the ther-

mal energy. We have previously performed steady-state drift-diffusion calculations to model

OPV devices using homemade code [51], and we employ the same approach here only ex-

tended into the time domain (see Appendix C for a detailed description of our drift-diffusion

computational approach). In this study, the time dependence is accounted for by solving the

continuity equations and employing an implicit method to iterate forward in time. Recom-

bination is assumed to take the simple reduced Langevin form (R = qγnp(µn + µp)/ε; see

Table (5.1) [80, 49, 136], and the generation profile is taken from a transfer-matrix calcula-

tion using experimentally available optical constants for the different layers [135, 23]. The

device parameters for our simulations are presented in Table 5.1, and are loosely designed

to be representative of those of polymer-based solar cell using P3HT and PCBM [41, 51].

We chose to simulate an organic solar cell photo-CELIV transient because photo-CELIV

is a common method for studying low-mobility semiconductors and the technique involves

many of the physical processes that our analytical model aims to capture: generation, re-

combination, and a time-varying applied voltage. The 〈RD,A
e,h − G

D,A
e,h 〉 term is the only term

in Eq. (5.13) not accounted for in this simulation, and was therefore assumed to be zero.

We simulated the photo-CELIV experiment by first performing a steady-state calcula-

tion to verify that the dark J-V characteristics of the device were reasonable. Then, for the

transient, our virtual device was initially held in the dark at an applied bias equal to the

built-in potential, VBI (Table 5.1). Next, these steady-state conditions were perturbed by a

brief pulse of illumination to produce excess carriers. After this pulse, the photogeneration

of carriers was set to zero and, after an additional short period of time (5 µs), a linear reverse

bias voltage ramp was applied to sweep out any remaining photogenerated charge.
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Figure 5.3: The various current contributions from Eq. (5.13) determined from numerical
simulations and the negative of their sum, −Jtot (upside down open triangles). Note that
here the reverse bias extraction current is plotted as positive. The simulated CELIV ramp
conditions are 0.1 V/µs starting at an initial forward bias of 0.6 V. The total current density
from the simulation is also shown (solid blue line). The simulated total current density and
the summed current density from Eq. (5.13) lie on top of each other, showing their precise
quantitative agreement. We note that trapping was not included in the numerical model
and thus was assumed to be zero.

To visualize Eq. (5.13), we explicitly calculated each term during the simulated photo-

CELIV process and compared their sum to the total current calculated from the drift-

diffusion simulation (Figure 5.3). We plot in Figure 5.3 the negative of the total current

(−Jtot) calculated by each approach since −Jtot is what is typically reported in the literature

for CELIV transients [39, 121, 120, 126, 65, 151]. Because the drift-diffusion simulations use

a different starting formalism than Eq. (5.13), the fact that the two results agree precisely

verifies the legitimacy and generality of our derivation. Furthermore, as also highlighted in

the ToF Section, this shows that Eq. (5.13) and Eqs. (5.25) and (5.26) can be combined to

examine the materials-related aspects of these transients.

In addition to the negative of the total current, Figure 5.3 also shows the negative of

each component of Eq. (5.13). The current due to the changing electrode charge runs in the

opposite direction for this case because CELIV involves a reverse-bias voltage ramp. The

carrier concentrations decrease in time due to recombination, sweep-out/diffusion, and sur-
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Parameter Symbol Value
Electron,Hole Mobility µn,µp 1× 10−4 cm2/V–s
Active Layer Thickness d 100 nm
Relative Permittivity εr 3.5

Injection Barriers φn, φp 0.3 eV
Langevin Reduction Factor γ 0.1

Built-in Voltage VBI 0.6 V
Effective Density of States NC, NV 1× 1020 cm−3

Temperature T 298 K
Band Gap Eg 1.2 eV

Table 5.1: Parameters used in the drift-diffusion photo-CELIV simulation; the values chosen
are designed to roughly simulate an organic photovoltaic device

face recombination current, and therefore the derivative of the average carrier concentrations

are also negative. Since generation only takes place initially and is set to zero afterwards,

only recombination contributes to the qd〈R−G〉 term in Eq. (5.13), which registers as a

positive current density in our sign convention.

Finally, it is worth noting that the Jsurf term is rather large and positive in the initial

part of the transient in Figure 5.3, corresponding to net carrier extraction at the ‘wrong’

contacts. The reason for such a large value of this current density is that the cell is initially

held at a forward bias equal to the built-in potential until the start of the CELIV ramp.

At this applied bias, the built-in electric field is entirely canceled, and thus a significant

amount of excess carriers get collected at the ‘wrong’ contact by way of diffusion. Real,

well-working, devices are designed to avoid this problem by having higher built-in potentials

and/or blocking layers to prevent extraction of carriers by the ‘wrong’ contact.

All in all, Figure 5.3 verifies that our formalism provides another level of insight into

current transient measurements that is fully consistent with detailed time-domain numerical

drift-diffusion modeling. The benefit of our approach, though, is that it pairs the generality

of a full numerical calculation with the physical insight of a analytical model. With these

tools at hand, researchers can now understand any current transient measurement in terms

of a simple set of discrete physical processes.
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5.5 Conclusions

In summary, we have derived a generalized equation for describing current transients in

planar optoelectronic devices at uniform temperature. Our results detail all the possible

sources of current using only fundamental physical equations and spatially-averaged values

of the quantities/processes of interest. Integrating our generalized current-density equation

provides further insight on how to interpret the apparent charge extracted from transient

current measurements, including how to account for changes in charge on the electrodes.

One unexpected result from this analysis is a factor of one-half reduction in the apparent

extracted charge due to non-intuitive displacement current effects. We have shown how this

factor of one-half, along with an improper accounting of the electrode charge, has lead to

misinterpretations of charge-extraction transients in the organic solar cell literature. We

further demonstrated how readily a simple physical picture—like that of the classic CELIV

and ToF models—can be translated into an expression for the total measured current density

as a function of time using our set of simple generalized equations. Finally, we have shown

that the derived relations are effectively built into time-domain drift-diffusion numerical

solvers, thus verifying the correctness of our approach while demonstrating a new avenue for

understanding current transients in 1-D optoelectronic devices.
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APPENDIX A

Supplemental Material for: Drift-Diffusion Modeling of

the Effects of Structural Disorder and Carrier Mobility

on the Performance of Organic Photovoltaic Devices

A.1 Cahn-Hilliard Generated Morphologies

In order to obtain an alternative description of the semi-random distribution of low and high

carrier mobilities, we utilize 1D slices through disordered morphologies generated by solving

the Cahn-Hilliard equation on a 2D grid. The Cahn-Hilliard equation:

∂C

∂t
= D∇2(C3 − C − ε∇2C) (A.1)

describes the spontaneous phase separation of a binary fluid mixture, where C is the spa-

tial composition of the fluid mixture that ranges from one pure component to the other

(C(x, y) ∈ [−1, 1]). In this equation, D is the diffusivity and ε is the interfacial interaction

energy between the two components. Since our primary interest in Cahn-Hilliard morpholo-

gies is the semi-random distribution of phases at differing length scales, we assume D=1 and

instead only vary the interaction energy. Since the interaction energy determines the average

domain size of the resulting morphologies, this single parameter allows us to simulate bulk

heterojunction morphologies of varying feature size. We employ David Eyre’s linearly stabi-

lized Cahn-Hilliard integration scheme[50, 17] to solve the Cahn-Hilliard equation on a 2D

grid (See Fig. A.1). These morphologies result in compositional maps that vary from -1 to 1

over various length scales. We then utilize 1D cross sections through these morphologies to

generate mobility profiles characterized by high and low mobility regions. When generating
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Figure A.1: An example of a morphology generated by solving the Cahn-Hilliard equation
on a 100x500 nm grid.

mobility profiles from cross-sections of our C-H morphologies, we intentionally sample only

every 20th cross-section to reduce any correlation between replica mobility profiles, since ad-

jacent cross-sections are likely to be of similar composition. The effects of the mobility range

parameter, σCH , on the figures of merit are plotted in the main text. In Fig. A.2, we show

the effects of the average feature size, δCH on device performance. Similar trends are shown

as with the randomly sampled ensembles, with JSC, FF, and PCE all negatively impacted,

but VOC unaffected. For smaller average feature sizes, there appears to be a reversal in the

trend of diminished performance of JSC, FF, and PCE that is not present in randomly sam-

pled ensembles. We attribute this to the fact that δCH is only an average feature size and,

as such, an appreciable number of sampled mobility profiles may actually have domain sizes

larger than this average feature size. This would result in a mobility profile with performance

comparable to coarser devices, (i.e., larger δCH), and these mobility profiles are sufficient to

reverse the trend of lower performance for smaller feature sizes. The distributions of one such

Cahn-Hilliard sampled ensemble are shown in Fig. A.3. They illustrate skewed distributions

which are similar to the randomly sampled distributions illustrated in the main text.

A.2 Mobility Profiles, Discretization, Mesh Size, and Accuracy

Care must be taken when discretizing the charge carrier continuity equations in the main

text (Eqs. (3) and (4)) via the finite difference approximation. The simple assumption that

the charge density varies linearly between mesh points can result in a solution with negative
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Figure A.2: Relevant figures of merit for the ensemble averaged J–V characteristics as a
fraction of the pristine device’s but as the average feature size, δCH , of the sampled Cah-
n-Hilliard morphologies is increased from approximately 3 to 15 nm.

(a) (b)

(c) (d)

Figure A.3: Histograms showing the distribution of replicas from an ensemble of devices
generated via Cahn-Hilliard sampling with µCH = −8.0, σCH = 2.0, and δCH ≈ 3.3 nm
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charge densities [162], which is unphysical. Therefore, it is typical to assume a nonlinear

variation of charge density between mesh points via the Scharfetter-Gummel discretization

scheme, which we employ [147]. An assumption of this discretization scheme is that the

mobility is constant between mesh points. Typically, when a simulation calls for the mobility

to vary between mesh points i and i + 1, it is assumed that the mobility between mesh

points is simply the algebraic mean of µi and µi+1, an assumption that we also employ.

This can potentially lead to numerical errors when the mobility changes drastically, which

is potentially the case with our randomly sampled mobility profiles. To test the severity

of this approximation, we also simulate our randomly sampled mobility profiles with finer

mesh point spacing, in order to hopefully reduce the numerical errors of drastic changes

in mobility between mesh points. We tested mesh spacings of ∆x = 1 nm to ∆x = 0.05

nm for an ensemble characterized by µRS = −8.0, σRS = 0.7, and δRS = 3 nm. We then

determined any discrepancies between coarser mesh spacings and very fine mesh spacings.

The results are depicted in Fig. A.4. We find that with our original mesh spacing of ∆ = 1

nm, the discrepancies for all figures of merit (JSC, FF, VOC and PCE ) are less than 3 percent.

Therefore, we believe that the drift-diffusion equations can still be properly solved via the

Scharfetter-Gummel discretization scheme, even with our structurally disordered mobility

profiles.

A.3 Ensemble Mobility Distributions

We utilize two methods to generate structurally disordered mobility profiles: one where a

mobility value is randomly sampled from a normal distribution every δ nm, and another

where cross sections of Cahn-Hilliard morphologies are sourced while varying the mobility of

a 1D device replica around a mean µ0 mobility by several orders of magnitude. The distribu-

tions of the sampled mobilities of the profiles generated by these two methods vary greatly

and are illustrated in Fig A.5. The first method (Fig. A.5(a)) is clearly normally distributed

since the original sampling distribution is normally distributed, with most mobility values

clustered around the mean mobility value, µ0, with only a few mobilities sampled near 10−10
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Figure A.4: The effects of finer mesh point spacing on the accuracy of the ensemble av-
erage device figures of merit are illustrated. It is assumed that the smallest mesh spacing
(∆x = 0.05 nm) is the most accurate. The discrepancy between the performance of coarser
meshes (∆x > 0.05 nm) is plotted as a function of mesh size. This ensemble was character-
ized by µRS = −8.0, σRS = 0.7, and δRS = 3 nm.

and 10−6 m2 V−1 s−1. The second method results in a mobility distribution that is nearly

opposite in character to the first, with the majority of mobilitiy values clustered at the ex-

treme end of the distribution range (also 10−10 to 10−6 m2 V−1 s−1), with comparatively

few mobilities sampled near the mean mobility, µ0. However, as described in the main text,

these distributions result in very similar ensemble averaged behavior, suggesting that the

range of possible mobilities has a greater effect on device performance than the exact shape

of the distribution that such mobilities are sampled from.
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(a) (b)

Figure A.5: (a) Histogram depicting the distribution of mobilities from an ensemble of
devices sampled from a mobility distribution characterized by µ0 = −8.0, σ = 0.7, and δ = 3
nm. (b) Histogram depicting the distribution of mobilities from an ensemble of devices
generated by taking 1D cross-sections of Cahn-Hilliard morphologies with average feature
size δ ≈ 3.3 nm, with mobilities centered around µ0 = −8.0 and ranging by σ = 2.0 orders
of magnitude about that mean.
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APPENDIX B

Supplemental Material for: Do Organic Photovoltaics

Really Need a Mixed Phase? Drift-Diffusion Studies of

the Effect of Bulk Heterojunction Compositional

Morpholog on Optimum Device Performance

B.1 Full J–V Characteristics of Simulated Devices

In this study, we are primarily interested in the effects of a mixed-phase region on OPV

device performance. In order to measure an OPV’s power conversion efficiency, one must

measure its J–V characteristic under illumination. There are three points along this J–V

characteristic which determine the device’s power conversion efficiency: the short-circuit

current (JSC), the open-circuit voltage (VOC), and the FF. These are the only points along

the J–V curve that are necessary to determine the device’s performance capabilities. Thus

the full J–V characteristics of our simulated devices were omitted from the main text for the

sake of brevity. In Fig. B.1, we present the full J–V characteristics of our five Cahn-Hilliard

generated morphologies and the HAADF-STEM determined morphology.

B.2 Spatially Resolved Simulation Results (C, n, and Jn,y at Ad-

ditional Morphological Length Scales

The main text presents, for a single morphology, several spatially resolved device observ-

ables, such as the electron density and electron current density, determined from simulation,

at varying degrees of mixing. The main text only presented these observables for one mor-
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Figure B.1: Full J–V characteristics of the all of the initial, non-mixed morphologies studied
in the main text. The first 5 curves refer to morphologies generated by Cahn-Hilliard mod-
eling of binary fluid separation while the last curve is from an empirical morphology deter-
mined by high-angle annular dark-field scanning transmission electron microscopy (HAAD-
F-STEM).

phological length scale (10 nm) for the sake of brevity. In Figs. B.2 and B.3 we present the

compositional morphology, the electron density, and the y-component of the electron current

density vector for the smallest and the largest morphological length scales examined (4 nm

and 15 nm). These observables are presented for these morphologies in their non-mixed state

as well as at ∼ 30% and ∼ 70% mixing.

B.3 Effects Alternative Mixing Method

As mentioned previously in the main text, there are technically two methods to introduced

a mixed region into the device: either by smoothing the input device morphology first before

mapping to the charge carrier mobilities, or by mapping the mobilities first before sub-

sequently smoothing the mobility profiles. The two methods produce decidedly different

carrier mobility profiles, which in turn results in different device performance. Consider a

simulation in which the mobility of electrons in the fullerene phase is 1 × 10−7 m2 V−1 s−1

and 1× 10−12 m2 V−1 s−1 in the polymer phase. The device’s compositional morphology, C,

should vary between 0 and 1 and the composition of the mixed-phase region should be ap-

101



0% mixed 30% mixed 70% mixed

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.2: Simulation results of OPV devices based on C-H morphology (average feature
size of ∼ 4 nm) with a controllably increasing amount of intermixed compositional regions
from left (no intermixing) to right (most intermixing). All figures represent the device at
short-circuit conditions under simulated AM1.5 illumination. Panels (a)-(c): overall com-
positional morphology; panels (d)-(f): spatially-dependent electron density; panels (g)-(i):
electron current density profile. Each of these image plots shows a 100 nm × 100 nm subsec-
tion of the entire simulated device. The ITO/PEDOT:PSS anode and the calcium cathode
are located at the top and bottom of each plot, respectively.
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0% mixed 30% mixed 70% mixed

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.3: Simulation results of OPV devices based on C-H morphology (average feature
size of ∼ 15 nm) with a controllably increasing amount of intermixed compositional regions
from left (no intermixing) to right (most intermixing). All figures represent the device at
short-circuit conditions under simulated AM1.5 illumination. Panels (a)-(c): overall com-
positional morphology; panels (d)-(f): spatially-dependent electron density; panels (g)-(i):
electron current density profile. Each of these image plots shows a 100 nm × 100 nm subsec-
tion of the entire simulated device. The ITO/PEDOT:PSS anode and the calcium cathode
are located at the top and bottom of each plot, respectively.
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proximately 0.5, since the Gaussian smoothing operations averages the compositional values

of the pure regions. Using the first method of mixing (Gaussian smoothing before mapping to

mobility) will thus result in a mobility in the mixed region of ∼3.16×10−10 m2 V−1 s−1. The

second method (mapping to mobility followed by Gaussian smoothing) instead generates

a mixed-phase region with a mobility that is approximately the average of the mobilities

in the pure region. Therefore, this method results in a mixed region with a mobility of

∼0.5×10−7 m2 V−1 s−1.

It is not immediately clear which method is more physically representative of the mixed-

phase in actual OPV devices. We rationalize that the charge carrier mobility in the mixed-

phase region should be significantly lower than the mobility in the pure, conducting phase,

since the mixed-phase region is inherently amorphous and possess higher energetic disorder.

The mixed-phase also contains non-conducting material, which should lower the mobility by

several orders of magnitude. Therefore, we have chosen the first mixing method (smooth-

ing the compositional morphology before mapping the mobilities) for our investigation of

the effects of a mixed-phase on device performance. To further illustrate that these two

approaches produces quantitatively different results, we also performed several simulations

with the alternative method. The results of these calculations are presented in Fig. B.4.

This figure plots the figures of merit (JSC, VOC, FF, and power conversion efficiency) for our

10-nm device as a the fraction of their values in a non-mixed configuration.
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Figure B.4: This figure illustrates the effect of a mixed-phase on the device performance
of our 10-nm Cahn-Hilliard morphology when using an alternate method of mixing (i.e.
mapping morphology to mobility and then smoothing the mobility profiles).
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APPENDIX C

Supplemental Material for: Theory of Current

Transients in Planar Semiconductor Devices: Insights

and Applications to Organic Solar Cells

C.1 Derivation of the Spatially Constant Total Current

In order to show that the total current is spatially constant, we must demonstrate that the

spatial derivative of Eq. (4) in the main text is equal to zero:

dJtot

dx
=
dJn
dx

+
dJp
dx

+
dJD

dx
= 0. (C.1)

Fortunately, a straightforward rearrangment of the continuity equations (Eqs. (1) and (2)

in the main text) gives two of the terms we need:

dJn
dx

= q
dn

dt
− q(G−R)− q(GD

e −RD
e +GA

e −RA
e )

dJp
dx

= −qdp
dt

+ q(G−R) + q(GD
h −RD

h +GA
h −RA

h ). (C.2)

We can then take the time derivative of Gauss’ law and use the non-averaged (local) versions

of Eqs. (11) and (12) in the main text to obtain the following expression for the spatial

derivative of the displacement current:

dJD

dx
= q

dp

dt
− q

dn

dt
+ q(GD

e − RD
e + GA

e − RA
e ) − q(GD

h − RD
h + GA

h − RA
h ). (C.3)
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Clearly, the sum of the right-hand-sides of Eqs. (S2-4) is exactly zero, demonstrating that

the total current is spatially constant at each instant in time, as discussed in the main text.

C.2 Relating the Charge on the Contacts to the Voltage

We can solve for the charge on the electrodes and thus σEL by recognizing that the electric

field within the device can be written as:

E(x) =
1

2ε

∫ x

0

ρ(x́)dx́− 1

2ε

∫ d

x

ρ(x́)dx́+
σEL

2ε

=
1

ε

∫ x

0

ρ(x́)dx́− ρ̄d

2ε
+
σEL

2ε

ρ(x) = q[p(x)− n(x) +N+
D (x)−N−

A (x)], (C.4)

where E(x) is the electric field in the active layer, q is the electron charge, ρ̄d =
∫ d

0
ρ(x) dx,

and x́ is a dummy variable for spatial integration. Integrating Eq. (B2) from x = 0 to d

gives the total electric potential drop (V = −
∫ d

0
E dx) across the active layer:

V =
ρ̄d2

2ε
− σELd

2ε
− 1

ε

∫ d

0

∫ x

0

ρ(x́)dx́ dx. (C.5)

Eq. (C.5) provides the relationship between the electric field supplied by the electrode

charge, the electric potential, and the space-charge distribution within the active layer. If

desired, one can use Eq. (B4) with σ0 + σd = −ρ̄d and σEL = σ0 − σd to solve for the charge

on each electrode, σ0 and σd, in terms of ρ and V . Solving for σEL then gives the following

useful relations:

σEL = ρ̄d− 2εV

d
− 2

d

∫ d

0

∫ x

0

ρ(x́)dx́ dx (C.6)

EEL =
ρ̄d

2ε
− V

d
− 1

εd

∫ d

0

∫ x

0

ρ(x́)dx́ dx (C.7)

VEL =
ρ̄d2

2ε
− V − 1

ε

∫ d

0

∫ x

0

ρ(x́)dx́ dx, (C.8)
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where VEL is the electric potential drop due to the electrode charge, EEL is the electric field

supplied by the electrode charge, and V = Vapp − VBI is the electric potential drop across

the active layer. Also, here Vapp is the applied bias and VBI is the constant built-in potential

due to, e.g., permanent asymmetric carrier concentrations at the contacts, compositional

gradients, etc. Thus, from Eq. (C.6), dσEL/dt is non-zero only if the space-charge density

distribution ρ(x) and/or the applied bias Vapp are changing in time. If desired, σEL can be

eliminated by combining Eqs. (C.5) and (C.4) to give the general equation

E(x) =
1

ε

(∫ x

0

ρ(x́)dx́− 1

d

∫ d

0

∫ x

0

ρ(x́)dx́ dx

)
− V

d
, (C.9)

where again V is the electric potential drop across the active layer, which is related by the

total applied bias by V = Vapp − VBI. If the dielectric environment is inhomogeneous, then

ε→ ε(x́) and is absorbed into the integrals of Eq. (C.9).

C.3 Drift Diffusion Model

The drift-diffusion model is a continuum approach that can be derived from the Boltzmann

transport equation. The model states that the charge carrier current densities, Jn,p, can be

expressed as (also see Eqs. (25) and (26) in the main text):

Jn = −qnµn∇ψ + µnkT∇n (C.10)

Jp = −qpµp∇ψ − µpkT∇p (C.11)

where n and p refer to electrons and holes, ψ is the electrostatic potential, q is the funda-

mental charge, µn,p are the electron and hole mobilities, k is the Boltzmann constant, and T

is the temperature. The current densities have two components: a drift term, which arises

from carriers moving in response to an electric field, and a diffusion term, which arises from

the presence of carrier density gradients. In order to fully model an electronic device, one
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must solve the carrier continuity equations (also Eqs. (1) and (2) in the main text):

∂n

∂t
=

1

q
∇ · Jn +G−R (C.12)

∂p

∂t
= −1

q
∇ · Jp +G−R (C.13)

where G is the carrier generation rate and R is the carrier recombination rate. The continuity

equations take account for all loss and gain mechanisms relevant to the device being modeled.

Note that these equations, which were used in the numerical solver, do not include trapping

and de-trapping terms like the more general continuity equations presented in the text. In

any case, though, to relate the carrier densities to the electrostatic potential distribution,

one must couple the above equations to the Poisson equation:

∇2ψ =
q

ε
(n− p+N−

A −N+
D ) (C.14)

where ε = ε0εr and ε0 and εr are the vacuum and relative permittivities, respectively, and

N−
A and N+

D are the localized charge densities as defined in the text. The set of equations

(C.12)-(C.14) must be solved in order to fully simulated a device [163].

C.4 Numerical methods and Solution Details

C.4.1 Boundary Conditions

The above Eqs. (C.12)-(C.14) represent a set of 3 second order partial differential equations

with three independent variables (n, p and ψ). Thus we require six boundary conditions,

two for each independent variable. For the charge carrier densities, we assume thermionic

injection conditions at the electrode contacts, which are treated as Schottky contacts [150,

144]. Under these conditions, the carrier densities at the contacts is assumed to be constant

and is set to, for example,

n(0) = NC · exp

(
−ΦB,anode

kT

)
(C.15)
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where ΦB,anode is the height of the Schottky barrier at the anode contact and NC is the

effective density of states of the conduction band. An analogous expression is implemented

at both contacts for both electrons and holes. As for the electrostatic potential, we assume

that the total potential change through the device should be equal to the built-in potential

of the device, which we set to 0.6 V.

C.4.2 Generation and Recombination

Two of the most important factors in device simulation—and of particular importance for

OPV devices—are the generation and recombination terms in eqs (C.12) and (C.13). To

ensure physically representative data for an OPV device, one must choose appropriate gen-

eration and recombination mechanisms. First, we assume that the spatial generation rate

inside the device should follow the absorption profile of the active layer. Unfortunately,

because of the arrangement of thin films within a typical OPV device, complex interference

patterns arise that result in a complex absorption profile rather than a typical Beer’s law

type exponential decay. Thus, we use a transfer matrix formalism to calculate a generation

(G(x)) profile that properly accounts for thin film interference patterns within the active

layer [135]. We do not consider exciton dynamics and instead assume that an absorbed pho-

ton immediately generates a pair of free electrons and holes with a finite efficiency that is

independent of, e.g., electric field. For recombination we assume Langevin-type bimolecular

recombination statistics for which R = qnp(µn+µp)/ε. We don’t consider any recombination

with traps as this extra detail introduces significant complexity, and we are more focused on

how the total measured current can be broken down into a several intuitive terms (Eq. (13)

in the text) and to test the validity of the formalism.

C.4.3 Solution Scheme

Using our own in-house code, we implement the Gummel method, by which Eqs. (C.12)-

(C.14) are decoupled and solved in an iterative manner. Using a finite difference scheme,

we discretize the partial differential equations and solve for n, p and ψ on 1-D meshes.
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The discretization of the semiconductor equations results in a set of algebraic equation for

every mesh point. Using our own homemade MATLABr code, we solve this set of algebraic

equations by utilizing the open source, linear algebra C++ library Eigen. Once we have

solved for these three independent variables, we may extract whatever information we wish

(current densities, recombination rates, etc.) In particular, we are able to explicitly calculate

the terms of Eq. (13) in the main text.

C.4.4 Transient Simulations

In order to model current transients, we must forgo the usual steady-state approximation

(∂n/∂t = ∂p/∂t = 0). Starting from a converged, steady-state solution for n, p, and ψ, we

iterate the continuity equations forward in time. In order to improve numerical stability, we

use an implicit method rather than an explicit approach to iterate through time steps [163].

A detailed outline of the exact method we used can be found in Ref. [163].

In order to simulate a typical photo-CELIV experiment, we begin with a steady-state

solution for the device, without illumination, near its VOC. We then generate an excess of

free carriers by “turning on” the generation profile for a short time (0.1 µs). After some

time has passed (5 µs), during which some carriers recombine, we sweep out the remaining

carriers by applying a voltage ramp at the contacts. Voltage ramp that is linear with time,

in keeping with normal CELIV operation. The continuity equations are iterated forward in

time using an implicit method and the carrier densities and potential distribution recorded

at every time step. The carrier densities and potential distribution are then used to calculate

the current densities (Eqs. C.10 and C.11) and the time-dependent displacement current:

JD = ε
∂E

∂t
= −ε ∂

∂t

∂ψ

∂x
(C.16)

The total measured current in the device is then just (Eq. (4) in main text):

Jtot = Jn + Jp + JD (C.17)
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This total measured current is then compared to the our new analytic expression for the

total current(Eq. (13)). Because the three independent variables (n, p, and ψ) are recorded

at all time steps, it is trivial to calculate every term in Eq. (13) in the main text.
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APPENDIX D

Methodology for Solving Semiconductor Equations

As was discussed in Chapter 1 of this dissertation, performing a drift-diffusion model simula-

tion involves solving the basic semiconductor equations: the electron and hole carrier density

continuity equations and the Poisson equation. The three partial differential equations rarely

have closed form solutions, and so must be solved numerically. This researcher utilized the

finite difference method to discretize the semiconductor equations on a 2-D mesh. With the

finite difference method, derivatives of functions are approximated as:

∂f

∂x
≈ fi+1 − fi

∆xi
(D.1)

∂2f

∂x2
≈ fi+1 − 2fi − fi−1

(∆xi)2
(D.2)

where fi is equal to f(x) at the ith mesh point and ∆xi is the mesh spacing at ith mesh

point. The finite difference method turns partial differential equations into a set of algebraic

equations. In the most current version of our simulator software, we utilize only constant

mesh spacings, typically with a value of 1 nm. Once the semiconductor equations are dis-

cretized, they are solved sequentially and iteratively until a converged solution is attained.

This particular approach to solving the semiconductor equations is known as the Gummel

method.[58]

Several specific issues arise when applying the finite difference method to the semicon-

ductor equations. One problem that comes into play for simulations like ours is the validity

of one of the key assumptions of the finite differences approximation, which is that the value

of f(x) varies linearly between i and i+1. For some semiconductor devices and in particular

for the devices examined in this dissertation (organic photovoltaics), this assumption may
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not be accurate at the mesh spacings utilized (∼1 nm). The assumption that f(x) varies

linearly can potentially lead to negative charge densities.[162] Consider a 1-D device at zero

applied bias and with zero current such that:

Jnx = −qnµn
∂V

∂x
+ qDn

∂n

∂x
= 0 (D.3)

This is merely the drift-diffusion equation of electrical current. The diffusion constant, Dn,

is equal to kT
q
µn, according to the Einstein relationship. If one assumes a discretization

scheme with linear interpolation of device variables between i and i+1, this equation may

be rewritten as:

ni+1/2 × µni+1/2
× Vi+1 − Vi

∆x
= Dni+1/2

× ni+1 − ni
∆x

(D.4)

where ni+1/2, µni+1/2
, and Dni+1/2

may be obtained by linearly interpolating between the

values of the variables at i and i + 1. Substituting in ni+1+ni
2

for ni+1/2 and using the

Einstein relationship, the above equation becomes:

Vi+1 − Vi =
2kT

q

ni+1 − ni
ni+1 + ni

(D.5)

Since charge carrier densities must be positive to be physically meaningful, the above equa-

tion requires that:

Vi+1 − Vi ≤
2kT

q
(D.6)

This implies that if the difference between the electrostatic potential at adjacent grid point

exceeds 2kT
q

, then a linear interpolation scheme will predict negative charge densities, which

is unphysical.

The possibility of physically invalid solutions may be accounted for by assuming that the

carrier densities vary exponentially between grid points. This approach was first implemented

by Scharfetter and Gummel (see their original paper for a full derivation).[147] With such

a representation, the charge current density at the mid-point between adjacent mesh points

may be expressed as:
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Jnxi+1/2
= −qDn

∆x

{
ni+1B

[
q

kT
(Vi+1 − Vi)

]
− niB

[
q

kT
(Vi − Vi+1)

]}
(D.7)

Where B(x) is the Bernoulli equation and is defined as:

B(x) =
x

ex − 1
(D.8)

A similar expression exists for the hole current density, such that:

Jpxi+1/2
= −qDp

∆x

{
pi+1B

[
q

kT
(Vi − Vi+1)

]
− piB

[
q

kT
(Vi+1 − Vi)

]}
(D.9)

With these expressions for the current density, the continuity equations may be properly

discretized.

In two-dimensions, at steady-state conditions (∂n
∂t

= ∂p
∂t

= 0) the electron continuity

equation may be expressed as:

ni,j−1 ·Dni,j−1/2
·B
(
Vi,j−1 − Vi,j

VT

)
+ ni−1,j ·Dni−1/2,j

·B
(
Vi−1,j − Vi,j

VT

)
− ni,j ·

[
Dni,j−1/2

B

(
Vi,j − Vi,j−1

VT

)
+Dni−1/2,j

B

(
Vi,j − Vi−1,j

VT

)
Dni,j+1/2

B

(
Vi,j − Vi,j+1

VT

)
+Dni+1/2,j

B

(
Vi,j − Vi+1,j

VT

)]
ni,j+1 ·Dni,j+1/2

·B
(
Vi,j+1 − Vi,j

VT

)
+ ni+1,j ·Dni+1/2,j

·B
(
Vi+1,j − Vi,j

VT

)
= − 1

(∆x)2
· (Gi,j −Ri,j) (D.10)
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Similarly for the hole continuity equation:

pi,j−1 ·Dpi,j−1/2
·B
(
Vi,j − Vi,j−1

VT

)
+ pi−1,j ·Dpi−1/2,j

·B
(
Vi,j − Vi−1,j

VT

)
− pi,j ·

[
Dpi,j−1/2

B

(
Vi,j−1 − Vi,j

VT

)
+Dpi−1/2,j

B

(
Vi−1,j − Vi,j

VT

)
Dpi,j+1/2

B

(
Vi,j+1 − Vi,j

VT

)
+Dpi+1/2,j

B

(
Vi+1,j − Vi,j

VT

)]
pi,j+1 ·Dpi,j+1/2

·B
(
Vi,j − Vi,j+1

VT

)
+ pi+1,j ·Dpi+1/2,j

·B
(
Vi,j − Vi+1,j

VT

)
= − 1

(∆x)2
· (Gi,j −Ri,j) (D.11)

Discretizing the Poisson equation is considerably simpler than the continuity equation.

The most basic discretized form of the Poisson equation is:

Vi,j−1 + Vi−1,j − 4 · Vi,j + Vi,j+1 + Vi+1,j =
q

εrε0
· (ni,j − pi,j + C) (D.12)

With the semiconductor equations properly discretized, we have now turned the orig-

inal partial differential equations into a set of algebraic equations where the solutions (n,

p, and V ) are specified on a 2-D finite difference mesh with constant mesh spacing. As

mentioned above, we solve the three semiconductor equations sequentially and iteratively

until a converged solution is obtain. The set of algebraic equations may be formulated as a

matrix equation. Our software makes extensive use of the Eigen Linear Algebra Libray by

Tuxfamily [57] to store the matrix coefficients and solve the set of algebraic equations. We

also use the Eigen Library’s extensive class library for representing matrices and vectors to

store many of the simulation variables. See the Eigen Linear Algebra Library documentation

for further information about accessing and manipulating data matrices.
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APPENDIX E

Simulation Software Operation and the

DriftDiffusion class

Our drift-diffusion program is written in the C++ programming language. The source code

maybe found on the Benjamin J. Schwartz group Bitbucket repository :https://bitbucket.

org/schwartzgroup/driftdiffusionmodeling. It consists of a main program file (“main.cpp”),

a single class definition for simulating organic solar cells (“DriftDiffusion.cpp” and “DriftDif-

fusion.h”), and a collection of header files containing supplementary data for the simulation,

such as the AM1.5 spectrum, the complex indices of refraction of several OPV materials, and

various other constants (“AM15.h”, “RefractiveData.h”, and “Constants.h”). Performing a

drift-diffusion simulation with our software involves the writing a brief program/script in the

“main.cpp” file, followed compiling and running the generated executable file. Composing a

simulation script involves the following steps:

1) Instantiating an object of the DriftDiffusion class in the main() function of

the “main.cpp” file. The dimensions of the device object must be specified when

instantiating.

2) Specifying device parameters such as carrier mobilities, recombination efficiencies,

etc. with the various device parameter manipulation functions (See Sec. E.5).

3) Importing the compositional morphology of device, if performing a 2-D simulation

(See Sec. E.2). Morphological data may be either generated from Cahn-Hilliard and

Monte Carlo modeling of binary phase separation or by sourcing empirical morphology

data.
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4) Performing a simulation by calling one of the available simulation functions (See

Sec. E.4).

5) Printing any other pertinent simulation data to file with the available set of print

statements (See Sec. E.6).

The code itself has been extensively commented to describe the purpose and basic oper-

ation of the DriftDiffusion class. This appendix is only meant to provide a basic overview

of the software’s operating principles.

E.1 Device Instantiation and the DriftDiffusion() Constructor

An instance of the DriftDiffusion class contains all of the dependent variables (n, p, and

V ), as well the independent variables for the simulation. Instantiating a DriftDiffusion

object in the main() program can be conceptualized as “creating” an organic solar cell. The

dimensions of the device (depth and width) must specified in the DriftDiffusion object’s

constructor. For example, the following statement would create a model organic solar cell

with an active layer 120 nm thick and 300 nm across:

D r i f t D i f f u s i o n mySolarCel l ( 120 , 300 ) ;

If no input parameters are passed to the DriftDiffusion object’s constructor, the di-

mensions of the of the device are assumed to be (100,1). This creates a 1-dimensional

organic solar cell with an active layer 100 nm thick. Upon instantiating, the constructor

appropriately re-sizes the spatially dependent variables and parameters, sets the default pa-

rameters and initial guesses for the dependent variables (n, p, and V ), and calculates the

generation profile for the active layer. The majority of the default simulation parameters are

defined in the class header file, but may be altered after instantiation by using the “Device

Manipulation” set of class functions.
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E.2 Performing 2-D Simulations and Mapping Morphological Data

with

ImportMorphology()

As mentioned above, passing a second input parameter to the constructor creates a 2-D de-

vice with the dimensions specified by the constructor parameters. At this point, the device

is still uniform and will produce the same simulation results as a 1-D device. To account for

morphological effects, you must provide morphological data and import it into the simula-

tion. The most straightforward way to do this is by using the ImportMorphology(string

filename, int numBlurs, double sigma) function. This function has one mandatory

parameter, which is the filename of the data file containing the morphological data. The

morphological data must be formatted as a “.csv” file and should specify the compositional

morphology of the device at all grid points. As such, all of the values in the input file should

be between 0 and 1. The additional parameters, numBlurs and sigma are used to “mix” the

morphology and introduce a mixed-phase between pure regions, as described in Chapter 4

of the main text. The mixing is achieved by performing successive Gaussian smoothing op-

erations. The additional parameters, numBlurs and sigma, specify the number of Gaussian

smoothing operations to be performed and the standard deviation of the Gaussian kernel

used for the smoothing.

E.3 The DDSolve() function

The DDSolve() function, as its name implies, solves the D-D model equations and updates

the dependent variables (n, p, and V ) for the devices current parameter set. This function

should be called anytime changes are made to the device’s simulation parameters. As previ-

ously mentioned, the semiconductor equations are solved by a finite-difference discretization

scheme which transforms the model’s partial differential equations into a set of algebraic

equations. This set of algebraic equations is solved by L-U factorization, as implemented

in the Eigen Linear Algebra Libray. If no input parameters are passed to the function, a
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steady-state solution (∂n
∂t

= ∂n
∂t

= 0) to semiconductor equations is found. This type of

solution is appropriate for simulating any non-transient OPV measurememt (J–V charac-

teristics, ideality factor determination, etc.). Once a steady-state solution has been found,

transient effects may be accounted for by utilizing a different form of DDSolve(). Given an

initial solution at time t, by passing a timestep value, ∆t, to DDSolve(double dt), a new

solution to the semiconductor equations is found at time t+∆t. It is recommended that you

perform a steady-state solution (calling DDSolve() without a parameter) before calculating

a time-dependent calculation. In practice, the time dependent solution is found by use an

implicit method rather than an explicit method. With these two functions, a bevy of OPV

experimental measurements and techniques may be simulated. The DDSolve() function is

not called by the constructor when the device is instantiated; however, most of the provided

simulation functions already call DDSolve() when needed.

E.4 Simulation Functions

As soon as the device has been instantiated, you may begin performing simulations of typical

OPV measurements by simply calling one of the “Simulation Functions” (See Sec. E.4)

in the main() program. A short description of some of the more common experimental

measurements is given below. See the class header file for a full list of the currently available

simulations.

E.4.1 JVCharacteristic(double Va start, double Va end,

int printInterval=0)

This function simulates a simple J–V characteristic measurement for the device by mea-

suring the current through the device at various applied voltages. The voltage is applied

by altering the boundary conditions to the Poisson equation. The input parameters for the

function determine the range of the voltages measured for the J–V characteristic. After the

voltage ramp is complete, the device’s figures of merit (JSC, VOC, and FF ) and the overall

power conversion efficiency of the device are calculated from the J–V characteristic. The
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J–V characteristic and the figures of merit are then printed to file (“JVData.dat” and “Fig-

uresOfMerit.dat”). The spatial distributions of the dependent variables (n, p, and V ) and

the current densities (electron, hole, and total currents) are also printed to file. When calling

JVCharacteristic(), these data are only printed at the first applied voltage, by default. In

order to print them at additional applied voltages, you must specify the print interval during

the functional call. For example, the following function call would simulate and measure a

J–V curve for our model device between 0 V and 0.8 V and print the dependent variables

at every other applied voltage step:

mySolarCel l . JVCharac t e r i s t i c ( 0 , 0 . 8 , 2 ) ;

By default, this method measures the J–V characteristic under illumination, as we are most

typically interest in the photovoltaic performance of our simulated devices. If you wish to

measure the J–V curve in the dark, you may either set the generation rate to 0 by calling

SetGeneration(0) or by setting the exciton dissociation efficiency parameter to 0 by calling

SetGeff(0) before calling the JVCharacteristic() function.

E.4.2 PhotoCELIV(double A, double pulseStrength, int tdelay)

This function simulates a photo-CELIV (Photogenerated Charge Extraction by Linearly

Increasing Voltage) experiment. Experimentally, this technique is used to directly measure

the mobility of free charge carriers as well as to investigate charge carrier recombination

kinetics. The technique involves holding a solar cell at or near VOC, generating charge carriers

with a light pulse, and then extracting these charges with a voltage ramp that increases the

voltage linearly with time. The current is measured during this technique and may be

subsequently analyzed to determine the charge carrier mobilities. The input parameters for

this function determine the rate of the voltage ramp, the magnitude of the light pulse, and

the time delay between the light pulse and the voltage ramp. The duration of the light pulse

and the voltage ramp are defined within the body of the function. Changing them requires

manual editing of the function definition and recompiling. The durations of the light pulse,

the voltage ramp, and the time delay between light pulse and voltage ramp are specified in
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units of µs. The simulation prints the total current density and the average charge carrier

densities as a function of time to the file “CELIVData.dat” at every time step. The current

transient must be analyzed later by the user to determine the carrier mobilities.

As mentioned previously, the photo-CELIV technique is normally performed by initially

holding the device at or near its VOC. Since different devices have different VOC’s, the

appropriate starting voltage is not known a priori. The user must therefore determine the

approximate VOC beforehand by using JVCharacteristic() and setting the device to the

voltage before calling PhotoCELIV(). For example, the following set of function calls sets the

device’s applied voltage bias to 0.58 V and performs the photo-CELIV measurement with a

voltage ramp of 0.1× 106 V/s, a pulse intensity of 1 Sun, and a time delay of 10 µs.

mySolarCel l . SetVoltage ( 0 . 5 8 ) ;

mySolarCel l . PhotoCELIV ( 0 . 1 e6 , 1 , 1 0 ) ;

E.4.3 TransientPhotocurrent(double pulseStrength,

int durationLightPulse, int durationTransient)

This function simulates a transient photocurrent measurement. The technique involves mea-

suring the current transient of the device in response to a light pulse. The input parameters

determine strength of the light pulse (measured in Suns), the duration of the light pulse,

and the duration of the transient after the light pulse. The current density and the carrier

densities are measured at each time step and printed to file (“TPCData.dat”) at the end of

the simulation.

E.5 Methods for Device Parameter Manipulation

As mentioned previously, as soon as the model device is instantiated, simulations may be

performed immediately since the device already possesses a set of default parameters. In

order to examine the effects of different device configurations and simulation parameters

on device physics, these parameters must be specified/altered before a simulation function
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is called. Device parameters which may be altered include the value of the charge carrier

mobilities, the device’s built-in voltage, the magnitude of the Schottky barriers, the type of

recombination mechanisms that occur, etc. For a full list of all available device parameters

which may be altered via function calls, see the “DriftDiffusion.h” header file. Some of the

most relevant device parameters (and corresponding functions to manipulate them) are listed

below.

E.5.1 Applying a Voltage Bias with SetVoltage(double Vapp) and

RampVoltage(double dVa)

By default, the organic solar cell object is instantiated with zero applied bias, such that the

voltage drop across the device’s active area is simply equal to the built-in voltage, VBI. In

order to change the applied bias, call either the SetVoltage() or RampVoltage() functions.

The first function, as its name implies, sets the appplied bias to whatever value is passed as a

parameter in the function call. The second function, RampVoltage(), increases or decreases

the applied voltage by the specified amount. For example, the following set of function calls

will set the applied bias to 0.58 V by first setting the voltage to 0.6 and then reducing the

applied bias by 0.02 V:

mySolarCel l . SetVoltage ( 0 . 6 ) ;

mySolarCel l . RampVoltage (−0 .02) ;

These functions are called frequently in the JVCharacteristic() and the

PhotoCELIV() simulations and may be used to construct other simulations.

E.5.2 Changing the Charge Carrier Mobilities with

SetElectronMobility() and SetHoleMobility()

Upon device instantiation, the default electron and hole mobilities are set to 1 × 10−8

m2 V−1 s−1. You may change the charge carrier mobilities independently by calling the

SetElectronMobility() and SetHoleMobility() functions. You may set a constant mo-
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bility throughout the device by supplying a single value as a parameter

(i.e., mySolarCell.SetElectronMobility(1e-6);). If you wish to utilize as a non-uniform

mobility profile, you may pass a MatrixXd as an input parameter. This MatrixXd variable

should have the same dimensions as the active layer of the device so that the mobility may

be assigned at each grid point. This is most helpful when performing 2-D simulations.

E.5.3 Specifying the Charge Carrier Mobilities of Acceptor and Donor materi-

als with SetMuNMaxMin() and SetMuPMaxMin()

These functions are most important when performing 2-D simulations of BHJ architectures

with distinct regions of donor and acceptor molecules. Typical OPV materials are charge

carrier selective in terms of their mobility. These functions allow you to set the upper and

lower bounds of the charge carrier mobilities for the different conducting materials when

compositional morphology is a factor. For example, consider the following set of commands.

mySolarCel l . SetMuNMaxMin(1 e−7,1e−12);

mySolarCel l . SetMuPMaxMin(1 e−8,1e−10);

The first function calls sets the mobility of electrons in the acceptor and donor materials

to 1 × 10−7 m2 V−1 s−1 and 1 × 10−12 m2 V−1 s−1, respectively, while the second function

call sets the mobility of holes in the donor and acceptor materials to 1 × 10−8 m2 V−1 s−1

and 1× 10−10 m2 V−1 s−1, respectively.

E.5.4 Changing the Generation Rate, G, with SetGeneration() and SetGeff()

Upon device instantiation, the default carrier generation profile is determined by using a

transfer matrix formalism to solve Maxwell’s equation to determine the absorption profile

through the device. You may also specify the generation rate by using SetGeneration() in

a similar fashion as SetElectronMobility(). You may either pass a single value as a input

parameter, in which case a uniform generation profile with that value is implemented, or you

may specify a non-uniform generation profile by passing a MatrixXd as input parameter to
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specify the exact value of the generation rate at each grid point.

The generation rate is further determined by the exciton dissociation efficiency. The

transfer matrix formalism only determines the absorption profile, which in turn specifies

where excitons are generated. Organic photovoltaic devices typically exhibit exciton disso-

ciation efficiency of >90%. Therefore, the exciton dissociation efficiency constant, Geff is set

to 1 by default, which implies that every photon absorbed in the device is split with unit

efficiency. The efficiency of exciton dissociation may be altered by calling the SetGeff()

function with a value between 0 and 1. Furthermore, this function may be used to easily

“switch off” or “on” the illumination of the device by setting Geff to either 0 or 1, respectively.

E.5.5 Specifying Recombination Mechanism and Recombination Parameters

The recombination mechanism to be used in the simulation may be specified by using the

SetRecombinationMechanism(string recomType) function. There are two primary mech-

anisms for recombination that may be chosen and specified in the function call’s parameter

list: “Langevin” and “SRH”. These correspond to band-to-band, bimolecular recombina-

tion of free charges and a trap-mediated recombination, also known as Shockley-Read-Hall

recombination. There are several parameters which may be specified for each recombina-

tion mechanism. “Langevin”-type recombination’s only parameter is a reduction factor, η,

which determines the efficiency with which free carriers recombine and may be specified with

the SetRecombinationEfficiencyLangevin() function. Shockley-Read-Hall recombination

has several parameters such as the exponential slope of the trap states and the recombination

cross sections for electrons and holes. These may be specified with the SetBandEdge(double

edge) and SetBetaNP(double BetaN, double BetaP) functions, respectively.

E.6 Saving Simulation Data with Print Statements

Most of the simulation functions provided in the class definition already print out relevant

simulation data upon execution of the main program. In general, simulation results and

measurements are printed as tab-delimited files with the “.dat” extension, while spatially
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dependent device parameters and variables are printed as comma-separated files with the

“.csv” extension. These files may then be analyzed by the user with any available data

analysis software. In addition to the automatic simulation data recording, you may also save

other pertinent data using one of the supplied print statements. Some of the most commonly

used print statements are listed below. Please see the class definition file for a full list of

available print statements.

PrintNPPSI() : Prints the independent variables n, p, and V to file with the names

“Electrons.csv”, “Holes.csv”, and “Potential.csv”

PrintCurrents() : Prints the electron, hole, and total current densities to multiple

.csv files. The x and y components of the current density vectors are printed to

separate files. For example the y-component of the electron current density is printed

to “currentny.csv”

PrintMobilities() : Prints the spatially dependent carrier mobility distributions to

“ElectronMobility.csv” and “HoleMobility.csv”

PrintRecombination() : Prints the device’s recombination rate profile throughout

the device to “RecombinationProfile.csv”

PrintMorphology() : Prints the device’s compositional morphology. Although the

device’s initial morphology is normally specified by the user, if alterations are made

to the morphology during the simulation (i.e., mixing of pure phases), this is a useful

function for recording the morphology at different degrees of mixing

FoMPrint() : Prints the device’s figures of merit (JSC, VOC, FF, and power conversion

efficiency) to “FiguresOfMerit.dat”

E.7 An Example Simulation Setup

To summarize, performing a drift-diffusion simulation with our software involves instan-

tiating a device in the main() program found in “main.cpp”, specifying pertinent device
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parameters, calling one of the simulation functions, and subsequently calling any extra print

statements to save additional simulation data.

An example of a typical device simulation script is given below:

int main ( )

{

D r i f t D i f f u s i o n OPV(100 , 300 ) ;

OPV. SetRecombinationMechanism ( ‘ ‘SRH ’ ’ ) ;

OPV. SetBandEdge ( 0 . 0 2 0 ) ;

OPV. SetBetaNP (1 e−13 ,1e−13);

OPV. SetMuNMinMax ( 7 , 1 2 ) ;

OPV. SetMuPMinMax ( 8 , 1 2 ) ;

OPV. ImportMorphology ( ‘ ‘ Device . csv ’ ’ ) ;

OPV. JVCharac te r i s t i c ( 0 , 0 . 8 ) ;

OPV. Pr intGenerat ion ( ) ;

OPV. PrintRecombination ( ) ;

return 0 ;

}

This set of commands first generates a 100×300 nm organic solar cell. The next three

lines specify the type of recombination mechanism to be used (SRH). Since this will be a

2-D simulation and we are investigating morphological effects, the next 2 lines specify the

mobility of electrons and holes in the donor and acceptor materials. The next line finally
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imports the compositional morphology to be simulated (stored in “Device.csv” ) before finally

performing a J–V characteristic measurement of this device between applied biases of 0 and

0.8 V. After this simulation is completed, the last two lines print additional device data to

file, specifically the spatially resolved generation and recombination rates.
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