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ABSTRACT OF THE DISSERTATION

Towards Efficient Federated Learning: Overcoming Challenges in Communication,

Heterogeneity, and Data Scarcity

by

Navjot Singh

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Suhas Diggavi, Chair

The rapid growth of edge computing, 5G, and IoT technologies has led to a signif-

icant increase in distributed data, creating both opportunities and challenges for

machine learning. Federated learning has emerged as a promising approach to enable

collaborative model training across decentralized devices while not sharing user data.

However, effectively implementing federated learning involves addressing several key

challenges, including data scarcity, communication efficiency, and data heterogeneity.

This dissertation addresses these challenges through three key contributions. First,

to enhance communication efficiency, we develop compressed stochastic gradient

descent (SGD) algorithms that incorporate techniques such as event-triggered com-

munication and local iterations. This approach reduces the frequency and size of

data exchanges, minimizing communication overhead in decentralized training envi-

ronments. We provide rigorous theoretical analysis to demonstrate the convergence
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rates and efficiency gains of these methods.

Second, to further address data heterogeneity, we consider communication efficient

multi-task learning for decentralized topologies. These techniques allow for the

simultaneous optimization of multiple related tasks, creating personalized models

tailored to the unique data distributions and objectives of individual devices while

also focusing on communication efficiency of exchanges. We formulate the multi-task

learning problem in decentralized settings and provide bounds on the convergence of

Gradient Descent and comment on performance improvements compared to traditional

methods without compression.

Third, to tackle data scarcity, we leverage transfer learning methods with a focus

on linear models. By utilizing pre-trained regression models from diverse source

domains, we provide a robust starting point for target models and fine-tune them on

limited local data. This method improves model performance and adaptability in

data-scarce environments. We offer theoretical guarantees on the excess risk bounds

for these transfer learning approaches, ensuring their reliability and effectiveness.

Overall, these contributions seek to enhance the robustness, scalability, and

practicality of federated learning, enabling effective and collaborative learning in

diverse and distributed environments. This work lays the groundwork for advanced

federated learning applications, addressing critical challenges and providing a path

forward for future research and development.
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CHAPTER 1

Introduction

Large-scale distributed optimization has received significant attention recently due to

the increasing demand for training models on massively distributed data. This need

is particularly pronounced with the advent of edge-computation architectures and

the rise of edge applications, where devices generate vast amounts of data, opening

up new possibilities for machine learning. The data produced by these devices is

often personal and sensitive, necessitating distributed training schemes that do not

need explicit sharing of user data, unlike traditional centralized machine learning

approaches.

In this distributed landscape, collaboration among devices is essential due to the

fragmented nature of data and the inherent limitations of individual devices. Each

device typically has access to a small, potentially biased subset of data, which is

often insufficient for training robust and accurate models. By collaborating, devices

can collectively leverage their distributed data, significantly enhancing the diversity

and volume of the available training dataset. This collaborative approach not only

improves the generalization performance of the models but also ensures that the

learning process respects privacy constraints, as raw data remains local to each device.

Federated learning aims to meet the pressing need for collaborative model training

across multiple devices while keeping data localized. This approach is crucial for not
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sharing user level data and efficiently utilizing the vast amounts of data generated by

edge devices. However, implementing federated learning introduces several significant

challenges that must be addressed to fully realize its potential.

A primary motivation for federated learning is the issue of data scarcity. Many

devices have access to only limited local data, which severely impedes the training

of robust and accurate machine learning models. With insufficient data, models are

prone to overfitting, performing well on the training data but failing to generalize

to new, unseen data. This overfitting leads to poor overall model performance,

highlighting the necessity for a collaborative approach where devices share insights

derived from their local data without actually sharing the data itself.

Another critical challenge in federated learning is communication efficiency. Syn-

chronizing model updates between numerous devices and a central server can result in

substantial communication overhead. This is particularly problematic in bandwidth-

constrained environments, where frequent data exchanges can be slow and costly.

Efficient communication is essential to minimize the data exchanged during each

synchronization round, ensuring that the federated learning process remains scalable

and efficient.

Data heterogeneity poses another significant challenge. Data available on different

devices can vary widely due to differences in user behavior, local environments, and

specific applications. This variability means that a single global model may not

perform optimally across all devices. The diversity in data distributions complicates

the training process, as it requires the model to generalize well across all diverse

datasets. Techniques that can accommodate these differences and personalize the

learning process for individual devices are essential for effective federated learning.
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Addressing these challenges—data scarcity, communication efficiency, and data

heterogeneity—is crucial for unlocking the full potential of federated learning. By

developing strategies to handle these issues, we can enhance the capability of federated

learning systems to provide robust, accurate, and efficient machine learning solutions

that respect user privacy and leverage the collective power of distributed data.

1.1 Contributions of this dissertation and outline

The contributions of this dissertation are designed to address the challenges outlined

above, with the goal of realizing efficient and effective machine learning in federated

learning environments. In the following, we provide point-by-point description of the

specific contributions we have made to overcome them. By systematically targeting

these issues, we aim to enhance the performance, scalability, and practicality of

federated learning systems.

• Algorithms for Communication Efficient Decentralized Training:

We investigate schemes for communication-efficient decentralized training of

large-scale models on a graph. Recently, two primary techniques for achieving

communication efficiency in federated learning have garnered attention: (i)

reducing the total number of communication rounds between clients and (ii)

reducing the size of transmitted messages or information exchange during each

round. We examine the impact of incorporating these techniques into decentral-

ized learning. Specifically, we develop an algorithm based on compressed SGD

updates for decentralized optimization, which integrates Nesterov’s momentum

and minimizes communication through compression and local iterations with

event-triggered communication. Momentum-based methods are known for their

3



faster convergence and superior generalization, making them widely adopted for

training large-scale machine learning models. However, the theoretical under-

standing of the role of momentum in the convergence rates of compressed SGD

remains an open question. We address this by analyzing the convergence rates

for decentralized SGD training with momentum. This forms a core part of Chap-

ter 3, which explains how communication-efficient techniques can be applied to

stochastic decentralized optimization of large-scale models, providing both prac-

tical algorithms and theoretical guarantees of convergence rates. This work has

lead to publications in the conferences IEEE CDC 2020 [SDGD20b], IEEE ISIT

2021 [SDGD21b], the journals IEEE TAC [SDGD22], IEEE JSAIT [SDGD21c],

and a Springer chapter [SDD23].

• Multi-task learning (Personalization) in Decentralized optimization:

While achieving communication efficiency is crucial, addressing the heterogeneity

of nodes through personalized models is equally important. Multi-task learning,

which involves simultaneously optimizing multiple related tasks, allows for

tailored solutions to the distinct problems faced by each device, leveraging

their unique data and objectives. This approach enhances model relevance and

performance on individual nodes by optimizing for local data rather than relying

on a generic global model, thus improving the overall robustness of the system. In

Chapter 4, we explore multi-task learning within the context of communication-

efficient decentralized optimization, focusing on a multi-agent network where

each node has a stochastic local cost function and additional pairwise constraints

on the decision variables of neighboring nodes. By minimizing the aggregate

objective function, which is the sum of the expected values of the local cost

functions, we enhance collaboration, effectively addressing data heterogeneity
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and improving the overall quality of models in distributed learning systems.

This chapter demonstrates how multi-task learning can be integrated into

decentralized optimization, yielding personalized models that cater to the

specific needs of individual nodes while maintaining the benefits of collaborative

training. This work has appeared in the journal Automatica [SCDB24].

• Representation transfer learning:

Participating nodes often face the challenge of limited local data, which impedes

the training of accurate models from scratch, leading to overfitting and poor

generalization. Transfer learning addresses this issue by leveraging knowledge

from pre-trained models on related tasks to enhance learning on target tasks with

limited data. By initializing the target model with weights from a pre-trained

model and fine-tuning it on the limited data, transfer learning provides a robust

starting point, improving model performance and adaptability. In contemporary

machine learning, effectively utilizing limited data to build accurate models is

crucial, particularly in domains where data acquisition is expensive or time-

consuming. Linear regression, a fundamental technique in statistics and machine

learning, often faces challenges in such scenarios due to the need for sufficient

data to ensure robust model training. Despite its simplicity, linear regression

serves as a vital stepping stone toward understanding and implementing more

complex models, such as neural networks. In Chapter 5, we explore how transfer

learning mitigates data scarcity for linear models. Our approach utilizes pre-

trained regression models to transfer from diverse source domains and a single

target domain, assuming a structured representation for the data-generating

models across both source and target domains. We propose a representation

transfer-based learning method tailored to the target model, providing excess risk
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bounds for transfer learning and fine-tuning. This method not only addresses

immediate challenges but also lays the groundwork for advancements in more

sophisticated machine learning models. This work has appeared in the conference

IEEE ISIT 2023 [SD23], and is under review for the journal IEEE JSTSP.

We begin by presenting background information and preliminaries in Chapter 2.

This foundational material sets the stage for the subsequent chapters, which delve

into the technical subject matter of this dissertation in greater detail.
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CHAPTER 2

Background and Preliminaries

This chapter introduces key concepts that will be foundational for the subsequent

chapters and establishes the notation we will use.

We begin by defining the nature of the optimization problems central to our in-

vestigation, emphasizing the constraints inherent to federated learning environments.

Key constraints include the limited bandwidth of communication links connecting

individual devices and the heterogeneity of data distribution across nodes. A sig-

nificant motivator for employing collaborative training in a federated setup is the

scarcity of data at participating devices. This data insufficiency thus often discour-

ages training a model from scratch that can achieve good generalization performance

locally. Consequently, we explore transfer learning methods tailored to such scenarios,

where leveraging knowledge from pre-trained models can enhance learning efficacy

and model performance.

2.1 Formulating the optimization problem for collaborative

learning

In many practical problems of interest, the objective is to minimize a global function

that represents the sum of several local objective functions, each associated with

7



different data sources or nodes. Let x ∈ Rd denote the model parameters to be

optimized. The overall objective is formulated as:

F (x) =
n∑

i=1
Fi(x) (2.1)

where n is the total number of nodes and Fi(x) represents the local objective function

for the i-th node and is given by:

Fi(x) = Ez∼Pi
[ℓ(z; x)]

Here, Pi denotes the joint data distribution over the feature, target pair (denoted

by z) in the context of supervised learning at node i which could vary significantly

among the different nodes. We cover the implications of this phenomena below in

Section 2.2. We call the objective in (2.1) as the Population Risk. Each node k

maintains its own local dataset Di, and the local empirical risk is given by:

F̂i(x) = 1
Ni

Ni∑
j=1

ℓ(z(j); x)

where Ni is the number of data points at node i, z(j) denotes the joint features and

labels pair of the j-th data point at node i, ℓ is the loss function, and x denotes the

model parameters.

An example of such an objective in federated learning, might that be of multi-

ple hospitals with each hospital i ∈ [n] having its own dataset Di of patient records,

with Ni records. The local objective function F̂i(x) could represent the objective

function of a machine learning model, for e.g. medical vision prediction. The global
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objective F̂ (x) is the sum of these local prediction errors across all hospitals, aiming

to train a model that minimizes the total error, which we also call the Empirical Risk:

F̂ (x) =
n∑

i=1

1
Ni

Ni∑
j=1

ℓ(z(j), x) (2.2)

Gradient based schemes, like Stochastic Gradient Decent (SGD), are widely used

to solve such non-convex optimization problem. The solution to the problem above

finds the model parameters xemp that minimize this global objective, leveraging

the distributed data while preserving data locality and privacy. This aggregate

optimization approach facilitates collaboration among the nodes by enabling them to

contribute to the global model without sharing their underlying data. We remark that

the above objective uses the empirical data available at a node, which acts as a proxy

to optimizing the overall population risk in (2.1). In particular, we would be interested

in obtaining a model from a hypothesis class X , for e.g., the set of possible neural

network parameters for a given architecture. It might also be of interest to compare

the obtained model xemp with the best model possible from X that minimizes (2.1).

This forms the notion of Expected Excess Risk, which characterizes the performance

of the obtained model to the ‘best’ model that minimizes the population risk:

EER(xemp) := F (xemp)−min
x∈X

F (x) (2.3)

The value of the difference in (2.3) is closely tied to the notion of generalization and

can be used as a measure for characterizing the test performance of a given model

parameter. Note that the underlying definition for the Excess risk as provided does

not necessarily require us to consider multiple collaborating devices and can be used

9



even for a centralized machine learning scenario with a single processing node.

2.2 Heterogeneity across participating nodes

In a federated learning scenario, each node typically possesses a unique data dis-

tribution, reflecting diverse user behaviors, local environments, and data collection

practices. This non-i.i.d. nature of data across nodes complicates the overall opti-

mization procedure described in (2.2), as the global model must generalize well across

varied distributions Pi for i ∈ [n]. Hence, learning a single global model, with the

stated differences in local data distributions, can lead to model updates that are not

uniformly beneficial for all participants. This underscores the need for personalization

in federated learning. Personalized models, tailored to the specific data characteristics

of each node, can address the limitations of a one-size-fits-all approach. As such, the

overall optimization problemn can instead be viewed from a lens of Multiple Task

Learning where different nodes seek to optimize for different tasks, but solving these

problems in a collaborative manner allows for effective information exchange among

them. Hence, multi task training can enhance model performance and relevance for

individual nodes, ensuring that the learning process accommodates the diverse data

environments inherent in federated systems. A generic optimization problem over

the given n nodes while taking multiple task training into account can be stated as

follows:

min
x1,...,xN ∈X

n∑
i=1

Fi(xi) + Ω(x1, . . . , xn) (2.4)
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Where the function Ω : Rd×...×d → R forms the required constraint on the multiple

tasks. As an example, the objective in (2.1) can be recovered by defining Ω such

that x1 = x2 = . . . = xn are the only permissible values, thus imposing a single

common model for all nodes. Similarly, setting Ω to a constant value regardless of

the input model parameters allows for a decomposition of the overall objection to

the individual nodes, leading to no collaboration. Between these two extremes, a

non-trivial value of Ω could lead to different models among the participating nodes,

while also allowing them to collaborate via update exchanges. We now focus on the

nature of these exchanges by first discussing the underlying connectivity structure of

the nodes and some know theoretical results of gradient based schemes in them.

2.3 Network topology and convergence

In the context of federated learning, the choice between decentralized and distributed

network topologies significantly impacts the efficiency and effectiveness of the training

process. We describe each of these briefly below and note the convergence rate of

SGD in these scenarios.

Figure 2.1 Distributed topology with a Parameter
server

Figure 2.2 Decentralized topology

• Distributed Topology: This typically involves a central server (or, Parameter

Server) that coordinates and aggregates updates from multiple devices. While

11



this approach simplifies the synchronization and coordination processes, it

introduces several critical drawbacks. The central server becomes a bottleneck,

potentially limiting scalability and increasing vulnerability to failures and

attacks. Furthermore, the reliance on central aggregation can lead to higher

communication overhead and increased latency, especially as the number of

participating devices grows. The convergence rate of SGD in this setup are

listed below, assuming we run the procedure for T number of iteration, and for

N number of nodes in the network:

– Strongly Convex Objectives1: O
(

1
nT

)
– General (Non-convex) Objectives: O

(
1√
nT

)
• Decentralized Topology: In this framework, each device or node communi-

cates directly with other nodes in a peer-to-peer manner, enhancing robustness

and scalability by reducing reliance on a central server. This approach mitigates

single points of failure and distributes the computational load more evenly across

the network. This can be seen as a generalization of the distributed scenario

in the case where all the nodes are allowed to communicate with each other.

This added generality typically also necessitates sophisticated coordination

mechanism to ensure convergence across the network as convergence results

would typically depend on the connectivity of the underlying graph structure

(c.f. [SDGD20c,LZZL17,LZZ+17]).

1A function f(x) is called strongly convex with parameter µ > 0 if for all x1, x2 ∈ Rd, the
following inequality holds:

f(x2) ≥ f(x1) +∇f(x1)⊺(x2 − x1) + µ

2 ∥x2 − x1∥2
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– Strongly Convex Objectives: O
(

1
nT

)
– General (Non-convex) Objectives: O

(
1√
nT

)

2.4 Methods for introducing communication efficiency

The bandlimited nature of communication links between nodes participating in

federating learning is a key factor to be kept in mind while designing practical

algorithms. Here we discuss ideas which serve as useful methods for alleviating

communication bottlenecks in either distributed or decentralized settings.

1. Compression schemes

In the traditional multi-node training setting, using the SGD algorithm for

each worker allows exchange of full precision updates between communicating

nodes (clients). These updates are usually comprised of floating vectors with

each entry represented by 32-bit or 64-bit precision. Thus one can think of

compressing the exchanged updates which can lead to savings in communication,

and thus facilitate faster training of models over bandlimited communication

links. For the purpose of this prospectus, we use the following definition for the

compression operator applied on a vector.

Definition 1 (Compression operator [SCJ18b]). A (possibly randomized) func-

tion C : Rd → Rd is called a compression operator, if there exists an ω ∈ (0, 1],

such that for every x ∈ Rd, we have

EC ∥C(x)− x∥2 ≤ (1− ω) ∥x∥2 , (2.5)

where expectation is taken over the randomness of C.
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Some important sparsifiers and quantizers following the above definition are:

• Topk and Randk sparsifiers (where only k entries are selected and the rest

are set to zero) with ω = k/d [SCJ18b],

• Stochastic quantizer Qs from [AGL+17c]2 with ω = (1− βd,s) for βd,s < 1.

• Deterministic quantizer ∥x∥1
d

Sign(x) from [KRSJ19b] with ω = ∥x∥2
1

d∥x∥2
2
.

• For Compk ∈ {Topk, Randk}, the following are compression operators

[BDKD19b]:3

(a) 1
(1+βk,s)Qs(Compk) with ω =

(
1− k

d(1+βk,s)

)
for any βk,s ≥ 0, and

(b) ∥Compk(x)∥1SignCompk(x)
k

with ω = max
{

1
d
, k

d

( ∥Compk(x)∥2
1

d∥Compk(x)∥2
2

)}
.

2. Local updates

An alternate idea to introduce communication efficiency is to limit the number

of times information is exchanged between participating nodes. This class of

techniques along with stochastic gradient descent are termed as local SGD

[Sti19,BDKD19b]. Local SGD techniques allow for skipping communication

rounds (aggregation steps between workers) in favor of performing gradient

computations, thus trading communication for more computation to explore

the parameter space. Depending on the relative frequency of updates for

each worker, they are usually classified as ‘synchronous’ [KRSJ19b,BDKD19b],

where each client takes the same number of local gradient update steps before

2Qs : Rd → Rd is a stochastic quantizer, if for every x ∈ Rd, we have (i) E[Qs(x)] = x and (ii)
E[∥x−Qs(x)∥2

2] ≤ βd,s∥x∥2
2. Qs from [AGL+17c] satisfies this definition with βd,s = min

{
d
s2 ,

√
d

s

}
.

3 [BDKD19b] show that the composition of sparsification and quantization operators is also a
valid compression operator, outperforming its individual components in terms of communication
savings while still maintaining similar performance.
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communication, or ‘asynchronous’ [RRWN11,BDKD19b], where the nodes are

allowed to communicate at different rates by taking different number of update

steps. In this work, as we consider each node to take a fixed number of local-

SGD steps. In particular, we assume that each node takes H local steps before

it tries to communicate to its neighboring nodes.

3. Threshold based triggering

We introduce an additional layer of efficiency by allowing nodes to refuse

participating in communication if there is no significant change in the local

model parameters since the last time communication occurred. Specifically,

we set a ‘triggering’ threshold condition on the ℓ2 norm difference between

model parameters of the node, and communicate only if the difference exceeds

a certain triggering threshold. This scheme can be potentially applied on top of

compression and local update steps as discussed before, leading to improved

communication efficiency.

For the content of this thesis, we define ‘event-triggering’ as the combination of local

update steps and threshold based triggering rule.

2.5 Representation Transfer

In many practical scenarios, participating nodes might suffer from limited local data,

which impedes the training of accurate models. Working with limited data (data

scarcity) is particularly challenging for devices in resource-constrained environments

as insufficient local data often leads to overfitting and poor generalization, as models

trained on small datasets fail to capture the broader data distribution effectively. To
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mitigate this issue, transfer learning can be employed, leveraging knowledge from

pre-trained models on related tasks to enhance the learning process on target tasks

with limited data.

Transfer learning typically leverages a pre-trained model from a source domain,

where ample data is available, and transfers its learned representations to a target

domain with limited data. In the context of neural networks, these representations

typically involve features learned in the earlier layers of the network. As an example,

a Convolutional Neural Network pre-trained on a large dataset like ImageNet learns

to identify basic visual elements that can be highly useful for other image recognition

tasks, even in vastly different domains like medical imaging.

The process involves initializing the target model with the weights of the pre-

trained source model. These weights encapsulate rich and generalizable features,

providing a robust starting point for the target task. The target model is then fine-

tuned on the limited target data, adjusting the pre-trained representations to better

fit the specific characteristics of the target domain. This fine-tuning process helps

the model to quickly adapt and improve its performance, leveraging the extensive

knowledge encoded in the pre-trained model.

2.6 Tying the various themes

In conclusion, addressing data scarcity in federated learning involves the integration of

communication-efficient decentralized training, multi-task learning, and representation

transfer. Communication-efficient decentralized training minimizes the overhead of

synchronizing model updates, ensuring that collaborative learning remains feasible

even with limited bandwidth. Multi-task learning leverages the diversity of tasks
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across nodes, allowing each device to benefit from the collective knowledge of the

network while tailoring the learning process to its specific objectives. Representation

transfer enhances learning outcomes by utilizing rich feature sets from pre-trained

models on larger, diverse datasets, providing a robust starting point for nodes with

limited local data. The common theme across these methodologies is the importance

of collaboration in federated learning. By leveraging shared knowledge, devices can

transcend the limitations imposed by individual data scarcity, leading to more robust

and accurate models. In the subsequent chapters, we will delve deeper into each

of these strategies separately, with communication efficient training being central

to Chapter 3 and Chapter 4, multi-task learning being central to Chapter 4, and

representation transfer learning in the context of linear models for Chapter 5.
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CHAPTER 3

Communication efficient decentralized training

The rapid growth of data across diverse and distributed sources has driven the need

for advanced machine learning paradigms that can effectively utilize this decentralized

data. Federated learning, an innovative approach, enables the training of machine

learning models on multiple decentralized devices or servers holding local data samples

without requiring data exchange. This approach significantly enhances privacy and

security by keeping data localized, thereby reducing the risks associated with central-

ized data storage and transmission. However, a major challenge in federated learning

is ensuring communication efficiency, as the communication overhead can become a

bottleneck, particularly in large-scale and resource-constrained environments.

This chapter focuses on developing and analyzing communication-efficient algo-

rithms for federated learning, with a specific emphasis on Stochastic Gradient Descent

(SGD) based methods. Efficient communication strategies are essential for minimizing

the amount of data exchanged during training, thus improving the overall efficiency

and scalability of federated learning systems.

We introduce SQuARM-SGD, an algorithm designed to minimize communication

overhead while maintaining robust convergence properties. SQuARM-SGD stands for

Sparsified and Quantized Action Regulated Momentum Stochastic Gradient Descent.

The algorithm employs several advanced techniques to achieve communication effi-
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ciency, including local iterations, where computations are performed locally at each

worker node for several iterations before communicating updates, and compression

techniques, such as sparsification and quantization, to reduce the size of the commu-

nicated data. Additionally, SQuARM-SGD incorporates Nesterov’s momentum to

accelerate the convergence of gradient-based optimization algorithms.

We provide rigorous theoretical convergence guarantees for SQuARM-SGD in both

strongly-convex and non-convex smooth objective settings. Our analysis shows that

SQuARM-SGD achieves a convergence rate of O
(

1
nT

)
for strongly-convex objectives

and O
(

1√
nT

)
for non-convex objectives, where n is the number of worker nodes

and T is the number of iterations. These rates match those of vanilla distributed

SGD, demonstrating that our communication-efficient approach does not compromise

performance.

This work also represents the first theoretical analysis of convergence for com-

pressed gradient updates with momentum in a decentralized setting. SQuARM-SGD’s

ability to maintain high performance while significantly reducing communication costs

makes it particularly suitable for large-scale federated learning applications. Fur-

thermore, it also provides the first convergence analysis for compressed decentralized

training with momentum using a weaker set of assumptions than existing literature

while incorporating the local SGD and event triggered communication framework

of [SDGD19].

In addition to the theoretical analysis, we present experimental comparisons

with the current state-of-the-art in decentralized training, highlighting the practical

effectiveness of our approach. The results underscore the advantages of SQuARM-

SGD in real-world federated learning scenarios, emphasizing its potential to advance
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the field by addressing one of its most pressing challenges.

By focusing on communication-efficient algorithms like SQuARM-SGD, this chap-

ter contributes to the broader goal of making federated learning more scalable and

practical, enabling its deployment in a wider range of applications where data privacy

and security are crucial.

3.1 Related work

Communication-efficient decentralized training has received recent attention; see

[TGZ+18,SDGD19,RMHP18,ALBR19,TT17,KLSJ20,YJY19] and references therein.

The current state-of-the-art in communication efficient decentralized training is

CHOCO-SGD [KLSJ20, KSJ19b], which considers sparsification or quantization

of the model parameters, without incorporating momentum in their theoretical

analyses1. Our convergence analyses are very different and significantly more in-

volved than that of CHOCO-SGD, as apart from studying local iterations and

event-triggered communication in decentralized SGD, unlike [KLSJ20,KSJ19b], we

provide our analyses using virtual sequences, specifically, to handle the use of mo-

mentum. The use of local iterations with momentum updates for decentralized

setting is studied in [YJY19,WTBR20], but without any compression of exchanged

information. [ZHK19] studied momentum SGD with compressed updates (but no

local iterations or event-triggering) for the distributed setting only, assuming that all

workers have access to unbiased gradients. Extending the analysis to decentralized

setting (where different workers may have local data, potentially generated from

1They do report numerics with momentum, and we compare the numerical performance SQuARM-
SGD with it in Section 3.5.
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different distributions) while incorporating compression, local iterations and event

triggered communication in SQuARM-SGD poses several challenges; see Section

3.4 for a detailed discussion. The idea of event-triggering has been explored in

the control community [HJT12,DFJ12,SDJ13,Gir15,LNTL17] and in optimization

literature [KCM15, CR16, DYG+18]. These papers focus on continuous-time, de-

terministic optimization algorithms for convex problems; in contrast, we propose

event-driven stochastic gradient descent algorithms for both convex and non-convex

problems. [CGSY18] propose an adaptive scheme to skip gradient computations in

a distributed setting for deterministic gradients; moreover, their focus is on saving

communication rounds, without compressed communication. In summary, to the

best of our knowledge, our work is the first to develop and analyze convergence of

momentum-based decentralized stochastic optimization, using compressed lazy com-

munication (as described earlier). Moreover, the numerics demonstrate a significant

advantage over the state-of-the-art in communication efficiency in terms of number

of bits for a given learning performance.

3.2 Problem Setup and Proposed Algorithm

We first formalize the decentralized optimization setting that we work with and set

up the notation we follow throughout the chapter. Consider an undirected connected

graph G = (V , E) with V = [n] := {1, 2, . . . , n}, where node i ∈ [n] corresponds to

worker i and we denote the neighbors of node i by Ni := {(i, j) : (i, j) ∈ E}. To

each node i ∈ [n], we associate a dataset Di and an objective function fi : Rd → R.

We allow the datasets and objective functions to be different for each node and

assume that for i ∈ [n], objective function fi has the form fi(x) = Eξi∼Di
[Fi(x, ξi)]
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where ξi ∼ Di denotes a random sample from Di, x denotes the parameter vector,

and Fi(x, ξi) denotes the risk associated with sample ξi with respect to (w.r.t.) the

parameter vector x. Consider the following empirical risk minimization problem,

where f : Rd → R is called the global objective function:

arg min
x∈Rd

(
f(x) := 1

n

n∑
i=1

fi(x)
)

, (3.1)

The nodes in G wish to minimize (3.1) collaboratively in a communication-efficient

manner.

In order to describe and analyze our algorithm, we need some notations first. Let

W ∈ Rn×n denote the connectivity matrix of G, where for every (i, j) ∈ E , the wij’th

entry of W denotes the weight on the edge (i, j) – e.g., wij may represent the strength

of the connection on the edge (i, j) – and for other pairs (i, j) /∈ E , the weight wij is

zero. We assume that W is symmetric and doubly stochastic, which means it has

non-zero entries with each row and column summing up to 1. Consider the ordered

eigenvalues of W , |λ1(W )| ≥ |λ2(W )| ≥ . . . ≥ |λn(W )|. For such a W associated

with a connected graph G, it is known that λ1(W ) = 1 and λi(W ) ∈ (−1, 1) for all

i ∈ {2, . . . , n}. The spectral gap δ ∈ (0, 1] is defined as δ := 1 − λ2(W ). Simple

matrices W having δ ∈ (0, 1] are known to exist for connected graphs [KSJ19b].

3.2.1 Our proposed algorithm: SQuARM-SGD

We propose SQuARM-SGD to minimize (3.1), which is a decentralized algorithm

that combines compression and Nesterov’s momentum, together with event-driven

communication exchange, where compression is achieved by sparsifying and quantizing

the exchanges. Each worker is required to complete a fixed number of local SGD
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steps with momentum, and communicate compressed updates to its neighbors when

there is a significant change in its local parameters since the last time communication

occurred. SQuARM-SGD can be seen as a significant extension of CHOCO-SGD

[KLSJ20, KSJ19b], which only performs compression using either sparsification or

quantization.

To realize exchange of compressed parameters between workers, for each node

i ∈ [n], all nodes j ∈ Ni maintain an estimate x̂i of xi. Each node i ∈ [n] has

access to x̂j for all j ∈ Ni. Our algorithm runs for T iterations and the set of

synchronization indices is defined as IT = {I(1), . . . , I(k), . . .} ⊆ [T ], which are same

for all workers and denote the time steps at which workers are allowed to communicate,

provided they satisfy a triggering condition. For IT , we define its gap as gap(IT ) :=

maxm{I(m) − I(m−1)}. We assume that gap(IT ) = H. SQuARM-SGD is described in

Algorithm 1.

For a given connected graph G with connectivity matrix W , we first initialize a

consensus step-size γ (see Theorem 2 for definition), momentum factor β, the sequence

of learning rates {ηt}T
t=0, triggering threshold sequence {ct}T

t=0, and momentum vector

vi for each node i initialized to 0. We initialize the copies of all the nodes x̂i = 0 and

allow each node to communicate in the first synchronization round. At each time

step t, each worker i ∈ [n] samples a stochastic gradient ∇F (x(t)
i , ξi) and takes a local

SGD step on parameter x(t)
i using Nesterov’s momentum to form an intermediate

parameter x(t+1/2)
i (line 3-5). If the next iteration corresponds to a synchronization

index, i.e, (t + 1) ∈ IT , then each worker checks the triggering condition (line 8). If

satisfied, each worker communicates compressed change in its copy to all its neighbors

Ni (line 9-10); otherwise, it does not communicate in that round (line 12). After

receiving the compressed updates of copies from all neighbors, the node i updates the
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Algorithm 1 SQuARM-SGD: Sparsified and Quantized Action Regulated Momentum
SGD
Parameters: G = ([n], E), W

1: Initialize: For every i ∈ [n], set arbitrary x(0)
i ∈ Rd, x̂(0)

i := 0, v(−1)
i := 0. Fix the

momentum coefficient β, consensus step-size γ, learning rates {ηt}T
t=0, triggering

thresholds {ct}T
t=0, and synchronization set IT .

2: for t = 0 to T − 1 in parallel for all workers i ∈ [n] do
3: Sample ξ

(t)
i , stochastic gradient g(t)

i := ∇Fi(x(t)
i , ξ

(t)
i )

4: v(t)
i = β ηt−1

ηt
v(t−1)

i + g(t)
i

5: x(t+ 1
2 )

i := x(t)
i − ηt(βv(t)

i + g(t)
i )

6: if (t + 1) ∈ IT then
7: for neighbors j ∈ Ni ∪ i do
8: if ∥x(t+ 1

2 )
i − x̂(t)

i ∥2
2 > ctη

2
t then

9: Compute q(t)
i := C(x(t+ 1

2 )
i − x̂(t)

i )
10: Send q(t)

i and receive q(t)
j

11: else
12: Send 0 and receive q(t)

j

13: end if
14: x̂(t+1)

j := q(t)
j + x̂(t)

j

15: end for
16: x(t+1)

i = x(t+ 1
2 )

i + γ
∑

j∈Ni

wij(x̂(t+1)
j − x̂(t+1)

i )
17: else
18: x̂(t+1)

i = x̂(t)
i , x(t+1)

i = x(t+ 1
2 )

i for all i ∈ [n]
19: end if
20: end for

locally available copies and its own copy (line 14). With these updated copies, the

worker nodes finally take a consensus (line 16) with appropriate weighting decided

by entries of W . In the case when (t + 1) /∈ IT , the nodes maintain their copies and

move on to next iteration (line 18); thus no communication takes place.

Memory-efficient version of Algorithm 1: At a first glance, it may seem that

in Algorithm 1, every node has to store estimates of all its neighbors’ parameters
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in order to perform the consensus step, which may be impractical in large-scale

learning. However, note that in the consensus step (line 16), nodes only require the

weighted sum of their neighbors’ parameters. So, it suffices for each node to store

only the weighted sum of all its neighbors’ parameters (in addition to its own local

parameters and its estimate), and thus completely avoid the need to store all its

neighbors parameters. For completeness, we provide a memory-efficient version of

SQuARM in Appendix A.

Equivalence to error-feedback mechanisms: In Algorithm 1, though nodes

do not explicitly perform local error-compensation (as in [KRSJ19b,BDKD19b]), the

error-compensation happens implicitly. To see this, note that nodes maintain copies

of their neighbors’ parameters and update them as x̂(t+1)
j = x̂(t)

j + C(x(t+ 1
2 )

j − x̂(t)
j )

(line 14) and then take the consensus step (line 16). Thus, the error gets accumulated

into x̂(t)
j and is compensated by the term C(x(t+ 1

2 )
j − x̂(t)

j ) in the next round.

3.3 Main Results

In this section we provide the convergence results for SQuARM-SGD (Algorithm

1) under two sets of assumptions: We present our results with the weakest set of

assumptions in existing literature in Section 3.3.1 and slightly more general results

with stronger assumptions in Section 3.3.2.

3.3.1 Theoretical Results with Relaxed Assumptions

Assumption 1 (Smoothness). We assume that each local function fi for i ∈ [n] is

L-smooth, i.e., ∀x, y ∈ Rd, we have fi(y) ≤ fi(x) + ⟨∇fi(x), y− x⟩+ L
2 ∥y− x∥2.
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Assumption 2. We assume that there exists finite constants σ, M ≥ 0, such that for

all x ∈ Rd we have:

1
n

n∑
i=1

Eξi
∥∇Fi(xi, ξi)−∇fi(xi)∥2

2 ≤ σ2 + M2

n

n∑
i=1
∥∇fi(xi)∥2

2, (3.2)

where∇Fi(x, ξi), i ∈ [n], denotes an unbiased stochastic gradient, i.e., Eξi
[∇Fi(x, ξi)] =

∇fi(x).

Assumption 3. We assume that there exists finite constants G ≥ 0 and B ≥ 1, such

that for all x ∈ Rd we have:

1
n

n∑
i=1
∥∇fi(x)∥2

2 ≤ G2 + B2∥∇f(x)∥2
2. (3.3)

These assumptions have appeared in literature before in [Kol] to study decentralized

optimization with local iterations; and we extend their results and analyses by

incorporating compression and momentum. This extension posed many fundamental

technical difficulties, which we describe in detail in Section 3.4.

Remark 1 (Comparison with Existing Assumptions). Assumptions 2, 3 are weaker

than assuming uniform bounds on the variance and the gradient dissimilarity: (i) The

uniform bound on the variance [YJY19], i.e., Eξi
∥∇Fi(xi, ξi)−∇fi(xi)∥2

2 ≤ σ2
i for i ∈

[n], implies Assumption 2 with σ2 = 1
n

∑n
i=1 σ2

i and M = 0; and (ii) The uniform bound

on the gradient similarity [YJY19], i.e., 1
n

∑n
i=1 ∥∇fi(x) − ∇f(x)∥2

2 ≤ κ2, implies

Assumption 3 with G = κ and B = 1 – this follows from the identity 1
n

∑n
i=1 ∥∇fi(x)−

∇f(x)∥2
2 = 1

n

∑n
i=1 ∥∇fi(x)∥2

2 − ∥∇f(x)∥2
2. Both Assumptions 2 and 3 are weaker

than the uniformly bounded second moment assumption Eξi
∥∇Fi(xi, ξi)∥2

2 ≤ G2,

which has been standard in the stochastic optimization with compressed gradients
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[SCJ18b,BDKD19b,KLSJ20,ZHK19].

Our main convergence result (stated below) is for general smooth (non-convex)

objectives; and our analysis can be readily extended to convex objectives. We derive

this result for SQuARM-SGD under Assumptions 1-3 without event-triggered commu-

nication; in other words, our analysis is for compressed decentralized momentum SGD

with local iterations. We would like to emphasize that incorporating event-triggering

component into our analysis can only complicate the calculations and can be done;

however, we omitted this because ours is the first analysis of communication-efficient

(incorporating both compression and local iterations) decentralized SGD with Nes-

terov’s momentum updates, which by itself hasn’t been done before; and further, our

analysis is under the weakest set of assumptions known to date. Therefore, in order

to bring out the novelty of our convergence analysis without adding unnecessary

technicality we decided to present our results without incorporating event-triggered

communication.

Theorem 1. Let C be a compression operator with parameter ω ∈ (0, 1] and gap(IT ) =

H. Consider running SQuARM-SGD for T iterations with consensus step-size γ =
2δω3

4δ2ω2+δ2+128λ2+24ω2λ2 , (where λ = maxi{1−λi(W)}), momentum coefficient β ∈ [0, 1),

and constant learning rate η = (1− β)
√

n
T

. Let the algorithm generate {x(t)
i }T −1

t=0 for

i ∈ [n]. Running the algorithm for T ≥ U0 for some constant U0 defined in Appendix

A, the averaged iterates x(t) := 1
n

∑n
i=0 x(t)

i satisfy:

∑T −1
t=0 E∥∇f(x(t))∥2

2
T

= O
(

J2 + σ2 + (M2 + n)G2
√

nT
+ (1− β)2nH2((M2 + 1)G + σ2)

Tδ2ω3

)
,

where J2 <∞ is such that E[f(x(0))]− f ∗ ≤ J2.
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We prove Theorem 1 in Appendix A. Note that we have used simplified convergence

rate expressions in the above result, and derive precise rate expressions in the

Appendix.

3.3.2 Theoretical Results with Bounded Second Moment of Stochastic

Gradients

In this section, we consider a stronger set of assumptions than the ones before along

with the smoothness of objectives, specifically:

(i) Uniformly bounded variance: For every i ∈ [n], we have Eξi
∥∇Fi(x, ξi)−∇fi(x)∥2 ≤

σ2
i , for some finite σi, where ∇Fi(x, ξi) denotes an unbiased stochastic gradient at

worker i with Eξi
[∇Fi(x, ξi)] = ∇fi(x). We define σ̄2 := 1

n

∑n
i=1 σ2

i .

(ii) Uniformly bounded second moment: For every i ∈ [n], we have Eξi
∥∇Fi(x, ξi)∥2 ≤

G2 <∞.

Theorem 2. Let C be a compression operator with parameter ω ∈ (0, 1] and gap(IT ) =

H. Consider running SQuARM-SGD for T iterations with consensus step-size γ =
2δω

64δ+δ2+16λ2+8δλ2−16δω
, (where λ = maxi{1− λi(W)}), a threshold sequence ct ≤ c0

η1−ϵ

for all t where ϵ ∈ (0, 1) and c0 is a constant, momentum coefficient β ∈ [0, 1), and

constant learning rate η = (1−β)
√

n
T

. Let the algorithm generate {x(t)
i }T −1

t=0 for i ∈ [n].

Then, we have the following guarantees:

• [Non-convex:] For T ≥ max{16L2n, 8L2β4n
(1−β)2 }, the averaged iterates x(t) :=

1
n

∑n
i=0 x(t)

i satisfy:

∑T −1
t=0 E∥∇f(x(t))∥2

2
T

= O
(

J2 + σ̄2
√

nT
+ c0n

(1+ϵ)/2

δ2T (1+ϵ)/2
+ nH2G2

Tδ4ω2 + β4σ̄2

T (1− β)2

)
,
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where J2 <∞ is such that E[f(x(0))]− f ∗ ≤ J2.

• [Convex:] If {fi}i∈[n] are convex, then for T ≥ max{(8L)2n, (8β2L)4n
(1−β)2 }, we have:

E[f(x(T )
avg)]− f ∗ = O

(
∥x(0) − x∗∥2 + σ̄2

√
nT

+ c0n
(1+ϵ)/2

δ2T (1+ϵ)/2
+ n3/4β2G2

(1− β)3/2T 3/4
+ nH2G2

δ4ω2T

)
,

where x(T )
avg := 1

T

∑T −1
t=0 x(t) for x(t) = 1

n

∑n
i=1 x(t)

i and x∗ is an optimizer of f

with optimal value denoted by f ∗.

We have used simplified convergence rate expressions in the above results, and provide

precise rate expressions in the proofs provided in Appendix A for non-convex and

convex objectives, respectively.

Effects of parameters on convergence: Observe that the factors H, c0, ω, δ

to achieve communication efficiency – H, c0 for the event-triggered communication,

ω for compression, and δ for the connectivity of the underlying graph – do not

affect the dominant terms in convergence rate for either non-convex or convex ob-

jectives in Theorem 2 and appear only in the higher order terms. This implies that

if we run SQuARM-SGD for sufficiently long, precisely, for at least T0 := C0 ×

max
{(

c2
0n(2+ϵ)

(J2+σ̄2)2δ4

)1/ϵ

, n
(J2+σ̄2)2

(
nG2H2

ω2δ4 + β4σ̄2

(1−β)2

)2
}

iterations for non-convex objectives

and for T1 := C1×max
{(

c2
0n2+ϵ

δ4(∥x(0)−x∗∥2+σ̄2)2

)1/ϵ

, n3H4G2

δ8ω4(∥x(0)−x∗∥2+σ̄2)2 , n5G8β8

(1−β)6(∥x(0)−x∗∥2+σ̄2)4

}
for convex objectives with sufficiently large constants C0 and C1, respectively, then

SQuARM-SGD converges at a rate of O (1/
√

nT). Note that this is the convergence

rate of distributed vanilla SGD with the same speed-up w.r.t. the number of nodes

n in both these settings. Thus, we essentially converge at the same rate as that of

vanilla SGD, while saving significantly in terms of total communicated bits; this can
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also be seen in our numerical results in Section 3.5.

3.4 Preliminaries and Proof Outlines

In this section, we first establish a matrix notation which would be used throughout

the proofs of Theorem 2. We then state SQuARM-SGD in matrix notation (which

is equivalent to Algorithm 1) and list important facts regarding our updates. We

conclude this section with a brief discussion of technical challenges involved in the

proofs.

Matrix notation. Consider the set of parameters {x(t)
i }n

i=1 at all nodes at timestep

t as well as the estimates of the parameters {x̂(t)
i }n

i=1. The matrix notation is given

by:

X(t) := [x(t)
1 , . . . , x(t)

n ] ∈ Rd×n

X̂(t) := [x̂(t)
1 , . . . , x̂(t)

n ] ∈ Rd×n

X̄(t) := [x̄(t), . . . , x̄(t)] ∈ Rd×n

V(t) := [v(t)
1 , v(t)

2 , . . . , v(t)
n ] ∈ Rd×n

∇F (X(t), ξ(t)) := [∇F1(x(t)
1 , ξ

(t)
1 ), . . . ,∇Fn(x(t)

n , ξ(t)
n )] ∈ Rd×n

Here, ∇Fi(x(t)
i , ξ

(t)
i ) denotes the stochastic gradient at node i at timestep t and

the vector x̄(t) denotes the average of node parameters at time t, specifically:

x̄(t) := 1
n

∑n
i=1 x(t)

i .

Let Γ(t) ⊆ [n] be the set of nodes that do not communicate at time t. We define

P(t) ∈ Rn×n, a diagonal matrix with P(t)
ii = 0 for i ∈ Γ(t) and P(t)

ii = 1 otherwise.
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SQuARM-SGD in matrix notation. Consider Algorithm 1 with synchronization

indices given by the set IT = {0, H, 2H . . . , mH, . . .} ⊆ [T ] for some constant H ∈ N.

Using the above notation, the sequence of parameters’ updates from synchronization

index mH to (m + 1)H, is given by:

V(t) = βV(t−1) + ∇F (X(t), ξ(t)) (3.4)

X((m+1/2)H) = XI(t) −
(m+1)H−1∑

t′=mH

η
(
βV(t′) + ∇F (X(t′), ξ(t′))

)
(3.5)

X̂((m+1)H) = X̂(mH) + C((X((m+1/2)H) − X̂(mH))P((m+1)H−1)) (3.6)

X((m+1)H) = X((m+1/2)H) + γX̂((m+1)(W− I) (3.7)

where C(.) denotes the compression operator applied column-wise to the argument

matrix and I is the identity matrix. Note that in the update rule for X̂((m+1)H),

we used (i) the fact that P is a diagonal matrix and that C is applied column-wise

to write C(X((m+1/2)H) − X̂(mH))P((m+1)H−1) = C((X((m+1/2)H) − X̂(mH))P((m+1)H−1)),

and (ii) that X̂((m+1)H−1) = X̂(mH), because X̂ does not change in between the

synchronization indices.

We now note some useful properties of the iterates in matrix notation which would

be used throughout the paper:

1. Since W ∈ [0, 1]n×n is a doubly stochastic matrix, we have: W = WT , W1 = 1
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and 1T W = 1T (where 1 is the all ones vector in Rn). This also gives us:

X̄(t) := X(t) 1
n

11T , X̄(t)W = X̄(t) (3.8)

where the first expression follows from the definition of X̄(t) and the second

expression follows because W11T

n
= 11T

n
W = 1

n
11T .

2. The average of the iterates in Algorithm 1 follows :

X̄(t+1) = X̄(t+ 1
2 ) + 1(t+1)∈IT

[
γX̂(t+1)(W− I) 1

n
11T

]
= X̄(t+ 1

2 ) (3.9)

where IT denotes the set of synchronization indices of Algorithm 1. The above

follows because (W− I) 1
n
11T = W11T

n
− 11T

n
= 0.

Proposition 1 (Variance Reduction with Independent Samples). Consider the

variance bound (3.2) on the stochastic gradient for nodes. If ξ(t) = {ξ(t)
1 , ξ

(t)
2 , . . . , ξ(t)

n }

denotes the collection of independent stochastic samples for the nodes at any time-step

t. Then we have:

Eξ(t)

∥∥∥∥∥ 1
n

n∑
i=1
∇
(
Fi(x(t)

i , ξ
(t)
i )−∇fi(x(t)

i )
)∥∥∥∥∥

2

≤ σ2

n
+ M2

n2

n∑
i=1

∥∥∥∇fi(x(t)
i )
∥∥∥2

2
. (3.10)

Proposition 2. For any t, E
∥∥∥V(t)

∥∥∥2

F
is bounded as follows:

(1− β)E
∥∥∥V(t)

∥∥∥2

F
≤ Λ(t) :=

t∑
k=0

βt−kE
∥∥∥∇F(X(k), ξ(k))

∥∥∥2

F
. (3.11)

We prove the above propositions in Appendix A in supplementary material.
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Technical Challenges: We focus on two major aspects of our work to compare with

existing literature: (i) Analysis of compressed decentralized training with triggered

communication with mild assumptions. (ii) Performing the resulting analysis by

taking into account the momentum updates.

Most works in communication efficient decentralized training assume a bound on

the second moment of stochastic gradients [SDGD19,KLSJ20,KSJ19b,TYL+19]. This

assumption can be quite strong for settings where the data distribution among the

clients is heterogeneous as gradient dissimilarity between the clients can be bounded

trivially using the second moment bound (see the note on comparison of assumptions

in Remark 1 on page 25). In contrast, we work with a much weaker set of assumptions

(see Section 3.3) by not assuming any uniform bound on norm of stochastic gradients,

and further allow both the gradient diversity and the variance of stochastic gradients

to scale with the norm of gradients compared to existing works [YJY19]. Performing

the analyses with these relaxed assumptions is highly challenging as it requires us to

carefully consider the error due to quantization, local iterations and triggering per

communication round and construct a recursion equation for it and then delicately

handle the recursion to bound the error for any time index. We remark that the

assumptions considered in our paper have appeared in literature before in [Kol] to

study decentralized optimization with only local iterations; our work is a significant

extension of their results and analyses as we incorporate compression and momentum

as we discuss below.

While momentum updates are almost always used in practice to empirically

speedup the training process and to improve generalization performance, it has

remained unclear whether convergence with linear speedup with number of nodes n

(as in the case of SGD without momentum [LZZL17,BDKD19b,SDGD19,Kol]) is
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still possible when using momentum. Recently, [YJY19,ZHK19] provided a positive

answer to this question, where [YJY19] studies local SGD with momentum in a

decentralized setup, but without any compressed or event-triggered communication,

and [ZHK19] studies compressed distributed SGD with momentum for non-convex

objectives, but without local iterations or event-triggered communication. Our work

is the first to provide convergence rates showing linear speedup with n for compressed

decentralized optimization using momentum while incorporating local iteration and

triggered communication in the analysis, further, with a weaker set of assumptions

than considered in previous works. To achieve this, our convergence proofs require the

use of virtual sequences which have been promising lately in stochastic optimization;

see, for example, [SCJ18b,AHJ+18b,KRSJ19b,BDKD19b,YJY19,ZHK19].

We would like to emphasize that even without momentum and local iterations,

analyzing compression in decentralized optimization [KSJ19b, KLSJ20, SDGD19]

(whose analysis does not require virtual sequences) is significantly more involved

and requires different technical tools than analyzing compression in distributed

optimization [AHJ+18b,KRSJ19b]. One of the main reasons for this is as follows: In

a decentralized setup, we need to separately show that nodes eventually reach to the

same parameters (i.e., consensus happens), which happens trivially in a distributed

setup, because in each iteration all worker nodes have the same parameters sent by

the master node. On top of that, incorporating momentum updates (which has only

been analyzed with compression in distributed setups so far) in decentralized setting

is non-trivial and gives similar challenges.

As a consequence, it is not surprising that our proofs are fundamentally different

and significantly more challenging from existing works, including [ZHK19, YJY19,

KSJ19b,KLSJ20,SDGD19,Kol], as we study momentum updates for decentralized
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setup with compression, local iterations and event-triggered communication to save

on communication bits. As opposed to [ZHK19], we allow heterogeneous data setting,

where different nodes may have different datasets. Moreover, with all these, we

achieve vanilla SGD like convergence rates for both non-convex and convex objectives.

3.5 Experiments

In this section, we compare SQuARM-SGD with CHOCO-SGD [KLSJ20] , which

only employs compression (sparsification or quantization) and is the state-of-the-art

in communication efficient decentralized training. We also provide additional plots

for comparison of accuracy vs. wall-clock time and performance over other datasets

in sections 3.5.2 and 3.5.4 below.

3.5.1 Experiment on ImageNet dataset

(a) (b) (c)

Figure 3.1 Figures 3.2(a) and 3.1(b) correspond to the training loss for the ResNet50 model on the
ImageNet dataset compared against no. of epochs and total communicated bits, respectively. Figure
3.2(b) shows comparison for Top-1 test accuracy as function of total number of bits communicated.

Setup. We compare our algorithm with CHOCO-SGD [KLSJ20] on a large

scale learning task of training ResNet50 [HZRS16] model on ImageNet [DDS+09]
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dataset with n = 6 nodes connected in a ring topology. Learning rate is initialized

to 0.1, following a schedule consisting of a warmup period of 5 epochs followed by

piecewise decay of 5 at epochs 80,140, 170, and we stop training at epoch 200. The

SGD algorithm is implemented with momentum with a factor of 0.9 and mini-batch

size of 96. SQuARM-SGD consists of H = 5 local iterations followed by checking

for a triggering condition, and then communicating with the composed SignTopK

operator, where we take top 1% elements of each tensor and only transmit the sign

and norm of the result. The triggering threshold follows a schedule piecewise constant:

initialized to 1.0 and increases by 0.25 after every 20 epochs till 100 epochs are

complete; while maintaining that ct < 1/η for all t. We compare performance of

SQuARM-SGD against CHOCO-SGD with Sign and TopK compression (taking

top 1% of elements of the tensor) and decentralized vanilla SGD. We also provide

a plot for using the composed SignTopK operator without event-triggering titled

‘SQuARM-SGD (Sign-TopK)’ for comparison.

Results. We plot global loss function evaluated at the average parameter vector

across nodes vs. number of epochs in Figure 3.2(a), where we observe SQuARM-

SGD converging at a similar rate as CHOCO-SGD and vanilla decentralized SGD.

Figure 3.1(b) shows the evolution of training loss as a function of number of bits,

demonstrating that SQuARM-SGD uses significantly less bits than CHOCO-SGD

or vanilla-SGD to train the model. Figure 3.2(b) shows the performance for a given

bit-budget, where we show the Top-1 test accuracy as a function of the total bits

communicated. For Top-1 test accuracy of around 74%, SQuARM requires about

20× less bits than CHOCO with Sign or TopK compression, and around 1400× less

bits than vanilla decentralized SGD to achieve the same Top-1 accuracy.
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3.5.2 Experiments on CIFAR-10 dataset

(a) (b)

Figure 3.2 These plots are for training a ResNet20 model (non-convex objective) on the CIFAR-10
dataset. Figure 3.2(a) and 3.2(b) show training loss vs. epochs and Top-1 accuracy vs. total number
of bits communicated, respectively.

Setup. We match the setting in CHOCO-SGD [KLSJ20] and perform our experiments

on the CIFAR-10 [KNH09] dataset and train a ResNet20 [WWW+16] model with

n = 8 nodes connected in a ring topology. The training is done on TitanRTX GPUs.

Learning rate is initialized to 0.1, following a schedule consisting of a warmup period

of 5 epochs followed by piecewise decay of 5 at epoch 200 and 300 and we stop training

at epoch 400. The SGD algorithm is implemented with momentum with a factor of

0.9 and mini-batch size of 256. SQuARM-SGD consists of H = 5 local iterations and

we take top 1% elements of each tensor and only transmit the sign and norm of the

result. The triggering threshold follows a schedule piecewise constant: initialized to

2.5 and increases by 1.5 after every 20 epochs till 350 epochs are complete; while

maintaining that ct < 1/η for all t. We compare performance of SQuARM-SGD

against CHOCO-SGD with Sign, TopK compression (taking top 1% of elements of

the tensor) and decentralized vanilla SGD [LZZ+17].
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Results. From Figure 3.2(a), we observe SQuARM-SGD converging at a similar

rate as CHOCO-SGD and vanilla decentralized SGD. Figure 3.2(b) shows the perfor-

mance for a given bit-budget, where we show the Top-1 test accuracy as a function

of the total number of bits communicated. For Top-1 test-accuracy of around 90%,

SQuARM requires about 40× less bits than CHOCO with Sign or TopK compression,

and around 3K× less bits than vanilla decentralized SGD to achieve the same Top-1

accuracy.

3.5.3 Wall-clock time comparison for CIFAR-10 dataset with rate-limited

communication

(a) (b)

Figure 3.3 Figure 3.3(a) shows Top-1 accuracy as a function of total communication time through a
bandlimited rate pipe of 100Kbps. Figure 3.3(b) shows the total time (computation + communication)
required to reach a target Top-1 accuracy of 90% for the different schemes.

Setup. We follow the same setup as stated in the Subsection 3.5.2, and further we

assume that the communication between workers is rate-limited to 100Kbps. This is

typical average rate of wireless edge devices sharing a common bandwidth with other
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devices, therefore devices cannot have sustained high rates.

Results. Figure 3.3(a) shows the Top-1 accuracy as a function of time required

to communicate bits through a rate pipe constrained to 100Kbps. We observe that,

to reach a target accuracy of 90%, SQuARM-SGD saves a factor of around 40× in

communication time compared to CHOCO-SGD with Sign or TopK sparsifier, and

around 3K× less communication time than vanilla SGD. Thus, there is a significant

saving in communication time for SQuARM-SGD compared to other schemes when

communicating over typical rate limited channels. This result is almost a direct

translation of the savings in the number of bits needed for training.

In Figure 3.3(b), we plot Top-1 accuracy vs. the wall-clock time, when the commu-

nication between workers is over the rate-limited pipelines (limited to 100Kbps). The

wall-clock time includes the total time taken in both computation and communication;

note that this includes time required to setup the communication (e.g., interrupts

in processing) and other overheads, and not just the airtime (time to transmit the

bits) for the communication as done in Figure 3.3(a). We observe that, to reach a

target test-accuracy of around 90%, SQuARM-SGD saves a factor of around 30× in

total time compared to CHOCO-SGD with Sign or TopK compression, and around

2.5K× compared to vanilla-SGD. The significant advantage to our method comes due

to efficient transmission over the rate constrained pipeline.

Note that one can expect uncompressed schemes to do better in terms of compu-

tation time, but as shown in the plots above, the high communication time required

in uncompressed schemes on rate-constrained links would far outweigh the advantage

due to computation time. As a result, the total time required by SQuARM-SGD

(that incorporates compression and infrequent communication) to reach a certain
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accuracy would be significantly smaller than either the uncompressed schemes or the

ones using infrequent communication or both.

3.5.4 Experiments for convex objective on MNIST dataset

Setup. We run SQuARM-SGD on MNIST dataset and use multi-class cross-entropy

loss to model the local objectives fi, i ∈ [n]. We consider n = 60 nodes connected

in a ring topology, each processing a mini-batch size of 5 per iteration and having

heterogeneous distribution of data across classes. We work with ηt = 1/(t + 100)

(based on grid search) and synchronization index H = 5. For SQuARM-SGD, we use

the composed operator SignTopK ( [BDKD19b]) with k = 10 (out of 7840 length

vector for MNIST dataset). For our experiments, we set the triggering constant

c0 = 5000 in and keep it unchanged until a certain number of iterations and then

increase it periodically; while still maintaining that ctη
2
t decreases with t (as ct is

o(t)) .

(a) (b)

Figure 3.4 Figure 3.4(a) and 3.4(b) are for convex objective simulated on the MNIST dataset,
where we plot test error vs number of communication rounds and test error vs total number of bits
communicated, respectively, for different algorithms.
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Results. In Figure 3.4(a), we observe SQuARM-SGD can reach a target test error

in fewer communication rounds while converging at a rate similar to that of vanilla

SGD. The advantage to SQuARM-SGD comes from the significant savings in the

number of bits communicated to achieve a desired test error, as seen in Figure 3.4(b):

to achieve a test error of around 0.12, SQuARM-SGD gets 120× savings as compared

to CHOCO-SGD with Sign quantizer, around 10-15× savings than CHOCO-SGD

with TopK sparsifier, and around 1000× savings than vanilla decentralized SGD.

3.6 Conclusion

In this chapter, we developed a communication efficient framework for decentralized

training for clients lying on a graph topology. We used the ideas of compression

and local iterations, combined with a threshold based triggering approach to pro-

pose an algorithm which significantly saves on communication bits while ensuring

collaborative learning between the network clients. We study the convergence rate of

our algorithm for strongly-convex and non-convex smooth objectives, proving that

communication efficiency using these ideas can be achieved while still ensuring a

convergence rate similar to vanilla decentralized SGD training. To the best of our

knowledge, our work provides the first convergence analysis for compressed decen-

tralized training with momentum using a weaker set of assumptions than existing

literature while incorporating the local SGD and event triggered communication

framework. Furthermore, our analysis for convergence rate includes the effect of

momentum updates, thus taking a step forward in theoretically analyzing the role of

momentum updates in compressed decentralized training, which has not yet been

explored. Our experimental results show significant saving of our proposed technique

41



over the current state-of-the-art, thus fulfilling the need for highly-communication

efficient collaborative learning algorithms for rate-limited networks.
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CHAPTER 4

Decentralized Multi-Task Stochastic Optimization

With Compressed Communications

Decentralized optimization has become a cornerstone in the development of modern

distributed machine learning systems, especially in scenarios where data is distributed

across multiple devices or nodes. While in the previous chapter we primarily focused

on achieving communication efficiency in federated learning, it is equally important

to address the heterogeneity across nodes by allowing for personalized models. As

before, allowing for collaboration in the context of federated learning could potentially

allow for better quality of trained models. We will refer to this technicality of

personalization as allowing for solving multiple tasks – where tasks could refer to

the underlying optimization problem being solved at each node. Since each node

often possesses unique data and distinct objectives, multi-task learning is essential

in applications where a one-size-fits-all approach does not adequately capture the

diverse data characteristics and requirements of different nodes.

In this chapter, we delve into the problem of multiple task learning in the context

of communication-efficient decentralized optimization. We consider a multi-agent

network where each node has a stochastic local cost function that depends on the

node’s decision variable and a random variable, with additional pairwise constraints
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on the decision variables of neighboring nodes. The network’s aggregate objective

function is composed additively of the expected values of the local cost functions at

the nodes, and the overall goal is to find the minimizing solution to this aggregate

objective function subject to all pairwise constraints.

To achieve this, we develop algorithms that allow decentralized information pro-

cessing and local computation, with only compressed information exchanges permitted

between neighboring nodes. This approach ensures communication efficiency while

addressing the need for personalized optimization. Our algorithms provide rigorous

performance bounds, demonstrating that they can achieve robust optimization despite

the use of compressed communication.

Our analysis shows that the deviation from the global minimum value and the

violations of the constraints are upper-bounded by O(T − 1
2 ) and O(T − 1

4 ), respectively,

where T is the number of iterations. These results indicate that the performance of

our decentralized algorithms with communication compression is comparable to that

of algorithms without compression.

The development of these algorithms is significant as it highlights the feasibility

of achieving high-performance personalized optimization in a communication-efficient

manner. This capability is critical for applications in various domains, such as Internet

of Things (IoT) networks, distributed sensor networks, and collaborative multi-agent

systems, where nodes have diverse objectives and constraints.

By focusing on personalized models in decentralized optimization, this chapter

contributes to the broader goal of making federated learning more adaptable and prac-

tical, addressing the specific needs of individual nodes while ensuring communication

efficiency.
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4.1 Introduction

The emergence of multi-agent networks and the need to distribute computation across

different nodes which have access to only piece of the network-wide data but are

allowed to exchange information under some resource constraints, have accelerated

research efforts on decentralized and distributed optimization in multiple communities,

particularly during the last 10-15 years. Spearheading this activity has been decentral-

ized consensus optimization in static settings, where the goal is to minimize the sum

of local cost functions, toward which [NO09a] proposed a decentralized sub-gradient

algorithm, whose convergence was further studied in [YLY16]. Following this initial

work, several other consensus algorithms were introduced and studied, including

alternating direction method of multipliers (ADMM) [SLY+14], exact first-order

algorithm [SLWY15], stochastic consensus optimization [SVKB17,LLZ20], and online

consensus optimization with time-varying cost functions [MNC14,AGL17a].

Consensus modeling framework requires, in essence, all nodes to converge to the

same value. This however may not be appropriate in many network scenarios, where

different nodes, even neighboring ones, may ultimately end up with different decision

(or action) values. Such a scenario arises in, for example, distributed multitask

adaptive signal processing, where the weight vectors at neighboring nodes are not the

same [CRS14,NRFS16]. One of the first papers that has analyzed such departure

from consensus optimization is [KSR17], where the formulation included proximity

constraints between neighboring nodes, which were handled through construction of

Lagrangians and using saddle-point algorithms, and extended to the asynchronous

setting in [BKR19].

Decentralized algorithms are built on the assumption that there is some exchange

45



of information among the nodes (at least among the neighboring nodes) which then

propagates across the network towards achieving the global optimum in the limit.

Extensive and frequent exchange of such information is generally practically impossible

(due to bandwidth constraints on the edges of the underlying network which constitute

the communication links, and computation and storage limitations, among many

others), which inherently brings in a restriction on the amount and timing of the

exchange of relevant current data. In the literature several studies have addressed

these limitations through quantization of information or actions [KBS07,EB16,BEO16,

CLB16,ZC16], by using only sign information on some differences [ZYB19,CB21a], by

controlling the timing of transmissions through event triggering [CB21b,SDGD21a,

SDGD23], or by sparsification [AHJ+18a, KSJ19a, SCJ18a]. Quantization in the

context of decentralized optimization (and not consensus problems) has also been

studied, with some of the algorithms leading to nonzero errors in convergence (see

the early work [RN05,NOOT08]) and others to exact convergence [RMHP19]; see

also [AGL+17b] for quantized stochastic optimization. Some recent work has also

used error-compensated compression in decentralized optimization, such as [KSJ19a,

WHHZ18,SDGD20a,SDGD23]. Recently, error-compensated compressed decentralized

training for online convex optimization was considered in [CB23].

Most of the existing works on decentralized optimization with quantized/compressed

communications are, as discussed above, focused on either consensus optimization

or unconstrained optimization. Research departing from that trend was initiated

in [CB20], which addressed the problem of multitask learning (or distributed optimiza-

tion with pairwise constraints) using quantized communications. More specifically,

the model adopted in that paper (with an underlying network topology) associated

with each node a stochastic (local, individual) cost and with each pair of neighbors
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an inequality constraint, e.g., proximity constraint. Note that in such a formulation,

different from consensus problems, each node has its own decision variable, but these

cannot be picked independently because of the pairwise constraints. Further, the

distribution of the random variable in the stochastic local cost function of each node

is unknown and each node operates based on sequential feedback information, render-

ing the formulation distinct from deterministic optimization. The paper developed

stochastic saddle-point algorithms with quantized communications between neighbors,

and studied the impact of quantization on the optimization performance. One short-

coming of the result of [CB20] is that the scheme developed led to nonzero convergence

error; said differently, the algorithm in that work does not lead to convergence to the

exact optimal solution as the number of iterations grow. This is precisely the issue we

address in this chapter, and achieve exact convergence by employing a saddle-point

algorithm along with an approach based on error-compensated communication com-

pression. Before further discussing the contents and contributions of this work, let

us point out that saddle-point algorithms (a.k.a. primal-dual algorithms) have been

extensively used in literature on constrained optimization, such as deterministic cen-

tralized optimization [AHU58,NO09b], decentralized optimization [CNS14], stochastic

optimization [KSR17,BKR19,EZC+19], and online optimization [MJY12,CL19].

4.1.1 Contributions

In this chapter, we address the problem of decentralized multi-agent stochastic

optimization on a network, where each agent has a local stochastic convex cost

function and each pair of neighbors is associated with an inequality constraint. The

overall goal is to minimize the total (additive) expected cost of all agents subject to
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all the constraints on all edges, with all computation carried out at the nodes and

with information exchanged among the nodes using compressed communication. We

consider two scenarios of interest based on the sample information available locally

at the nodes:

• Sample Feedback: Each node has access to the local samples of the random

variable affecting its local cost function drawn from its distribution at any time

instance during the optimization process, and can thus evaluate its cost function

and its gradient.

• Bandit Feedback: Nodes do not have access to the samples, but rather only

observe values of the corresponding local cost functions at two points sufficiently

close to the original node parameter. For references on bandit feedback in

context of optimization (a.k.a. zeroth-order optimization), see [FKM05,ADX10,

DJWW15,Sha17,LKC+18,HHG19].

Under both scenarios, the chapter develops a decentralized saddle-point algorithm

which leads to zero convergence error, even with a finite number of bits for each

iteration. Note that previous works in this topic [CB20] required the number of

bits to be unbounded for the error to diminish. Specifically, under some standard

assumptions, we show that the expected sub-optimality and the expected constraint

violations are upper bounded by O(T − 1
2 ) and O(T − 1

4 ), respectively, where T is the

number of iterations, despite the proposed algorithm using a finite number of bits.

These bounds match, in order sense, the bounds for algorithms without communication

compression. Hence, we get near optimal optimization performance even with finite

number of bits under both scenarios. The chapter also provides results of numerical

experiments, which corroborate these bounds.
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Accordingly, the main contributions of this chapter are:

• Using finite bit compressed sample feedback, with T being the horizon of the

optimization problem, achieving O(1/
√

T ) closeness to optimum value of the

objective function, and achieving O(T − 1
4 ) constraint violation—both being the

same as in the case without compression.

• Obtaining the same order bounds with bandit feedback, using only two-point

feedback values.

4.1.2 Chapter Organization

The rest of the chapter is organized as follows: Section 4.2 provides a precise for-

mulation of the problem under consideration. Section 4.3 develops the saddle-point

algorithm (Algorithm 2) under sample feedback, and provides convergence results

and performance bounds (Theorem 3) along with essential points of the analyses

and proofs. Section 4.4 presents the counterpart of Section 4.3 for bandit feedback,

with the corresponding algorithm (Algorithm 3) and corresponding main result on

convergence and performance bounds (Theorem 4). Section 5.5 discusses results of

some numerical experiments. Section 4.6 provides some concluding remarks. Omitted

technical details can be found in Appendix B of this thesis.

4.2 Problem Formulation

We consider an undirected graph G = (V , E) with |V| = n nodes and |E| = m

connected edges. We assume that each connected node pair (i, j) ∈ E allows for

bi-directional communication from i to j and j to i. The neighbor set of the node i
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is denoted by Ni.

Associated with each node i ∈ [n] := {1, 2, . . . , n} is an unknown data distribution

which we denote by Pi. The samples generated from the distribution are denoted

by ξi ∼ Pi where ξi ∈ Ξi. Each node also has a local cost function fi : X × Ξi → R+

which takes as input a sample ξi ∈ Ξi and a local parameter xi ∈ X ⊂ Rd to yield the

sample cost fi(xi, ξi). Here, the set X corresponds to the set of feasible parameters

the node can choose from, which is the same across all nodes. As an example, for

supervised image recognition tasks, the sample ξi for a node i may correspond to an

image-label pair with the set X being the set of all neural networks with a width

of 2 layers and xi a particular 2-layer neural network. The local objective fi in this

case may denote a cross-entropy loss function evaluated using the given image-label

pair and the neural network. The expected cost for a node i for parameter xi ∈ X

is denoted by Fi(xi) = Eξi∼Pi
[fi(xi, ξi)]. In general, we are interested in minimizing

the expected cost for all the nodes i ∈ [n]. That is, we are interesting in finding

node parameters {xi}n
i=1 that minimize the cost F (x) := ∑n

i=1 Fi(xi) where Fi(xi)

denotes the expected cost of the node i evaluated using parameter xi and x ∈ X n

denotes stacking of all the individual node parameters {xi}n
i=1. Further, we assume

that the node parameters are related via pairwise constraints on the connected

nodes in the graph. Specifically, for any i ∈ [n] and j ∈ Ni, there is a function

gij : X × X → R such that the inequality gij(xi, xj) ≤ 0 should be satisfied. This

may, for example, encode a proximity constraint on the node parameters by having

gij(xi, xj) = ∥xi−xj∥2
2− cij where ∥.∥2 denotes the ℓ2 norm and cij ≥ 0 is a constant.

In this chapter, we assume that the constraint functions gij(xi, xj) are symmetric in

their parameters, i.e., gij(xi, xj) = gji(xj, xi) for all xi, xj ∈ X and connected node

pairs (i, j) ∈ E , which leads to m number of distinct pairwise constraints for all the
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parameters. With the notation now in place, we state the learning objective for the

multi-task problem can be stated as follows:

min
x∈X n

F (x) =
n∑

i=1
Eξi

[fi(xi, ξi)] (4.1)

subject to gij(xi, xj) ≤ 0, ∀i ∈ [n], j ∈ Ni

To solve the problem in (4.1) in a decentralized manner, the nodes need to communi-

cate during the optimization procedure which can be prohibitive for low bandwidth

links or when the exchanged information updates among the nodes are large. To this

end, in this chapter we consider compression of the information exchanges among the

nodes to make the communication efficient. We employ the notion of the compression

operator proposed in [SCJ18a]:

Definition 2. A (possibly randomized) function C : Rd → Rd is called a compression

operator, if there exists a constant ω ∈ (0, 1), such that for every x ∈ Rd:

E∥x− C(x)∥2
2 ≤ (1− ω)∥x∥2

2 (4.2)

where expectation is taken over the randomness of C. We assume C(0) = 0.

We consider two scenarios of interest based on the sampled information available

locally at the nodes:

1. Sample Feedback: In this scenario we assume that each node i has access to the

local samples ξi drawn from Pi at any time instance during the optimization

procedure and can thus evaluate the cost function and its derivative.

2. Bandit Feedback: In this scenario, nodes do not have a direct access to the
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samples, but rather can only observe values of the local cost function at two

perturbations from the original node parameter.

We focus on these scenarios separately in Section 4.3 and Section 4.4 respectively,

where we develop a compressed decentralized algorithm for optimizing (4.1) for each,

and present our theoretical convergence results, the complete proofs for which are

provided in Appendix B.

4.3 Decentralized compressed optimization with Sample feed-

back

In this section we describe our approach for optimizing the objective in (4.1) for the

case of sample feedback. In this setting, each node i ∈ [n] has access to the sampled

instance ξi at any stage of the optimization procedure, and thus can evaluate the

local objective fi(xi, ξi) based on its local parameter xi.

4.3.1 Algorithm: with Sample Feedback

We develop a stochastic saddle-point algorithm for solving (4.1) in a decentralized

manner with compressed parameter exchanges. Our proposed scheme is presented

in Algorithm 2 and is based on finding a saddle point of the modified Lagrangian

for the optimization problem in (4.1). For a given sample ξi, we define this modified

Lagrangian as follows:

L(x,λ) =
n∑

i=1

[
fi(xi, ξi) +

∑
j∈Ni

(
λijgij(xi, xj)−

δη

2 λ2
ij

)]
(4.3)
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On the L.H.S. of (4.3), x denotes the concatenation of all the model parameters

{xi}n
i=1, each of which is in Rd, leading to x ∈ Rnd. For i ∈ [n] and j ∈ Ni, λij ≥ 0

denotes the Lagrangian multiplier associated with the constraint gij(xi, xj) ≤ 0.

Similarly, λ on the L.H.S. denotes the concatenation of all λij for i ∈ [n] and j ∈ Ni,

thus λ ∈ Rm, where m is twice the number of edges in the underlying undirected graph.

The last term on the R.H.S. of (4.3) corresponds to a regularizer which mitigates the

growth of the Lagrangian multiplier λ during the saddle-point algorithm updates.

In this term, η > 0 corresponds to the learning rate of the algorithm and δ > 0 is a

control parameter.

To find the saddle point of the Lagrangian in (4.3), we utilize alternating gradient

updates of the primal variables concatenated in x, and the dual variables in λ. For

any i ∈ [n], the gradient of the modified Lagrangian with respect to (w.r.t.) the

model parameter xi is given by:

∇xi
L(x,λ) =

∑
j∈Ni

[λij∇xi
gij(xi, xj) + λji∇xi

gij(xj, xi)] +∇xi
fi(xi, ξi) (4.4)

The gradient w.r.t. the Lagrangian multiplier λij for i ∈ [n], j ∈ Ni is similarly given

by:

∂

∂λij

L(x,λ) = gij(xi, xj)− δηλij (4.5)

The stochastic algorithm developed for updating the primal and dual variables via

equations (4.4) and (4.5) is presented in Algorithm 2, which is described below.

Our proposed scheme in Algorithm 2 is a stochastic saddle-point algorithm to

minimize the objective in (4.1) by finding a saddle point of the modified Lagrangian
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Algorithm 2 Compressed Decentralized Optimization with Sample Feedback
Initialize: Random raw parameters x̃(1)

i ∈ X , λ
(1)
ij = 0 for each i ∈ [n], j ∈ Ni,

x̂(0)
i = 0 for each i ∈ [n], number of iterations T , learning rate η, parameter δ > 0.

(Communicate in the first iteration without compression to ensure that x̃(1) = x̂(1) )

1: for t = 1 to T in parallel for i ∈ [n] do
2: Compute q(t)

i = C(x̃(t)
i − x̂(t−1)

i )
3: for nodes k ∈ Ni ∪ {i} do
4: Send q(t)

i and receive q(t)
k

5: Update x̂(t)
k = x̂(t−1)

k + q(t)
k

6: Compute x(t)
k = ΠX (x̂(t)

k )
7: end for
8: Update running average for local parameter:

x(t)
i,avg = 1

t
x(t)

i + t−1
t

x(t−1)
i,avg

9: Sample ξ
(t)
i ∼ Pi and compute ∇xi

fi(x(t)
i , ξ

(t)
i )

10: For all j ∈ Ni compute ∇xi
gij(x(t)

i , x(t)
j )

11: Update the primal variable by gradient descent:

x̃(t+1)
i = ΠX

x̃(t)
i − η∇xi

fi(x(t)
i , ξ

(t)
i )− 2η

∑
j∈Ni

λ
(t)
ij ∇xi

gij(x(t)
i , x(t)

j )


12: For j ∈ Ni, update the dual variables through gradient ascent:

λ
(t+1)
ij =

[
λ

(t)
ij + η

(
gij(x(t)

i , x(t)
j )− δηλ

(t)
ij

)]+
13: end for
Output: Time averaged parameters x(T )

i,avg for all i ∈ [n].
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in (4.3) in a communication efficient manner. Each node is allowed to exchange with

its neighboring nodes only compressed parameters, via the compression operator in

(4.2). To realize exchange of compressed parameters between workers, for node i ∈ [n]

and its associated raw parameter x̃i, all nodes j ∈ Ni maintain an estimate x̂i of x̃i,

so, each node i ∈ [n] has access to x̂j for all j ∈ Ni. The parameter x̃i is called raw

as it corresponds to the model parameter before any compression in our algorithm.

We refer to x̂i as the copy parameter of the node i.

We first initialize the regularization parameter δ (see Theorem 3 for definition)

and learning rate η. We initialize the parameter copies of all the nodes as x̂i = 0

for all i ∈ [n] and allow each node to communicate with its neighbors in the first

round without any compression. This is to ensure that x̃(1)
i = x̂(1)

i for all the nodes

(this is a requirement to control the error encountered via compression, c.f. Lemma

4). At any time step t ∈ [T ] of the algorithm, node i first computes the compressed

update to its copy parameter, given by q(t)
i (line 2) and then sends and receives

these copy parameter updates from its neighbor nodes in Ni (line 3). Importantly,

these copy parameter updates are compressed using the operator in (4.2), and thus

the communication is efficient. After receiving the copy updates from its neighbors,

each node updates the locally available copy parameters of its neighbors and its

own copy parameters (line 5) and ensures that these lie in the set X by taking a

projection1 to form the local node parameter x(t)
i (line 6). As the node i has access to

the updated copy parameters of its neighbors, it also has access to x(t)
j for all j ∈ Ni.

With the local node parameter evaluated, the node can update its running average of

parameters (line 8).

1It can be checked that the computational complexities for projection of all the primal node
parameters and the dual parameters are O(nd) and O(m), respectively, per iteration.
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For the stochastic saddle-point update with sample feedback, at time t , the node

i ∈ [n] can sample a data point ξ
(t)
i and evaluate the gradient using the previously

computed node parameter x(t)
i (line 9). Since the node also has access to the

parameters x(t)
j for neighbors j ∈ Ni, it can compute the gradient w.r.t. the pairwise

constraint function gij evaluated at x(t)
i , x(t)

j (line 10). Thus, the node can evaluate

the gradient of the modified Lagrangian w.r.t. the primal local node parameters

as in (4.4) and take a gradient descent step to update the raw node parameter x̃(t)
i .

Similarly, the dual variables λ
(t)
ij are also updated via a gradient ascent step (line 12)

following (4.5) and then projected on the positive real space.

Symmetry of dual updates: Note that the derived expression for the gradient

∇xi
L(x,λ), consists of the dual parameters λij and λji. Meanwhile, the update in

line 11 of Algorithm 2 considers these parameters to be the same for all time t ∈ [T ].

We describe the reasoning behind this update in the following induction argument.

The dual variables are initialized to 0, that is, λ
(1)
ij = 0 for all i ∈ [n] and j ∈ Ni.

Thus for any connected nodes i, j, for t = 1, the condition λ
(t)
ij = λ

(t)
ji holds. Next, we

assume that for any arbitrary τ ∈ [T ], τ ̸= 1, it is the case that λ
(τ)
ij = λ

(τ)
ji . Thus for

the time step t = τ + 1, by the update given in line 12 of Algorithm 2, we have:

λ
(τ+1)
ij =

[
λ

(τ)
ij + η

(
gij(x(τ)

i , x(τ)
j )− δηλ

(τ)
ij

)]+
(a)=
[
λ

(τ)
ji + η

(
gji(x(τ)

j , x(τ)
i )− δηλ

(τ)
ji

)]+
= λ

(τ+1)
ji

where (a) follows from the fact that λ
(τ)
ij = λ

(τ)
ji and the symmetry of the pairwise

constraints gij for connected nodes i, j. Thus, as the induction step holds for arbitrary
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τ ∈ [T ] and for the base case t = 1, it follows that λ
(t)
ij = λ

(t)
ji for all t ∈ [T ] for all

i ∈ [n], j ∈ Ni.

Justification for raw parameter updates: Note that in the steps given in lines

(9-11) in Algorithm 2, the gradients are evaluated at the node parameters {x(t)
i }n

i=1,

while the updates are made to the raw parameters {x̃(t)
i }n

i=1 via gradient descent. The

reason for this is that in our scheme, the raw parameters effectively play the role of a

virtual parameter, which mimic SGD-like updates (c.f. line 11), with the gradients

evaluated at a different (perturbed) parameter. The notion of such virtual parameters

to analyze convergence has been promising lately in stochastic optimization within the

perturbed iterate analysis framework, see [MPP+17,SDGD21a,SCJ18a,BDKD19a].

The key idea to analyze convergence in such settings is to control the difference of the

iterates
∥∥∥x(t)

i − x̃(t)
i

∥∥∥
2

for all i ∈ [n]. Controlling this difference is one key contribution

of our work, c.f. Lemma 4.

4.3.2 Main Result: Sample Feedback

We now present our theoretical result on the convergence rate of Algorithm 2 for

decentralized optimization for the case with sample feedback. We first present and

discuss the set of assumptions our result is based on.

Assumption 4. The set of admissible model parameters X , is closed, convex and

bounded, i.e., there exists a constant R > 0 such that ∥x̃∥2 ≤
R√
n
, for all x̃ ∈ X .

Assumption 5. For any i ∈ [n], the local objective fi(xi, ξi) is convex in xi for any

ξi ∈ Ξi. The pairwise constraint function gij(xi, xj) is (jointly) convex in xi and xj,

for any pair i ∈ [n], j ∈ Ni.
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Assumption 6. For i ∈ [n] and xi ∈ X , ∃Gi > 0 such that:

Eξi∼Pi

[
∥∇xi

fi(xi, ξi)∥2
2

]
≤ G2

i . (4.6)

To simplify the notation, we also define G :=
√∑n

i=1 G2
i . Additionally, for any

i ∈ [n], j ∈ Ni, we assume that there exists a constant Gij > 0 such that ∀xi, xj ∈ X :

∥∥∥∥[∇xi
gij(xi, xj)T ,∇xj

gij(xi, xj)T
]T ∥∥∥∥

2
≤ Gij. (4.7)

We define G̃ := maxi∈[n],j∈Ni
Gij.

Assumption 7. For any i ∈ [n], j ∈ Ni, the pairwise constraint function gij is

bounded. That is, there exists a constant Cij > 0 such that |gij(xi, xj)| ≤ Cij,

∀xi, xj ∈ X . We define C2 :=
√∑n

i=1
∑

j∈Ni
C2

ij.

Assumptions A.4-A.7 are frequently used in convergence rate analysis of convex

optimization algorithms, even without compression. The assumption on a bounded

parameter space X and the bounded constraint functions have been made earlier

in [CB20,CLG17]. The assumption on boundedness of the gradient of the objectives

(Equation (4.6)) has also been made earlier in [CB20,NO09a,CLG17] and boundedness

of gradients of the constraint functions (Equation (4.7)) have been assumed in

[CB20,YN17,NN13]2.

With these assumptions in place, we now present our main theoretical result

2Assumption A.6 for compressed decentralized optimization has been relaxed in one of our
previous works [SDGD21a]. The arguments for relaxing this assumption can similarly be extended
to the analysis in this chpater, a technicality which we omit in interest of keeping the analysis
relatively cleaner, and to focus on the main novelty of analyzing compressed communication in the
pairwise multi-task setting.
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in Theorem 3 below for the convergence rate of Algorithm 2. The result is stated

in terms of the stacked vector x, which corresponds to the concatenation of the

parameters {xi}n
i=1, and thus is n × d dimensional. The vector x∗ represents the

stacked optimal parameters which is the solution of the optimization problem (4.1).

The proof details for Theorem 3 are presented in Section Appendix B.

Theorem 3. Consider running Algorithm 2 for T iterations with fixed step size

η = a√
T

for positive constant a and regularization parameter δ =
1−
√

1− 64η2(1+m)G̃2
ω2

4η2

where ω ∈ (0, 1) is the compression factor. Then, under assumptions A.4 - A.7, for

T ≥ 64a2(1+m)G̃2

ω2 , the expected value of F evaluated at the stacked time-averaged vector

x(T )
avg := 1

T

∑T
t=1 x(t) satisfies:

E[F (x(T )
avg)]−F (x∗) ≤ 2R2

a
√

T
+ a√

T

( 4
ω2 (1+m)G2+2C2

)
(4.8)

For i ∈ [n], j ∈ Ni, the constraint function gij satisfies:

E
[
gij(x(T )

i,avg, x(T )
j,avg)

]
≤ 1

T
1
4

√8GR

a
+
√

8δaGR

+ 1√
T

√
2
(

2R2δ + 4
ω2 (1 + m)G2 + C2

)

+ 1√
T

√
2δa2

( 4
ω2 (1 + m)G2 + C2

)
+ 2R

a
√

T
(4.9)

where the d-dimensional vector x(T )
k,avg denotes the time averaged parameter for node

k ∈ [n] in x(T )
avg.

Theorem 3 establishes that for any given compression requirement ω ∈ (0, 1), the

sub-optimality of the objective, E[F (x(T ))] − F (x∗), is O
(

1
T 1/2

)
, and the expected

constraint violation E[gij(x(T )
i , x(T )

j )] for any connected node pair (i, j) is O
(

1
T 1/4

)
.

Thus, the difference between the attained objective and the global minimum of (4.1),
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as well as the constraint violations can be made arbitrarily small by increasing the

number of iterations the algorithm is run for.

4.4 Decentralized compressed optimization with Bandit feed-

back

In this section, we focus on the bandit feedback scenario where the nodes do not have

direct access to samples drawn from their local data distributions. This could, for

example, arise in situations where the samples are high dimensional and thus can

be hard to observe or measure. For the model we work with in this chapter, we now

assume that the nodes instead can query the value of the local objective function

fi(xi, ξi) for some particular choices of the parameter xi. We first formally define the

objective query process for the nodes and then describe how this model can be used

to develop a stochastic gradient method for optimizing the overall objective (4.1).

Let S := {u ∈ Rd| ∥u∥2 = 1} and B := {u ∈ Rd| ∥u∥2 ≤ 1} be the unit sphere,

ball in d-dimensions, respectively. For each node i ∈ [n], and at any stage in the

optimization process, we assume access to two local objective values fi(xi ± ζui, ξi)

where ui is sampled uniformly at random over the unit sphere S (independent of

xi or ξi), ζ is a small positive constant, and xi is the local model parameter. To

evaluate the gradient using these objective values, we make use of the following fact

from [FKM05]:

Fact 1. Consider a function ϕ : Rd → R, and let ζ > 0. Define ϕ̃(x) = Eu∼U(B)[ϕ(x +

ζu)] where U(B) denotes uniform distribution over the unit ball B ⊂ Rd. Then:

1. If ϕ is convex, then ϕ̃ is also convex.
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2. For any x ∈ Rd, ∇xϕ̃(x) = d
ζ
Eu∼U(S)[ϕ(x + ζu)u] where U(S) denotes the

uniform distribution over the unit sphere S ⊂ Rd.

For the node i ∈ [n], the above fact can be used to estimate the gradient of the

local objective function using the values fi(xi± ζui, ξi) where ui ∼ U(S). For a given

ξi, we define f̃i(xi, ξi) = Evi∼U(B)[fi(xi + ζvi, ξi)]. From the above fact, f̃(xi, ξi) is

convex in xi for a given ξi.

Note that as stated, the parameter vector xi ± ζui may not lie in the feasible set

X for all range of values of ζ. Thus, we need some restriction on the range of values

ζ can take. In the following, we make this argument precise. We first introduce an

additional mild assumption on the topology of the set X :

Assumption 8. The set X has a non-empty interior, that is, ∃y0 ∈ X , r > 0, s.t.

B(y0, r) ⊂ X . Here, B(y0, r) denotes the open ball of radius r centered at y0, i.e.,

B(y0, r) = {x| ∥x− y0∥2 ≤ r}.

From the above assumption, by the convexity of X , it can also be concluded that

for any α ∈ (0, 1) and x ∈ X , we have B((1− α)x + αy0, αr) ⊂ X . We further define

the set X̃ = {(1− ζ
r
)x + ζ

r
y0|x ∈ X}. It can now be readily checked that if xi ∈ X̃

for the node i, then xi ± ζui ∈ X , where ui is any point on the unit sphere S. Thus

in the development of the algorithm below, we project the parameters onto the space

X̃ to ensure that during the bandit feedback, the evaluated parameter xi ± ζui for

any node i lies in the space X .
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4.4.1 Algorithm: Bandit Feedback

We develop an algorithm for the bandit feedback scenario to find a saddle-point of

the modified Lagrangian:

L̃(x,λ) =
n∑

i=1

[
f̃i(xi, ξi) +

∑
j∈Ni

(
λijgij(xi, xj)−

δη

2 λ2
ij

)]
(4.10)

The vector x ∈ X̃ n represents the stacked node parameters and λ represents the

stacked dual variables. Here, the main difference from the modified Lagrangian in

sample feedback case presented in (4.3) is that the objectives {fi}n
i=1 of the nodes are

now replaced by the functions {f̃i}n
i=1. Importantly, the gradient of these functions

can be computed via the result of Fact 1 which enables us to develop a primal-dual

gradient algorithm to find the saddle point of (4.10). The gradient w.r.t. the primal

variable x is given by:

∇xi
L̃(x,λ) =

∑
j∈Ni

[λij∇xi
gij(xi, xj) + λji∇xi

gij(xj, xi)] +∇xi
f̃i(xi, ξi) (4.11)

Using the result from Fact 1, for any i ∈ [n] we have:

∇xf̃i(xi, ξi) = d

2ζ
Eui∼U(S)[f(xi+ζui, ξi)−f(xi−ζui, ξi)]ui

As the node has access to the values of the local objective function in the bandit

feedback scenario, the quantity d
2ζ

[f(xi + ζui, ξi)− f(xi − ζui, ξi)] for a given ui ∼

U(S), xi, ξi, serves as an unbiased estimate of ∇xf̃i(xi, ξi). We note that such an

approximation for the gradient is common in the stochastic optimization literature,

e.g. [BPP12, PBFM16]. In contrast to the uniform perturbation we consider in
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Fact 1, one can possibly use perturbations arising from distributions such as Gaussian,

symmetric Bernoulli distributions as in [Spa92,NND+18]. Using this, we can construct

the following estimate for the primal gradient ∇xi
L̃(x,λ):

p(t)
i := d

2ξ

[
fi(x(t)

i +ζu(t)
i , ξ

(t)
i )−fi(x(t)

i −ζu(t)
i , ξ

(t)
i )
]

u(t)
i + 2

∑
j∈Ni

λ
(t)
ij ∇xi

gij(x(t)
i , x(t)

j )

(4.12)

The gradient of the Lagrangian in (4.10) w.r.t. the dual parameter λij for i ∈ [n] and

j ∈ Ni is the same as in the sample feedback scenario and is given in (4.4).

The development of Algorithm 3 is similar to that of Algorithm 2. The main

difference is that we now find the saddle point of (4.10) via alternating primal and

dual variable gradient updates given in equations (4.12) and (4.5) and project onto

the space X̃ to ensure that the perturbed parameters lie in X . As before, for a node

i ∈ [n], x̃i refers to its raw parameter, xi as its local parameter, and x̂i is the copy

parameter.

We initialize the raw parameters {x̃(1)
i }n

i=1 inside the set X̃ . During the first

round, we assume the communication without compression to ensure that x̃(1)
i = x̂(1)

i

for all i ∈ [n]. At time step t ∈ [T ], the node i ∈ [n] computes and exchanges its

copy parameters and constructs the local node parameter x(t)
i for which we track the

running average (lines 2-8). As samples from the underlying distribution Pi are not

directly revealed to the node in case of bandit feedback; instead it queries the value

of the local objective fi(., ξi) at parameters x(t)
i + ζu(t)

i and x(t)
i − ζu(t)

i where u(t)
i is

uniformly sampled over the d-dimensional unit sphere S (lines 9-10). These values

are then used to construct an unbiased estimate of ∇xi
L̃(x,λ) using (4.12), and then

to update the raw parameter x̃(t)
i along with a projection operation back to the set X̃
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Algorithm 3 Compressed Decentralized Optimization with Bandit Feedback
Initialize: Random x̃(1)

i ∈ X̃ individually for each i ∈ [n] and λ
(1)
ij = 0 for each j ∈ Ni.

x̂(0)
i = 0 for each i ∈ [n], number of iterations T , learning rate η, parameters ζ, δ > 0.

(Communicate in the first iteration without compression to ensure that x̃(1) = x̂(1).)

1: for t = 1 to T in parallel for i ∈ [n] do
2: Compute q(t)

i = C(x̃(t)
i − x̂(t−1)

i )
3: for nodes k ∈ Ni ∪ {i} do
4: Send q(t)

i and receive q(t)
k

5: Update x̂(t)
k = x̂(t−1)

k + q(t)
k

6: Compute x(t)
k = ΠX̃ (x̂(t)

k )
7: end for
8: Update running average for local parameter:

x(t)
i,avg = 1

t
x(t)

i + t−1
t

x(t−1)
i,avg

9: Sample u(t)
i ∼ U(S)

10: Query the two values: fi(x(t)
i ± ζu(t)

i , ξ
(t)
i )

11: Compute the Lagrangian primal gradient estimate:

p(t)
i := 2

∑
j∈Ni

λ
(t)
ij ∇xi

gij(x(t)
i , x(t)

j )

+ d

2ξ

[
fi(x(t)

i +ζu(t)
i , ξ

(t)
i )−fi(x(t)

i −ζu(t)
i , ξ

(t)
i )
]

u(t)
i

12: Update the primal variable via gradient descent:

x̃(t+1)
i = ΠX̃

(
x̃(t)

i − ηp(t)
i

)

13: For all j ∈ Ni, update the dual variables via gradient ascent:

λ
(t+1)
ij =

[
λ

(t)
ij + η

(
gij(x(t)

i , x(t)
j )− δηλ

(t)
ij

)]+
14: end for
Output: Time averaged parameters x(T )

i,avg for all i ∈ [n].
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(lines 11-13). Finally, the dual variables are also updated via gradient descent along

with the projection to the positive real space to ensure feasibility (line 13). As in the

case of sample feedback, the update of the dual steps in line 13 and the initialization

λ
(1)
ij = 0 ensures that λ

(t)
ij = λ

(t)
ji for all t ∈ [T ], and for all i ∈ [n], j ∈ Ni.

4.4.2 Main Result: Bandit Feedback

We now present the convergence result rate for Algorithm 3 which optimizes (4.1) in

the bandit feedback scenario. The proof details are provided in Appendix B.

Theorem 4. Consider running Algorithm 3 for T iterations with fixed step size

η = a√
T

for positive constant a, with perturbation constant ζ = 1
T

, and regularization

parameter δ =
1−
√

1− 256η2(1+m)G̃2
ω2

4η2 , where ω ∈ (0, 1) is the compression factor. Under

Assumptions A.4-A.8, for T ≥ 256a2(1+m)G̃2

ω2 , the expected value of F evaluated at the

time averaged vector x(T )
avg := 1

T

∑T
t=1 x(t) satisfies:

E[F (x(T )
avg)]−F (x∗) ≤ 2R2

a
√

T
+ a√

T

[16
ω2 d2(1+m)G2 + C2

]
+ 2
√

mG̃RC

δar
√

T
+ 4RG

rT
+ 4
√

nG

T

(4.13)

where r ≤ R√
n
. For any i ∈ [n], j ∈ Ni, we have:

E
[
gij(x(T )

i,avg, x(T )
j,avg)

]
≤ 1

T 1/4

√8GR

a
+
√

8δa(R + r
√

n)G
r

+ 8GRδa


+ 1√

T

√(32
ω2 d2(1+m)G2+2C2

)
+4
√

mG̃RC

rδa2 +4R2δ

+ 1√
T

√
δa2

(32
ω2 d2(1 + m)G2 + 2C2

)
+ 4
√

mG̃RC

r
+ 1

T 3/4

√
8(R + r

√
n)G

ra
(4.14)
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where x(T )
k,avg is time averaged parameter of node k.

The above result establishes that for a given compression requirement ω ∈ (0, 1),

the sub-optimality of the objective E[F (x(T )
avg)] − F (x∗) is O

(
1

T 1/2

)
. Similarly, the

expected constraint violation for i ∈ [n] and j ∈ Ni given by E
[
gij(x(T )

i,avg, x(T )
j,avg)

]
is O

(
1

T 1/4

)
. Thus, in effect by choosing a large enough value of T , the number of

iterations Algorithm 3 is run for, the obtained stacked parameter x(T )
avg is a good

estimate of the optimal solution of the overall objective (4.1). Moreover, the result

obtained matches the rate that was obtained for the sample feedback case in Theorem 3,

where the nodes had access to the samples at every stage. Theorem 4 thus establishes

that even when node access to samples is not assumed, but rather only to a pair of

values of the local objectives, the derived convergence rate suffers no degradation.

4.5 Experiments

We provide simulations to demonstrate the effectiveness of our proposed scheme for

communication efficient optimization.
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(a) Comparison of relative cost gap F (x̄(t))−F (x∗)
F (x̄(1))−F (x∗)

at iteration t.
(b) Comparison of relative parameter error
∥x̄(t)−x∗∥

∥x∗∥ at iteration t.

(c) Comparison of relative cost gap comparison
for number of bits communicated for different
schemes.

(d) Constraint value gij(x̄(t)
i , x̄(t)

j ) for a randomly
chosen edge (i, j).

Figure 4.1 Performance comparison for various schemes on a decentralized QCQP objective in
(4.15)
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4.5.1 QCQP Objective

4.5.1.1 Setup and Hyperparameters

We consider decentralized optimization on a randomly generated Erdos-Renyi graph

of n = 30 nodes with an edge probability of 0.15. For each node i ∈ [n], we consider

a quadratic objective given by fi(xi, ξ) = xT
i Aixi + bT

i xi where xi denotes the node

model parameter and ξi = (Ai, bi) denotes the sample. For each node, Ai ∈ R10×10

is sampled from a Wishart distribution with 10 degrees of freedom identity scaling

matrix, and vector bi is sampled from a Gaussian distribution with mean and variance

drawn uniformly at random from the interval [0,1] in each iteration.

We consider the feasible parameter space X to be the Euclidean ball of radius
40√
30 centered at the origin. For each i ∈ [n], j ∈ Ni, we model the constraints on the

node parameters as gij(xi, xj) = ∥xi − xj∥2 + cij where cij is independently drawn

uniformly at random from [−5,−3]. The overall objective is thus given by:

min
{x1,...,xn}∈X

F (x) =
n∑

i=1
Eξi

[xT
i Aixi + bT

i xi] (4.15)

s.t. ∥xi − xj∥2
2 + cij ≤ 0, ∀i ∈ [n], j ∈ Ni

where x denotes concatenation of {xi, . . . , xn}. Note that choosing cij ≤ 0 for all

i ∈ [n], j ∈ Ni implies that the above QCQP has a non-empty feasible set. We set

η = 0.001, and choose δ = 100, and run all considered schemes for a total of 5× 104

iterations. For gradient estimation in case of bandit feedback, we take ζ = 10−4.
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4.5.1.2 Results

The simulation results for optimizing objective (4.15) are presented in Figure 4.1,

where we compare vanilla decentralized (no compression) algorithm with our proposed

compressed optimization procedure using Sign [KRSJ19a], TopK [SCJ18a] and

composed Sign + TopK [BDKD19a] compression operators. Schemes with ‘Bandit’

in parenthesis indicate those implemented via Algorithm 3 for the case of gradient

estimation in bandit feedback, and via Algorithm 2 with sample feedback otherwise.

Figure 4.1(a) shows the relative cost gap for the objective given by F (x̄(t))−F (x∗)
F (x̄(1))−F (x∗) , and

Figure 4.1(b) shows the difference of the parameter from the optimal value normalized

to the latter, given by ∥x̄(t)−x∗∥
∥x∗∥ for iteration t. We conclude that schemes with

compression, including the ones implemented via bandit feedback, effectively perform

the same as uncompressed vanilla training to minimize the objective. The benefit of

our proposed scheme can be seen in Figure 4.1(c), where we plot the relative cost gap

with the number of bits communicated among the nodes, assuming precision of 32bit

floats. To achieve a target relative cost gap of around 10−3, compressed schemes use

significantly fewer bits than vanilla decentralized training, saving a factor of about

7× with TopK compression, factor of 30× when using Sign compression operation,

and a factor of around 50× for the composed Sign + TopK compression operator.

Figure 4.1(d) shows the constraint gij(x̄(t)
i , x̄(t)

j ) for a randomly chosen i ∈ [n] and

j ∈ [n]. The constraint value settles to a negative value, which implies that each

scheme arrives at an objective value lying in the feasible space of the problem (4.15).

In conclusion, our proposed schemes in Algorithms 2 and 3 for communication

efficient decentralized optimization provide performance similar to that in the full

precision vanilla decentralized method, while saving substantially in the total number
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of bits communicated among the nodes during the optimization process.

4.5.2 Logistic Regression Objective

4.5.2.1 Setup and Hyperparameters

We again work with an Erdos-Renyi graph of n = 30 nodes with an edge probability

of 0.3. We consider a logistic regression setting where feature vectors pi ∈ Rd (d=10)

for each node are generated from a standard normal distribution. The corresponding

output yi ∈ {1,−1} is sampled under the probability: p(yi = 1) = 1
1+e

−x⊤
i

pi
where xi

denotes the underlying node model parameter. We generate the underlying model

parameters such that they are close (in norm sense) for adjacent nodes. We denote by

ξi the pair (pi, yi) for each node, which are data samples generated for each iteration

of the algorithm. The objective of the nodes is to maximize the log-likelihood of the

generated data, which can equivalently be expressed by the following optimization

problem:

min
{x1,...,xn}∈X

F (x) =
n∑

i=1
Eξi

[log(1 + e−yix⊤
i pi)] (4.16)

s.t. ∥xi − xj∥2
2 + cij ≤ 0, ∀i ∈ [n], j ∈ Ni

As in the earlier QCQP formulation, we consider R = 40 and the constraints on the

node parameters to be gij(xi, xj) = ∥xi−xj∥2 +cij where cij are independently drawn

uniformly at random from [−10,−7]. We set η = 0.001, and choose δ = 100, and run

all considered schemes for a total of 103 iterations. For gradient estimation in case of

bandit feedback, we take ζ = 10−4. To evaluate the models for their generalization

capabilities, we also evaluate their classification performance on a test set (comprising
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of 500 samples per node).

(a) Comparison of relative cost gap F (x̄(t))−F (x∗)
F (x̄(1))−F (x∗)

at iteration t.
(b) Comparison of test accuracy performance at
iteration t.

(c) Comparison of relative cost gap comparison
for number of bits communicated for different
schemes.

(d) Constraint value gij(x̄(t)
i , x̄(t)

j ) for a randomly
chosen edge (i, j).

Figure 4.2 Performance comparison for various schemes on logistic regression training in (4.16).

4.5.2.2 Results

We compare the performance of vanilla decentralized training for optimizing (4.16)

against our proposed method using compression in Figure 4.2. Figure 4.2(a) shows
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the relative sub-optimality of the different model parameters against the true model3.

Figure 4.2(b) shows the test accuracy performance of the datasets, where we observe

all compression schemes achieving similar accuracy as uncompressed vanilla training.

To see the gain in using compression, we plot the relative sub-optimality against the

total numbers of bits communicated in Figure 4.2(c), where we observe that to achieve

a similar level of sub-optimality of around 10−2, compared to vanilla decentralized

training, SignTopK compression saves a factor of about 50×, Sign compression

saves a factor of 20× and TopK compression saves a factor of around 7×. This, in

conclusion, demonstrates the advantage of using our proposed communication efficient

scheme for a logistic regression based classification scenario. The constraint values

for all the schemes for a randomly chosen edge are shown in Figure 4.2(d), where we

observe that all schemes settle to a negative value, and thus end up in the feasible

space of the problem (4.16).

4.6 Conclusion

We proposed and analyzed a communication-efficient saddle-point algorithm for

multi-task decentralized learning under sample feedback and bandit feedback data

access scenarios. Our theoretical results demonstrated order-wise same performance

as un-compressed training for convex objectives while saving significantly on the

number of bits transmitted, which is also corroborated by our numerical experiments.

As many learning paradigms consider non-convex objectives, e.g. Deep Learning,

3We remark that for a large enough values of cij such that g(xi, xj) ≤ 0 for all xi, xj (where xi

denotes the optimal model parameter for node i that generates the data), the optimal solution x∗ is
the stacking of all xi, i ∈ [n].
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it would be of interest to extend the analysis of our proposed algorithm to such

settings as part of future work. It is also of interest to incorporate additional

mechanisms for communication reduction along with compression in our proposed

algorithm for greater communication efficiency such as local gradient iterations or

triggered-communication [BDKD19a,SDGD23], and theoretically analyze the resulting

procedure.
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CHAPTER 5

Representation Transfer

In contemporary machine learning, effectively utilizing limited data to build accurate

models is critically important, particularly in domains where data acquisition is

expensive or time-consuming. Linear regression, a fundamental technique in statistics

and machine learning, often encounters challenges in such scenarios due to the

necessity of sufficient data to ensure robust model training. Despite its relative

simplicity, linear regression serves as a crucial stepping stone toward understanding

and implementing more complex models, such as neural networks. Enhancing linear

regression through innovative methods not only addresses immediate challenges but

also lays the groundwork for advancements in more sophisticated machine learning

models.

One promising solution to this challenge is leveraging pre-trained models from

related domains—an approach known as transfer learning. This chapter explores

the construction of a linear regression model for a target data domain characterized

by a scarcity of samples. Our innovative approach utilizes a set of pre-trained

regression models, each derived from potentially diverse source domains. By assuming

a structured representation for the data-generating linear models across both source

and target domains, we propose a representation transfer-based learning method

tailored to the target model.
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The proposed methodology unfolds in two crucial phases:

1. Representation Adaptation: This phase involves using the varied source

representations to construct a new representation that is finely tuned to the target

data. This adaptation leverages the inherent structures and patterns from the source

domains to inform the target representation.

2. Model Fine-Tuning: In this subsequent phase, the adapted representation

serves as an initialization for a comprehensive fine-tuning procedure. This process

entails re-training the entire, potentially over-parameterized, regression model on the

target data, refining it to better fit the specificities of the target domain.

For each of these phases, we provide rigorous theoretical guarantees in the form

of excess risk bounds. These bounds compare the learned model’s performance to

that of the true data-generating target model, illustrating a notable improvement in

sample complexity. Specifically, our method demonstrates a reduction in the number

of samples required to achieve a comparable level of excess risk, thereby underscoring

the practical benefits of incorporating transfer learning into linear regression tasks.

In this chapter, we delve into the detailed development and implications of

this representation transfer-based learning approach. We discuss the theoretical

foundations underpinning our method, present empirical results that validate its

effectiveness, and highlight the broader impact of transfer learning on enhancing linear

regression models in data-constrained environments. This work not only advances the

theoretical understanding of transfer learning but also provides practical insights for

its application in real-world scenarios where data limitations are a significant concern.
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5.1 Introduction

A critical challenge for Deep Learning applications is the scarcity of available labeled

data to train large scale models that generalize well to the data distribution. This is

captured under the framework of Few-Shot Learning where Transfer Learning has

emerged as an attractive framework to address this issue [LCS18]. In transfer learning,

one typically has access to a model trained on some data domain (hereby called

source domain) that can be adapted to the data domain of interest (target domain).

Within this context, a recently proposed strategy is that of representation transfer

learning [BCV13,Ben12], where one typically assumes a shared structure between

the source and target learning tasks. The idea is to then learn a feature mapping for

the underlying model (e.g. Neural Network representations) using the sample rich

source domain that can be utilized directly on the target domain, for e.g, by training

a few layers on top of the obtained network representation. This adaptation utilizes

much fewer samples than what is required for training the entire model from scratch,

while achieving good generalization performance which has been empirically observed

for various large-scale machine learning and signal processing applications including

image, speech and language [ZZ22,LCS18,JZW+18,LLS20] tasks.

A defining factor in the need for representation transfer methods is that the

source and target domains have different distributions. Learning across different

domains has been studied extensively in the context of Domain Adaptation (see for

e.g. [BCK+07,MMR09]) where it is usually assumed that source and target domain

data can be accessed simultaneously. However, in many important practical scenarios

of interest, the target data samples (labeled or unlabeled) are not available when

training the source models. Transferring the source dataset to the target deployment
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scenario is infeasible for modern large-scale applications and violates data privacy.

Thus there has been an increasing interest in transferring pre-trained source models

to the target domain for sample efficient learning.

Despite the immense empirical success of representation transfer learning, devel-

opment of a theory for understanding the generalization of representation learning

methods and the sample complexity requirements is still in its infancy. Recent efforts

in this direction have been made in understanding generalization for the simpler

case of linear regression models [DHK+21,CLL21,TJJ21,MPRP16]. Within these

works, [DHK+21,TJJ21,MPRP16] consider a common low-dimensional representation

in the data generation process for the source and target domains, while [CLL21] allows

for the general case of data-generating representations being different. However, the

analysis presented in that work requires the number of samples at the target to scale

with the dimension of the model (see [CLL21, Theorem 3.1]), which is impractical for

few-shot learning scenarios.

A related line of work for understanding generalization of large scale models in the

small sample regime is through the lens of benign overfitting. This is inspired by the

surprising (empirical) observation that many large models, even when they overfit,

tend to generalize well on the data distribution [BHM18,ADH+19]. In this context,

[BLLT20,HMRT22,SBKS20] study this phenomena for linear models and analyze

the generalization properties of the min-norm solution, where optimization methods

like Gradient Descent are known to converge to in this setting [WZBG21,GLSS18].

Specifically, these works seek to understand how the data distribution affects the

excess population risk of the min-norm solution relative to the true data-generating

linear model.
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We make efforts to understanding the generalization of linear models while lever-

aging pre-trained models inspired by the notions of representation transfer learning

and benign-overfitting discussed above. These ideas lend themselves organically to

the construction of a sample efficient training method for the target which we describe

below briefly, along with our contributions.

This work provides a method for leveraging multiple pre-trained models for linear

regression objectives (of dimension d) on a target task of interest in the small sample

regime (samples nT ≪ d). The proposed two-phase approach leverages representation

transfer (Phase 1) and over-parameterized training (Phase 2) to construct the target

model, and we provide theoretical bounds for the excess risk for each phase of the

training process (Theorem 5 and Theorem 6). In particular, we show that the learned

model after the first phase has an excess risk of O (q/nT ) + ϵ, where q is dimension

of the subspace spanned by learned source representations and ϵ is a constant that

captures the approximation error when utilizing source representations for the target

model (c.f. Assumption 9). This provides a gain in sample complexity compared to

the baseline O (d/nT ) when learning the target model from scratch when the given

source representations span a subspace of dimension much smaller than d (i.e. q ≪ d).

For the case when all representations are the same (ϵ = 0), we recover the result

of [DHK+21] for a single common representation. Similarly, for the overall model

obtained after the second phase, we provide conditions on the target data distribution

and the source/target representations that lead to an excess risk much smaller than

O (d/nT ). Thus, we theoretically demonstrate the benefit of leveraging pre-trained

models for linear regression.
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5.1.1 Related Work

The problem of learning with few samples has been studied under the framework

of Few-Shot learning, where Meta-learning– using experiences from previously en-

countered learning tasks to adapt to new tasks quickly [FAL17], and Transfer-

learning– transferring model parameters and employing pre-training or fine-tuning

methods [Ben12], are two major approaches. Theoretical works on Meta-learning

algorithms typically assume some relation between the distribution of source and

target tasks, for e.g., being sampled from the same task distribution. A more general

framework is that of Out-of-Domain (OOD) generalization, where the goal is to learn

models in a manner that generalize well to unseen data domains [WLL+22].

Transfer learning, especially, representation transfer learning has shown empirical

success for large-scale machine learning [BCV13], however, theoretical works on

understanding generalization in this setting are few; see [MB17,GWH16,MPRP16].

A related line of work is representation learning in context of Domain Adaptation

(DA), see for e.g. [ZDCZG19, BDBCP07, SLG+21, ZLLJ19]. However, this usually

assumes that source and data domains can be accessed simultaneously. There are

deviations from this theme in Multi-Source DA where the goal is to understand how

multiple source models can be combined to generalize well on a target domain of

interest, although without changing the learned model based on the target samples

[MMR08,LHF20,ARP+21].

In context of leveraging pre-trained models for linear regression, our work is

most closely related to [DHK+21,CLL21] that theoretically analyze representation

transfer for linear models. In contrast to [DHK+21], we allow for the true target

representations to be different among the source models as well as the target, and
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introduce a notion of closeness between these representations (c.f. Assumption 9).

Although a similar setting was considered in [CLL21] where representations are

assumed to be close in the ℓ2 norm, their resulting bound for the fine-tuned model

risk shows that the required number of target samples scale with the dimension of the

learned model for efficient transfer [CLL21, Theorem 3.1]. In contrast, the proposed

method in our work provides analysis relating these bounds to the properties of the

target data distribution taking inspiration from works on benign overfitting for linear

regression [BLLT20,GLSS18,SBG21]. This enables us to identify conditions on the

target data distribution that allow the required target samples to be much smaller

than the overall model dimension (see Theorem 6).

5.1.2 Chapter Organization

We set up the problem and define the notation we use throughout the chapter in

Section 5.2. Section 5.3 describes our training method for the target task model when

given access to multiple pre-trained source models. Section 5.4 establishes excess risk

bounds of our proposed scheme, which are proved in Sections C.1 and Section C.2.

Section 5.5 provides numerical results and some concluding remarks are presented in

Section 5.6. Omitted proof details are provided in Appendix C of this thesis.

5.2 Problem Setup and Notation

Notation: We use boldface for vectors and matrices, with matrices in uppercase.

For a matrix A, we denote the projection matrix onto its column space by PA :=

A(A⊤A)†A⊤ where W† denotes the Moore-Penrose pseudo-inverse of the matrix

W. We define P⊥
A := I − PA, where I denotes the identity matrix of appropriate
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dimensions. We denote by C(A) the column space of a matrix A and by σi(A), λi(A)

its ith largest singular value and eigenvalue, respectively. ∥.∥F denotes the Frobenius

norm. For a vector v, ∥v∥2 denotes the ℓ2 norm, while for a matrix V, ∥V∥2 denotes

the spectral norm. Tr[ . ] denotes the trace operation. ≲ denotes the inequality sign

where we ignore the constant factors. The notation O is the ‘big-O’ notation and we

define [m] = {1, 2, . . . , m}.

Setup: We consider m number of source tasks and a single target task. We denote

by X ⊆ Rd the space of inputs and Y ⊆ R the output space. The source and target

tasks are associated with data distributions pi, i ∈ [m] and pT , respectively, over the

space X . We assume a linear relationship between the input and output pairs for

source task i ∈ [m] given by:

yi = x⊤
i B∗

i w∗
i + zi, θ∗

i := B∗
i w∗

i (5.1)

where xi ∈ X denotes an input feature vector drawn from distribution pi, yi ∈ Y

is the output, and zi ∼ N (0, σ2) denotes Gaussian noise. The associated true task

parameter θ∗
i := B∗

i w∗
i is comprised of the representation matrix B∗

i ∈ Rd×k which

maps the input to a lower k−dimensional space (where k ≪ d) and a head vector

w∗
i ∈ Rk mapping the intermediate sample representation to the output. The data

generation process for the target task is defined similarly with distribution pT and

associated target task parameter given by θ∗
T = B∗

T w∗
T . For sources i ∈ [m], we

define the input covariance matrix Σi = Exi∼pi
[xix⊤

i ] and similarly for the target

distribution, ΣT = ExT ∼pT
[xT x⊤

T ].

In our scenario of interest, the pre-trained models are trained ‘offline’ on source
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distributions and are made available to the target task during deployment. That is,

for training the target task, we have access to only the models learned by the source

tasks and not the source datasets themselves. For learning the pre-trained source

models, we assume nS number of samples for each of the source tasks (thus, mnS

source task samples in total) denoted by the pair (Xi, yi) for source i ∈ [m] where

Xi ∈ RnS×d contains row-wise input feature vectors and yi ∈ RnS is the vector of

corresponding outputs. We similarly have nT samples (XT , yT ) for the target task

where nT ≪ nS. We also assume nT ≪ d.

With the data generation process defined above, we now define the expected population

risk on the target distribution for θ̂:

R(θ̂) = Ex∼pT
Ey|x⊤θ∗

T
[(y− x⊤θ̂)2]

Our goal is to learn a model θ̂ for the target task that generalizes well to the target

data distribution. Thus, we want θ̂ that minimizes the Expected Excess Risk defined

by:

EER(θ̂,θ∗
T ) := R(θ̂)−R(θ∗

T ) (5.2)

Since we are given access to only nT ≪ d target samples, it is infeasible to learn a

predictor from scratch that performs well for the excess risk defined in (5.2).

To aid learning on the target, we have access to models learned on the source tasks.

Specifically, the target has access to the trained source models representations {B̂i}m
i=1
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that are solutions of the following empirical minimization problem:

{B̂i, ŵi}m
i=1 ← min

{Bi},{wi}

1
mnS

m∑
i=1
∥yi −XiBiwi∥2

2 (5.3)

Since we have data rich source domains (nS ≫ d), we expect the obtained source

models B̂iŵi to be close to θ∗
i for i ∈ [m] (c.f. Equation (5.1)). For effective

representation transfer, we also want the learned representations {B̂i} to be close to

the true representations {B∗
i }, in the sense that they approximately span the same

subspace. We make this notion precise in Lemma 1 stated with our main results in

Section 5.4. Given access to the source model representations, our proposed method

for training the target model leverages the representation maps {B̂i}m
i=1 to drastically

reduce the sample complexity. We describe our training method in Section 5.3 and

provide the excess risk bounds for the resulting target model in Section 5.4.

5.3 Learning with Multiple Pre-trained models

To leverage source representations for training the target model, it is instinctive

that there should be a notion of closeness between the true source and target model

representation that can be exploited for target task training. We now make this notion

precise. We first define as V∗ ∈ Rd×l the matrix whose columns are an orthonormal

basis of the set of columns of all the source representation matrices {B∗
i }m

i=1. The

individual source models can thus be represented by θ∗
i = V∗w̃∗

i for all i ∈ [m]. The

target model θ∗
T = B∗

T w∗
T governing the target data generation is assumed to satisfy

the following:

Assumption 9. Consider the projection of the target model B∗
T w∗

T to space C(V∗)
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given by V∗w̃∗
T for some w̃∗

T ∈ Rl. Then for some ϵ > 0, we have:

Ex∼pT

[
x⊤V∗w̃∗

T − x⊤B∗
T w∗

T

]2
≤ ϵ2

The value of ϵ in Assumption 9 above captures how far away the output of the true

target model is to a model learned using the true source representations. Note that if

the columns of B∗
T can be constructed by the vectors in V∗, the above is satisfied for

ϵ = 0. Assumption 9 can also be re-written as:

∥∥∥Σ1/2
T (V∗w̃∗

T −B∗
T w∗

T )
∥∥∥2

2
≤ ϵ2 (5.4)

We are given access to nT samples for the target machine given by (XT , yT ) and

pre-trained models representations from the sources {B̂i}m
i=1 (c.f. Equation (5.3)).

Our proposed training scheme consists of two phases, which we will now describe

independently in the following. We split the available nT target samples into nT1 , nT2

for the two respective phases. At a high level, in Phase 1, we make use of the available

source representations to construct a target representation and adapt it to the target

task using nT1 samples. The obtained model is then used as an initialization for Phase

2 where we train the entire (over-parameterized) model, including the representation

matrix, using nT2 samples. We provide the resulting excess risk bounds for the model

obtained after Phase 1 and the final target model after Phase 2 in Section 5.4.

5.3.1 Phase 1: Transferring source representation to target

In the context of utilizing pre-trained models, we will make use of the empirical

source representations {B̂i}m
i=1 to learn the target model. We first construct a matrix
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V̂ ∈ Rd×q whose columns are the orthonormal basis of the columns of {B̂i}m
i=1 which

denotes a dictionary of the learned source representation matrices1. Note that we have

q ≤ mk. Having constructed the representation, we train a head vector ŵT1 ∈ Rq

minimizing the empirical risk on nT1 samples:

ŵT1 ← min
wT ∈Rq

1
nT1

∥∥∥yT1 −XT1V̂wT

∥∥∥2

2
(5.5)

Here, yT1 ∈ RnT1 denotes the first nT1 values of yT and XT1 ∈ RnT1 ×d the first nT1 rows

of XT . We denote the resulting model at the end of this phase by θPhase1 := V̂ŵT1 .

Since we only have to learn the head vector using the available representation V̂, the

sample complexity requirement is greatly reduced, which is also evident from our

bound for EER(θPhase1 ,θ∗
T ) provided in Theorem 5.

5.3.2 Phase 2: Fine-tuning with initialization

The obtained model θPhase1 from the previous phase utilizes empirical source repre-

sentation for its construction. However, the true target model θ∗
T may not lie in the

space spanned by the source representation and thus θPhase1 lies in a ball centered θ∗
T

whose radius scales with ϵ (c.f. Assumption 13). To move towards the true model θ∗
T ,

we utilize nT2 number of target samples (independent from the nT1 samples in the

previous phase) to train the entire linear model using Gradient Descent (GD) with

θPhase1 as the initialization. In particular, the GD procedure minimizes the following

1The construction of V̂ from {B̂i} can be done by the Gram-Schmidt process. This can be done
in the pre-deployment phase after training the source models, and V̂ can be made available directly
to the target task.
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starting from θPhase1 :

f(θ) = 1
nT2

∥yT2 −XT2θ∥
2
2 (5.6)

Here, yT2 ∈ RnT2 and XT2 ∈ RnT2 ×d are the remaining sample values from Phase 1.

Since nT2 ≪ d, we are in an over-parameterized regime, for which it is known that

GD procedure optimizing the objective in (5.6) converges, under appropriate choice

of learning rate, to a solution closest in norm to the initialization [WZBG21,BHX20,

GLSS18]; mathematically:

min
θ
∥θ − θPhase1∥2 (5.7)

s.t. ∥yT2 −XT2θ∥2 = min
b
∥yT2 −XT2b∥2

We denote the solution of the above optimization problem as θPhase2 , which forms

our final target task model. We provide bounds for EER(θPhase2 ,θ∗
T ) in Theorem 6.

5.4 Main Results

We now provide theoretical bounds on the excess risk for the target (c.f. Equa-

tion (5.2)) when leveraging pre-trained source models. In Section 5.4.1, we first state

excess risk bounds for the model obtained after Phase 1 (see Section 5.3.1), denoted

by θPhase1 := V̂ŵT , where target representation V̂ is constructed as a combination of

source representations and adapted to the target data using nT1 amount of target

samples by training a target-specific head vector ŵT . In Section 5.4.2, we provide our

overall excess risk for the model θPhase2 (c.f. Equation (5.7)) obtained by re-training
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the entire (over-parameterized) model via Gradient Descent with nT2 number of target

samples (independent form the previously utilized nT1 samples) using θPhase1 as the

initialization.

5.4.1 Theoretical results for representation transfer: Phase 1

We work with the following assumptions:

Assumption 10 (Subgaussian features). We assume that Ex∼pj
[x] = 0 for all

j ∈ [m] ∪ {T}. We consider p̄j to be the whitening of pj (for j ∈ [m] ∪ {T}) such

that Ex̄∼p̄j
[x] = 0 and Ex̄∼p̄j

[x̄x̄⊤] = I. We assume there exists ρ > 0 such that the

random vector x̄ ∼ p̄j is ρ2-subgaussian.

Assumption 11 (Covariance Dominance). There exists r > 0 such that Σi ⪰ rΣT

for all i ∈ [m].

Assumption 12 (Diverse source tasks). Consider the source models θ∗
i = V∗w̃∗

i

for i ∈ [m]. We assume that the matrix W̃∗ := [w̃∗
1, . . . , w̃∗

m] ∈ Rl×m satisfies

σ2
l (W̃∗) ≥ Ω

(
m
l

)
Assumption 13 (Distribution of target task). We assume that w̃∗

T follows a distri-

bution ν such that
∥∥∥Ew̃∼ν [w̃w̃⊤]

∥∥∥
2

is O
(

1
l

)
. We denote Σw̃∗

T
= Ew̃∼ν [w̃w̃⊤].

Note on Assumptions: Assumption 10 on sub-Gaussian features is commonly used

in literature to obtain probabilistic tail bounds [DHK+21,CLL21,SBG21,BLLT20].

Following [DHK+21], Assumption 11 states the target data covariance matrix is

covered by the covariance matrices of the source data distributions. We remark

that this assumption allows the covariance matrices to be different, in contrast to
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works [CLL21,TJJ21] that assume a common covariance matrix for all the distributions.

Assumption 12 (also made in related works [CHMS21,DHK+21,CLL21]) says that

the head vectors corresponding to the matrix V∗ for each source model should span

Rl. This effectively allows us to recover the representation V∗ provided enough

source machines (m > l) that individually capture one or more features of V∗. This

assumption is also central to proving our result in Lemma 1 provided below which

show that the matrices V̂ and V∗, whose columns form an orthonormal basis for the

span of {B̂i} and {B∗
i }, respectively, span the same subspace for constructing the

target model.

Lemma 1. Let matrix V̂ ∈ Rd×q be formed by empirical source representations

{B̂i} obtained from solving (5.3) and the matrix V∗ ∈ Rd×l formed from the true

representations {B∗
i }. Under Assumption 10-12, for any b ∈ Rl such that ∥b∥2 = 1,

ns ≫ ρ4(d + log(m/δ)) and nT1 ≫ ρ4(max{l, q} + log(1/δ)), with probability at-least

1− δ1, we have:

min
u∈Rq

∥∥∥XT1V̂u−XT1V∗b
∥∥∥

2
≤ σ2nT1

rnS

(
km + kdm log(κns) + log

( 1
δ1

))

A proof of the lemma above is provided in Section C.1. We now state our main

result for the excess risk on after Phase 1.

Theorem 5 (Phase 1 training result). Fix a failure probability δ ∈ (0, 1) and further

assume 2k ≤ min{d, m} and the number of samples in the sources and target satisfy

ns ≫ ρ4(d + log(m/δ)) and nT1 ≫ ρ4(max{l, q} + log(1/δ)), respectively. Define

κ = maxi∈[m] λmax(Σi)
mini∈[m] λmin(Σi) where λmax(Σi) denotes the maximum eigenvalue of Σi. Then

with probability at least 1−δ over the samples, under Assumptions 9 - 13, the expected
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excess risk of θPhase1 := V̂ŵ satisfies:

E[EER(θPhase1 ,θ∗
T )] ≲ σ2

nT1

(q + log(1/δ)) + ϵ2 + σ2
[

1
rnsm

log
(1

δ

)
+
(

kd log(κns) + k

rns

)]

where expectation is taken over w̃∗
T for the target task (c.f. Assumption 13). We

provide proof for Theorem 5 in Section C.1.

Discussion: The bound in Theorem 5 shows the population risk of the learned

model θPhase1 lies in a ball centered at the true target model risk R(θ∗
T ) with radius

ϵ2, which represents the approximation error for using source representations for the

target task (see Assumption 9). Note that the expected excess risk scales as O (q/nT1)

with respect to the number of target samples when the representation is learned

from the source representations. This demonstrates a sample gain compared to the

baseline of O (d/nT1) for learning the entire model (including representation) with the

target data when q ≪ d, that is, when the empirical source representations together

span a subspace of dimension much smaller than d. For the case when source and

target representations are all the same, B∗
T = B∗

i = B∗ ∈ Rd×k for all i ∈ [m], the

excess risk scales as O (k/nT1), which recovers the result of [DHK+21].

5.4.2 Theoretical results for overall scheme: Phase1 + Phase2

We require the following additional assumptions:

Assumption 14. The rows of the target data matrix XT are linearly independent.

Assumption 15. The Gradient Descent procedure to optimize (5.6) converges to
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θPhase2 with f(θPhase2) = 0.

Assumption 14 is typically made in literature for analysis in the over-parameterized

regime for linear regression, see [BLLT20], and can also be relaxed to hold with high

probability instead and incorporated in the analysis [SBG21]. Assumption 15 holds

in our setting as the objective in (5.6) is strongly convex and smooth for which GD

can converge to the optimum [BV04].

Theorem 6 (Phase 1 + Phase 2 training result). Consider obtaining the final target

model by using nT1 samples during Phase 1 for representation transfer and then

fine-tuning in Phase 2 with nT2 samples (independently drawn from Phase 1). Denote

the eigenvalues of the covariance matrix of the underlying data ΣT by {λi}d
i=1. Then

under Assumptions 9-15, the excess risk of the final parameter θ̂T := θPhase2 is bounded

as follows with probability at least 1− δ:

E[EER(θ̂T ,θ∗
T )] ≲ λ1

λd

r0(ΣT )
nT2

(
σ2

nT1

(q + log(1/δ)) + ϵ2
)

+ rσ2 log
(1

δ

)(
k∗

nT2

+ nT2

Rk∗(ΣT )

)

+ λ1σ
2

λd

r0(ΣT )
nT2

(
1

rnsm
log

(1
δ

)
+
(

kd log(κns) + k

rns

))

where rk(ΣT ) = Σi>kλi

λk+1
, Rk∗(ΣT ) = (Σi>kλi)2

Σi>kλ2
i

. Here, constant b > 1 and k∗ = min{k ≥

0 : rk(Σ) ≥ bnT2} with k∗ ≤ nT2
c1

for some universal constant c1 > 1.

We provide a proof for Theorem 6 in Section C.2.

Discussion: Theorem 6 shows the excess risk of our overall target model (θ̂T =

θPhase2) as a function of the number of samples nS, nT1 , nT2 and parameters depending
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on the target data covariance matrix, ΣT . Since we re-train the entire model (including

the representation) with nT2 target samples, the population risk of the learned model

R(θPhase2) can be made closer to the true risk R(θ∗
T ) by increasing nT2 , which is in

contrast to the result of Theorem 5 which shows closeness only in an ϵ2 radius ball

due to using source representation directly to construct the target model.

We now provide a baseline comparison to the standard linear regression scenario

where we do no utilize any source models and instead learn the target task model

from scratch using the available nT = nT1 + nT2 samples. The excess risk in this

setting is O
(

σ2d
nT

)
. If the number of source samples are large enough (nS ≫ d) to get

a good empirical performance on the source models (c.f. Equation (5.3)), the bound

from Theorem 6 demonstrates a sample gain compared to the baseline when:

λ1

λd

r0(ΣT )
nT2

(
σ2

nT1

(q + log(1/δ)) + ϵ2
)

+ cσ2 log
(1

δ

)(
k∗

nT2

+ nT2

Rk∗(ΣT )

)
≪ σ2d

nT1 + nT2

(5.8)

It can be seen that for the above relation to hold, we require:

• The target data covariance matrix ΣT should be such that the term Rk∗(ΣT ) is

much larger than nT2 , and k∗ ≪ nT2 . This is satisfied, for e.g., in the case when

eigenvalues of ΣT decay slowly from largest to smallest, and are all larger than

a small constant [BLLT20].

• Using the definition of r0(ΣT ) =
∑d

i=1 λi/λ1, the following provides a sufficient

condition the first term on the L.H.S. of (5.8):

q
∑d

i=1 λi

nT1nT2λd

≪ d

nT1 + nT2

91



This, is turn, imposes the following restriction on q, which is the dimension of

the subspace formed by the source representations {B̂i}:

q ≪ dλdnT1nT2

(∑d
i=1 λi)(nT1 + nT2)

(5.9)

Since nT1 + nT2 = nT , it is easy to check that the R.H.S. of (5.9) is maximized

when nT1 = nT2 = n/2. With this optimal splitting of the target samples for

each of the phases, we require q ≪ dλdnT

2
∑

i=1 λi
for the inequality in (5.8).

5.5 Numerical Results

We now provide numerical simulations for our proposed scheme for optimizing linear

regression objectives in a data scarce regime. To demonstrate the effectiveness of

leveraging pre-trained representations and fine-tuning, we consider the case where we

have access to the true representation matrix V∗ formed by the source representations.

We compare the performance of models obtained after Phase 1 and Phase 2 training

for different parameters of interest and discuss their sample complexity requirements.

5.5.1 Setup

We generate the d×q matrix V∗ matrix with entries sampled from the standard normal

distribution, with d = 1000 and q = 50. We generate nT1 ∈ {100, 200, 300, 1000}

number of samples for the target data for Phase 1 to form the matrix XT1 , which

is generated with i.i.d Gaussian entries with mean 0 and covariance matrix ΣT . To

simulate slowly decaying eigenvalues of ΣT , we set them as λj = e
−j
τ + ε for j ∈ [d],

where τ = 1 is the decay factor and ε = 0.0001. The true target model θ∗
T is generated

92



as u + v where u ∈ Rd lies in the span of V∗ and v is Gaussian vector with covariance

matrix Iσ2
T and zero mean. We call the expected ratio of u to v as the in-out mixture

representation ratio.2 The target output vector yT is generated as yT1 = XTθ
∗
T + zT1 ,

with zT1 being a Gaussian noise vector. Phase 1 training thus seeks to minimize the

objective in (5.5) (with V̂ replaced by V∗, since we assume access to complete source

representations) and we denote the output model θPhase1 . For Phase 2 training, we

optimize the objective in (5.6) using new nT2 ∈ {100, 200, 300, 1000} number of target

samples with θPhase1 as initialization to obtain the final model θPhase2 . We compare

the performance of θPhase1 and θPhase2 on 500 test samples generated from the target

data. As a baseline, we also consider the performance of the scheme which takes

nT1 + nT2 number of target samples and trains the model from scratch, i.e., without

leveraging the source representations V∗. We denote the model obtained form this

scheme as θ0.

5.5.2 Results

The results from Phase 1 and Phase 2 training for different splits for the number of

phase target samples and ϵ values3 are shown in Table 5.1. The numerical values,

which are averaged over 10 independent runs, denote the ratio of the error obtained

by the learned model after the respective phase and the error of the underlying true

data generation model θ∗
T for the target data on a test dataset. In a data-scarce

2The parameter σ2
T indirectly enables us simulate the value of ϵ in Assumption 9, with larger

values of σ2
T implying that θ∗

T lies farther away from the subspace spanned by the columns of V∗.
A higher σ2

T values thus yields a small value for the in-out representation mixture ratio.
3The values in the ‘In-Out Representation Mixture Ratio’ column in Table 5.1 correspond to

the ratio of the signal in the subspace spanned by columns of V∗ and the added out of subspace
signal (of variance σ2

T ) added to it to generate the true target model θ∗
T . Lower values of this ratio

correspond to higher values of σ2
T .
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regime, (nT1 , nT2) ∈ {(100, 100), (200, 200), (300, 300)}, the performance of the model

learned from scratch (without leveraging source representations; denoted by column

Scratch) can be unsatisfactory. As expected, even pre-training (Phase 1) and fine-

tuning (Phase 2) in low data regimes does not yield good performance if the source

models are not useful for the target data, which is the case when the in-representation

mixture to out-mixture ratio for θ∗
T is small, as shown by the performance for values

5dB, 1dB in Table 5.1. However, utilizing source representations gives significantly

better performance relative to training from scratch in cases when θ∗
T doesn’t lie

far off from V∗ as can be seen by comparing the values of Phase 2 and Scratch

training results for in-out signal mixture ratio of 50dB, 20dB, 10dB. Thus leveraging

source representations for target training can be beneficial in scare-data regimes when

source representation are useful for the target task and thus representation transfer is

practical. It can be seen that training from scratch could perform well for a data-rich

regime, (nT1 , nT2) = (1000, 1000). Here, the performance of the learned model after

Phase 1 degrades with decreasing in-out representation mixture ratio as the source

representations become less useful to learn θ∗
T . Meanwhile, performing fine-tuning

in addition to utilizing source representations, as in Phase 2, yields much better

performance of the overall learned model with relative errors much less than after

Phase 1. Thus, fine-tuning on target data (Phase 2) can be essential in addition to

leveraging source models directly by pre-training (Phase 1) when the true model θ∗
T

lies farther away from the subspace spanned by the source representations.
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5.6 Conclusion

In this chapter, we proposed a method for training linear regression models via

representation transfer learning in the limited sample regime, when given access to

multiple pre-trained linear models trained on data domains (sources) different form

the target of interest. We established excess risk bounds for the learned target model

when (i) source representations are used directly to construct a target representation

and adapted to the target task, and (ii) when the entire resulting model is fine-tuned

in the over-parameterized regime using target task samples. Our bounds showed a

gain in target sample complexity compared to the baseline case of learning without

access to the pre-trained models, thus demonstrating the benefit of transfer learning

for better generalization in the limited sample regime. Our provided numerical results

corroborated this fact and showed superior performance of our proposed scheme

compared to learning from scratch in data-scare regimes.

As future extensions to this work, it is of interest to see how non-linear activation

functions can be introduced in the model to analyze more complicated architectures

like Neural Networks (NNs). Analyzing representation transfer learning with multiple

NNs and utilizing recently developed results in benign over-fitting for this setting

[CLB22] is an interesting next step. In many scenarios of interest, for training the

source task models, unlabeled data from the target distribution might be available.

While there are empirical works utilizing unlabeled samples in the context of semi-

supervised adaptation [Sin21, MSS, ZLLJ19], theoretical results on understanding

generalization of representation transfer learning methods (with pre-training/fine-

tuning) and their sample complexity requirements are missing and would be an

interesting direction to pursue. It is also of interest to understand and construct
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schemes that can utilize unlabeled target data available during the source training

phase, in context of semi-supervised learning and understand the generalization

properties and sample complexity of the said schemes.
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CHAPTER 6

Discussion and Future Direction

In this dissertation, we have systematically addressed the critical challenges in feder-

ated learning, specifically focusing on communication efficiency, data heterogeneity,

and data scarcity. Through the development of novel methodologies and rigorous

theoretical analysis, we have introduced significant advancements that enhance the

robustness, scalability, and practical deployment of federated learning systems. These

contributions collectively form a comprehensive framework for improving the perfor-

mance and applicability of federated learning in diverse, real-world environments.

In the following sections, we summarize each of our contributions and then discuss

potential future extensions for these works:

6.1 Communication Efficient Learning

Our work on communication-efficient decentralized training, detailed in Chapter 3,

focused on developing novel compressed stochastic gradient descent (SGD) algorithms

for efficient learning. These algorithms leverage event-triggered communication,

local iterations, and compression techniques to significantly reduce the frequency

and volume of data exchanges between devices, thereby minimizing communication

overhead. Our theoretical analysis established convergence guarantees across different
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regimes, including strongly convex, convex, and non-convex loss functions. We

demonstrated that these methods achieve a convergence rate comparable to that of

vanilla SGD, while substantially reducing communication costs. This work highlights

the critical importance of optimizing communication protocols to enable scalable

federated learning, particularly in bandwidth-constrained environments.

6.2 Multi-task Learning

To address the challenge of data heterogeneity, Chapter 4 explores multi-task learning

within decentralized federated learning frameworks. These techniques facilitate

the simultaneous optimization of multiple related tasks, enabling the creation of

personalized models that cater to the unique data distributions and objectives of

individual devices. By incorporating communication-efficient strategies, such as

gradient compression and decentralized updates, we ensured that the training process

remains both scalable and efficient. Our contributions include formulating the multi-

task learning problem in decentralized settings for convex objectives and proposing a

communication efficient primal-dual algorithm for optimizing these objectives while

satisfying proximity constraints across devices to promote personalization. We derived

convergence rates for our proposed communication-efficient algorithm, demonstrating

that it achieves rates comparable to those of vanilla SGD in both sample feedback and

bandit feedback scenarios, while showing significant improvements in communication

efficiency through our empirical results.
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6.3 Representation Transfer Learning

Chapter 5 addresses the challenge of data scarcity, where we consider transfer learning

methods with a specific focus on linear models. By utilizing pre-trained regression

models from diverse source domains, we provided robust initializations for target

models, which were then fine-tuned using limited local data. This approach signif-

icantly enhances model performance and adaptability in data-scarce settings. We

employed techniques such as representation transfer and fine-tuning to ensure that

the transferred knowledge is effectively utilized in the target domain. Theoretical

guarantees on the excess risk bounds for these transfer learning methods were pro-

vided, ensuring their reliability and effectiveness. This demonstrates the potential

of transfer learning to mitigate the limitations posed by insufficient local data in

federated learning systems.

6.4 Future Work

Developing a unified framework that seamlessly combines the various facets of our work

– communication-efficient decentralized training, multi-task learning, and transfer

learning – could provide a more holistic solution to the challenges of federated learning

and presents numerous opportunities for future research.

Our work on communication efficient multi-task learning techniques have shown

promise in providing task oriented models in an efficient manner; however, there is

potential for further refinement. Future research could investigate more sophisticated

models for capturing the relationships between tasks, such as using deep neural

networks for task embedding, and thus extending the analysis to general objectives.
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Additionally, developing adaptive multi-task learning algorithms that can dynamically

adjust to changes in data distribution and task requirements would be valuable.

Our transfer learning methods have demonstrated effectiveness in mitigating

data scarcity, but there are several areas for further exploration. Extending these

techniques to more complex models, such as deep neural networks, could improve

their applicability to a wider range of tasks. Additionally, investigating methods for

selecting the most relevant pre-trained models for transfer, based on the target domain

characteristics, would enhance the effectiveness of transfer learning. Integrating our

proposed methods into a federated environment with multiple devices—where each

device serves as both a potential target and a source for transfer learning—presents

a compelling area for future research. This would enable a more dynamic and

collaborative approach to mitigating data scarcity in federated learning systems.
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Appendix A

Omitted Details for Chapter 3

A.1 Preliminaries for Convergence with Relaxed Assump-

tions

Proof of Proposition 1. This simply follows from the independence of the randomness

used in sampling stochastic gradients at different workers.

Proof of Proposition 2. We want to show the following bound on E
∥∥∥V(t)

∥∥∥2

F
for any t:

E
∥∥∥V(t)

∥∥∥2

F
≤ 1

(1− β)

t∑
k=0

βt−kE
∥∥∥∇F(X(k), ξ(k))

∥∥∥2

F
.

For any t, let θt = ∑t
k=0 βt−k.

E
∥∥∥V(t)

∥∥∥2

F
= E

∥∥∥∥∥
t∑

k=0
βt−k∇F(X(k), ξ(k))

∥∥∥∥∥
2

F

= θ2
tE
∥∥∥∥∥

t∑
k=0

βt−k

θt

∇F(X(k), ξ(k))
∥∥∥∥∥

2

F

≤ θt

t∑
k=0

βt−kE
∥∥∥∇F(X(k), ξ(k))

∥∥∥2

F

≤ 1
1− β

t∑
k=0

βt−kE
∥∥∥∇F(X(k), ξ(k))

∥∥∥2

F
. (A.1)
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A.2 Preliminaries for Convergence with Relaxed Assump-

tions

Fact 2. Consider the variance bound on the stochastic gradient for nodes i ∈ [n]:

Eξi
∥∇Fi(x, ξi)−∇fi(x)∥2 ≤ σ2

i ,

where Eξi
[∇Fi(x, ξi)] = ∇fi(x), then:

Eξ(t)

∥∥∥∥∥∥ 1
n

n∑
j=1

(
∇fj(x(t)

j )−∇Fj(x(t)
j , ξ

(t)
j )
)∥∥∥∥∥∥

2

≤ σ̄2

n
(A.2)

where ξ(t) = {ξ(t)
1 , ξ

(t)
2 , . . . , ξ(t)

n } denotes the stochastic sample for the nodes at any

timestep t and
∑n

j=1 σ2
j

n
= σ̄2

Proof.

Eξ(t)

∥∥∥∥∥∥ 1
n

n∑
j=1
∇fj(x(t)

j )− 1
n

n∑
j=1
∇Fj(x(t)

j , ξ
(t)
j )

∥∥∥∥∥∥
2

= 1
n2

n∑
j=1

Eξ(t)∥∇fj(x(t)
j )−∇Fj(x(t)

j , ξ
(t)
j )∥2

+ 1
n2

∑
i ̸=j

Eξ(t)

〈
∇fi(x(t)

i )−∇Fi(x(t)
i , ξ

(t)
j ),∇fj(x(t)

j )−∇Fj(x(t)
j , ξ

(t)
j )
〉

Since ξi is independent of ξj, the second term is zero in expectation, thus the above

reduces to:

Eξ(t)

∥∥∥∥∥∥ 1
n

n∑
j=1
∇fj(x(t)

j )− 1
n

n∑
j=1
∇Fj(x(t)

j , ξ
(t)
j )

∥∥∥∥∥∥
2

= 1
n2

n∑
j=1

Eξ(t)∥∇fj(x(t)
j )−∇Fj(x(t)

j , ξ
(t)
j )∥2
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≤ 1
n2

n∑
j=1

σ2
j = σ̄2

n

Fact 3. Consider the set of synchronization indices {I(1), I(2), . . . , I(k), . . .} ∈ IT . We

assume that the maximum gap between any two consecitive elements in IT is bounded

by H. Let ξ(t) = {ξ(t)
1 , ξ

(t)
2 , . . . , ξ(t)

n } denote the stochastic samples for the nodes at any

timestep t. Consider any two consecutive synchronization indices I(k) and I(k+1), then

for learning rate η, we have:

E


∥∥∥∥∥∥

I(k+1)−1∑
t′=I(k)

η(βV(t′) + ∇F (X(t′), ξ(t′)))

∥∥∥∥∥∥
2

F

 ≤ 2nH2G2η2
(

1 + β2

(1− β)2

)
. (A.3)

Proof. Using the fact that the sequence gap is bounded by H, we have I(t+1)−I(t) ≤ H

for all synchronization indices I(t) ∈ IT . Thus we have:

E


∥∥∥∥∥∥

I(k+1)−1∑
t′=I(k)

η(βV(t′) + ∇F (X(t′), ξ(t′)))

∥∥∥∥∥∥
2

F

 ≤ Hη2
I(k+1)−1∑
t′=I(k)

E
∥∥∥βV(t′) + ∇F (X(t′), ξ(t′))

∥∥∥2

F

≤ 2Hη2
I(k+1)−1∑
t′=I(k)

[
E
∥∥∥βV(t′)

∥∥∥2

F
+ E

∥∥∥∇F (X(t′), ξ(t′))
∥∥∥2

F

]

Using the bounded gradient assumption and definition of gap H, we can bound the

above as:

E


∥∥∥∥∥∥

I(k+1)−1∑
t′=I(k)

η(βV(t′) + ∇F (X(t′), ξ(t′)))

∥∥∥∥∥∥
2

F

 ≤ 2Hη2β2
I(k+1)−1∑
t′=I(k)

E
∥∥∥V(t′)

∥∥∥2

F
+ 2nH2G2η2
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=2Hη2β2
I(k+1)−1∑
t′=I(k)

n∑
i=1

E
∥∥∥v(t′)

i

∥∥∥2
+ 2nH2G2η2

(A.4)

Now we show that E
∥∥∥v(t)

i

∥∥∥2
≤ G2

(1−β)2 for all i ∈ [n] and for every t ≥ 0. Fix an

arbitrary i ∈ [n] and t ≥ 0. Define θt = ∑t
k=0 βk, we then have:

E
∥∥∥v(t)

i

∥∥∥2
= θ2

tE
∥∥∥∥∥

t∑
k=0

βt−k

θt

∇F (x(k)
i , ξ

(k)
i )

∥∥∥∥∥
2

≤ θt

t∑
k=0

βt−kE
∥∥∥∇F (x(k)

i , ξ
(k)
i )

∥∥∥2

≤ θt

t∑
k=0

[
βt−kG2

]
= G2θ2

t

Here the first inequality follows from the Jensen’s inequality and the second inequality

follows from the bounded gradient assumption. We now note the following bound for

θt:

θt =
t∑

k=0
βk ≤

∞∑
k=0

βk ≤ 1
(1− β)

Thus, for all t and all i ∈ [n], we have:

E
∥∥∥v(t)

i

∥∥∥2
≤ G2

(1− β)2 (A.5)
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Substituting the bound E∥v(t)
i ∥2 ≤ G2

(1−β)2 in (A.4) gives

E


∥∥∥∥∥∥

I(k+1)−1∑
t′=I(k)

η(βV(t′) + ∇F (X(t′), ξ(t′)))

∥∥∥∥∥∥
2

F

 ≤ 2H2η2β2n
G2

(1− β)2 + 2nH2G2η2.

This completes the proof of Fact 3.

Fact 4 (Triggering rule, [SDGD19]). Consider the set of nodes Γ(t) which do not

communicate at time t. For a threshold sequence {ct}T −1
t=0 , the triggering rule in

Algorithm 1 dictates that

∥x(t+ 1
2 )

i − x̂(t)
i ∥2 ≤ ctη

2 ∀i ∈ Γ(t).

Using the matrix notation, this implies that:

∥∥∥(X(t+ 1
2 ) − X̂(t))(I−P(t))

∥∥∥2

F
≤ nctη

2. (A.6)

Fact 5 (Lemma 16, [KSJ19b]). For doubly stochastic matrix W with second largest

eigenvalue 1− δ = |λ2(W)| < 1, we have:

∥∥∥∥Wk − 1
n

11T

∥∥∥∥ = (1− δ)k (A.7)

for any non-negative integer k.

Claim 1. For any n ∈ N, we have
∥∥∥11T

n
− I

∥∥∥
2

= 1 where 1 = [1 1 . . . 1]T1×n

Proof. Note that 11T

n
is a symmetric doubly stochastic matrix with eigenvalues 1

and 0 (with algebraic multiplicity n − 1). Thus, it has the eigen-decomposition
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11T

n
= UDUT where columns of U are orthogonal and D = diag([1 0 . . . 0]), which

gives us:

∥∥∥∥∥11T

n
− I

∥∥∥∥∥
2

=
∥∥∥UDUT −UUT

∥∥∥
2

= ∥D− I∥2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



1 0 . . . 0

0 0 . . . 0
... ... . . . 0

0 0 . . . 0


−



1 0 . . . 0

0 1 . . . 0
... ... . . . 0

0 0 . . . 1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

= 1

A.3 Proof of Theorem 2 (Non-convex objective)

From the recurrence relation of the virtual sequence, we have:

Eξ(t) [f(x̃(t+1))] = Eξ(t)f

(
x̃(t) − η

(1− β)
1
n

n∑
i=1
∇Fi(x(t)

i , ξ
(t)
i )
)

≤ f(x̃(t))−
〈
∇f(x̃(t)), η

(1− β)
1
n

n∑
i=1

Eξ(t) [∇Fi(x(t)
i , ξ

(t)
i )]

〉

+ L

2
η2

(1− β)2Eξ(t)

∥∥∥∥∥ 1
n

n∑
i=1
∇Fi(x(t)

i , ξ
(t)
i )
∥∥∥∥∥

2

≤ f(x̃(t))−
〈
∇f(x̃(t)), η

(1− β)
1
n

n∑
i=1
∇fi(x(t)

i )
〉

+ L

2
η2

(1− β)2

∥∥∥∥∥ 1
n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

+ L

2
η2

(1− β)2Eξ(t)

∥∥∥∥∥ 1
n

n∑
i=1

(∇fi(x(t)
i )−∇Fi(x(t)

i , ξ
(t)
i )
∥∥∥∥∥

2

≤ f(x̃(t))−
〈
∇f(x̃(t)), η

(1− β)
1
n

n∑
i=1
∇fi(x(t)

i )
〉

+ L

2
η2

(1− β)2

∥∥∥∥∥ 1
n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

+ Lη2σ̄2

2n(1− β)2 (A.8)
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We now focus on bounding the second term in (A.8). First, note the following:

〈
∇f(x̃(t)), 1

n

n∑
i=1
∇fi(x(t)

i )
〉

=
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

−
〈

1
n

n∑
i=1
∇fi(x(t)

i )−∇f(x̃(t)), 1
n

n∑
i=1
∇fi(x(t)

i )
〉

=
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

−
〈

1
n

n∑
i=1

(∇fi(x(t)
i )−∇fi(x̃(t))), 1

n

n∑
i=1
∇fi(x(t)

i )
〉

≥ 1
2

∥∥∥∥∥ 1
n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

− L2

2n

n∑
i=1

∥∥∥x(t)
i − x̃(t)

∥∥∥2
(A.9)

where in the last inequality, we’ve used the fact that 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 for any

a, b ∈ Rd and the L−smoothness assumption for objectives {fi}n
i=1. We now state

how to bound the last term on R.H.S. of (A.9). First, note the bound:

n∑
i=1

∥∥∥x(t)
i − x̃(t)

∥∥∥2
≤ 2

n∑
i=1

∥∥∥x(t)
i − x(t)

∥∥∥2
+ 2

n∑
i=1

∥∥∥x(t) − x̃(t)
∥∥∥2

(A.10)

We bound the second term in (A.10) as:

n∑
i=1

∥∥∥x(t)
i −x̃(t)

∥∥∥2
≤ 2

n∑
i=1

∥∥∥x(t)
i −x(t)

∥∥∥2
+ 2nβ4η2

(1−β)3

t−1∑
τ=0

βt−τ−1
∥∥∥∥∥ 1

n

n∑
i=1
∇Fi(x(τ)

i , ξ
(τ)
i )

∥∥∥∥∥
2


(A.11)

Using the bound (A.11) in (A.9) and substituting it in (A.8), we have the following

bound:

Eξ(t) [f(x̃(t+1))] ≤ f(x̃(t)) + Lη2σ̄2

2n(1−β)2 + Lη2

2(1−β)2

∥∥∥∥∥ 1
n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

− η

2(1−β)

∥∥∥∥∥ 1
n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

+ η

(1−β)
L2

n

n∑
i=1

∥∥∥x(t)
i − x(t)

∥∥∥2
+ L2η3β4

(1− β)4

t−1∑
τ=0

βt−τ−1Eξ(t)

∥∥∥∥∥ 1
n

n∑
i=1
∇Fi(x(τ)

i , ξ
(τ)
i )

∥∥∥∥∥
2
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Rearranging the terms, we can write:

(
η

2(1− β) −
Lη2

2(1− β)2

)∥∥∥∥∥ 1
n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

≤ f(x̃(t))− Eξ(t)f(x̃(t+1)) + Lη2σ̄2

2n(1− β)2

+ L2η

(1− β)n

n∑
i=1

∥∥∥x(t)
i − x(t)

∥∥∥2
+ L2η3β4

(1− β)4

t−1∑
τ=0

βt−τ−1Eξ(t)

∥∥∥∥∥ 1
n

n∑
i=1
∇Fi(x(τ)

i , ξ
(τ)
i )

∥∥∥∥∥
2


Summing from t = 0 to T gives us:

(
η

2(1− β) −
Lη2

2(1− β)2

)
T −1∑
t=0

∥∥∥∥∥ 1
n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

≤ f(x̃(0))− Eξ(t)f(x̃(T )) + Lη2σ̄2T

2n(1− β)2 + L2η

(1− β)n

T −1∑
t=0

n∑
i=1

E
∥∥∥x(t)

i − x(t)
∥∥∥2

+ L2η3β4

(1− β)4

T −1∑
t=0

t−1∑
τ=0

βt−τ−1Eξ(t)

∥∥∥∥∥ 1
n

n∑
i=1
∇Fi(x(τ)

i , ξ
(τ)
i )

∥∥∥∥∥
2


Using the fact that Eξ(t) [∇Fi(x(t)
i , ξ

(t)
i )] = ∇fi(x(t)

i ) for all i ∈ [n] and for all t ∈ [T ], we

have Eξ(t)

∥∥∥ 1
n

∑n
i=1∇Fi(x(t)

i , ξ
(t)
i )
∥∥∥2

= Eξ(t)

∥∥∥ 1
n

∑n
i=1∇fi(x(t)

i )
∥∥∥2

+Eξ(t)

∥∥∥ 1
n

∑n
i=1(∇fi(x(t))−∇Fi(x(t)

i , ξ
(t)
i ))

∥∥∥2
.

Using this equation along with the variance bound (A.2) from Fact 2, the fact that∑T −1
t=0

∑t−1
τ=0 βt−τ−1 ≤ T/1−β for β ∈ (0, 1) and taking expectation w.r.t. the entire

process:

≤ f(x̃(0))− Ef(x̃(T )) + Lη2σ̄2T

2n(1− β)2 + L2η

(1− β)n

T −1∑
t=0

n∑
i=1

E
∥∥∥x(t)

i − x(t)
∥∥∥2

+ L2η3β4σ̄2T

n(1− β)5 + L2η3β4

(1− β)4

T −1∑
t=0

t−1∑
τ=0

βt−τ−1E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(τ)

i )
∥∥∥∥∥

2


(A.12)
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To bound the last term in (A.12), we note that:

T −1∑
t=0

t−1∑
τ=0

βt−τ−1E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(τ)

i )
∥∥∥∥∥

2

=
T −2∑
τ=0

T −1∑
t=τ+1

βt−τ−1E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(τ)

i )
∥∥∥∥∥

2

≤ 1
(1− β)

T −2∑
τ=0

E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(τ)

i )
∥∥∥∥∥

2

≤ 1
(1− β)

T −1∑
t=0

E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

Substituting the above bound in (A.12) and rearranging terms, we finally get:

(
η

2(1− β) −
Lη2

2(1− β)2 −
L2η3β4

(1− β)5

)
T −1∑
t=0

E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

≤ f(x̃(0))−Ef(x̃(T )) + Lη2σ̄2T

2n(1−β)2 + L2η

(1− β)n

T −1∑
t=0

n∑
i=1

E
∥∥∥x(t)

i − x(t)
∥∥∥2

+ L2η3β4σ̄2T

n(1−β)5

(A.13)

If we select η ≤ min
{

(1−β)
4L

, (1−β)2

2
√

2Lβ2

}
, it can be shown that

(
η

2(1−β) −
Lη2

2(1−β)2 − L2η3β4

(1−β)5

)
≥

η
4(1−β) . This gives:

η

4(1− β)

T −1∑
t=0

E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

≤ f(x̃(0))− E[f(x̃(T ))] + Lη2σ̄2T

2n(1− β)2 + +L2η3β4σ̄2T

n(1− β)5

+ L2η

(1− β)n

T −1∑
t=0

n∑
i=1

E
∥∥∥x(t)

i − x(t)
∥∥∥2

Multiplying both sides by 4(1−β)
ηT

and noting that E[f(x̃(T ))] ≥ f ∗, we have:

1
T

T −1∑
t=0

E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

≤ 4(1− β)
η

(f(x(0))− f ∗)
T

+ 2Lησ̄2

n(1− β)

+ 4L2

nT

T −1∑
t=0

n∑
i=1

E
∥∥∥x(t)

i − x(t)
∥∥∥2

+ 4L2η2β4σ̄2

n(1− β)4 (A.14)
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Now consider the time average of gradients evaluated at the global average x(t):

1
T

T −1∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
= 1

T

T −1∑
t=0

E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(t))

∥∥∥∥∥
2

= 1
T

T −1∑
t=0

E
∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(x(t))−∇fi(x(t)
i )) + 1

n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

≤ 2
T

T −1∑
t=0

E
∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(x(t))−∇fi(x(t)
i ))

∥∥∥∥∥
2

+ 2
T

T −1∑
t=0

E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

≤ 2L2

nT

T −1∑
t=0

n∑
i=1

E
∥∥∥x(t) − x(t)

i

∥∥∥2
+ 2

T

T −1∑
t=0

E
∥∥∥∥∥ 1

n

n∑
i=1
∇fi(x(t)

i )
∥∥∥∥∥

2

(A.15)

where in the first inequality follows from Jensen’s inequality and the second inequality

follows from the L−smoothness assumption. We can bound the last term in (A.15)

using (A.14) which gives us:

1
T

T −1∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
≤ 8(1− β)

η

(f(x(0))− f ∗)
T

+ 4Lησ̄2

n(1− β)

+
(

8L2

nT
+ 2L2

nT

)
T −1∑
t=0

n∑
i=1

E
∥∥∥x(t)

i − x(t)
∥∥∥2

+ 8L2η2β4σ̄2

n(1− β)4 (A.16)

Note that in our matrix form, E
∥∥∥X̄(t) −X(t)

∥∥∥2

F
= ∑n

i=1 E
∥∥∥x(t)

i − x(t)
∥∥∥2

. Let I(t+1)0 ∈

IT denote the latest synchronization step before or equal to (t + 1). Then we have:

X(t+1) = XI(t+1)0 −∑t
t′=I(t+1)0

η(βV(t′) + ∇F (X(t′), ξ(t′)))

X̄(t+1) = X̄I(t+1)0 −∑t
t′=I(t+1)0

η(βV(t′) + ∇F (X(t′), ξ(t′)))11T

n
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Thus the following holds:

E∥X(t+1)−X̄(t+1)∥2
F = E

∥∥∥XI(t+1)0−X̄I(t+1)0−∑t
t′=I(t+1)0

η(βV(t′) + ∇F (X(t′), ξ(t′)))
(
I− 1

n
11T

)∥∥∥2

F

≤ 2E∥XI(t+1)0−X̄I(t+1)∥2
F +2E

∥∥∥∑t
t′=I(t+1)0

η(βV(t′) + ∇F (X(t′), ξ(t′)))
(
I− 1

n
11T

)∥∥∥2

F

Using ∥AB∥F ≤ ∥A∥F ∥B∥2 to split the second term in R.H.S. of above along with

(A.7) from Fact 3 (with k = 0) and further using the bound (A.3), we get:

E∥X(t+1) − X̄(t+1)∥2
F ≤ 2E∥XI(t+1)0 − X̄I(t+1)0∥2

F + 4η2H2nG2
(

1 + β2

(1− β)2

)
(A.17)

We bound the first term in R.H.S. of (A.17) by Lemma 2 stated below:.

Lemma 2. (Consensus) Let {x(i)
t }T −1

t=0 be generated according to Algorithm 1 under

assumptions of Theorem 2 with constant stepsize η, a threshold sequence ct ≤ c0
η(1−ϵ)

for all t where ϵ ∈ (0, 1) and c0 is constant, and define xt := 1
n

∑n
i=1 x(i)

t . Consider the

set of synchronization indices IT = {I(1), I(2), . . . , I(t), . . .}. Then for any I(t) ∈ IT ,

we have:

E
n∑

j=1

∥∥∥xI(t) − xI(t)
j

∥∥∥2
= E∥XI(t) − X̄I(t)∥2

F ≤
4nAη2

p2

for constant A = p
2

(
2H2G2

(
1 + β2

(1−β)2

) (
16
ω

+ 4
p

)
+ 2c0ω

η(1−ϵ)

)
where p = δγ

8 , δ := 1 −

|λ2(W)|, ω is compression parameter for operator C.

Substituting the bound from Lemma 2 in (A.17) and using the fact that p ≤ 1,
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we have:

E∥X(t+1) − X̄(t+1)∥2
F ≤

2η2

p

(
2H2nG2

(
1 + β2

(1− β)2

)(
16
ω

+ 8
p

)
+ 2c0ωn

η(1−ϵ)

)
(A.18)

for the same constant ϵ > 0 as in Lemma 2. Note that the above bound holds for all

values of t.

Define Λ := 2
p

(
2H2nG2

(
1 + β2

(1−β)2

) (
16
ω

+ 8
p

)
+ 2ωc0n

η(1−ϵ)

)
. Substituting (A.18) in (A.16)

gives us:

1
T

T −1∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
≤ 8(1−β)

η

(f(x(0))− f ∗)
T

+ 4Lησ̄2

n(1− β) + 10L2Λη2

n
+ 8L2η2β4σ̄2

n(1−β)4

Expanding on the value of Λ, we have:

1
T

T −1∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
≤ 8(1− β)

η

(f(x(0))− f ∗)
T

+ 4Lησ̄2

n(1− β)

+ 20η2L2

pn

(
2H2nG2

(
1 + β2

(1− β)2

)(
16
ω

+ 8
p

))

+ 40L2ωnc0η
(1+ϵ)

pn
+ 8L2η2β4σ̄2

n(1− β)4

Substituting the value of η = (1− β)
√

n
T

, we get:

1
T

T −1∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
≤ 1√

nT

(
8(f(x(0))− f ∗) + 4Lσ̄2

)
+ 40L2(1− β)(1+ϵ)ωc0n

(1+ϵ)/2

pT (1+ϵ)/2

+ 20(1− β)2L2

Tp

(
2H2nG2

(
1 + β2

(1− β)2

)(
16
ω

+ 8
p

))
+ 8L2β4σ̄2

T (1− β)2

≤ 1√
nT

(
8(f(x(0))− f ∗) + 4Lσ̄2

)
+ 40L2ωc0n

(1+ϵ)/2(1− β)(1+ϵ)

pT (1+ϵ)/2

+ 80nL2H2G2

Tp

(
16
ω

+ 8
p

)
+ 8L2β4σ̄2

T (1− β)2
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where in the last inequality, we’ve used the fact that (1− β)r ≤ 1 , βr ≤ 1 for r > 0.

Note that we require η ≤ min
{

(1−β)
4L

, (1−β)2

2
√

2Lβ2

}
, thus for η = (1−β)

√
n
T

, we need to run

our algorithm for T ≥ max
{
16L2n, 8L2β4n

(1−β)2

}
for the above rate expression to hold. We

finally use the fact that p ≤ ω (as δ ≤ 1 and p := γ∗δ
8 with γ∗ ≤ ω). This completes

proof of the non-convex part of Theorem 2. We can further use the fact that p ≥ δ2ω
644

to get the expression given in the theorem statement.

A.4 Proof of Theorem 2 (Convex objective)

Consider the quantity Eξ(t)∥x̃(t+1) − x∗∥2, where expectation is taken over sampling

across all the nodes at the t’th iteration:

Eξ(t)∥x̃(t+1) − x∗∥2 = Eξ(t)

∥∥∥∥∥∥x̃(t) − η

(1− β)n

n∑
j=1
∇Fj(x(t)

j , ξ
(t)
j )− x∗

∥∥∥∥∥∥
2

= Eξ(t)

∥∥∥∥∥∥x̃(t)−x∗− η

(1− β)n

n∑
j=1
∇fj(x(t)

j )+ η

(1−β)n

n∑
j=1
∇fj(x(t)

j )− η

n(1−β)

n∑
j=1
∇Fj(x(t)

j , ξ
(t)
j )

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥x̃(t)−x∗− η

(1− β)n

n∑
j=1
∇fj(x(t)

j )

∥∥∥∥∥∥
2

+ η2

(1− β)2Eξ(t)

∥∥∥∥∥∥ 1
n

n∑
j=1
∇fj(x(t)

j )− 1
n

n∑
j=1
∇Fj(x(t)

j , ξ
(t)
j )

∥∥∥∥∥∥
2

+ 2η

(1− β)nEξ(t)

〈
x̃(t) − x∗ − η

(1− β)n

n∑
j=1
∇fj(x(t)

j ),
n∑

j=1
∇fj(x(t)

j )−
n∑

j=1
∇Fj(x(t)

j , ξ
(t)
j )
〉

≤

∥∥∥∥∥∥x̃(t) − x∗ − η

(1− β)n

n∑
j=1
∇fj(x(t)

j )

∥∥∥∥∥∥
2

+ η2σ̄2

(1− β)2n
(A.19)

Where to get the last inequality we used the fact that E
ξ

(t)
i

[∇Fi(x(t)
i , ξ

(t)
i )] =

∇fi(x(t)
i ) for all i ∈ [n] and the variance bound (A.2) from Fact 2. Now we thus
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consider the first term in (A.19):

∥∥∥∥∥∥x̃(t) − x∗ − η

(1− β)n

n∑
j=1
∇fj(x(t)

j )

∥∥∥∥∥∥
2

= ∥x̃(t) − x∗∥2 + η2

(1− β)2

∥∥∥∥∥∥ 1
n

n∑
j=1
∇fj(x(t)

j )

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T1

− 2η

(1− β)

〈
x̃(t) − x∗,

1
n

n∑
j=1
∇fj(x(t)

j )
〉

︸ ︷︷ ︸
T2

(A.20)

To bound T1 in (A.20), note that:

T1 =

∥∥∥∥∥∥ 1
n

n∑
j=1

(∇fj(x(t)
j )−∇fj(x(t)) +∇fj(x(t))−∇fj(x∗))

∥∥∥∥∥∥
2

≤ 2
n

n∑
j=1
∥∇fj(x(t)

j )−∇fj(x(t))∥2 + 2

∥∥∥∥∥∥ 1
n

n∑
j=1
∇fj(x(t))− 1

n

n∑
j=1
∇fj(x∗)

∥∥∥∥∥∥
2

≤ 2L2

n

n∑
j=1
∥x(t)

j − x(t)∥2 + 4L(f(x(t))− f ∗) (A.21)

where in the last inequality, we used L−Lipschitz gradient property of objectives

{fj}n
j=1 to bound the first term and optimality of x∗ for f (i.e., ∇f(x∗) = 0) and

L−smoothness property of f to bound the second term as:
∥∥∥ 1

n

∑n
j=1∇fj(x(t))− 1

n

∑n
j=1∇fj(x∗)

∥∥∥2
=∥∥∥∇f(x(t))−∇f(x∗)

∥∥∥2
≤ 2L

(
f(x(t))− f ∗

)
.

To bound T2 in (A.20), note that:

−2T2 = −2
〈

x̃(t) − x(t),
1
n

n∑
j=1
∇fj(x(t)

j )
〉
− 2

n

n∑
j=1

〈
x(t) − x∗,∇fj(x(t)

j )
〉
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= 2 β2

(1− β)

〈
η

n

n∑
i=1

v(t−1)
i ,

1
n

n∑
j=1
∇fj(x(t)

j )
〉
− 2

n

n∑
j=1

〈
x(t) − x∗,∇fj(x(t)

j )
〉

(A.22)

In (A.22), we used the definition of x̃(t) to write x̃(t) − x(t) = − ηβ2

(1−β)
1
n

∑n
i=1 v(t−1)

i .

Now we note a simple trick for inner-products:

〈
η

n

n∑
i=1

v(t−1)
i ,

1
n

n∑
j=1
∇fj(x(t)

j )
〉

=
〈

(η)3/4

n

n∑
i=1

v(t−1)
i ,

(η)1/4

n

n∑
j=1
∇fj(x(t)

j )
〉

. (A.23)

This trick is crucial to getting a speedup of n – the number of worker nodes – in our

final convergence rate. Using 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 for bounding (A.23) and then

substituting that in (A.22) gives

−2T2 ≤
β2

(1−β)

(η)3/2

∥∥∥∥∥ 1
n

n∑
i=1

v(t−1)
i

∥∥∥∥∥
2

+(η)1/2

∥∥∥∥∥∥ 1
n

n∑
j=1
∇fj(x(t)

j )

∥∥∥∥∥∥
2
− 2

n

n∑
j=1

〈
x(t)−x∗,∇fj(x(t)

j )
〉

(A.24)

Note that the second term of (A.24) is the same as T1 from (A.20) and we have

already bounded that in (A.21). We now focus on bounding the last term of (A.24).

Using expression for convexity and L-smoothness for fj, j ∈ [n] respectively, we can

bound this as follows:

− 2
n

n∑
j=1
⟨x(t)−x∗,∇fj(x(t)

j )⟩ = − 2
n

n∑
j=1

[〈
x(t) − x(t)

j ,∇fj(x(t)
j )
〉

+
〈
x(t)

j − x∗,∇fj(x(t)
j )
〉]

≤ − 2
n

n∑
j=1

[
fj(x(t))− fj(x(t)

j )− L

2 ∥x
(t) − x(t)

j ∥2 + fj(x(t)
j )− fj(x∗)

]

= −2(f(x(t))− f(x∗)) + L

n

n∑
j=1
∥x(t) − x(t)

j ∥2 (A.25)
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Substituting the bounds for the second and the last terms of (A.24) from (A.21) and

(A.25), respectively, we get

−2T2 ≤
(η)3/2β2

(1− β)

∥∥∥∥∥ 1
n

n∑
i=1

v(t−1)
i

∥∥∥∥∥
2

+ (η)1/2β2

(1− β)

2L2

n

n∑
j=1
∥x(t)

j − x(t)∥2 + 4L(f(x(t))− f ∗)


− 2(f(x(t))− f(x∗)) + L

n

n∑
j=1
∥x(t) − x(t)

j ∥2

Thus we finally have:

− 2η

(1− β)T2 ≤
η5/2β2

(1− β)2

∥∥∥∥∥ 1
n

n∑
i=1

v(t−1)
i

∥∥∥∥∥
2

+
(

2η3/2β2L2

(1− β)2 + ηL

(1− β)

)
1
n

n∑
j=1
∥x(t)

j − x(t)∥2

+
(

4η3/2β2L

(1− β)2 −
2η

(1− β)

)(
f(x(t))− f ∗

)
(A.26)

Substituting (A.21), (A.26) in (A.20) and using the resulting bound back in (A.19),

and then taking expectation w.r.t. the entire process, we get:

E∥x̃(t+1) − x∗∥2 ≤ E∥x̃(t) − x∗∥2 + η5/2β2

(1− β)2E
∥∥∥∥∥ 1

n

n∑
i=1

v(t−1)
i

∥∥∥∥∥
2

+ η2σ̄2

(1− β)2n

+
(

2η2L2

(1− β)2 + 2η3/2β2L2

(1− β)2 + ηL

(1− β)

)
1
n

n∑
j=1

E∥x(t)
j − x(t)∥2

+
(

4η2L

(1− β)2 + 4η3/2β2L

(1− β)2 −
2η

(1− β)

)(
Ef(x(t))− f ∗

)
(A.27)

Using the fact that E
∥∥∥ 1

n

∑n
j=1 v(t)

j

∥∥∥2
≤ G2

(1−β)2 for all t ≥ 1 (see proof of Fact 3), we

have:

E∥x̃(t+1) − x∗∥2 ≤ E∥x̃(t) − x∗∥2 + η5/2β2G2

(1− β)4 + η2σ̄2

(1− β)2n
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+
(

2η2L2

(1− β)2 + 2η3/2β2L2

(1− β)2 + ηL

(1− β)

)
1
n

n∑
j=1

E∥x(t)
j − x(t)∥2

+
(

4η2L

(1− β)2 + 4η3/2β2L

(1− β)2 −
2η

(1− β)

)(
Ef(x(t))− f ∗

)
(A.28)

If we take η ≤ min
{

(1−β)
8L

, (1−β)2

(8Lβ2)2

}
, then we have:

(
2η2L2

(1− β)2 + 2η3/2β2L2

(1− β)2 + ηL

(1− β)

)
≤ 3ηL

2(1− β) (A.29)(
4η2L

(1− β)2 + 4η3/2β2L

(1− β)2 −
2η

(1− β)

)
≤ − η

(1− β) (A.30)

Substituting the bounds from (A.29) and (A.30) to (A.28) gives

E∥x̃(t+1) − x∗∥2 ≤ E∥x̃(t) − x∗∥2 + η5/2β2G2

(1− β)4 + η2σ̄2

(1− β)2n
+ 3ηL

2(1− β)
1
n

n∑
j=1

E∥x(t)
j − x(t)∥2

− η

(1− β)
(
Ef(x(t))− f ∗

)
(A.31)

We can now bound the second last term in R.H.S. of (A.31) similar to (A.18) in

the proof of non-convex part of Theorem 2 given. This gives us the bound:

E∥X(t+1) − X̄(t+1)∥2
F ≤

2η2

p

(
2H2nG2

(
1 + β2

(1− β)2

)(
16
ω

+ 8
p

)
+ 2c0ωn

η(1−ϵ)

)

Using above bound for the term ∑n
j=1 E∥x

(t)
j − x(t)∥2 in (A.31) we get:

E∥x̃(t+1) − x∗∥2 ≤ E∥x̃(t) − x∗∥2 + η5/2β2G2

(1− β)4 + η2σ̄2

(1− β)2n
− η

(1− β)
(
Ef(x(t))− f ∗

)

118



+ 3η3L

p(1− β)

(
2H2G2

(
1 + β2

(1− β)2

)(
16
ω

+ 8
p

)
+ 2c0ω

η(1−ϵ)

)
(A.32)

By rearranging terms in (A.32) and noting that p ≤ ω (as δ ≤ 1 and p := γ∗δ
8 with

γ∗ ≤ ω) and the fact that
(
1 + β2

(1−β)2

)
≤ 2

(1−β)2 (because β < 1), we get:

E∥x̃(t+1) − x∗∥2 ≤ E∥x̃(t) − x∗∥2 + η5/2β2G2

(1− β)4 + η2σ̄2

(1− β)2n
− η

(1− β)
(
Ef(x(t))− f ∗

)
+ 288η3LH2G2

p2(1− β)3 + 6c0ωLη(2+ϵ)

p(1− β) (A.33)

Summing (A.33) from t = 0 to T − 1, rearranging terms and diving by T both

sides gives us:

T −1∑
t=0

(
Ef(x(t))− f ∗

)
T

≤ (1− β)
η

T −1∑
t=0

(
E∥x̃(t) − x∗∥2 − E∥x̃(t+1) − x∗∥2

)
T

+ η3/2β2G2

(1− β)3 + ησ̄2

(1− β)n

+ 288η2LH2G2

p2(1− β)2 + 6c0ωLη(1+ϵ)

p

Using Jensen’s inequality for convex function f on the L.H.S. and setting η =

(1− β)
√

n
T

for T ≥ max{(8L)2n, (8β2L)4n
(1−β)2 }, for x(T )

avg := 1
T

∑T −1
t=0 x̄(t) we have that:

Ef(x(T )
avg)− f ∗ ≤

(
E∥x̃(0) − x∗∥2 − E∥x̃(T ) − x∗∥2

)
√

nT
+ n3/4β2G2

(1− β)3/2T 3/4
+ σ̄2
√

nT

+ 288LH2G2

p2T
+ 6c0ωL(1− β)(1+ϵ)n(1+ϵ)/2

pT (1+ϵ)/2
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Using the fact that x̃(0) = x(0) and ϵ, β ∈ (0, 1) we have:

Ef(x(T )
avg)− f ∗ ≤ ∥x

(0) − x∗∥2 + σ̄2
√

nT
+ n3/4β2G2

(1− β)3/2T 3/4
+ 384nLH2G2

p2T
+ 6c0ωLn(1+ϵ)/2

pT (1+ϵ)/2

This completes proof of convex part of Theorem 2. We can further use the fact that

p ≥ δ2ω
644 to get the expression given in the theorem statement.
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Appendix B

Omitted Details for Chapter 4

B.1 Convergence analysis for Sample Feedback

We first introduce a compact vector notation which we will use throughout the proof.

Consider the stacked (concatenated) vector of the node parameter vectors {xi}n
i=1

which we denote by x, and thus is nd-dimensional. Similarly, we define the vector λ

of size m which stacks together the dual variables λij for i ∈ [n] and j ∈ Ni. The

vector g(x) represents the the stacked vector of constraint values gij(xj, xj), and is

also m-dimensional. Finally, ξ denotes the concatenated vector of samples across the

nodes. The projection ΠX n(x) refers to projection of x on the space X n where each

individual node parameter comprising x is projected onto X . Under this compact

notation, the modified Lagrangian presented in (4.3) can be re-written as:

L(x,λ) = f(x, ξ) + λT g(x)− δη

2 ∥λ∥
2 (B.1)

We now present a few auxiliary results which we use through the course of the proof.

Some of these can be derived from the assumptions made in A.4-A.7.

Fact 6. Suppose A ⊂ Rl is closed and convex. Then, for any y ∈ Rl and x ∈ A, we

121



have:

∥x− ΠA(y)∥2 ≤ ∥x− y∥2

where ΠA(y) denotes the projection of y on the set A.

Fact 7. (Bound on gradients of the Lagrangian) Consider the Lagrangian function

over the primal and dual variables defined in (B.1). We have the following bounds:

1. E∥∇λL(x(t),λ(t))∥2 ≤ 2C2 + 2δ2η2E∥λ(t)∥2

2. E
∥∥∥∇xL(x(t),λ(t))

∥∥∥2
≤ (1 + m)

(
G2 + G̃2E ∥λ∥2

)
where C2, G̃ and G are as defined in Assumptions A.6 and A.7. Proof of this fact

can be found in [SCDB].

Fact 8. For all x ∈ X n, we have:

E[F (x)]− F (x∗) > −4GR

where x∗ is an optimal solution of (4.1), and R, G are as defined in Assumptions A.4

and A.7, respectively. We provide a proof for Fact 8 in [SCDB].

B.1.0.1 Proof of Theorem 3

We first consider the following lemma which establishes a relationship between the

Lagrangian function and the primal, dual variables in Algorithm 2. The proof for the

lemma, provided in the [SCDB], relies on considering the update steps of the primal

and dual variables in Algorithm 2 and invoking convexity/concavity arguments for

the Lagrangian function.
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Lemma 3. Consider the update steps in Algorithm 2 with learning rate η and

parameter δ ≥ 0. Under assumptions A.4-A.7, for x ∈ X n and λ ∈ Rm with λ ⪰ 0,

the summation of the Lagrangian function satisfies:

T∑
t=1

E
(
L(x(t),λ)− L(x,λ(t))

)
≤ 1

2η

(
∥λ∥2 + 4R2

)
+ ηT

(
(1 + m)G2 + C2

)

+ 1
2η

T∑
t=1

E
∥∥∥x(t) − x̃(t)

∥∥∥2
+ η

(
(1 + m)G̃2 + δ2η2

) T∑
t=1

E[∥λ(t)∥2]

where G, C, G̃, R are defined in assumptions A.4-A.7.

Using the definition of Lagrangian from (B.1) and E[f(x(t), ξ(t))] = F (x(t)), the

L.H.S. of the result in Lemma 3 can also be written as following for any λ ⪰ 0:

E
[

T∑
t=1

(
L(x(t),λ)− L(x,λ(t))

)]
=

T∑
t=1

(E[F (x(t))]−F (x∗))+
〈
λ,

T∑
t=1

E[g(x(t))]
〉
−δηT

2 ∥λ∥
2

− E
[

T∑
t=1
⟨λ(t), g(x∗)⟩

]
+ δη

2 E
[

T∑
t=1
∥λ(t)∥2

]

Rearranging the terms and employing the bound from Lemma 3, for any λ ⪰ 0, we

thus have:

T∑
t=1

(
E[F (x(t))]−F (x∗)

)
+
〈
λ,

T∑
t=1

E[g(x(t))]
〉
− δηT

2 ∥λ∥
2 − E

[
T∑

t=1
⟨λ(t), g(x∗)⟩

]

≤ 1
2η

(
∥λ∥2 +4R2

)
+ 1

2η

T∑
t=1

E
∥∥∥e(t)

∥∥∥2
+ηT

(
(1+m)G2+C2

)
(B.2)

+ η

(
(1 + m)G̃2 + δ2η2 − δ

2

)
T∑

t=1
E[∥λ(t)∥2] (B.3)

where we have defined E
∥∥∥e(t)

∥∥∥2
:= E

∥∥∥x̃(t) − x(t)
∥∥∥2

on the R.H.S. of (B.2). This term

relates to the error between the copies of the parameters at time t (denoted by x̃(t))
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and the true parameters of the nodes (given by x(t)). We provide a bound for this

term in Lemma 4 stated below, the proof of which is provided in the arXiv version of

the paper [SCDB].

Lemma 4. For the update steps in Algorithm 2, the norm of expected error E∥e(t)∥

for t ∈ [T ] is bounded as:

E∥e(t)∥2 ≤ 2η2

ω

t−2∑
k=0

(
1−ω

2

)k

E∥∇xLt−1−k(x(t−1−k),λ(t−1−k))∥2

Plugging the bound for E∥e(t)∥2 from Lemma 4 into (B.2):

T∑
t=1

(
E[F (x(t))]−F (x∗)

)
+
〈
λ,

T∑
t=1

E[g(x(t))]
〉
− δηT

2 ∥λ∥
2 − E

[
T∑

t=1
⟨λ(t), g(x∗)⟩

]

≤ 1
2η

(
∥λ∥2 + 4R2

)
+ ηT

(
(1 + m)G2 + C2

)
+ η

ω

T∑
t=1

t−2∑
k=0

(
1−ω

2

)k

E
∥∥∥∇xLt−1−k(x(t−1−k),λ(t−1−k))

∥∥∥2

+ η

(
(1 + m)G̃2 + δ2η2 − δ

2

)
T∑

t=1
E[∥λ(t)∥2] (B.4)

= 1
2η

(
∥λ∥2 + 4R2

)
+ ηT

(
(1 + m)G2 + C2

)
+ η

(
(1 + m)G̃2 + δ2η2 − δ

2

)
T∑

t=1
E[∥λ(t)∥2]

+ η

ω

T −1∑
k=1

T∑
t=k+1

(
1− ω

2

)(t−1−k)
E
∥∥∥∇xLk(x(k),λ(k))

∥∥∥2

where the equality follows from rewriting the double-sum of the second term. Using∑T
t=k+1

(
1−ω

2

)(t−1−k)
≤ ∑∞

t=0

(
1−ω

2

)(t)
= 2

ω
, we get:

T∑
t=1

(E[F (x(t))]−F (x∗)) +
〈
λ,

T∑
t=1

E[g(x(t))]
〉
− δηT

2 ∥λ∥
2 − E

[
T∑

t=1
⟨λ(t), g(x∗)⟩

]
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≤ 1
2η

(
∥λ∥2 + 4R2

)
+ ηT

(
(1 + m)G2 + C2

)
+ η

(
(1 + m)G̃2 + δ2η2 − δ

2

)
T∑

t=1
E[∥λ(t)∥2]

+ 2η

ω2

T −1∑
t=1

E
∥∥∥∇xLt(x(t),λ(t))

∥∥∥2
(B.5)

Using the bound from (b) in Fact 7 for the last term in above, and noting that 2
ω2 > 1

gives us:

T∑
t=1

(E[F (x(t))]−F (x∗)) +
〈
λ,

T∑
t=1

E[g(x(t))]
〉
− δηT

2 ∥λ∥
2 − E

[
T∑

t=1
⟨λ(t), g(x∗)⟩

]

≤ 1
2η

(
∥λ∥2 + 4R2

)
+ ηT

( 4
ω2 (1 + m)G2 + C2

)
+ η

(
4
ω2 (1 + m)G̃2 + δ2η2 − δ

2

)
T∑

t=1
E[∥λ(t)∥2]

(B.6)

We now focus on the last term in the above equation, which has a coefficient of(
4

ω2 (1 + m)G̃2 + δ2η2 − δ
2

)
. To get rid of the last term in the upper bound, we choose

the value of δ such that this coefficient is negative. It can be easily checked that the

following value of δ satisfies this requirement:

δ =
1−

√
1− 64η2(1+m)G̃2

ω2

4η2

Note that we require running the algorithm for T ≥ 64a2(1+m)G̃2

ω2 for the choice η = a√
T

.

For T →∞ (i.e., η → 0 ), it can be verified that the value of δ converges to a positive

constant. Using the above value of δ, the fact E
[∑T

t=1⟨λ(t), g(x∗)⟩
]
≤ 0 since λ(t) ⪰ 0

for t ∈ [T ] and g(x∗) ⪯ 0 and rearranging the terms, we get:

T∑
t=1

(
E[F (x(t))]− F (x∗)

)
+
〈
λ,

T∑
t=1

E[g(x(t))]
〉
−
(

δηT

2 + 1
2η

)
∥λ∥2
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≤ 2R2

η
+ ηT

( 4
ω2 (1 + m)G2 + C2

)
(B.7)

Recall that λ can be any non-negative vector. We set it as λ = [E[∑T

t=1 g(x(t))]]+

δηT + 1
η

.

Plugging this in (B.7) yields:

T∑
t=1

(
E[F (x(t))]− F (x∗)

)
+

n∑
i=1

∑
j∈Ni

([
E
[∑T

t=1 gij(x(t)
i , x(t)

j )
]]+)2

2
(
δηT + 1

η

)
≤ 2R2

η
+ ηT

( 4
ω2 (1 + m)G2 + C2

)
(B.8)

Dividing both sides of (B.8) by T and noting that the second term on the L.H.S. of

(B.8) is positive, we can bound the time-average sub-optimality of F as:

T∑
t=1

(
E[F (x(t))]−F (x∗)

)
T

≤ 2R2

ηT
+ η

( 4
ω2 (1+m)G2+C2

)

Using the convexity of F and setting η = a√
T

for some positive constant a, concludes

the proof of the convergence rate for the objective sub-optimality given in (4.8) in

Theorem 3. We now prove our result for the pairwise constraint functions. From Fact

8, ∀x ∈ X n, we have E[F (x)]− F (x∗) > −4GR. Using this inequality in (B.8):

n∑
i=1

∑
j∈Ni

[E [ T∑
t=1

gij(x(t)
i , x(t)

j )
]]+2

≤ 4R2

η2 + T

(
4R2δ + 8

ω2 (1 + m)G2 + 2C2 + 8GR

η

)

+ T 2
(

2δη2
( 4

ω2 (1 + m)G2 + C2
)

+ 8δηGR
)

Note that the above bound also holds for a given i ∈ [n] and j ∈ Ni, that is, the

R.H.S. of the above equation is also a bound for the term
([

E
[∑T

t=1 gij(x(t)
i , x(t)

j )
]]+)2

.
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Taking square root on both sides and using the fact that
√∑n

i=1 pi ≤
∑n

i=1
√

pi for

positive p1, . . . , pn yields:

E
[

T∑
t=1

gij(x(t)
i , x(t)

j )
]
≤ 2R

η
+
√

2T

√√√√(2R2δ + 4
ω2 (1 + m)G2 + C2 + 4GR

η

)

+
√

2T

√(
δη2

( 4
ω2 (1 + m)G2 + C2

)
+4δηGR

)

Dividing both sides of above by T , using the convexity of constraint function gij and

substituting η = a√
T

concludes the proof of (4.9) in Theorem 3. □

B.2 Convergence analysis for Bandit Feedback

As done earlier for proof of bandit feedback, we use a compact notation by stacking

together the parameters across the nodes. The modified Lagrangian in (4.10) for a

time step t ∈ [T ] in this notation is given as:

L̃(x(t),λ(t)) = f̃(x(t), ξ(t)) + ⟨λ(t), g(x(t))⟩ − δη

2 ∥λ
(t)∥2 (B.9)

where x(t), is of size nd, λ(t) is of size m, and ξ(t) is collection of samples across all

the nodes at time t. We construct another quantity of interest:

H(x(t),λ(t)) = L̃(x(t),λ(t)) + ⟨p(t) − L̃(x(t),λ(t)), x(t)⟩ (B.10)

127



It can be seen that H(x(t)),λ(t) is convex in the parameter x(t) and concave in λ(t)

for any t. Further, the gradients of the function H(x(t)),λ(t) satisfy:

∇xH(x(t),λ(t)) = p(t), ∇λH(x(t),λ(t)) = ∇λL̃(x(t),λ(t))

To derive our results, we consider another auxiliary result:

Fact 9. Under Assumptions A.5 and A.6, for all t ∈ [T ], i ∈ [n] and any u, v ∈ X ,

we have:

E
ξ

(t)
i

[fi(u, ξ
(t)
i )− fi(v, ξ

(t)
i )]2 ≤ 4G2

i ∥u− v∥2

where E
ξ

(t)
i

[.] denotes expectation w.r.t. sampling at time-step t for the node i.

See [SCDB] for proof.

B.2.0.1 Proof of Theorem 4

We first establish a relationship between the primal, dual variables in Algorithm 3 and

the function H defined in (B.10). This following lemma can be seen as a counterpart

of Lemma 3 in the bandit feedback case.

Lemma 5. Consider the update steps in Algorithm 3 with learning rate η. Under

assumptions A.4-A.7, for any x ∈ X̃ n and λ ∈ Rm with λ ⪰ 0, the summation of the

function H (defined in (B.10)) satisfies:

T∑
t=1

E
[
H(x(t),λ)−H(x,λ(t))

]
≤ η

2

T∑
t=1

E
(
2∥p(t)∥2 + ∥∇λL̃t(x(t),λ(t))∥2

)

+ 1
2η

T∑
t=1

∥∥∥x(t)−x̃(t)
∥∥∥2

+ 1
2η

T∑
t=1

(
∥λ∥2 + 4R2

)
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Now consider x∗ ∈ X n, then by definition of X̃ , we have (1−α)x∗ + αỹ0 ∈ X̃ n for

α = ζ
r

where ỹ0 and r are defined in Assumption A.81. Substituting x = (1−α)x∗+αỹ0

in the result from Lemma 5 gives us:

T∑
t=1

E
[
H(x(t),λ)−H((1− α)x∗ + αỹ0,λ

(t))
]
≤ η

2

T∑
t=1

E
(
2∥p(t)∥2 + ∥∇λL̃t(x(t),λ(t))∥2

)

+ 1
2η

T∑
t=1

∥∥∥x(t)−x̃(t)
∥∥∥2

+ 1
2η

T∑
t=1

(
∥λ∥2 + 4R2

)
(B.11)

The following result bounds the error E
∥∥∥e(t)

∥∥∥2
:= E

∥∥∥x(t) − x̃(t)
∥∥∥2

for any time t in

terms of the summation of E
∥∥∥p(t)

∥∥∥; see [SCDB] for proof.

Lemma 6. Consider the error e(t) := x(t) − x̃(t) for any t ∈ [T ]. We have:

E∥e(t)∥2 ≤ 2η2

ω

t−2∑
k=0

(
1− ω

2

)k

E
∥∥∥p(t−k−1)

∥∥∥2

Using the result from Lemma 6 in (B.11) and the double sum trick similar to the

updates from (B.4) to (B.5) yields:

T∑
t=1

E
[
H(x(t),λ)−H((1− α)x∗ + αỹ0,λ

(t))
]

≤ η

2

T∑
t=1

((
2+ 4

ω2

)
∥p(t)∥2 + ∥∇λL̃t(x(t),λ(t))∥2

)
+ 1

2η
E
(
4R2 + ∥λ∥2

)
(B.12)

We now provide bounds for the first and second terms on the R.H.S. of (B.12) in

Proposition 1 below. The proof of this proposition is provided in [SCDB].

Proposition 1. For the update steps given in Algorithm 3, under Assumptions

A.5-A.7, for any t ∈ [T ], we have:

1Here, ỹ0 ∈ Rnd denotes the stacking of the d dimensional vector y0 defined in Assumption A.8
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1. E
∥∥∥p(t)

∥∥∥2
≤ 4d2(1 + m)G2 + 4(1 + m)G̃2E

∥∥∥λ(t)
∥∥∥2

2. E
∥∥∥∇λL̃t(x(t),λ(t))

∥∥∥2
≤ 2C2 + 2δ2η2E

∥∥∥λ(t)
∥∥∥2

Substituting the bounds from Proposition 1 in (B.12) and using that fact 2
ω2 > 1,

we have:

T∑
t=1

E
[
H(x(t),λ)−H((1− α)x∗ + αỹ0,λ

(t))
]
≤ 1

2η

(
4R2 + ∥λ∥2

)

+ ηT
[16
ω2 d2(1 + m)G2 + C2

]
+ η

[16
ω2 (1 + m)G̃2 + δ2η2

] T∑
t=1

E
∥∥∥λ(t)

∥∥∥2
(B.13)

We now express the L.H.S. of (B.13) in terms of the Lagrangian L̃. This relation

is provided in Proposition 2 below, which is proved in [SCDB].

Proposition 2. For any λ ∈ Rm with λ ⪰ 0, the updates of Algorithm 3 satisfy:

T∑
t=1

E
[
H(x(t),λ)−H((1− α)x∗ + αỹ0,λ

(t))
]

=
T∑

t=1
E
[
L̃t(x(t),λ)− L̃t((1− α)x∗ + αỹ0,λ

(t))
]

where x∗ is the optimal parameter value for the objective (4.1), and H, L̃ are defined

in (B.10) and (B.9), respectively.

Proposition 2 implies the following for (B.13):

T∑
t=1

E
[
L̃t(x(t),λ)− L̃t((1− α)x∗ + αỹ0,λ

(t))
]
≤ 1

2η

(
4R2 + ∥λ∥2

)

+ ηT
[16
ω2 d2(1 + m)G2 + C2

]
+ η

[16
ω2 (1 + m)G̃2 + δ2η2

] T∑
t=1

E
∥∥∥λ(t)

∥∥∥2

Using the definition of L̃ from (B.9) on the L.H.S. of the above, and rearranging the
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terms, we have:

T∑
t=1

E
[
f̃(x(t), ξ(t))−f̃((1−α)x∗ + αỹ0, ξ

(t))
]
−δηT

2 ∥λ∥2

+
〈
λ,E

T∑
t=1

g(x(t))
〉
−E

T∑
t=1

〈
λ(t), g((1−α)x∗+αỹ0)

〉
≤ 1

2η

(
4R2 + ∥λ∥2

)
+ ηT

[16
ω2 d2(1 + m)G2 + C2

]

+ η

[
16
ω2 (1 + m)G̃2 + δ2η2 − δ

2

]
T∑

t=1
E
∥∥∥λ(t)

∥∥∥2
(B.14)

Similar to what we did for the sample feedback case in (B.6), we choose the following

value of δ to make the coefficient of the last term in (B.14) negative:

δ =
1−

√
1− 256η2(1+m)G̃2

ω2

4η2

As before, we require running the algorithm for T ≥ 256a2(1+m)G̃2

ω2 for the choice

η = a√
T

, and for T →∞ (i.e., η → 0 ), the above value of δ converges to a positive

constant. Plugging the value of δ in (B.14) yields:

T∑
t=1

E
[
f̃(x(t), ξ(t))−f̃((1−α)x∗+αỹ0, ξ

(t))
]
−δηT

2 ∥λ∥2

+
〈
λ,E

T∑
t=1

g(x(t))
〉
−E

[
T∑

t=1

〈
λ(t), g((1−α)x∗+αỹ0)

〉]

≤ 1
2η

(
4R2+ ∥λ∥2

)
+ ηT

[16
ω2 d2(1+m)G2 + C2

]
(B.15)

Our goal is to derive a bound for the sub-optimality of the function F (x(t)). To this

end, we will now bound the terms on the L.H.S. of (B.15) in terms of the function F .

We first consider the first term on the L.H.S. of (B.15). From the definitions of f
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and f̃ provided in Fact 1:

E
[
|f̃(x(t), ξ(t))− f(x(t), ξ(t))|

]
(a)= E

[∣∣∣∣∣
n∑

i=1
fi(x(t)

i + ζu(t)
i , ξ

(t)
i )− fi(x(t)

i , ξ
(t)
i )
∣∣∣∣∣
]

(b)
≤ E

[
n∑

i=1

∣∣∣fi(x(t)
i + ζu(t)

i , ξ
(t)
i )− fi(x(t)

i , ξ
(t)
i )
∣∣∣]

(c)
≤ E

[
n∑

i=1

√
E

ξ
(t)
i

[
fi(x(t)

i + ζu(t)
i , ξ

(t)
i )− fi(x(t)

i , ξ
(t)
i )
]2]

(B.16)

where in (a), {u(t)
i }n

i=1 denote random vectors uniformly distributed over B, (b) uses

the triangle inequality, (c) uses the fact E[A] ≤
√
E[A2] via Jensen’s inequality. From

Proposition 9 and the fact ∥u(t)
i ∥2 = 1 for all i ∈ [n] (as they lie on the unit sphere

S), we have:

E
ξ

(t)
i

[fi(x(t)
i +ζu(t)

i , ξ
(t)
i )−fi(x(t)

i , ξ
(t)
i )]2 ≤ 4G2

i ζ
2 (B.17)

Plugging the bound from (B.17) in (B.16) and noting that ∑n
i=1 Gi ≤

√
nG (using

the fact that G2 = ∑n
i=1 G2

i ):

E
[
|f̃(x(t), ξ(t))− f(x(t), ξ(t))|

]
≤ 2ζ

√
nG

Using Jensen’s inequality for the L.H.S. of above equation and rearranging the terms

finally yields:

E[f̃(x(t), ξ(t))] ≥ E[F (x(t))]− 2ζ
√

nG (B.18)

The steps to bound the second term on the L.H.S. of (B.15) are similar. We note
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that:

E
[
|f̃((1− α)x∗ + αỹ0, ξ

(t))− f(x∗, ξ(t))|
]

≤ E
n∑

i=1

(
E

ξ
(t)
i

[
fi((1− α)x∗

i + αy0 + ζu(t)
i , ξ(t))− fi(x∗

i , ξ
(t)
i )
]2)1/2

(B.19)

where the inequality follows the same arguments we used for arriving at (B.16).

Further using Proposition 9, we have:

E
ξ

(t)
i

[
fi((1− α)x∗

i + αy0 + ζu(t)
i , ξ(t))− fi(x∗

i , ξ
(t)
i )
]2
≤ 4G2

i

∥∥∥−αx∗
i + αy0 + ζu(t)

i

∥∥∥2

(B.20)

Plugging in the bound from (B.20) into (B.19), using Fact 6 for x∗
i , y0 ∈ X along

with
∥∥∥u(t)

i

∥∥∥ = 1 for all i ∈ [n], and Jensen’s inequality, we have:

E[f̃((1− α)x∗ + αỹ0, ξ
(t))] ≤ F (x∗) + 4GαR + 2ζG

√
n (B.21)

Further, we can also simplify other terms on the L.H.S. of (B.15). We note that:

T∑
t=1

〈
λ(t), g((1−α)x∗+αỹ0)

〉
=

T∑
t=1

〈
λ(t), g(x∗)

〉
+

T∑
t=1

〈
λ(t), g((1−α)x∗+αỹ0)− g(x∗)

〉

≤
T∑

t=1

∥∥∥λ(t)
∥∥∥ ∥g((1−α)x∗+αỹ0)− g(x∗)∥ (B.22)

where to obtain the last inequality we have used the fact that ⟨λ(t), g(x∗)⟩ ≤ 0 for all

t ∈ [T ] and the Cauchy-Schwarz inequality. For the second term in the product on

the R.H.S. in (B.22), using (4.7) in Assumption 6 g(xi, xj) are Gij-Lipschitz for all
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i, j ∈ [n], we have:

∥g((1−α)x∗+αỹ0)− g(x∗)∥2 ≤
n∑

i=1

n∑
j∈Ni

G2
ij ∥−αx∗+αỹ0∥2 ≤ 4α2R2mG̃2 (B.23)

where G̃ := maxi∈[n],j∈Ni
Gij and the last inequality follows from noting that x∗, ỹ0 ∈

X n and using Fact 6. We now bound the first term in the product on the R.H.S. in

(B.22). From the update equation of λ(t) in line 13 of Algorithm 3, we have:

∥∥∥λ(t+1)
∥∥∥ ≤ ∥∥∥λ(t) + η∇λL̃t(x(t),λ(t))

∥∥∥ ≤ (1− δη2)
∥∥∥λ(t)

∥∥∥+ ηC

where the second inequality follows from the gradient update for the dual variable

(4.5), the triangle inequality, the fact that δη2 ≤ 1 (since an upper bound for δ is 1
4η2 )

and Assumption 7 to bound
∥∥∥g(x(t))

∥∥∥
2
. Continuing the recursion till t = 1, it can be

shown that
∥∥∥λ(t)

∥∥∥ ≤ C
δη

, ∀t ∈ [T ]. Using this bound, and (B.23) in (B.22) leads to:

T∑
t=1

〈
λ(t), g((1−α)x∗+αỹ0)

〉
≤ 2αRC

√
mG̃T

δη
(B.24)

Finally, using bounds from (B.18), (B.21), (B.24) in (B.15) yields:

T∑
t=1

E
[
F (x(t))− F (x∗)

]
− δηT

2 ∥λ∥2 +
〈
λ,E

T∑
t=1

g(x(t))
〉
− E

[
T∑

t=1

〈
λ(t), g((1−α)x∗+αỹ0)

〉]

≤ 1
2η

(
4R2 + ∥λ∥2

)
+ ηT

[16
ω2 d2(1 + m)G2 + C2

]

+ 4GαRT + 4ζG
√

nT + 2αRC
√

mG̃T

δη
(B.25)
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Setting λ = [E[∑T

t=1 g(x(t))]]+

δηT + 1
η

in (B.25) gives:

T∑
t=1

(
E
[
F (x(t))

]
− F (x∗)

)
+

n∑
i=1

∑
j∈Ni

([
E
[∑T

t=1 gij(x(t)
i , x(t)

j )
]]+)2

2
(
δηT + 1

η

)
≤ 2R2

η
+ ηT

[16
ω2 d2(1 + m)G2 + C2

]
+ CT2

√
mG̃αR

δη

+ 4αRGT + 4ζ
√

nGT (B.26)

Dividing both sides of (B.26) by T and noting that the second term on the L.H.S. of

(B.26) is positive, we can bound the time-average sub-optimality of F as:

T∑
t=1

(
E
[
F (x(t))

]
− F (x∗)

)
T

≤ 2R2

ηT
+ η

[16
ω2 d2(1 + m)G2

]

+ C2η + 2
√

mG̃αR
C

δη
+ 4αRG + 4ζ

√
nG

Using the convexity of F and setting the values η = a√
T

, ζ = 1
T

and α = 1
rT

for some

positive constant a, r, concludes the proof for the suboptimality of the function F

given in (4.13) of Theorem 4. We now consider the expected constraint violations.

From Fact 8, we have that ∀x ∈ X n, E[F (x)]− F (x∗) > −4GR. Using this relation

in (B.26) gives:

n∑
i=1

∑
j∈Ni

[E [ T∑
t=1

gij(x(t)
i , x(t)

j )
]]+2

≤ 4R2

η2 + T

[(32
ω2 d2(1 + m)G2 + 2C2

)
+ 4
√

mG̃αRC

δη2 + 8(αR + ζ
√

n)G
η

+ 4R2δ + 8GR

η

]

+ T 2
[
δη2

(32
ω2 d2(1 + m)G2 + 2C2

)
+ 4
√

mG̃αRC + 8δη(αR + ζ
√

n)G + 8GRδη
]
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Note that the above bound also holds for a given i ∈ [n] and j ∈ Ni, that is, the

R.H.S. of the above equation is also a bound for the term
([

E
[∑T

t=1 gij(x(t)
i , x(t)

j )
]]+)2

.

Taking the square root of both sides and using the fact
√∑n

i=1 ci ≤
∑n

i=1
√

ci for

positive c1, . . . , cn, we get:

E
[

T∑
t=1

gij(x(t)
i , x(t)

j )
]
≤ 2R

η

+
√

T

[(32
ω2 d2(1 + m)G2 + 2C2

)
+ 4
√

mG̃αR
C

δη2 + 8(αR + ζ
√

n)G
η

+ 4R2δ + 8GR

η

]1/2

+ T
[
δη2

(32
ω2 d2(1 + m)G2 + 2C2

)
+ 4
√

mG̃αRC + 8δη(αR + ζ
√

n)G + 8GRδη
]1/2

Dividing both sides of the above by T , using the convexity of constraint function gij,

and substituting the values η = a√
T

, ζ = 1
T

and α = 1
rT

concludes proof of (4.14).□
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Appendix C

Omitted Details for Chapter 5

C.1 Proof for Phase 1 training

We now provide the proof for Theorem 5 which establishes a generalization bound

for the learned model formed by leveraging the pre-trained source models.

We first note the following results from [DHK+21] that will enable us to prove Theo-

rem 5 later in Section C.1.2 (and Theorem 6 in Section C.2).

Claim 2 (Covariance of Source distribution, Claim A.1 of [DHK+21]). Suppose

ns ≫ ρ4(d + log(m/δ)) for δ ∈ (0, 1). Then with probability at least 1 − δ
10 over the

inputs X1, . . . , Xm in the source tasks, for all i ∈ [m] we have

0.9Σi ⪯
1
ns

X⊤
i Xi ⪯ 1.1Σi

Claim 3 (Covariance Target distribution, Claim A.2 of [DHK+21]). Suppose nT ≫

ρ4(k +log(1/δ)) for δ ∈ (0, 1). The for any given matrix B ∈ Rd×2k that is independent

of XT , with probability at least 1− δ
20 over target data XT , we have

0.9B⊤ΣT B ⪯ 1
nT

B⊤X⊤
T XT B ⪯ 1.1B⊤ΣT B
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Proposition 3 (Lemma A.7 from [DHK+21]). For matrices A1, A2 (with same

number of columns) such that A⊤
1 A1 ⪰ A⊤

2 A2 and for matrices B1, B2 of compatible

dimensions, we have:

∥∥∥P⊥
A1B1A1B2

∥∥∥2

F
≥
∥∥∥P⊥

A2B1A2B2

∥∥∥2

F

Proposition 4. Consider matrices A ∈ Ra×b and B ∈ Rb×c. Then for any u ∈ Ra,

we have:

∥P⊥
Au∥2

2 ≤ ∥P⊥
ABu∥2

2

Proof. For given A ∈ Ra×b and B ∈ Rb×c and u ∈ Ra, we have:

∥P⊥
Au∥2

2 = min
r∈Rb
∥Ar− u∥2

2

≤ min
r∈C(B)

∥Ar− u∥2
2

= min
s∈Rc
∥ABs− u∥2

2

= ∥P⊥
ABu∥2

2

C.1.1 Some important results

We now provide proof of results used to establish the resulting bound for Phase 1

training provided in Theorem 5, which is proved later in Section C.1.2. These results

provide guarantees on empirical training of the source models (c.f. Lemma 7) as well

as the performance of empirically learned source representations on the target data

(c.f. Lemma 1).
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These results would also be useful for the proof of Theorem 6 presented later in

Section C.2.

C.1.1.1 Proof of Lemma 1

We first prove Lemma 1 which establishes a bound on using the learned empirical

representation V̂ on the target data.

[Restating Lemma 1] Consider the matrix V̂ ∈ Rd×q formed by empirical source

representations {B̂i} obtained from solving (5.3) and the matrix V∗ ∈ Rd×l formed

from the true representations {B∗
i }. For any b ∈ Rl such that ∥b∥2 = 1, with

probability at-least 1− δ1, we have:

min
u∈Rq

∥∥∥XT V̂u−XT V∗b
∥∥∥

2
≤ σ2nT

rnS

(
km + kdm log(κns) + log

( 1
δ1

))

Proof. We first note that:

∥∥∥P⊥
XT V̂XT V∗b

∥∥∥
2

:= min
u∈Rq

∥∥∥XT V̂u−XT V∗b
∥∥∥

2

Using the fact that {w̃i} span the space Rl, we can write b = W̃∗α for some α ∈ Rm

where α is O(1). We have:

∥∥∥P⊥
XT V̂XT V∗b

∥∥∥2

2
=
∥∥∥P⊥

XT V̂XT V∗W̃∗α
∥∥∥2

2

≲
∥∥∥P⊥

XT V̂XT V∗W̃∗
∥∥∥2

F

=
m∑

i=1

∥∥∥P⊥
XT V̂XT V∗w̃∗

i

∥∥∥2

2

(a)
≲ nT

m∑
i=1

∥∥∥∥P⊥
Σ

1/2
T V̂

Σ
1/2
T V∗w̃∗

i

∥∥∥∥2

2
(C.1)
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(b)
≲

nT

r

m∑
i=1

∥∥∥∥P⊥
Σ

1/2
i V̂

Σ
1/2
i V∗w̃∗

i

∥∥∥∥2

2

(c)
≲

nT

rnS

m∑
i=1

∥∥∥P⊥
XiV̂

XiV∗w̃∗
i

∥∥∥2

2

where (a) follows from Claim 3 (with B = [V̂ −V∗]), (b) follows from Assumption 11

and (c) from Claim 2. We now note that V∗w̃∗
i = B∗

i w∗
i . We now note that V̂ is the

matrix whose columns are an orthonormal basis of the set of columns of the matrices

{B̂i}. Thus for each i ∈ [m], there exists a matrix Ci such that B̂i = V̂Ci. Now

using the result of Proposition 4 we have:

∥∥∥P⊥
XT V̂XT V∗b

∥∥∥2

2

P rop. 4
≲

nT

rns

m∑
i=1

∥∥∥P⊥
XiB̂i

XiB∗
i w∗

i

∥∥∥2

2

≤ nT

rns

m∑
i=1

∥∥∥PXiB̂i
(XiB∗

i w∗
i + zi)−XiB∗

i w∗
i

∥∥∥2

2

= nT

rns

m∑
i=1

∥∥∥PXiB̂i
yi −XiB∗

i w∗
i

∥∥∥2

2

= nT

rns

m∑
i=1

∥∥∥XiB̂iŵi −XiB∗
i w∗

i

∥∥∥2

2

The proof can then be concluded by using the result from Lemma 7 stated below

that provides a bound for the trained empirical source models in (5.3).

The following lemma establishes guarantees on the learned empirical source

representations.

Lemma 7 (Multi-Source training guarantee). With probability at least 1 − δ
5 , we

have:

m∑
i=1

∥∥∥Xi(B̂iŵi −B∗
i w∗

i )
∥∥∥2

2
≤ σ2

(
km + kdm log(κns) + log

(1
δ

))
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First we instantiate Claim 2, which happens with probability atleast 1− δ
10 . For

the given source datasets and matrix A ∈ Rd×m with columns {ai}, we define the map

X (A) as X (A) = [X1a1 X2a2 . . . Xmam]. Now consider the matrix ∆ ∈ Rd×m

whose columns are given by {B̂iŵi − B∗
i w∗

i }m
i=1. For convenience of notation, we

define X (∆) := [X1(B̂1ŵ1−B∗
1w∗

1) . . . Xm(B̂mŵm−B∗
mw∗

m)]. We are interested

in providing a bound for the quantity |X (∆)2
F . The ith column of the matrix ∆ can

be decomposed as Riri where Ri ∈ Od×2k (set of tall orthonormal matrices in d× 2k)

and ri ∈ R2k.

∆ = [R1r1 R2r2 . . . Rmrm]

For each i ∈ [m], we now decompose XiRi = UiQi (where Ui ∈ Ons×2k and

Q ∈ R2k×2k). Since {B̂i, ŵi}m
i=1 are the optimal solutions for the source regression

problems, we have ∑m
i=1 ∥yi − XiB̂iŵi∥2

2 ≤
∑m

i=1 ∥yi − XiB∗
i w∗

i ∥2
2. Substituting

yi = XiB∗
i w∗

i + zi for i ∈ [m], we get ∥X (∆)∥2
F ≤ 2 ⟨Z,X (∆)⟩ (where the inner

product of matrices is trace of their product) and we denote the matrix of noise

vectors as Z := [z1 z2 . . . zm] ∈ Rns×m. Now:

⟨Z,X (∆)⟩ =
m∑

i=1
z⊤

i XiRiri =
m∑

i=1
z⊤

i UiQiri (C.2)

≤
m∑

i=1

∥∥∥U⊤
i zi

∥∥∥
2
∥Qiri∥2

≤

√√√√ m∑
i=1

∥∥∥U⊤
i zi

∥∥∥
2

√√√√ m∑
i=1
∥UiQiri∥2

=
√√√√ m∑

i=1

∥∥∥U⊤
i zi

∥∥∥
2
∥X (∆)∥F (C.3)
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We will now provide a bound for the first term in the product on the R.H.S. of (C.3).

Since Ui depends on Ri, it also depends on the value of Z. To provide a bound, we

use an ϵ-net argument to cover all possible values of {Ri}m
i=1. We first consider a fixed

set of matrices {R̄i}m
i=1 ⊂ Om

d×2k. For these given matrices, we can find decompose

XiR̄i = ŪiQi for i ∈ [m], where {Ūi}m
i=1 ⊂ Om

nT ×2k do not depend on Z. Thus we

have 1
σ2
∑m

i=1

∥∥∥U⊤
i zi

∥∥∥
2
∼ χ2(2km). Thus w.p at least 1− δ′, we have:

m∑
i=1

∥∥∥U⊤
i zi

∥∥∥
2
≲ σ2

(
km + log

( 1
δ′

))
(C.4)

Hence for the given {R̄i}m
i=1, using the result from (C.4) in (C.3), we have:

〈
Z,X (∆̄)

〉
≲ σ2

(
km + log

( 1
δ′

))
∥X (∆̄)∥F

where ∆̄ = [R̄1r1 R̄2r2 . . . R̄mrm]. Now we consider an ϵ
m

-net of Om
d×2k denoted

by N of size |N | ≤
(

6m
√

2k
ϵ

)2kdm
. Using the union bound, with probability at least

1− |N |δ′:

< Z,X (∆̄) > ≲σ2
(

km+ log
( 1

δ′

))
∥X (∆̄)∥F , ∀{R̄i}m

i=1 ⊂ N (C.5)

Choose δ′ = δ

20
(

6m
√

2k
ϵ

)2kdm , then the above holds with probability at least 1− δ
20 . We

will now use the results from the following claim, which is proved in Section C.1.1.2

below.

Claim 4. Under the assumptions of Theorem 5, the following hold:

1. W.p at least 1− δ
20 , ∥Z∥2

F ≲ σ2
(
nsm + log

(
1
δ

))
2. If the result in 1) holds and Claim 2 holds , then ∥∆∥2

F ≲
σ2(nsm+log( 1

δ
))

nsλlow
where
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λlow = mini∈[m] λmin(Σi)

3. If the results in 1), 2) above hold and Claim 2 holds, then ∥X ([R1r1 . . . Rmrm]−

[R̄1r1 . . . R̄mrm])∥ ≲ κϵ2

m2 σ2
(
nsm + log

(
1
δ

))
for some {R̄i} ⊂ N where κ =

maxi∈[m] λmin(Σi)
mini∈[m] λmin(Σi)

where (a) follows from (C.5) w.p ≥ 1− δ
20 , (b) from 1) in Claim 4); w.p. ≥ 1− δ

20

and (c) uses the fact that δ′ < δ, k ≤ ns, and 3) in Claim 4. Since the above

result gives an inequality in terms of ∥X (∆)∥2
F and ∥X (∆)∥F , we can conclude the

following:

∥X (∆)∥F ≲ max

σ

√(
km + log

( 1
δ′

))
, σ

√√
κϵ

m

(
nsm + log

( 1
δ′

))
We choose ϵ = km

ns
√

κ
, and note that nS ≫ k, which gives:

∥X (∆)∥F ≤ σ

√(
km + log

( 1
δ′

))

Substituting the value of δ′ = δ

20
(

6m
√

2k
ϵ

)2kdm and ϵ = km
ns

√
κ
:

∥X (∆)∥F ≲ σ

√√√√km + kdm log
(

mk

ϵ

)
+ log

(1
δ

)
σ

√
km + kdm log (nsκ) + log

(1
δ

)

Hence the following holds with probability at least 1 -
(

δ
10 + δ

20 + δ
20

)
:

∥X (∆)∥2
F ≲ σ2

[
km + kdm log (nsκ) + log

(1
δ

)]
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C.1.1.2 Proof of Claim 4

1. This follows from the fact that 1
σ2∥Z∥2

F ∼ χ(nsm)

2.

∥X (∆)∥2
F =

m∑
i=1
∥Xi(B̂iŵi0 −B∗

i w∗
i )∥2

2

=
m∑

i=1
(B̂iŵi0 −B∗

i w∗
i )⊤X⊤

i Xi(B̂iŵi0 −B∗
i w∗

i )

≳ ns

m∑
i=1

(B̂iŵi0 −B∗
i w∗

i )⊤Σi(B̂iŵi0 −B∗
i w∗

i )

≥ ns

m∑
i=1

λmin(Σi)∥(B̂iŵi0 −B∗
i w∗

i )∥2
2

≥ nsλlow∥∆∥2
F

where λlow := mini∈[m] λmin(Σi). Since ∥X (∆)∥2
F ≤ 2 ⟨Z,X (∆)⟩ ≤ 2∥Z∥F∥X (∆)∥F ,

we have ∥X (∆)∥F ≤ 2∥Z∥F . Using the result from part 1. of the claim state-

ment combined with the upper bound derived above, we have:

∥∆∥2
F ≲

σ2

nsλlow

(
nsm + log

(1
δ

))

3. For some {R̄i} ⊂ N we have ∑m
i=1 ∥Ri − R̄i∥F ≤

∑m
i=1

ϵ
m

= ϵ. Therefore:

∥X (∆−∆̄)∥2
F =

m∑
i=1
∥Xi(Ri − R̄i)ri∥2

2

≤
m∑

i=1
∥Xi∥2

2∥Ri − R̄i∥2
F∥ri∥2

2

≲
nsϵ

2

m2

m∑
i=1
∥Σi∥2

2∥ri∥2
2
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≲
nsϵ

2λhigh

m2

m∑
i=1
∥ri∥2

2

(a)= nsϵ
2λhigh

m2 ∥∆∥2
F

(b)
≲

nsϵ
2λhigh

m2
σ2(nsm + log(1

δ
))

nsλlow

= κϵ2λhighσ2

m2λlow

(
nsm + log

(1
δ

))

Here, λhigh := maxi∈[m] λmax(Σi) where to arrive at (a), we have used the fact

that {Ri} have orthonormal columns and used the definition of ∆, and (b)

follows from using 2) from the claim statement.

C.1.2 Proof of Theorem 5

Having established the helper results above, we now provide a proof for Theorem 5.

[Restating Theorem 5] Fix a failure probability δ ∈ (0, 1) and further assume 2k ≤

min{d, m} and the number of samples in the sources and target satisfy ns ≫ ρ4(d +

log(m/δ)) and nT1 ≫ ρ4(max{l, q}+ log(1/δ)), respectively. Define κ = maxi∈[m] λmax(Σi)
mini∈[m] λmin(Σi)

where λmax(Σi) denotes the maximum eigenvalue of Σi. Then with probability at

least 1− δ over the samples, under Assumptions 9 - 13, the expected excess risk of

the learned predictor ŵT on the target (x→ x⊤V̂ŵT ) for Phase 1 satisfies:

E[EER(θPhase1 ,θ∗
T )] ≲ σ2

nT1

(q + log(1/δ)) + ϵ2 + σ2
[

1
rnsm

log
(1

δ

)
+
(

kd log(κns) + k

rns

)]

Proof. We will first instantiate Lemma 2. We then instantiate Lemma 3 twice, once

with [V̂ −V∗] and the other time with [B∗
T −V∗]. Then we assume that the result

from Lemma 7 holds. All these events happen together with probability at least
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1− 2δ
5 . The expected error for the target distribution is given by:

EER(θPhase1 ,θ∗
T ) = Ex∼pT

[
x⊤B∗

T w∗
T − x⊤V̂ŵT

]2
=
∥∥∥Σ1/2

T

(
V̂ŵT −B∗

T w∗
T

)∥∥∥2

2

≲
∥∥∥Σ1/2

T

(
V̂ŵT −V∗w̃∗

T

)∥∥∥2

2
+
∥∥∥Σ1/2

T (B∗
T w∗

T −V∗w̃∗
T )
∥∥∥2

2
(a)
≤
∥∥∥Σ1/2

T

(
V̂ŵT −V∗w̃∗

T

)∥∥∥2

2
+ ϵ2

(b)
≲

1
nT

∥∥∥XT

(
V̂ŵT −V∗w̃∗

T

)∥∥∥2

2
+ ϵ2

= 1
nT

∥∥∥PXT V̂yT −XT V∗w̃∗
T

∥∥∥2

2
+ ϵ2

≲
1

nT

∥∥∥PXT V̂(XT V∗w̃∗
T + zT )−XT V∗w̃∗

T )
∥∥∥2

2

+ 1
nT

∥∥∥PXT V̂(XT B∗
T w∗

T −XT V∗w̃∗
T )
∥∥∥2

2
+ ϵ2

where (a) follows from Assumption 9 and (b) uses Claim 3. Using the fact that

∥PXT V̂∥2 ≤ 1 (since PXT V̂ is a projection matrix) and using Claim 3, we have:

≲
1

nT

∥∥∥PXT V̂(XT V∗w̃∗
T + zT )−XT V∗w̃∗

T )
∥∥∥2

2
+ ϵ2

≲
1

nT

∥∥∥P⊥
XT V̂XT V∗w̃∗

T

∥∥∥2

2
+ ϵ2 + 1

nT

∥∥∥PXT V̂zT

∥∥∥2

2

where the first inequality follows from Assumption 9 and Claim 3. We can take the

expectation over the distribution of w∗
T and use Assumption 13 to yield:

Ew̃∗
T
[EER(θPhase1 ,θ∗

T )] ≲ 1
nT l

∥∥∥P⊥
XT V̂XT V∗

∥∥∥2

F
+ ϵ2 + 1

nT

∥∥∥PXT V̂zT

∥∥∥2

2
(C.6)

We now make use of the following lemma, which is proved below in Section C.1.2.1

that provides a bound for the first term in (C.6).
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Lemma 8 (Target Training Guarantee). Assuming the results in Claim 2, Claim 3

(with B = [V̂ −V∗]) and Lemma 7 hold, we then have:

∥∥∥P⊥
XT V̂XT V∗

∥∥∥2

F
≲

nT σ2

rnsσ2
l (W̃∗)

(
km+kdm log(κns)+ log

(1
δ

))

Substituting the result from Lemma 8 in (C.6) and using σ2
l (W̃∗) ≥ m

l
, the

following bound holds with probability at least 1− 2δ
5 :

Ew̃∗
T
[EER(θPhase1 ,θ∗

T )] ≲ 1
nT

∥∥∥PXT V̂zT

∥∥∥2

2
+ ϵ2 + 1

rnsm
σ2
(

km + kdm log(κns) + log
(1

δ

))

Finally, the last term in above can be bounded by using a concentration inequality

for χ2-squared distribution. In particular, with probability at least 1− 3δ
5 we have∥∥∥PXT V̂zT

∥∥∥2

2
≲ σ2(q + log(1/δ)). Thus the following bound holds on Ew∗

T
[Err(B̂S, w∗

T )]

with probability at least 1− δ:

Ew∗
T
[EER(θPhase1 ,θ∗

T )] ≲ ϵ2 + 1
nT

σ2(q + log(1/δ)) + 1
rnsm

σ2
(

km + kdm log(κns) + log
(1

δ

))
= σ2

[
1

rnsm
log

(1
δ

)
+
(

kd log(κns) + k

rns

)]
+ σ2

nT

(q + log(1/δ))+ϵ2
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C.1.2.1 Proof of Lemma 8

We start the proof by using Proposition 3 and Claim 3:

σ2
l (W̃∗)∥P⊥

XT V̂XT V∗∥2
F ≲ σ2

l (W̃∗)nT

∥∥∥∥P⊥
Σ

1/2
T V̂

Σ
1/2
T V∗

∥∥∥∥2

F
nT

m∑
i=1

∥∥∥∥P⊥
Σ

1/2
T V̂

Σ
1/2
T V∗w̃∗

i

∥∥∥∥2

2

The proof now follows the same procedure as in Proof of Lemma 1 starting from

Equation C.1 and following it up with Lemma 7.

C.2 Proof for Phase 2 training

We now provide a proof for our bound in Theorem 6 which establishes excess

generalization risk for the model obtained after combined Phase 1 and Phase 2

training.

The data for Phase 2 training is given by (XT2 , yT2) where yT2 = XT2B∗
T w∗

T +

zT2 . Here θ∗
T := B∗

T w∗ denotes the true data generating target model. We define

P∥ = X⊤
T2(XT2X⊤

T2)
−1XT2 as projection matrix on the row-space of matrix XT2 and

P⊥ = I−P∥.

We first note the following result that establishes where the Gradient Descent solution

converges to, the proof of which is given in Section C.2.1.1 below.

Lemma 9. Under the assumptions of Theorem 6, performing gradient descent on

the objective (5.6) with the initialization θ(0) := θPhase1 and learning rate η, yields the

solution:

θGD := θ(∞) = P∥θ
∗
T + P⊥θPhase1 + X⊤

T2(XT2X⊤
T2)−1z

where P∥ = X⊤
T2(XT2X⊤

T2)−1XT2 is the projection matrix on the row-space of matrix
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XT2 and P⊥ = I−P∥.

C.2.1 Proof of Theorem 6

We now use the solution of the gradient descent θ̂T := θGD derived in Lemma 9 and

find the excess population risk. The excess risk is given by:

EER(θ̂T ,θ∗
T ) = EXT2 ∼pT

(X⊤
T2θ

∗
T −X⊤

T2θGD)2

= EXT2 ∼pT
Tr[(θ∗

T−θGD)⊤XT2X⊤
T2(θ∗

T−θGD)]

=
∥∥∥Σ1/2

T (θ∗
T − θGD)

∥∥∥2

2

Substituting the value of θGD from Lemma 9 we get:

EER(θ̂T ,θ∗
T ) ≤ 2

∥∥∥Σ1/2
T P⊥(θ∗

T − θT0)
∥∥∥2

2
+ 2

∥∥∥Σ1/2
T X⊤

T2(XT2X⊤
T2)−1z

∥∥∥2

2
(C.7)

We focus on the first term for now. We have:

∥∥∥Σ1/2
T P⊥(θ∗

T − θT0)
∥∥∥2

2
= (θ∗

T − θT0)⊤P⊤
⊥ΣT P⊥(θ∗

T − θT0)

= (θ∗
T − θT0)⊤P⊤

⊥

(
ΣT −

1
nT

X⊤
T2XT2

)
P⊥(θ∗

T − θT0)

=
∥∥∥∥∥
(
ΣT −

1
nT

X⊤
T2XT2

)1/2

P⊥(θ∗
T − θT0)

∥∥∥∥∥
2

2

≤
∥∥∥∥ΣT −

1
nT

X⊤
T2XT2

∥∥∥∥
2
∥P⊥(θ∗

T − θT0)∥2
2 (C.8)
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The second term in (C.8) can be bounded by ∥P⊥(θ∗
T − θT0)∥2

2 ≤ ∥(θ∗
T − θT0)∥2

2 by

noting that ∥P⊥∥2 ≤ 1. We thus finally get the bound:

EER(θ̂T ,θ∗
T ) ≤ 2

∥∥∥∥ΣT −
1

nT

X⊤
T2XT2

∥∥∥∥
2
∥(θ∗

T − θT0)∥2
2 + 2

∥∥∥Σ1/2
T X⊤

T2(XT2X⊤
T2)−1z

∥∥∥2

2

(C.9)

We now provide a bound for the second term in (C.9). Note:

∥∥∥Σ1/2
T X⊤

T2(XT2X⊤
T2)−1z

∥∥∥2

2
= z⊤(XT2X⊤

T2)−1XT2ΣT X⊤
T2(XT2X⊤

T2)−1z

From [BLLT20, Lemma 9], we can get a high probability bound (probability > 1−e−t)

on this term for some t > 0 as

∥∥∥Σ1/2
T X⊤

T2(XT2X⊤
T2)−1z

∥∥∥2

2
≤ (4t + 2)σ2Tr

(
(XT2X⊤

T2)−1XT2ΣT X⊤
T2(XT2X⊤

T2)−1
)

To bound the trace term, we use [BLLT20, Lemma 13, 18]: For universal constant

b, c ≥ 1 and k∗ := min{k ≥ 0 : rk(ΣT ) ≥ bn}, we have

Tr
(
(XT2X⊤

T2)−1XT2ΣT X⊤
T2(XT2X⊤

T2)−1
)
≤ c

(
k∗

bn
+ bn

Rk∗(ΣT )

)

where rk(ΣT ) = Σi>kλi

λk+1
, Rk∗(ΣT ) = (Σi>kλi)2

Σi>kλ2
i

.Substituting the value of t = log
(

2
δ

)
Plugging the resulting bound in (C.9), we can finally claim that the following holds

with probability at least 1− δ
2 :

EER(θ̂T ,θ∗
T ) ≲

∥∥∥∥ΣT −
1

nT

X⊤
T2XT2

∥∥∥∥
2
∥(θ∗

T − θT0)∥2
2 + cσ2 log

(1
δ

)(
k∗

bn
+ bn

Rk∗(ΣT )

)
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The covariance approximation error in the first term of above can be bounded by the

result in [KL17, Theorem 9]. This yields the following bound on the approximation

with probability at least 1− e−δ1 over the choice of data matrix XT2 for some constant

u > 0 and δ1 > 1

∥∥∥∥ΣT−
1

nT

X⊤
T2XT2

∥∥∥∥
2
≤ uλ1 max


√√√√∑d

i=1 λi

nT λ1
,

∑d
i=1 λi

nT λ1
,

√
δ1

nT

,
δ1

nT


Substituting δ1 = log

(
2
δ

)
, with probability at least 1− δ

2 ,

∥∥∥∥ΣT −
1

nT

X⊤
T2XT2

∥∥∥∥
2
≤ uλ1 max


√√√√∑d

i=1 λi

nT λ1
,

∑d
i=1 λi

nT λ1
,

√
1

nT

log
(1

δ

)
,

1
nT

log
(1

δ

)
(C.10)

Denote the eigenvalues of covariance matrix of the target data as {λi}d
i=1, with

λ1 ≥ . . . λd, we then have:

EER(θ̂T ,θ∗
T ) ≲

∥∥∥∥∥ΣT −
1

nT2

X⊤
T2XT2

∥∥∥∥∥
2

1
λd

∥ΣT (θ∗
T − θT0)∥2

2 + cσ2 log
(1

δ

)(
k∗

bnT2

+ bnT2

Rk∗(ΣT )

)

where rk(ΣT ) = Σi>kλi

λk+1
, Rk∗(ΣT ) = (Σi>kλi)2

Σi>kλ2
i

. Here, constant b > 1 and k∗ =

min{k ≥ 0 : rk(Σ) ≥ bn} and the covariance estimation term can be bounded by∥∥∥∥ΣT − 1
nT2

X⊤
T2XT2

∥∥∥∥
2
≤ uλ1 max

{√∑d

i=1 λi

nT2 λ1
,
∑d

i=1 λi

nT2 λ1
,
√

1
nT2

log
(

1
δ

)
, 1

nT2
log

(
1
δ

)}
with

probability at least 1 − δ
2 . We now substitute the value of ∥ΣT (θ∗

T − θT0)∥2
2 from

Theorem 5 (as θT0 = V̂ŵT which was obtained by using nT1 target samples). Thus

the final bound after Phase 1 and Phase 2 training, after taking the expectation w.r.t
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the target model θ∗
T , is given by:

E[EER(θ̂T ,θ∗
T )] ≲

∥∥∥∥∥ΣT −
1

nT2

X⊤
T2XT2

∥∥∥∥∥
2

σ2

λd

1
rnsm

log
(1

δ

)
+ cσ2 log

(1
δ

)(
k∗

bnT2

+ bnT2

Rk∗(ΣT )

)

+
∥∥∥∥∥ΣT −

1
nT2

X⊤
T2XT2

∥∥∥∥∥
2

σ2

λd

(
kd log(κns) + k

rns

)

+
∥∥∥∥∥ΣT −

1
nT2

X⊤
T2XT2

∥∥∥∥∥
2

1
λd

(
σ2
[

1
nT1

(q + log(1/δ))
]

+ ϵ2
)

where u, c are universal constants. We now substitute the bound for the covariance

estimate from (C.10) and simplfy the expression by assuming r0(ΣT )
nT2

≥ 1
nT2

log
(

1
δ

)
≥ 1

since we have a few target samples:

E[EER(θ̂T ,θ∗
T )] ≤ uλ1

λd

r0(ΣT )
nT2

(
σ2

nT1

(q + log(1/δ)) + ϵ2
)

+ cσ2 log
(1

δ

)(
k∗

bnT2

+ bnT2

Rk∗(ΣT )

)

+ uλ1σ
2

λd

r0(ΣT )
nT2

(
1

rnsm
log

(1
δ

)
+
(

kd log(κns) + k

rns

))

C.2.1.1 Proof of Lemma 9

For any time step t of the gradient descent process, the gradient of the objective in

(5.6) evaluated at θ(t) is given by:

∇f(θ(t)) = 2
nT

X⊤
T2(XT2θ

(t) − yT2)

The gradient update step using step size η is given by:

θ(t+1) = θ(t) − 2η

nT

X⊤
T2(XT2θ

(t) − yT2) = θT0 + X⊤
T2a(t)
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where a is some vector in RnT . In the limit, the gradient descent convergence to a

solution of the form:

θ(∞) = θT0 + X⊤
T2a (C.11)

Since the problem in (5.6) is over-parameterized, there exists a value θ∗ such that

f(θ∗) = 0. This follows from the fact that XT2 has full row rank. The gradient

descent solution, under an appropriate choice of the learning rate, thus converges to

this value while yield a zero loss, implying:

XT2θ
(∞) = yT2 = XT2θ

∗
T + zT2

⇒XT2(θT0 + X⊤
T2a) = XT2θ

∗
T + zT2

⇒a = (XT2X⊤
T2)−1(XT2(θ∗

T − θT0) + zT2)

Substituting this in (C.11), we get

θGD := θ(∞)

= θT0 + X⊤
T2(XT2X⊤

T2)−1(XT2(θ∗
T − θT0) + zT2)

= P∥θ
∗
T + P⊥θT0 + X⊤

T2(XT2X⊤
T2)−1zT2
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