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Stereotactic biopsies are frequently performed to secure definitive diagnosis for
brain tumor patients. Fundamentally, there are two major difficulties in these
endeavors. First, because of intra-tumoral heterogeneity inherent in many forms
of brain cancer, biopsies taken from one region may yield a different diagnosis
than if another area is biopsied. Second, stereotactic needle biopsies inherently
rely on mathematical algorithms for targeting, without real-time visualization of
the actual biopsy site. This article describes the novel MRI-based technologies that
can potentially afford neurosurgeons the opportunity to address these challenges.

For most solid tumors, definitive diagno-
sis requires securement of abnormal tissue
and careful pathologic examination of
this tissue. This tissue diagnosis remains
the cornerstone of subsequent therapy [1].
However, there are a number of cancers
where intrinsic intra-tumoral histologic
heterogeneity render definitive diagnosis
challenging. Glioblastoma multiforme,
the common form of primary brain can-
cer, is one such cancer [2].

Glioblastoma are derived from astro-
cytes, star-shaped cells responsible for
mediating maintaining homeostasis of the
neuronal microenvironment [3]. Astro-
cytic tumors are classified histologically
based on WHO criteria [4,5]. Grade I
tumors are biologically benign and com-
plete surgical excision is typically curative.
Grade II astrocytomas are characterized
by hypercellularity with diffuse infiltra-
tion into the surrounding cerebral paren-
chyma. Complete surgical excision of
grade II tumors cannot generally be
achieved. The median survival for
patients afflicted with grade II astrocyto-
mas range from 5 to 8 years [6]. Grade III
or IV astrocytomas are considered malig-
nant. In addition to hypercellularity,
grade III astrocytomas exhibit nuclear aty-
pia and increased mitotic figures [7]. The

median survival for grade III tumor is
approximately 3 years. Grade IV astrocy-
tomas, or glioblastomas, are characterized
by histologic findings of angiogenesis and
necrosis. Grade IV tumors are extremely
aggressive and are associated with a
median survival of 12–18 months [8].

As the name ‘multiforme’ implies,
glioblastoma is notoriously heteroge-
neous in terms of the histologic appear-
ances [5]. This heterogeneity exists at a
cellular and a regional level, such that
biopsy of tissue secured from one region
of the tumor may yield a diagnosis of
grade III tumor, while specimens secured
from another region of the same tumor
can render a grade IV diagnosis. In one
study, 81 patients afflicted with astrocy-
tomas of differing grades underwent ste-
reotactic biopsy followed by surgical
resection (within 30 days), 38% of the
initial diagnosis secured through stereo-
tactic needle biopsy were of a grade that
differed from diagnosis achieved through
surgical resection [9]. In a second study,
misdiagnosis occurs in 25% of stereotac-
tic needle biopsies involving lesions
<1 cc in volume [10]. These studies dem-
onstrate that misdiagnosis from stereo-
tactic needle biopsies represent a genuine
challenge in neurosurgery.
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Brain biopsies: challenges
The difficulty of the tissue sampling is confounded by the
complexity of the brain, where hundreds of trillions of neuro-
nal connections define those qualities that we consider
human [11]. The notion of eloquence is often applied by neuro-
surgeons to delineate regions of the brain that are amenable to
surgical manipulation. In neurosurgery, eloquent cortex is

defined by regions where injuries result in obvious neurologic
deficits, such as weakness or paralysis. However, there is a large
body of literature demonstrating that injuries in regions not
considered eloquent, nevertheless, cause deficits that are detect-
able on sophisticated neurocognitive testing [12,13]. As such, it is
our contention that any neurosurgical procedure should be per-
formed with the intent of minimizing injuries to any portion
of the cerebrum. As such, it is highly desirable to achieve
definitive diagnosis with minimal disruption of the cerebrum.

Another major hurdle in biopsy of the human cerebrum is
that it is effectively a ‘blind’ procedure. While sophisticated
methods have been developed to triangulate the intended
region of the biopsy and to deliver the biopsy needle to this
region [10], the neurosurgeon performing the procedure has
limited means of visually confirming the location of the biopsy
needle. In other words, the accuracy of the biopsy is entirely
dependent on precision of the instrument, and the neuro-
surgeon has little means of validating the accuracy with human
aptitudes, such as the surgeon’s experience and intuition. For
instance, the stereotactic frame may incur subtle deformation
with repeated use. If not properly serviced, utilization of this
sub-optimal frame introduces inaccuracies. For this and other
well-described factors that influence the accuracy of stereotactic
biopsies [14,15], most experienced neurosurgeon will have experi-
enced situations in the operating room (OR) where the frozen
specimen analysis is non-diagnostic and the doubts are raised
as to the actual location of the biopsy. For the most part, the
neurosurgeon makes educated ‘guesses’ in these situations to
decide on the subsequent course of action.

The blind nature of brain biopsies additionally impede the
surgeon’s ability to react to intraoperative events. For instance,
most surgeons would terminate the surgery if they know that
the biopsy had triggered significant hemorrhage. However, the
way that brain biopsies are currently performed, the surgeons
are effectively blind to these events. The surgeon effectively
relies on the patient’s neurologic examination as she/he emerges
from anesthesia to assess whether adverse events were incurred
during the biopsy. If the examination is concerning, the sur-
geon would then rush the patient to a CT scanner for imaging.
The delay between the timing of the actual hemorrhage and
the timing of detection on CT can be on the order of hours.
Based on the available literature, the risk of biopsy-related
hemorrhage ranged between 1 and 9% [16–21].

Improving brain biopsies
Restriction spectrum imaging

The development of diffusion weighted magnetic resonance
imaging (DWI) has allowed visualization of microstructural
and physiological changes within the brain [22]. The physical
principle underlying DWI involves assessing molecular diffu-
sion by the imposition of two radiofrequency pulses that are
equal in magnitude and 180 degrees out of phase. The ampli-
tude of the radiofrequency perturbation is characterized by the
b value, and most conventional DWI images are acquired using
a single b value [23]. Using diffusion imaging, cellularity maps
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Figure 1. Restriction spectrum imaging (RSI)-guided
selection of biopsy sites. (A) RSI signal imposed onto
conventional MR imaging. Red color indicates regions of
increased cellularity. Expectedly, the cortex of the cerebrum
exhibits increased RSI signal. There is an increased RSI signal on
the lateral edge of the tumor mass. (B) Biopsy of a region of
tumor with increased RSI signal and another adjacent region
without increased RSI signal. (C) Pathologic specimens secured
from respective regions. The region of increased RSI signal
revealed increased cellularity as well as increased microvascular
proliferation. The region without increased RSI signal showed
moderate cellularity. Both slides were taken at 20�.
Bar = 50 mm. The specimens were stained by H&E.
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can be generated using DWI to guide target planning for ste-
reotactic brain biopsies [24].

Restriction spectrum imaging (RSI) is an advanced form of
DWI technique that integrates multiple amplitudes of radiofre-
quency perturbations (hence a spectrum of b values) to assess
molecular motion [23]. We have previously shown that RSI
afford finer resolution of molecular diffusion relative to conven-
tional DWI, affording assessment of a gradation of diffusional
restrictions, ranging from free to partial restriction to absolute
restriction [25]. With RSI, we were able to determine regions of
high cellularity within the tumor that failed detection by con-
ventional DWI [26]. Incorporation of this information into sur-
gical planning can potentially enhance the surgeon’s ability to
select region of disparate cellularity for biopsy (FIGURE 1).

Intra-MRI biopsies

With the development of MRI-compatible equipment such as
the ClearPoint device [27] and Ad-Tech biopsy needle [28], brain
biopsies can now be performed within the MRI. In doing so,
the surgeons will have a real-time view of the lesion as it is

being biopsied. Adjustments in trajectory can be made in real
time to sample the regions of interest.

The ClearPoint device is an integrated system of hardware,
software and disposable MRI compatible instruments that
afford surgeons a real-time view of the surgical lesion and the
biopsy needle in real time as the biopsy is being performed. To
the best of our knowledge, it is the only commercial device
that allows for real-time MRI-guided neuronavigation. The
patients undergoing a ClearPoint procedure are placed under
general anesthesia. A set of MRI images were then taken and
used for planning surgical trajectory. Based on this trajectory,
an incision is made followed by a dime-sized burr hole through
the skull. A tripod device (termed SmartFrame) is mounted
over the incision (FIGURE 2). This frame is synchronized to the
hardware and software such that the trajectory of the biopsy
needle inserted through the center of the tripod can be calcu-
lated. Based on this calculation, the needle is advanced slowly
to the intended target. MRIs are performed during this
advancement as well as during the actual biopsy to visualize the
trajectory in real time. Because actual views of the process are
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Figure 2. ClearPoint system for real-time MRI-guided biopsy. (A) Schematic of SmartFrame. (B) SmartFrame placement during
surgery. (C) Pre-operative trajectory planning. Trajectory planning can be determined based on real-time information as to target the
region of interest. The trajectory is indicated by the yellow line. The target is indicated by the orange circle. (D) Real-time monitoring of
surgical trajectory. The needle tract (indicated by the T1-hypointense tract) can be clearly visualized in real-time throughout the surgery.
Precise overlap of the intended target (orange circle) with the biopsy needle was observed.
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available in real time, the surgeon can use his/her judgment to
adjust to any inaccuracies related to the surgical equipment and
react to any intraoperative events encountered.

Importantly, performing the biopsy in the MRI allows the
neurosurgeon to more quickly react to the situation of an enlarg-
ing hematoma. For deep-seated tumors, the management strategy
for an expanding hematoma involves termination of biopsy, cor-
rection of aberrant coagulation parameters and blood-pressure
control, with surgical evacuation in the case of hematoma exert-
ing significant mass effect. To determine whether hemorrhage
has occurred and the size of the hematoma, the patients are typi-
cally emergently transported from the OR (where conventional
biopsies are performed) to the imaging suite. If the hematoma
size is significant, the patient is then brought back to the OR. In
the case of MRI-guided biopsies, the patient is already under sur-
veillance by MRI and an abbreviated T2 sequence would deter-
mine whether the hematoma is of a size that requires evacuation,
thereby bypassing the trip from the OR to the CT. Thus, the
proper course of action can be more quickly determined for a
patient biopsied in the MRI relative to the patient who was
biopsied in the OR.

A link to a video describing the integration of pre-operative
RSI planning and intra-MRI biopsy can be found in Refer-
ence [29]. The video describes a case where regions of differing
RSI signals were biopsied with the MRI. The localization of

the regions of biopsies was visually confirmed in real time. The
biopsy derived from a region of lower cellularity (or low RSI
signal) yielded the diagnosis of anaplastic astrocytoma. In con-
trast, the biopsy derived from a region of high cellularity (or
high RSI signal) yielded the diagnosis of glioblastoma (FIGURE 1).
The case illustrates the potential of RSI imaging and real-time
MRI in improving the accuracy of stereotactic needle biopsies.

Conclusion
Technological advances have now conferred neurosurgeons with
the ability to pre-operatively define the regional heterogeneity
of brain tumors as well as real-time visualization of biopsy as it
is performed. Adaptation of these technologies can potentially
improve the safety and accuracy of brain biopsies. However,
assessment of efficacy, cost–benefit analysis and clinical experi-
ence from larger cohorts are needed before clinical adaptation
of these technologies.
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