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Abstract 

Air pollution exposure is associated with increased risk for multiple adverse health outcomes including 

neurological disorders, asthma, diabetes, ischemic heart disease, and death (Anderson et al., 2012; Brook 

et al., 2010; Dockery et al., 1993; Gauderman et al., 2004; Pope et al., 1995; Tagaris et al., 2009).  

Race/ethnicity and income are predictors for air pollution exposure across most cities in the United States 

due to past discriminatory housing practices such as redlining (Nardone et al., 2020; Zenou and Boccard, 

2000).  Future public policies must address this Environmental Justice issue so that all socio-economic 

groups have access to clean air. 

Predicting air pollution exposure disparities under different future scenarios is a difficult task because 

non-linear chemistry governs the formation of many pollutants.  Historical relationships between pollutant 

concentrations and land-use or even pollutant concentrations and emissions may therefore not be useful 

when predicting future conditions.  Chemical Transport Models (CTMs) predict air pollution concentrations 

based on fundamental chemical and physical equations that can accurately transition to future conditions.  

The research in this thesis explores how to refine CTM inputs and configuring CTM spatial resolution to 

accurately quantify air pollution exposure disparities in the present day and in the future.   

In Chapter 2, ten major spatial surrogates describing the detailed locations of air pollution emissions 

in California are created/updated for the base year 2010 and future years from 2015 to 2040.  The updated 

spatial surrogates generally improve CTM predictions for PM mass and EC concentrations in the 

Sacramento area (~10% for PM, ~3% for EC), the Bay Area (~3% for PM, ~1.5% for EC), and the region 

surrounding Los Angeles (~5% for PM, ~4% for EC). The updated spatial surrogates also improve predicted 

NOx concentrations in the core region of Los Angeles (~6%).  

Chapter 3 explores the relationship between domain size and spatial resolution that affects predicted 

air pollution disparities in present day and future simulations when data support from measurements is not 

available. Overall WRF/Chem CTM accuracy improves approximately 9% as spatial resolution increases 

from 4 km to 250 m in present-day simulations. Exposure disparity results are consistent with previous 
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findings: minorities experience higher exposure than White residents.  Predicted exposure disparities are 

found to be a function of the model configuration. CTM configurations that use spatial resolution/domain 

size of 1 km / 103 km2 and 4 km / 104 km2 over Los Angeles can detect a 0.5 µg m-3 exposure difference 

with statistical power greater than 90%.  

Chapter 4 conducts a comprehensive analysis of health co-benefits, racial disparities, and source / 

composition in air pollution exposure under six future energy scenarios and four future meteorology 

scenarios in California for future year 2050.  Deeper reductions in the carbon intensity of energy sources 

progressively are found to reduce exposure to PM2.5 mass and PM0.1 mass for all California residents.  The 

three energy scenarios that achieve an ~80% reduction in GHG emissions relative to 1990 levels 

simultaneously produce the greatest reduction in PM exposure for all California residents and the greatest 

reduction in the racial disparity of that exposure. The EJ assessment shows that adoption of low-carbon 

energy sources in the year 2050 reduces the race/ethnicity disparity in air pollution exposure in California 

by as much as 20% for PM2.5 mass and by as much as 40% for PM0.1 mass.  

Future studies should apply the methods developed in this thesis to other locations across the United 

States in order to better understand how future policies such as a transition to low carbon energy can help 

to reduce air pollution exposure disparities by race/ethnicity.
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Chapter 1. Introduction 

Exposure to atmospheric pollutants such as airborne particles with diameter less than 2.5 µm (PM2.5) 

is estimated to cause 3.3 million premature deaths per year worldwide(Lelieveld et al., 2015a; World Health 

Organization, 2021).  PM2.5 exposure is also associated with increased risk for numerous adverse health 

effects including neurological disorders, asthma, diabetes, and ischemic heart disease (Anderson et al., 2012; 

Brook et al., 2010; Dockery et al., 1993; Gauderman et al., 2004; Pope et al., 1995; Tagaris et al., 2009).  

Each of these conditions results in lost schooldays, lost workdays, and reduced abilities to pursue personal 

and professional goals.  Numerous Environmental Justice (EJ) studies have shown that race/ethnicity and 

income are predictors for air pollution exposure(Anderson et al., 2018b; Banzhaf et al., 2019; Brulle and 

Pellow, 2006; Harper et al., 2013a; Marshall et al., 2014; Miranda et al., 2011; Rowangould, 2013; Zhao et 

al., 2018) across the United States. Minority residents and lower-income residents usually experience higher 

levels of air pollution, which prevents them from reaching their full potential in society. Future policies 

based on sound science must address this Environmental Justice issue to provide access to clean air for all 

residents regardless of their socio-economic class. 

Predicting air pollution exposure disparities under different future scenarios is a difficult task because 

non-linear chemistry governs the formation of many pollutants.  Historical relationships between pollutant 

concentrations and landuse or even pollutant concentrations and emissions may therefore not be useful 

when predicting future conditions.  Chemical Transport Models (CTMs) predict air pollution concentrations 

based on fundamental chemical and physical equations that can accurately transition to future conditions.  

CTMs are commonly used to predict present-day and future air pollutant concentrations over scales ranging 

from 10’s of meters to 100’s of kilometers. The accuracy of the emissions inputs and the spatial resolution 

of the calculations are two important factors that impact the accuracy of predicted pollutant concentrations. 
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These same factors will therefore affect the accuracy of EJ assessments, health co-benefit estimates, and 

environmental policy evaluations.  

The research presented in this thesis explores how CTMs can be used to study air pollution exposure 

disparity under current and future conditions in California.  Chapter 2 focuses on improvements to the 

location of low-level but ubiquitous area-source emissions. Area-source emissions totals are usually 

specified at the county level and then distributed into model grid cells using spatial surrogates. In Chapter 

2, ten major spatial surrogates describing the detailed locations of air pollution emissions in regional air 

quality assessments for California were updated/created for the base year 2010 and future years from 2015 

to 2040: (i) total population, (ii) total housing, (iii) single-family housing, (iv) total employment, (v) service 

& commercial employment, (vi) industrial employment, (vii) agricultural employment, (viii) industrial-

related surrogate, (ix) off-road construction, and (x) on-road construction surrogates. The first seven 

surrogates were updated using the latest version of census-based datasets at finer resolution. New industrial-

related, off/on-road construction surrogates were developed using realistic datasets to more accurately 

describe the location of construction projects and industrial facilities.  All spatial surrogates were created 

for the years 2010, 2015 and extrapolated to the years 2020 through 2040.  Updated emission spatial patterns 

were compared to previous emission spatial patterns and a regional air quality model was used to predict 

differences in ground-level pollutant concentrations resulting from adoption of the updated emissions. The 

findings from this study help to improve the spatial accuracy of emissions in California, which benefits the 

accuracy of CTM predictions. 

Chapter 3 investigates the impacts of CTM spatial resolution and domain size on EJ assessments. 

Many studies have concluded that the errors introduced into CTMs by coarse spatial resolution could affect 

health impact assessments. However, the high computation burden of CTM calculations limits their ability 

to satisfy requirements for both high resolution and large domain size. Improvements in computational 

abilities continue to push these limits higher over time, but the tradeoff between resolution and domain size 

continues to act as a practical limit to the configuration of CTM studies now and in the near-term future. In 
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Chapter 3, we carried out year 2016 simulation using full CTM calculations over Los Angeles, California, 

to determine how the combination of domain size and spatial resolution affects predicted air pollution 

disparities. Spatial surrogates updated / developed in Chapter 2 were used to downscale 4km emissions to 

1km / 250m spatial resolution. One set of simulations used the Weather Research and Forecasting (WRF) 

model coupled with Chemistry (WRF/Chem) with spatial resolution ranging from 250 m to 36 km, 

comparable to census tract sizes, over domains ranging in size from 320 km2 to 10,000 km2.  A second set 

of simulations used the UCD/CIT CTM with spatial resolution ranging from 4km to 24 km over domains 

ranging in size from 98,000 km2 to 1,000,000 km2. Air pollutants disparities then were calculated for 

races/ethnicities categories and income categories for nine WRF/Chem and three UCD/CIT domain-

resolution combinations. After a comprehensive comparison among 12 domain-resolution combinations, 

we identified a statistical power relationship between spatial resolution and domain size that can detect a 

0.5 𝜇𝑔/𝑚3 maximum exposure disparity in California. These findings guide the configuration of CTM 

studies for EJ analysis conducted in Chapter 4.  

Chapter 4 applied the framework established in Chapter 2 and Chapter 3 to future year 2050 and 

conducted a comprehensive analysis of health co-benefits, racial disparities, and source / composition in air 

pollution exposure under six future energy scenarios and four future meteorology scenarios. California is 

leading North America in the adoption of new sustainable energy sources to mitigate climate change. State 

law AB32 committed California to reduce GHG emissions to 1990 levels by 2020. California Governor’s 

Executive Order S-3-05 commits California to an additional 80% reduction by 2050. This massive reduction 

in GHG emissions will require a transformation in the energy system that will involve choices about 

technological, fuel and energy resources.  An ensemble of six different energy scenarios constructed using 

the energy-economic optimization model CA-TIMES were evaluated in future years, including (1) BAU – 

business as usual scenario; (2) GHGAi – a strict GHG reduction scenario that achieves 80% reduction of 

GHG emission by the year 2050; (3) 2030CAP – a loose GHG reduction scenario but only achieve 40% 

GHG reductio by the year 2030 without further reduction; (4) CCS – a scenario allows for more combustion 

to generate electricity by focusing on adoption of carbon capture and sequestration technology; (5) NGB – 
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a variation of GHGAi that allows for 20% more natural gas combustion for residential and commercial 

buildings; (6) NGT – another variation of GHGAi that allows for 20% more natural gas combustion for 

electricity generation. Criteria pollutant emissions were developed for each energy scenario using the CA-

REMARQUE model using 4km spatial resolution over four major geographic areas in California: the 

greater San Francisco Bay Area including Sacramento (SFBA&SAC), the San Joaquin Valley (SJV), Los 

Angeles (LA), and San Diego (SD).  The Weather Research & Forecasting (WRF) model was used to 

predict future meteorology fields by downscaling two different climate scenarios (RCP4.5 and RCP8.5) 

generated by two different GCMs (the Community Climate System Model and the Canadian Earth Systems 

Model). Simulations were performed over 32 weeks randomly selected during the 10-year window from 

the year 2046 to 2055 to build up a long-term average in the presence of ENSO variability. Health co-

benefits were estimated for southern and northern California by races/ethnicities under six scenarios. Source 

apportionment analysis was done for four geographic areas by races/ethnicities under six scenarios. Air 

quality disparities were also estimated for PM2.5 mass and PM0.1 mass by regions and scenarios. These 

findings helps to identify whether the adoption of low-carbon energy can improve public health and reduce 

racial disparities through an improvement in air quality. 

1.1. Published chapters 

The work summarized in Chapters 2-4 has been published in peer reviewed journals.  Future studies 

should cite those journal articles when referencing this work.  Chapter 2 has been published as: 

Li, Yiting, Rodier, C., Lea, J.D., Harvey, J. and Kleeman, M.J., 2021. Improving spatial surrogates for 

area source emissions inventories in California. Atmospheric environment, 247, p.117665. 

Chapter 3 has been submitted for publication to: 

Li, Yiting, Kumar, A., Hamilton, S.D., Lea, J.D., Harvey, J. and Kleeman, M.J., 2022. Spatial 

resolution required to model air pollution environmental justice in Southern California. Heliyon, accepted. 

Chapter 4 has been published as: 
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Li, Yiting, Kumar, A., Li, Y. and Kleeman, M.J., 2022. Adoption of low-carbon fuels reduces 

race/ethnicity disparities in air pollution exposure in California. Science of The Total Environment, 834, 

p.155230. 
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Chapter 2. Improving Spatial Surrogates for Area 

Source Emissions Inventories in California 

2.1. Introduction 

Chemical Transport Models (CTMs) are used to predict air pollutant concentrations over scales 

ranging from 10’s of meters to 100’s of kilometers (Eastham et al., 2018; González et al., 2018; Hu et al., 

2017; Joe et al., 2014; Kuik et al., 2016; Li et al., 2016; Schaap et al., 2015; Woody et al., 2016).  One of 

the most important uses of CTMs is to assist in the design of emissions control programs that will achieve 

compliance with the National Ambient Air Quality Standards (NAAQS) (Herrera et al., 2010; Hogrefe and 

Rao, 2001; Kelly et al., 2019; Macpherson et al., 2017; Saylor et al., 1999; Zhang et al., 2011). Another 

important use of CTMs is to estimate population exposure to various air pollutants (Chen et al., 2014; 

Huang et al., 2018; Laurent et al., 2014, 2013; Ostro et al., 2015; Stieb et al., 2016; Van Donkelaar et al., 

2015; Wang et al., 2016). Multiple studies have concluded that the errors introduced into CTMs by coarse 

spatial resolution could affect human health impact assessments (Fenech et al., 2018; Thompson and Selin, 

2012) and so it is desirable to apply CTMs at the finest possible spatial resolution. Accurately describing 

the location of emission sources is often a critical factor that determines the fidelity of this overall process 

to protect public health across the United States (Cohan et al., 2006; Pan et al., 2017; Tan et al., 2015; Valari 

and Menut, 2008; Zheng et al., 2017).  

A top-down approach is widely used to create spatial gridded emissions, and spatial surrogates play 

an important role in accurately mapping aggregated emissions to model grid cells (Bieser et al., 2011; Bun 

et al., 2010; Kuenen et al., 2014; US EPA, 2017). The effort needed to prepare spatially accurate emission 

inventories varies by source category that can be broadly summarized as (i) point sources, (ii) mobile 
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sources, or (iii) area-sources.  Major air pollution point sources in the United States have exact latitude and 

longitude recorded with their emissions permits making it easy to specify their exact location in emissions 

inventories. Likewise, mobile sources emit pollutants along well-defined roadways that often have monitors 

to measure traffic volume (Fameli and Assimakopoulos, 2015; Fu et al., 2017; McDonald et al., 2014).  In 

contrast, the location of area-sources (or non-point sources) are difficult to describe accurately in emissions 

inventories (Dai and Rocke, 2000; Gkatzoflias et al., 2013; Trombetti et al., 2018).  Hundreds or thousands 

of different types of area sources exist in a typical urban region.  As emissions from major point sources 

and mobile sources are reduced, these numerous area sources have emerged as a very important category 

for continued progress towards improved air quality (McDonald et al., 2018).  Accurately describing the 

location of area source emissions is of paramount importance for the next generation of regulatory programs 

to address current and future conditions in the United States.   

Area-source emission rates in the United States are often estimated using a formula such as   

𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × (𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦⁄ ) 

where “activity” is a measure such as fuel consumed or production rate and “(emissions/activity)” 

describes the release of air pollutants for each unit of fuel consumed or product created.  Emissions totals 

are calculated for broad spatial zones such as counties or Geographic Area Index (GAI) regions.  For 

example, the California Air Resources Board (CARB) divides the state into 69 GAI regions based on the 

intersection of county, air basin, and air district political boundaries. The detailed location of area-source 

emissions within each GAI is then described using spatial surrogates that are assumed to be proportional to 

the target emission rates. Statistical activity data such as census data, industry registration, traffic 

information and fuel consumption are commonly used to disaggregate various county-level emissions, but 

the availability of these datasets varies by location. Population is the most common dataset used to create 

spatial surrogate (Bieser et al., 2011; Kuenen et al., 2014; Zasina and Zawadzki, 2017; Zhao et al., 2012; 

Zhou et al., 2017) but CARB currently uses over 100 additional spatial surrogates depending on the exact 

source-type as summarized in Appendix 1 Table S1-1.  
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The purpose of this paper is to update ten important spatial surrogates used to specify the location of 

area-source emissions in California:  (i) total population, (ii) total housing, (iii) single-family housing, (iv) 

total employment, (v) service & commercial employment, (vi) industrial employment, (vii) agricultural 

employment, (viii) industrial-related surrogate, (ix) off-road construction, and (x) on-road construction 

surrogates.  These ten spatial surrogates allocate emissions locations for sources ranging from lawn and 

garden equipment to construction and mining to residential/commercial/industrial natural gas combustion. 

The updated surrogates take advantage of publicly available datasets that can be extrapolated to future years.   

In the current study, new spatial surrogates were created for the years 2010, 2015 and extrapolated to the 

years 2020 through 2040.  Updated emission spatial patterns were compared to previous emission spatial 

patterns and a regional air quality model was used to predict differences in ground-level pollutant 

concentrations resulting from adoption of the updated emissions.  The findings from this study help to 

improve the spatial accuracy of emissions inventories in California, which can be used as a model for other 

locations in the United States.   

2.2. Methods  

The ten spatial surrogates updated in the current paper can be divided into three major categories based 

on their data source and emission source related to: socio-economic data (SED), industrial-related 

surrogates, and construction equipment surrogates.  The construction equipment surrogate allocates 13.1% 

of particle matter and 8.46% of NOx within total area source emissions (Table 2-1). The industrial 

employment and industrial-related surrogates are used primarily to allocate gaseous emissions, including 

13.9% of NOx, 12.4% of SOx, and 6.85% of TOG (Total Organic Gas). The industrial employment 

surrogate usually serves as a secondary surrogate for industrial emission that will be used when the primary 

surrogate is not available within the target geographical region. The SED surrogates accounts for a smaller 

fraction of the emissions across California compared to the construction equipment and industrial surrogates, 

but SED surrogates can still have non-negligible impacts on populated areas. Updates to each of the eight 
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spatial surrogates are described in the sections below. Two new SED surrogates – total employment and 

agricultural employment were created in Section 2.2.3. 
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Table 2-1 Fraction of total area source emissions allocated by each surrogate. 

 Fraction of area source criteria emissions 

Original surrogate Updated surrogate PM TOG NOx CO SOx NH3 

585 
Construction 
equipment 

586 Construction 

13.1% 0.77% 8.46% 1.50% 0.15%  587 Off-road construction 

588 On-road construction 

730 Industrial-related 
0.26% 6.85% 13.9% 4.36% 12.4% 3.01% 

300 Industrial employment 

250 Total housing  0.41%     

440 Total population 0.10% 5.69% 0.26% 0.33% 0.15% 17.8% 

620 Service & commercial employment  0.21% 2.8% 0.25% 2.35%  

650 Single-family housing  1.20% 0.23% 2.56%   

 

2.2.1. Industrial-related surrogate 

The industrial-related surrogate (730) is used to describe the location of manufacturing processes and 

industrial fuel combustion (including natural gas not associated with major point sources). The original 

industrial-source spatial surrogate was created from the 2016 Dun and Bradstreet Financial Database 

(DUNS database, http://www.dnb.com/). The DUNS database often lists the address for company 

headquarters rather than actual industrial facility locations where emissions are released. Moreover, DUNS 

employment types are classified by the Standard Industrial Classification (SIC) system, which groups 

industries based on demand or production of goods. As a result, DUNS employment totals include industrial 

occupations combined with office/managerial occupations that may not be correlated with emissions.  

Approximately 11% of organizations in the SIC-based DUNS database in California are actually not related 

to industrial process (Figure S1-1 in Appendix 1). In contrast, North American Industry Classification 

System (NAICS) groups are organized based on the likeness of the process used to generate goods or 

services.  NAICS codes for industrial occupations used in the Longitudinal Employer-Household Dynamics 

(LEHD) “OnTheMap” dataset (United State Census Bureau, 2019) are distinct from NAICS codes for 

http://www.dnb.com/
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office/managerial occupations yielding more accurate industrial employment totals. Furthermore, LEHD 

employment locations are specified at the actual industrial facility, which more accurately represents 

industrial activities than the headquarters location. Adoption of the LEHD manufacturing employment to 

replace the SIC manufacturing employment yields a spatial distribution with greater variability in Southern 

California (see Figure S1-2 in Appendix 1). LEHD manufacturing employment data is also consistent with 

major industrial activities permitted under the Stormwater Multiple Application and Report Tracking 

system (SMART) database maintained by the California Water Resources Board (see Figure S1-3 in 

Appendix 1). The agreement between these independent indicators of industrial activity builds confidence 

in the accuracy of the LEHD manufacturing distribution. 

Future-year industrial-related surrogates were adopted from the future-year SED data related to 

industrial employment generated in Section 2.2.3. Figure S1-4 in Appendix 1 plots the industrial 

employment distribution alongside the location of industrial activities locations from the SMART database. 

The results indicate that the future-year industrial employment distribution also captures the spatial pattern 

of real industrial activities, building confidence in the approach to use future industrial employment as a 

spatial surrogate for future industrial emissions.   

Figure 2-1 shows industrial employment surrogates for the years 2010 and spatial surrogate difference 

between 2040 and 2010. Total employment, industrial employment, and service & commercial employment 

are clustered in urban areas in both current and future years.  Agricultural employment is significantly lower 

with most activity focused on the San Joaquin Valley in central California. 
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Figure 2-1: Total employment, industrial employment, service & commercial employment, and agricultural employment surrogates in the 

years 2010 and spatial surrogate difference between 2040 and 2010
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2.2.2. Construction equipment surrogate 

The construction equipment surrogate (585) is used to describe the spatial location of equipment 

burning gasoline and diesel fuel for the purpose of creating buildings and roads, and dust from construction 

activities. The current CARB construction equipment spatial surrogate blends information from two sources: 

(i) the change in “impervious surfaces (imperviousness)” between 2006 and 2011 from the National Land 

Cover Database (NLCD) and (ii) the California Department of Transportation (Caltrans) on-road Truck 

Network (482) surrogate. The combined construction surrogate weights the input impervious surface factor 

by 90% and the Truck Network factor by 10%.  Impervious surfaces are mainly artificial structures or 

impenetrable materials such as pavements. Changes in imperviousness can be used to identify the pattern, 

nature and magnitude of the change in urban land cover. From an emissions perspective, an increase in 

impervious surfaces is almost always associated with construction equipment. However, some construction 

activities do not change impervious landscape, such as demolition and reconstruction activities for existing 

buildings.  The NLCD impervious surface data is only available in 5-yr increments which does not identify 

the exact date of the construction activity. The Truck Network represents the location of commercial truck 

routes including terminal access to ports and national network routes.  The construction surrogate assumes 

that all roads are subject to repair over their lifecycle, and so construction emissions are distributed 

uniformly on this network.  This approach is reasonable over an averaging time of ~15 years but not realistic 

within in any given year. The surrogate created from the combination of NLCD imperviousness and truck 

network data only approximately represents construction activities and it is difficult to apply over all 

potential years of interest.  

The construction equipment surrogate created in the current project was separated into three individual 

surrogates to better represent the different types of construction activity: (i) off-road construction surrogate 

(587) represents off-road construction recorded in the SMART database; (ii) on-road construction surrogate 

(588) represents projects from Caltrans highway records; and (iii) construction surrogate (586) is a 
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combination of 50% surrogate 587 and 50% surrogate 588 as recommended by staff at the California Air 

Resources Board based on their testing of a range of on-road and off-road weighting factors.  Surrogate 586 

is hereafter reserved as a backup or secondary surrogate if the primary surrogate is not available in certain 

areas. 

Diesel engine exhaust is one of the major sources of NOx and PM emissions from construction 

activities (Millstein and Harley, 2009). Heavy diesel equipment including tractors, loaders, backhoes, and 

skid steer loaders account for 80% of all construction equipment and 78% of annual operating hours in 

California (California Air Resource Board, 2020, 2010).   Tractors, loaders, backhoes, and skid steer loaders 

are estimated to contribute 67% of total NOx emissions and 70% of total PM emissions from statewide 

construction and mining activities (California Air Resource Board, 2020, 2010). Heavy diesel-powered 

equipment is used primarily in large-scale new construction projects or large-scale 

reconstruction/renovation projects as opposed to small scale construction projects. It is desirable for the 

off-road construction surrogate to represent these major construction/renovation projects as accurately as 

possible. Construction surrogates are also used to spatially allocate PM dust emissions during building/road 

construction. Construction dust comes from material, equipment and transportation (Sandanayake et al., 

2016) which are also expected to be highest around large-scale construction sites. 

Two updates were made to increase the accuracy of the current-year construction equipment spatial 

surrogate. First, the NLCD impervious surface surrogate was replaced with off-road construction project 

permits from the SMART database that describe the project location (lat/lon), construction type, 

imperviousness change, and distributed activity area. It should be noted that permits in SMART are only 

required for projects larger than 1 acre, meaning SMART data captures large-scale construction projects 

that account for the majority of the heavy-duty diesel equipment and dust construction emissions.  As a 

second update, the generic Truck Network surrogate was replaced with the actual location of highway 

construction projects described in records publicly filed with Caltrans including highway number, the start 

and stop mile along that highway, and the number of active working days in the project. These actual off-
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road and on-road construction locations were converted to the standard map projections used for CARB 

spatial surrogates, leading to increased accuracy in the location of construction emissions.  

The off-road construction surrogate is mainly used to distribute building construction emissions. Most 

new buildings are associated with an increase in population (either residences or commercial services). A 

statistical analysis of the correlation between the county-level population growth between 2010 – 2015 and 

the number of new construction projects yields a high correlation (𝑅2 = 0.89), which builds confidence in 

the strength of the association between changes in population and changes in construction activity (see 

Figure S1-5 in Appendix 1). Therefore, future-year off-road construction surrogates are based on population 

increase calculated from the changes in population surrogates generated in Section 2.2.3. Figure 2-2 shows 

a current year and a future year off-road construction surrogate. Most of the current-year building 

construction activity occurs in urban areas (Figure 2-2(a)), which is consistent with the spatial pattern of 

population difference between years (Figure 2-2(b)).  
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Figure 2-2. Current and future off-road construction surrogate.Figure (a) shows year 2015 off-road 

construction surrogate created from a dataset of construction permits. Figure (b) shows an example of 

future year off-road construction surrogate, which is the population growth in the preceding 5 year period. 

The 10-year future on-road construction surrogate was created from the publicly available State 

Highway Operation and Protection Program (SHOPP) 10-year plan that lists all possible construction 

projects in the coming decade with accurate location and road treatment type.  SHOPP is a product of 

information from the Caltrans pavement network analysis tool – PaveM system (Caltrans, 2015) and local 

Caltrans decisions made using that information. PaveM uses databases describing pavement type, pavement 

condition, project history, climate, and anticipated future load to predict future construction projects for 

each mile of pavement in California, and can be used to plan for the rehabilitation and reconstruction of all 

state highways. PaveM is directly integrated into the decision making and optimization tools used by 

Caltrans to allocate future funding. For on-road construction projects more than 10 years in the future, we 
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adapted the PaveM methodology to create a simplified projection of long-term future highway maintenance 

needs. A statistical forecast model was created to calculate the probability of replacing each mile of roadway 

in California based on pavement type, pavement condition, project history (age), climate zone, and 

anticipated future Equivalent Single Axle Loads (ESAL).  Each segment of replaced roadway can select 

between different pavement types with probabilities determined by the same underlying factors that 

determine likelihood of replacement.  A series of randomized “Monte Carlo” simulations were conducted 

to predict on-road construction projects by year in California through the year 2050.  The average emissions 

from the Monte Carlo simulations were adopted as the future year on-road construction surrogate (see 

section S1.2.3 in Appendix 1 for additional details). The randomized “Monte Carlo” simulations to a certain 

degree were able to capture that the road rehabilitations will likely happen on highways where there are 

higher annual ESALs, such as Los Angeles, the Bay Area, and several main highway in California (I-80, I-

5, US101, and State Route 99) , and more severe climate conditions (see Figure S1-8).  

2.2.3. SED surrogates 

SED-derived surrogates distribute emissions related to human activities. Total population surrogate 

440 serves as a default surrogate if no other surrogate is assigned. Seven SED-derived surrogates were 

updated in the current study: total households (250), industrial employment (300), total population (440), 

service & commercial employment (620), single-family households (650), total employment (744, new), 

and agricultural employment (745, new). Three datasets served as the basis for the new surrogates: (i) data 

from Metropolitan Planning Organizations (MPOs)/local Council of Governments (COGs), (ii) data from 

the Caltrans Statewide Travel Demand Model (CSTDM), and (iii) the Longitudinal Employer-Household 

Dynamics (LEHD) “OnTheMap” data (United State Census Bureau, 2019).  MPOs/COGs are agencies 

created by federal law to provide regional planning and implementation of federal transportation funds to 

urbanized areas with more than 50,000 people. Eighteen MPOs/COGs are designated in California (see 

Table S1-2 in Appendix 1), accounting for approximately 98% of the state’s population (CALCOG, 2019).  

CSTDM is a tool used to forecast all personal travel made by every California resident, plus all commercial 
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vehicle travel (Cambridge Systematics Inc., 2014a, 2014b). CSTDM socioeconomic data includes 

population, housing, and employment within specific sectors. MPOs/COGs and CSTDM datasets have total 

population and housing data from the US census data. All three datasets have employment census data 

classified by the North American Industry Classification System (NAICS). NAICS is used by Federal 

statistical agencies to classify businesses for the purpose of collecting, analyzing, and publishing statistical 

data related to the U.S. business economy (https://www.census.gov/eos/www/naics/).  LEHD provides 

annual employment statistics linking home and work locations (latitude/longitude) at the 2010 census 

block-level for individual NAICS categories, but the LEHD data is only available for historical years 

starting from 2002. 

Updated SED surrogates were created for the base year 2010 and future years from 2015 to 2040, in 

5-year increments. MPOs/COGs and CSTDM forecast future SED to multiple years up to 2050 (available 

years listed in Table S1-4 in Appendix 1) based on anticipated growth rate in each area in order to plan 

future infrastructure needs. Each of these local projections uses accepted practices for forecasting future 

trends.  MPO/COG forecasts were interpolated in time as needed to produce uniform projections across 

California in target future years.  Table S1-8 in Appendix 1 tests the accuracy of this time interpolation 

procedure for population and housing in the years 2010 and 2015 by comparing interpolated values to data 

from the United States Census for 2010 and 2015.  Most of MPO/COG regions agree with the real census 

data within 5%. KERN, KINGS, SACOG, and SLOCOG had relatively minor errors (<10%), but the overall 

uncertainty introduced by time interpolation is still minor compared to the other uncertainty inherent in the 

surrogate projections.  

The definitions of total population, total housing, single-family housing, and total employment for 

each MPO/COG and CSTDM are relatively consistent and so these spatial surrogates were derived directly 

from the variables provided by each new data source. Data from individual MPOs/COGs typically has 

better spatial resolution and has undergone more rigorous quality control than data from CSTDM. 

MPO/COG data was therefore used wherever possible, with CSTDM data filling in locations where MPO 

https://www.census.gov/eos/www/naics/
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data was not available (see Section S1.3.1 in Appendix 1 for additional details). The approach used in the 

current project retains the fine-grain detail of the original MPO data wherever possible to increase the 

accuracy of the final spatial surrogate fields. MPO/COG data greatly enhances spatial resolution for 

moderately urbanized areas, such as Sacramento and central CA, but has little impact in highly urbanized 

areas, such as the Bay Area and Southern California.  

Spatial surrogates describing employment are more complicated than the SED categories discussed 

above. The definitions for each employment surrogate are shown in Table 2-2. Each MPO/COG creates its 

own specialized grouped employment categories and / or modifies the definition of the standard NAICS 

employment categories to suit their own needs. The LEHD dataset is used in the current study to unify these 

heterogeneous fields into a standard set of spatial surrogates for employment in subcategories of agriculture, 

industry and service & commercial within each county.  The ratio of each individual LEHD sector to the 

LEHD lumped category total provides a profile that can be multiplied into the MPO/COG or CSTDM 

lumped categories to estimate employment which satisfy definitions in Table 2-2. An example given in 

Figure 2-3 shows how to calculate agricultural employment category (NAICS code 11) in MPOs/COGs 

area Southern California Association of Governments (SCAG). SCAG combined mining employment 

(NAICS code 21) and agricultural employment in a single native field, which is the optimal strategy (Xi’) 

without invoking other datasets. Subscript i represents each geographic unit in MPOs/COGs or CSTDM, 

census block in MPOs/COGs and Traffic Area Zone in CSTDM. The ratio of agricultural employment (11) 

in SCAG data (ri) can be estimated as LEHD agricultural sector (11) divided by LEHD lumped sector (11 

+ 21). Thus, the agricultural employment (11) in SCAG (Xi) can be calculated by multiplying the ratio of 

agricultural employment to the optimal strategy (Xi = Xi’ * ri). These NAICS employment totals are then 

recombined into the categories defined in Table 2-2 (see Section S1.3.2 in Appendix 1 for additional details). 

Figure 2-1 and Figure 2-4 illustrates SED surrogates in the years 2010 and spatial surrogate difference 

between 2040 and 2010.  All current and future year SED surrogates are concentrated in urban areas 

including the Bay Area, Sacramento, Los Angeles, Fresno, and Bakersfield along Highway 99. The spatial 
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patterns for socioeconomic surrogates (other than agricultural employment) expand outward from urban 

centers through year 2040.  

 

Table 2-2 NAICS codes and LEHD fields name and definitions 

Surrogate NAICS code LEHD field Definitions 

Agricultural 
Employment 

11 cns01 Agricultural, forestry, fishing and hunting 

Industrial 
Employment 

21 cns02 Mining 

22 cns03 Utilities 

23 cns04 Construction 

31-33 cns05 Manufacturing 

42 cns06 Wholesale trade 

48-49 cns07 Transportation and warehousing 

Service & 
Commercial 
Employment 

44-45 cns08 Retail trade 

51 cns09 Information 

52 cns10 Finance and insurance 

53 cns11 Real estate rental and leasing 

54 cns12 Professional, scientific, and technical services 

55 cns13 Management of companies and enterprise 

56 cns14 
Administrative and support and waste management 
and remediation services 

61 cns15 Educational service 

62 cns16 Health care and social assistance 

71 cns17 Arts, entertainment, and recreation 

72 cns18 Accommodation and food services 

81 cns19 Other services (except public administration) 

92 cns20 Public administration 
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Figure 2-3. Flow chart of methodology for SED spatial surrogates including total population, total 

housing, single-family housing, total employment, agricultural employment, industrial employment and 

service & commercial employment. Subscript i is the geographic unit of SED dataset. 
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Figure 2-4: Total population, total housing, and single-family housing in the years 2010 and spatial 

surrogate difference between 2040 and 2010. 
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2.2.4. Surrogate Evaluation Methods 

Gridded surrogates were generated using the spatial allocator tool from United States Environmental 

Protection Agency (EPA) (CMAS, 2019). The spatial allocator is a set of programs that allows users to 

generate data files related to emissions and air quality modeling without requiring the use of a commercial 

Geographic Information System (GIS) package. Given a map projection, domain boundaries, and weight 

shapefiles (developed in Section 2), the spatial allocator can generate gridded spatial surrogates that can be 

directly used in emission models, such as the Sparse Matrix Operator Kernel Emissions (SMOKE) (CMAS, 

2016). In this project, the spatial allocator was applied with the Lambert Conformal map projection (-120.5 

degree longitude, 37 degree latitude, standard parallels 30 degree and 60 degree) and 4km spatial resolution.  

Domain boundaries were specified based on the 69 Geographic Area Index (GAI) region shapefile 

(https://www.arb.ca.gov/ei/gislib/gislib.htm) which is consistent with previous statewide emissions 

inventories from ARB.  

The raw spatial surrogates produced in the current project were combined with emissions inventories 

to analyze how the updates would influence the spatial distribution of actual emissions compared to the 

original CARB surrogates. These two cases are hereafter referred to as “updated” and “original”.   

The new spatial surrogates for the year 2015 were processed using SMOKE along with the raw 

emissions for the year 2016 to generate gridded emissions for six pollutants: CO, NOx, TOG, NH3, SOx, 

and PM. These emissions were then processed with the UCD emissions processing system (EMINV) to 

create model-ready inputs including speciated VOCs and size- and composition-resolved PM. Emissions 

were segregated into nine source categories for easier interpretation of the results: (i) on-road gasoline, (ii) 

off-road gasoline, (iii) on-road diesel, (iv) off-road diesel, (v) woodsmoke, (vi) food cooking, (vii) aircraft 

emissions, (viii) natural gas, and (ix) miscellaneous, which are emissions not included in the categories 

listed above. Emissions were used by the UCD/CIT air quality model applied to the entire state of California. 

https://www.arb.ca.gov/ei/gislib/gislib.htm
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2.3. Results 

2.3.1. Relationships between surrogates and emissions 

The relationship between the spatial pattern of surrogates and emissions was analyzed in two detailed 

case studies for Sacramento County and Los Angeles GAI 6059.  Sacramento has the largest shift of 

predicted PM mass concentration in response to the adoption of updated spatial surrogates.  Los Angeles is 

one of the most populated areas in California.  Each emissions source within these two study regions is 

typically affected by a combination of spatial surrogates as described below.  

Figure 2-5 illustrates how off-road diesel emissions are mainly affected by updated off-road 

construction equipment surrogates 585 and 587 (see Figure S1-9 and Figure S1-12 in Appendix 1). Since 

surrogates only allocate emissions within each GAI region, Figure 2-5(a) and (c) show the fractional change 

in each GAI total between original construction surrogate 585 and revised off-road construction surrogate 

587. Figure 2-5(b) and (d) show the change in absolute PM2.5 EC emissions. A strong spatial correlation is 

apparent between changes to off-road construction equipment surrogate 587 and changes to PM2.5 EC 

emissions from off-road diesel vehicles. Figure 2-5(a) and Figure 2-5(b) both reflect a major increase in the 

area northeast of Sacramento between two major highways.  Figure 2-5(c) and Figure 2-5 (d) also illustrate 

increasing emissions around major highways in the urban LA area, and major decrease northwest of LA. 

PM2.5 EC from off-road diesel engines contributes strongly to total PM2.5 EC concentrations.  Changes to 

spatial surrogate 587 are therefore expected to significantly influence predicted overall PM2.5 EC spatial 

patterns in cities. 
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Figure 2-5. Relationship between off-road construction surrogate and PM2.5 EC in off-road diesel 

emission. Figure (a) and (c) are surrogate difference between original 585 and updated 587 at Sacramento 

County and Los Angeles GAI 6059. Figure (b) (d) are PM2.5 EC difference in off-road diesel emission at 

the same corresponding area. 

California’s emissions inventory treats a subset of the industrial and commercial natural gas 

combustion as area sources allocated using spatial surrogates 730 (industrial-related) and 620 (service & 

commercial employment), respectively. Figure 2-6 and Figure S1-15 in Appendix 1 illustrate how changes 

to updated surrogates 730 and 620 work together to change the pattern of natural gas combustion emissions 
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in Los Angeles and Sacramento. Figure 2-6(c) and Figure 2-6 (b)(d) show a strong spatial correlation 

between changes in surrogate 730 and natural gas combustion PM2.5 OC and NOx emissions in Los Angeles. 

Note that increases in surrogate 730 are balanced by decreases in surrogate 620 in some locations (see 

Figure 2-6(a)(c)). Changes to surrogate 730 result in significant changes to PM2.5 OC and NOx in natural 

gas combustion emissions in LA area, ~ 0.35 µg/m2/min for PM2.5 OC and ~ 1 ppb/min·m for NOx. The 

updated surrogate 730 also alters the spatial pattern of natural gas combustion emission in the San Francisco 

Bay Area (see Figure S1-10 in Appendix 1).  Updates to surrogate 620 modify the spatial pattern of natural 

gas combustion emissions in Sacramento (Figure S1-15 in Appendix 1), but changes are modest because 

past census data already produced accurate spatial patterns for surrogate 620 in the original inventory.  
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Figure 2-6. Relationship between service & commercial employment, industrial-related surrogates 

and PM2.5 OC, NOx in natural gas emission. Figure (a) and (c) are surrogate difference between original 

and updated service & commercial/industrial-related surrogates at Los Angeles GAI 6059. Figure (b) (d) 

are PM2.5 OC and NOx difference in natural gas emission at the same corresponding area. 

 

Figure 2-7 illustrates how changes to surrogate 587 and 588 influence the spatial pattern of PM2.5 total 

mass emissions from miscellaneous sources. In general, off-road/on-road construction equipment 

surrogates 587/588 work together on changes in PM2.5 total mass, and off-road surrogate 587 has a relatively 

larger impact than on-road surrogate 588. In Sacramento County (see Figure 2-7(a) (b) and (c)), surrogates 



 

| CHAPTER2. Improving Spatial Surrogates for Area Source Emissions Inventories in California 

23 

 

587/588 have opposite change patterns northeast of Sacramento. The impact from changes to off-road 

surrogate 587 are weakened by changes to on-road surrogate 588. This causes a significant decrease for 

PM2.5 total mass emissions in downtown Sacramento (~ 6 µg/m2/min). In Los Angeles (see Figure 2-7(d) 

(e) and (f)), off-road/on-road construction surrogates both increase PM mass emissions around the LA urban 

area, and decrease PM mass emissions to the northwest of downtown LA. The identical shift from surrogate 

587/588 increased PM mass emissions in the LA urban area (~ 2.5 µg/m2/min), although surrogate 587/588 

has less change compared to other regions across the state.  PM2.5 total mass emissions from construction 

contributes strongly to total PM2.5 mass emissions.  Changes to construction spatial surrogate 587/588 are 

therefore expected to significantly influence the spatial pattern of predicted overall PM2.5 total mass 

concentrations. 
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Figure 2-7. Relationship between off-road/on-road construction surrogates and PM2.5 total mass emissions from miscellaneous sources  at 

Sacramento County and Los Angeles GAI 6059. Figure (a) (b) (d) and (e) are surrogate differences between original 585 and updated 587/588. 

Figure (c) (f) are differences in PM2.5 total mass emissions from miscellaneous sources as defined in Section 2.2.4 
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Figure 2-8 shows how changes to off-road construction surrogate 587 and industrial-related 730 affect 

NOx emissions from miscellaneous sources differently across the state. In Sacramento County, changes in 

NOx follow the pattern of surrogate 587. However, the absolute value of changes in NOx emissions is 

minor, because decreases in surrogate 587 are typically balanced by increases in surrogate 730 (see Figure 

2-8(a) (b) and (c)).  Changes to the spatial pattern of miscellaneous NOx emissions stem from a combination 

of changes in surrogate 730 and surrogate 587 in the region surrounding Los Angeles, with a maximum 

shift of ~ 1.5 ppb/min·m. These patterns add to the shifts in the spatial pattern of NOx emissions associated 

with natural gas combustion (Figure 2-6).   

The specific trends illustrated in Figure 2-5 to Figure 2-8 are generally apparent throughout California.  

Changes for SED spatial surrogates are concentrated in cities or along highways where population is highest. 

In contrast, most of the changes in the spatial distribution of the industrial surrogates are found outside of 

the major urban areas.  The off-road construction spatial surrogate 587 reflects the shift to project-based 

records as opposed to changes in impervious surfaces and is more concentrated within cities associated with 

urban renovation projects (see Figure S1-12 in Appendix 1). The on-road construction surrogate 588 also 

reflects the shift to describing emissions from individual road construction projects instead of evenly 

distributing road construction emissions along the entire Truck Network.  The intensity of the construction 

spatial surrogate generally decreases slightly along major highways throughout California but increases in 

isolated locations along those highways (Figure S1-13 in Appendix 1). The updated industrial-related 

surrogate 730 generally concentrates industrial activity from a diffuse region into a concentrated source, 

perhaps associated with a central facility (see Figure S1-14 in Appendix 1). The updated surrogates mainly 

change the location of off-road diesel emissions, natural gas emissions, and miscellaneous emissions. In 

general, “miscellaneous emissions” of PM2.5 total mass, and NOx have the strongest response to the 

adoption of updated spatial surrogates (Figure S1-11 in Appendix 1).



 

| CHAPTER 2. Improving Spatial Surrogates for Area Source Emissions Inventories in California 

 

2
6

 

 

Figure 2-8. Relationship between off-road/on-road construction surrogates and NOx emissions from miscellaneous sources at Sacramento 

County and Los Angeles GAI 6059. Figure (a) (b) (d) and (e) are surrogate differences between original 585 and updated 587/588. Figure (c) (f) 

are differences in NOx emissions from miscellaneous sources as defined in Section 2.2.4..
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2.3.2. Surrogates performance: air quality model predictions  

The updated spatial surrogates created in the current study were tested using the source-oriented UCD-

CIT air quality model (Kleeman and Cass, 2001a; Ying et al., 2008) for California during the year 2016.  A 

single 24km domain covering the entire state and two nested 4km domains covering major population 

centers in northern California and southern California were selected for the analysis. Model simulations 

were carried out using both the original spatial surrogates and the updated spatial surrogates. Measurement 

data was downloaded from EPA website: https://aqs.epa.gov/aqsweb/airdata/download_files.html. There 

are 17 measurement sites in the southern California domain and 13 measurement sites in the northern 

California domain to evaluate PM2.5 model performance; six sites across the state are available to evaluate 

PM2.5 EC and OC predictions; 31 sites in southern California and 18 measurement sites in northern 

California are available to evaluate NOx predictions.  

Figure 2-9 shows the time series of PM2.5 mass, EC, OC and NOx daily average concentration at central 

Los Angeles and Sacramento during the year 2016 using the original spatial surrogates (orange line) and 

the updated spatial surrogates (green line).  Observed values are illustrated as black dots. Predicted 

concentrations based on the original and updated spatial surrogates are similar. Both cases capture the 

routine PM2.5 mass, EC, OC and NOx concentrations with reasonable accuracy but they fail to capture the 

peak PM2.5 mass concentration events which mostly occur in wintertime. Total PM2.5 mass has relatively 

greater differences between original and updated cases compared to species such as PM2.5 EC. Changes to 

spatial surrogates have minor effect on predicted PM2.5 OC and NOx concentrations at the 2 measurement 

sites. 

https://aqs.epa.gov/aqsweb/airdata/download_files.html
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Figure 2-9. Time series for predicted (original case in green line and updated case in orange line) and observed (black dot) PM2.5 mass, 

PM2.5 EC, PM2.5 OC and NOx concentrations at Los Angeles (shown in figure (a) (b) (c) (d)), Sacramento (shown in figure (e) (f) (g) (h))) 

during year 2016 
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Statistical analysis was carried out for PM2.5 mass, PM2.5 EC, PM2.5 OC, NOx, PM2.5 nitrate, PM2.5 

sulfate, and two metals – Cu and Fe at all available measurement sites. PM2.5 nitrate, sulfate, Fe and Cu do 

not respond strongly to the updated spatial surrogates and will not be discussed further in the present 

analysis. PM2,5 mass Mean Fractional Bias (MFB) and Mean Fractional Error (MFE) are shown in Table 

2-3 for southern California and  

Table 2-4 for northern California.  PM2.5 EC and OC MFB/MFE for all available California sites are 

shown in Table 2-5. NOx MFB/MFE for measurement sites with changed model performance are listed in 

Table 2-6. In general, air quality simulations carried out over the entire year 2016 determined that the effects 

of the updated spatial surrogates on predicted PM and NOx concentrations at measurement sites across the 

state are positive in most populated area, including the South Coast Air Basin (SoCAB) (including Los 

Angeles, Orange and Riverside counties), the region surrounding Sacramento, and the region south of San 

Francisco. PM2,5 total mass has ~ 5% of improvement at most locations sites in the SoCAB (see Table 2-3); 

~ 10% of improvement at downtown Sacramento (see site 6067 0010 and 6067 4001 in  

Table 2-4); and ~3% of improvement at San Jose (south of San Francisco). PM2,5 EC improves by ~4% 

at two sites in southern CA, and ~2% at two sites in northern CA (see Table 2-5). NOx model performance 

improves (~6%) southeast of LA county, where industrial-related surrogate 730 has the largest changes (see 

Table 2-6). Updated spatial surrogates have minor impact on predicted concentrations of NOx in central 

and northern California.  Likewise, updated spatial surrogates have minor impact on predicted 

concentrations of PM2,5 mass, OC, and EC in central California (including Fresno and Bakersfield). 
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Table 2-3. Annual PM2.5 mass mean fractional bias (MFB) and mean fractional error (MFE) for 

South California Sites. Bold Indicates improved performance. 

Site Downtown LA1 Reseda1 Compton1 Pico Rivera1 

Site Number 6037 1103 6037 1201 6037 1302 6037 1602 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case 9.89% 39.70% -34.81% 49.74% -15.03% 42.35% -27.58% 42.85% 

Updated Case 16.40% 40.53% -37.88% 51.84% -8.05% 40.88% -21.86% 39.78% 

Site 
Long Beach 

(South)1 

Long Beach near 
Route 7101 Pasadena1 Long Beach1 

Site Number 6037 4004 6037 4008 6037 2005 6037 4002 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case -0.50% 39.88% -35.18% 45.70% -10.46% 36.67% -7.61% 42.73% 

Updated Case 4.46% 40.35% -29.56% 42.90% -4.60% 35.87% -2.06% 42.58% 

Site Anaheim2 Mission Viejo2 Rubidoux3 Mira Loma3 

Site Number 6059 0007 6059 2022 6065 8001 6065 8005 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case -3.95% 39.11% -8.53% 39.88% -48.99% 59.19% -56.07% 64.23% 

Updated Case 0.45% 38.98% -6.64% 39.42% -47.66% 58.48% -54.32% 62.87% 

Site 
Downtown San 

Diego4 San Diego military4 El Cajon4 Pala4 

Site Number 6073 1010 6073 1016 6073 1018 6073 1201 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case 10.69% 38.59% 14.00% 41.77% 0.65% 31.24% -25.26% 47.06% 

Updated Case 41.91% 53.92% 16.51% 41.88% 4.24% 31.77% -25.08% 46.88% 
1 Los Angeles county  
2 Orange county   
3 Riverside county 

4 San Diego county 
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Table 2-4. Annual PM2.5 mass mean fractional bias (MFB) and mean fractional error (MFE) for North 

California Sites  : Sacramento and Santa Clara counties. Bold Indicates improved performance. 

Site 
Sacramento - Del 

Paso Manor1 

Sacramento - 1309 
T Street1 Folsom1 Sacramento Health 

Department1 

Site Number 6067 0006 6067 0010 6067 0012 6067 4001 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case -17.99% 43.23% 38.24% 57.34% -0.74% 53.45% 22.48% 47.26% 

Updated Case -18.76% 43.41% 22.18% 50.49% -1.08% 53.60% 15.03% 45.25% 

Site 
San Jose - Konx 

Avenue2 San Jose – Jackson2 Gilory2   

Site Number 6085 0005 6085 0006 6085 0002   

Statistics  MFB MFE MFB MFE MFB MFE     

Original Case -6.40% 38.52% -20.66% 37.53% 15.70% 52.06%     

Updated Case -3.56% 38.04% -17.95% 36.68% -16.55% 54.01%     
1 Sacramento county        
2 Santa Clara county       
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Table 2-5. Annual PM2.5 elemental carbon (EC) and PM2.5 organic carbon (OC) mean fractional bias 

(MFB) and mean fractional error (MFE)  for all available California sites. Bold Indicates improved 

performance. 

Site Downtown LA1 Lebec (rural)1 

Site Number 6037 1103 6037 9034 

Species PM2.5 EC PM2.5 OC PM2.5 EC PM2.5 OC 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case -5.49% 33.38% 57.13% 59.55% -46.88% 86.60% -72.51% 96.25% 

Updated Case 0.64% 32.09% 59.30% 61.41% -48.32% 87.73% -73.17% 96.84% 

Site El Cajon2 El Cajon 22 

Site Number 6073 1018 60731022 

Species PM2.5 EC PM2.5 OC PM2.5 EC PM2.5 OC 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case -67.75% 76.55% -12.86% 45.51% -82.37% 83.22% -67.05% 68.24% 

Updated Case -62.56% 72.31% -9.30% 44.42% -80.92% 81.60% -67.09% 68.27% 

Site Sacramento - Del Paso Manor3 San Jose - knox Avenue4 

Site Number 6067 0006 6085 0005 

Species PM2.5 EC PM2.5 OC PM2.5 EC PM2.5 OC 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case -52.90% 70.77% -64.07% 70.26% -4.02% 44.73% -12.31% 31.98% 

Updated Case -49.82% 68.97% -63.84% 70.11% -2.70% 44.48% -13.23% 31.70% 
1 Los Angeles county        
2 San Diego county       
3 Sacramento county       
4 Santa Clara county        
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Table 2-6. Annual NOx mean fractional bias (MFB) and mean fractional error (MFE) for sites with 

changes in model performances. Bold Indicates improved performance. 

Site Compton1 Pico Rivera1 
Long Beach 
(Hudson) 1 

Long Beach near 
Route 7101 

Site Number 6037 1302 6037 1602 6037 4006 6037 4008 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case 26.70% 56.27% -13.89% 43.17% -6.14% 44.45% -34.31% 62.46% 

Updated Case 32.50% 58.27% -7.41% 42.64% -1.55% 43.46% -29.29% 59.71% 

Site Santa Clarita1 
Lancaster - Division 

Street1 
Glendora1 Anaheim2 

Site Number 6037 6012 6037 9033 6037 0016 6059 0007 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case -21.61% 43.19% -60.96% 93.20% -24.34% 41.79% 21.87% 53.14% 

Updated Case -40.17% 55.89% -65.05% 97.37% -15.42% 37.41% 25.79% 54.41% 

Site 
Anaheim Near-

road2 
Mira Loma3 Rubidoux3 Lake Elsinore3 

Site Number 6059 0008 6065 8005 6065 8001 6065 9001 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case -73.97% 74.89% -19.64% 44.63% -16.37% 56.38% -31.59% 50.69% 

Updated Case -70.38% 71.39% -17.97% 44.10% -14.96% 56.04% -36.32% 54.19% 

Site Alpine4 Donovan4 El Cajon4 
Sacramento-

Goldenland Ct. 5 

Site Number 6073 1006 6073 1014 6073 1018 6067 0014 

Statistics  MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case -43.25% 60.27% -5.02% 55.20% -26.48% 47.06% 49.31% 57.73% 

Updated Case -40.65% 58.13% -14.79% 56.22% -20.86% 43.72% 45.14% 55.06% 
1 Los Angeles county      
2 Orange county       
3 Riverside county       
4 San Diego county       
5 Sacramento county        

 

The spatial pattern of change caused by the adoption of the updated spatial surrogates can be 

understood more clearly by plotting the results over the entire region. Figure 2-10 shows the change in the 

predicted annual-average PM2.5 mass, EC, OC and NOx concentrations in the northern California domain 

due to the adoption of the updated spatial surrogates. Red grid squares represent areas of increased 

concentrations while blue grid squares represent areas of decreased concentration. The measurement sites 
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in the model domain are represented as circles, with green coloring indicating improved performance and 

red coloring indicating degraded performance due to the adoption of the new surrogates. In Figure 2-10(a), 

PM2.5 mass concentrations decrease by 1-2 µg m-3 in the region west of Sacramento in response to the 

updated surrogates, leading to a 8-14% improvement at two sites (60670010, 60674001) in Sacramento.  

PM2.5 EC predictions in Sacramento also improve by ~3% (Figure 2-10(b)). Only one site (60670014) out 

of six in Sacramento has ~4% improvement for NOx (Figure 2-10(c)). PM2.5 concentrations in San Jose are 

also influenced by the updated spatial surrogates, with generally higher PM2.5 mass concentrations 

throughout the urban region. The two measurement sites in San Jose both have ~3% improvement.  PM2.5 

EC in San Jose slightly increased and improved ~1.5% in response to the updated spatial surrogates.  
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Figure 2-10. Change in predicted ground-level concentrations due to the adoption of new spatial 

surrogates in norther California.  Blue indicates concentrations decrease while red indicates 

concentration increase as shown by the key below each panel.  Circles quantify change in model 

performance when compared to measurements at monitoring locations.  Green circles indicate improved 

performance, red circles indicate degraded performance relative to the original case. 
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Figure 2-11 displays the change in predicted annual-average PM2.5 mass, EC and OC concentrations 

attributed to the updated spatial surrogates in southern California. Updated spatial surrogates have relatively 

larger impact in southern California compared to northern California. Figure 2-11(a) shows that PM2.5 mass 

concentrations in the central region of Los Angeles increase by approximately 0.5 µg m-3 when the updated 

spatial surrogates are adopted, bringing the predictions into closer agreement with measured values at 

stations throughout this area.  The overall spatial trends shown in Figure 2-11(b) and Figure 2-11(c) are 

similar to the trends shown in Figure 2-11(a), but the performance of PM2.5 EC improves (or does not change) 

at all available measurement sites when the updated spatial surrogates are adopted.  PM2.5 OC has little 

response to updated surrogates. EC is a primary PM component and OC is dominated by primary emissions 

in the current simulations.  Both primary emissions and secondary formation contribute to total PM2.5 mass.  

This suggests that the complex pattern of increasing and decreasing performance illustrated in Figure 2-11(a) 

may be related to secondary PM formation rates and offsetting model errors. Figure 2-11(c) shows that 

NOx concentrations increase by approximately 2.5 ppb in Los Angeles area in updated case, bring the 

prediction into closer agreement with measured values in this area.  

The PM total mass, EC, OC and gas-phase NOx concentration results summarized in Figure 2-10 and 

2-11 are consistent with the changes in off-road diesel, natural gas combustion, and miscellaneous 

emissions discussed in Section 2.2.  These patterns indicate that proximity to sources is a dominant factor 

that determines the impact of spatial surrogates on model performance.  Off-road construction surrogate 

587 and on-road construction surrogate 588 induce the largest change in predicted PM concentrations, 

followed by more modest changes associated with industrial-related surrogate 730, service & commercial 

employment surrogate 620 and single-family housing surrogate 650.  Off-road construction surrogate 587 

and industrial-related surrogate 730 induce the largest change in predicted NOx concentrations in southern 

California. Altered concentrations are associated with emissions from construction equipment, natural gas 

combustion, and industrial processes. 
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Figure 2-11. Change in predicted ground-level concentrations due to the adoption of new spatial surrogates in southern California.  Blue 

indicates concentrations decrease while red indicates concentration increase as shown by the key below each panel.  Circles quantify change in 

model performance when compared to measurements at monitoring locations.  Green circles indicate improved performance, red circles indicate 

degraded performance relative to the original case.
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2.4. Discussion 

Spatial surrogates including total population, total housing, single family housing, total employment, 

service & commercial employment, industrial employment, agricultural employment, industrial-related, 

off-road construction, and on-road construction were updated for use with California emissions inventories.  

SED surrogates were updated using the latest version of census-based datasets at finer resolution. Off-road 

construction, on-road construction and industrial-related surrogates were developed using new methods to 

more accurately describe the location of construction projects and industrial facilities.  All surrogates were 

created for the past years 2010 and 2015 and projected in 5- year increments to the year 2040.  

The changes to the off-road construction spatial surrogate caused the largest shift in the distribution of 

PM emissions in the year 2015, followed by changes to the on-road construction spatial surrogate. These 

changes logically manifested as altered emissions patterns associated with construction sources. The 

changes to NOx emissions varied with location.   In southern California, the changes to the industrial-

related surrogate resulted in the largest shift in the distribution of NOx emissions in the year 2015. In 

northern California, changes to service & commercial employment, off-road construction equipment, and 

industrial-related surrogates are balanced leading to little impact on the spatial pattern of NOx emissions. 

The redistribution of industrial emissions based on a more exact description of industrial employment 

resulted in some isolated shifts in industrial emissions but no systematic pattern was observed. Changes in 

the spatial distribution of SED-derived surrogates, caused a slight reduction of emissions in the core of 

small cities and an increase in emissions in surrounding areas.  SED changes were subtle and did not 

significantly influence emissions. 

Air quality simulations carried out over the entire year 2016 determined that the updated spatial 

surrogates generally improve predicted PM mass and EC concentrations in Sacramento area (~10%), the 

Bay Area (~3%), and the region surrounding Los Angeles (~5%).  Adoption of the updated spatial 

surrogates also improved predicted NOx concentrations in the core region of Los Angeles (~6%).  These 
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improvements demonstrate that adoption of new methodologies to estimate the location of construction 

equipment related surrogates (separate to off-road and on-road) and industrial-related surrogates are 

feasible at 4km spatial resolution. Moreover, the updated construction-related and industrial-related 

surrogates may be suitable for even greater spatial resolution in future studies.  The methods used to increase 

the accuracy of emissions locations in the current years may be extended to study emissions predictions 

and public health effects in future years.  

It should be noted that spatial surrogates are an approximate approach for distributing area-source 

emissions. Even perfectly accurate spatial surrogates may not be perfectly correlated with emissions rates, 

and so this method has inherent uncertainty that varies depending on the exact emissions sources.  Future 

applications of image recognition and GPS data may enable more accurate tracking of detailed activities 

that generate area-source emissions, but appropriate safeguards must be used to balance privacy vs. utility 

before widespread adoption of these techniques.  Future studies should investigate these issues in order to 

improve the accuracy of area-source emissions inventories. 
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Chapter 3.                                                        

Spatial Resolution Required to Model Air 

Pollution Environmental Justice in Southern 

California 

3.1. Introduction 

Exposure to outdoor air pollutants such as airborne particles with aerodynamic diameter less than 2.5 

µm (PM2.5) is estimated to cause 3.3 million premature deaths per year worldwide (Lelieveld et al., 2015b).  

California is home to six out of the ten most polluted cities in the United States with respect to annual-

average PM2.5 concentrations (American Lung Association, 2019).  This air pollution public health burden 

does not fall evenly across all socio-economic classes, leading to cases of air quality inequity (Anderson et 

al., 2018a). For example, exposure to PM2.5 emitted from traffic and power generation is disproportionately 

higher for people of lower socio-economic status (Anderson et al., 2018a; Lelieveld et al., 2015b; Thakrar 

et al., 2020). Many studies have shown that food cooking is a major source of PM2.5 (Bond et al., 2007; 

Butt et al., 2016; Lei et al., 2011; Ramanathan and Carmichael, 2008; Yu et al., 2019), and more recent 

studies also show that exposure to PM2.5 emitted from urban restaurants may be even more skewed than 

traffic PM2.5 (Shah et al., 2020). California is currently enacting climate policies that will lead to a once-in-

a-generation improvement in air quality (Kleeman et al., 2013; Zapata et al., 2013, 2017).  State law AB32 

commits California to reduce GHG emissions to 1990 levels by 2020 (California Air Resource Board, 2006); 

California Governor’s Executive Order S-3-05 commits California to an additional 80% reduction below 

1990 levels by 2050 (Schfwarzenegger, 2005). The latest AB617 is focusing on developing and 

implementing new strategies to reduce exposure in communities most impacted by air pollution(California 
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Air Resource Board, 2017). It is urgent that an EJ assessment be carried out to ensure that these future 

benefits are distributed equitably across all members of society. New frameworks are needed to evaluate 

air quality and Environmental Justice (EJ) in future emissions scenarios.   

Understanding the spatial distribution of air pollution fields is a critical first step in any air quality EJ 

assessment. Exposure fields used in EJ assessment can be obtained from Land Use Regression (LUR) 

models (Ouyang et al., 2018; Su et al., 2012), dispersion models (Houston et al., 2014), reduced complexity 

models (Tessum et al., 2019), chemical transport models (CTM) (Izquierdo et al., 2020; Marshall et al., 

2014), and data fusion methods that incorporate information from air quality monitoring networks and/or 

satellites (Di et al., 2016; Donkelaar et al., 2019; Hernandez et al., 2021; Kloog et al., 2014; Van Donkelaar 

et al., 2016). All of these methods can predict historical exposure fields with very high spatial resolution, 

but only CTMs work as well in future episodes as they do in historical episodes because they are not reliant 

on data support from historical monitoring data.  Reliable future exposure fields are needed to support the 

increasing demand for future air quality health impact / EJ assessment (Dimanchev et al., 2019; Yiting Li 

et al., 2022; Wang et al., 2020; Zapata et al., 2017).  

 Measurements show that approximately 60-80% of PM2.5 in California is composed of material 

formed by secondary aerosol formation in the atmosphere (Heo et al., 2013; US EPA, 1999). The non-linear 

nature of atmospheric chemical reactions makes the relationships between precursor gas-phase emissions 

and final ambient particle-phase concentrations complex.  Increasing precursor emissions may either 

increase or decrease the final ambient concentration depending on the chemical regime.  CTMs are based 

on fundamental equations describing atmospheric physics and chemistry, and so they can be used to predict 

exposure fields in situations where the underlying emissions inventory changes, including scenarios where 

the atmospheric chemical regime changes from NOx-rich to NOx-limited (Seinfeld and Pandis, 2016).  Full 

CTMs therefore provide the most accurate method to predict future health impacts or EJ analyses in a 

changing world.   
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CTMs properly account for complex atmospheric chemistry, but their high computation burden limits 

their spatial resolution and/or domain size (the size of study area), which can introduce errors into health 

impact assessments (Fenech et al., 2018; Jiang and Yoo, 2018; Thompson et al., 2014; Thompson and Selin, 

2012) and EJ assessment (Paolella et al., 2018). Previous EJ studies in the US have shown that populations 

with lower socio-economic status are more likely to live near pollution emissions sources and therefore in 

zones with sharp pollution spatial gradients (Sheppard et al., 1999). Analyzing air pollution exposure in 

these regions requires high-resolution emissions inventories (Cohan et al., 2006; Markakis et al., 2015; Pan 

et al., 2017; Tan et al., 2015; Zheng et al., 2017) but even with these inventories in place, the analysis may 

be limited by the tradeoffs between spatial resolution and domain size. Many studies show that gradients 

in pollutant concentrations and socio-economic status over intermediate and large spatial scales can be key 

factors in the analysis of environmental inequity, making the choice of domain size (city-, county-, state-, 

or national-wide) an important consideration in the EJ assessment (Baden et al., 2007; Chakraborty et al., 

2011; Walker, 2009).  CTMs applied for EJ assessment therefore need to use a sufficiently large domain 

size combined with an appropriately fine spatial resolution to capture sharp spatial gradients to bring the 

critical EJ issues into focus.  The goal of this study is to find an appropriate balance between these 

competing requirements.   

CTM computational time and energy consumption generally increase in proportion to the number of 

active model grid cells (=spatial domain size / grid cell size) in the calculation. The computational burden 

of CTMs limits their reasonable application to some maximum number of active grid cells. If the resolution 

of the CTM grid cells increases (smaller cells) then the spatial domain size must decrease to maintain the 

target number of active cells.  Improvements in computational abilities continue to push these limits higher 

over time, but this factor continues to act as a practical limit to the configuration of CTM studies now and 

in the near-term future. It is necessary to find a balance between the target domain size and spatial resolution 

before starting an EJ assessment so that the results are sufficiently reliable and the calculations are 

computationally efficient. Here we explore how various combinations of (grid resolution x spatial domain 

size) influence CTM air pollution EJ studies over Southern California. Spatial resolutions ranging from 
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100’s of meters (comparable to census tract levels) up to 36 km are investigated, with associated domain 

sizes ranging from 320 km2 to 10,000 km2.  In the current study, the number of active model grid cells for 

4 km, 1 km, and 250 m domains were 27 × 27, 40 × 40, and 80 × 64, respectively.  Domains with higher 

spatial resolution are nested inside of coarse parent domains, and so the time and energy requirements are 

cumulative for the 4 km, 1 km, and 250 m domains.  The computational burden normalized to the 4 km 

domain is 3.2 times higher for the 1 km domain and 10.2 times higher for the 250 m domain. In this study, 

the ability of each CTM configuration to bring EJ issues into focus is analyzed, and the relationship between 

spatial resolution, domain size, and statistical power is identified.  The results guide the design for future 

CTM studies to support EJ assessment in California, and the methods provide a roadmap for the design of 

similar CTM - EJ studies in other regions.  

3.2. Materials and Methods 

Emissions inventories with spatial resolutions of 36 km, 12 km, and 4 km were first processed with 

the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Major point sources were specified at their 

exact latitude and longitude so that these sources can easily be incorporated into fine-scale emissions 

inventories (1 km/250 m).  The locations of area source (non-point source) and mobile emissions 

inventories were then specified at finer scales using spatial surrogates that were correlated with the true 

emissions activity. The base year 2016 California Air Resource Board (CARB) emissions inventory 

(California Air Resources Board, 2019) that served as the starting point for these downscaling calculations 

used spatial surrogates with a default resolution of 4 km. Emissions are described for six criteria pollutants: 

PM, NOx, SOx, TOG, CO and ammonia. The emissions within each 1 km/250 m subset of the parent 4 km 

cell were assigned in proportion to a refined spatial surrogate developed in previous work (Li et al., 2020)  

as summarized in Appendix 2 (Table S2-1). This methodology is consistent with the standard approach 

used to downscale county-level emissions to 4 km resolution in the National Emission Inventory (NEI) and 

CARB emissions inventories.  The accuracy of the technique ultimately depends on the accuracy and 

suitability of the spatial surrogates used to represent the emissions.  Further details are provided in the 
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sections below. CARB raw inventories are described at the hourly level using monthly, weekly, and diurnal 

time profiles for each emission source.   

3.2.1. High resolution area emissions 

Spatial surrogates based on seven source categories and fourteen in total with 1 km/250 m resolution 

were used in the current study:  (1) service and commercial employment and single-family housing 

(emissions from off-road gasoline engines); (2) off-road construction equipment, farm road vehicle miles 

travel (VMT), industrial-related/industrial employment (emissions from off-road diesel engines); (3) 

residential wood burning (emissions from biomass combustion); (4) restaurant sale volume (emissions from 

food cooking); (5) residential heating gas, industrial-related/industrial employment, service and commercial 

employment (emissions from natural gas combustion); (6) primary road, secondary road, unpaved road 

(emissions from road dust); (7) off-road/on-road construction equipment, industrial-related, farm road 

VMT, total population (emissions from miscellaneous sources). Surrogate data sources and algorithms are 

listed in Table S1. 

3.2.2. High resolution mobile emissions 

Mobile emissions include both tailpipe emissions and tire/brake wear emissions. Tailpipe emissions 

can be further divided into gasoline mobile (light-duty vehicles) and diesel mobile (medium- and heavy-

duty trucks) by engine type. Surrogates for each of these three subcategories are discussed below.  

3.2.2.1 Gasoline and diesel tailpipe emissions 

Explicit traffic counts collected by the U.S. Highway Performance Monitoring System (HPMS) were 

used to distribute the majority of the tailpipe emissions to highways and other principal arterial roads. 

McDonald et al. (McDonald et al., 2014) showed that approximately 70% of gasoline and approximately 

80% of diesel vehicle fuel consumption in California occurs on roads with traffic count information.  

Emissions on these roads can be represented by VMT (i.e., traffic count x road length). The remaining 

approximately 30% of gasoline and approximately 20% of diesel vehicle activity can use road length as a 
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spatial surrogate. This approximate treatment for the residual portion of the tailpipe emissions should be 

done separately for urban and rural areas to ensure rural emissions are not overestimated (Brondfield et al., 

2012). In California, the approximately 30% of the residual gasoline activity occurs mostly in urban areas 

(90%) with the balance in rural areas. Data sources can be found in SI Section 1.1. The final mobile gasoline 

and diesel surrogates were calculated using the equations (1) and (2): 

𝑆𝑢𝑟𝑟 (𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒) = 70% × (𝐴𝐴𝐷𝑇 × 𝐿𝑒𝑛)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 + 30% × (𝐿𝑒𝑛′)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑                   (1) 

𝑆𝑢𝑟𝑟 (𝐷𝑖𝑒𝑠𝑒𝑙) = 80% × ( 𝐴𝐴𝐷𝑇′ × 𝐿𝑒𝑛)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 + 20% × (𝐿𝑒𝑛′′)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑                     (2) 

𝐿𝑒𝑛′′ = 90% × 𝐿𝑒𝑛_𝑢𝑟𝑏𝑎𝑛 + 10% × 𝐿𝑒𝑛_𝑟𝑢𝑟𝑎𝑙                                                                       (3) 

where 𝑆𝑢𝑟𝑟 (𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒)  is the Gasoline mobile surrogate; 𝑆𝑢𝑟𝑟 (𝐷𝑖𝑒𝑠𝑒𝑙)  is the Diesel mobile 

surrogate; AADT is the Annual Average Daily Traffic;  AADT’ is the Truck Annual Average Daily Traffic; 

Len is the Road length with AADT; Len’ is the Road length without traffic accounts; Len’’ is the Truck 

road length without traffic accounts; Len_urban is the Urban road length; and Len_rural is the rural road 

length. 

3.2.2.2 Tire & brake wear emissions 

Tire and brake wear emissions were estimated as a fixed fraction of tailpipe emissions for all engine 

types. The CARB SIP 2016 emissions inventories (California Air Resource Board, 2016.) specify that 

gasoline / diesel emissions account for 86% / 14% of total mobile emissions. Thus, the tire and brake wear 

spatial surrogate was calculated using the equation (4): 

𝑆𝑢𝑟𝑟 (𝑇𝑖𝑟𝑒 𝑎𝑛𝑑 𝐵𝑟𝑎𝑘𝑒 𝑤𝑒𝑎𝑟) = 

86% × 𝑆𝑢𝑟𝑟(𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 + 14% × 𝑆𝑢𝑟𝑟(𝐷𝑖𝑒𝑠𝑒𝑙)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑                                    (4) 

where 𝑆𝑢𝑟𝑟 (𝑇𝑖𝑟𝑒 𝑎𝑛𝑑 𝐵𝑟𝑎𝑘𝑒 𝑤𝑒𝑎𝑟) is the Tire and Brake wear surrogate. 

3.2.3. Exposure field – CTM configuration 

Annual-average exposure fields over Southern California for the year 2016 were generated using the 

source-oriented WRF/Chem (SOWC-HR) CTM (Joe et al., 2014; Zhang et al., 2014) coupled with high-

resolution emissions inventories summarized above. This version of SOWC used Large Eddy Simulation 

(LES) to simulate domains with spatial resolution as fine as 250m.  LES predicts turbulent mixing at fine 
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scales where traditional first order closure models are not valid. Thompson graupel scheme was used for 

microphysics option (mp_physics = 8). ACSM2 was used for boundary-layer option (bl_pbl_physcis = 7). 

Kain-Fritsch scheme was used for cumulus option (cu_physics = 1). SPRAC11 chemical mechanism was 

used in this simulation. Multiple domain settings were used (Figure S1) to explore the effects of domain 

size and spatial resolution.  The largest domain with 36 km resolution (D01) covered the entire state of 

California. A slightly smaller domain with 12 km resolution (D02) covered the South Coast Air Basin 

(SoCAB). More highly resolved domains with 4 km (D03), 1 km (D04), and 250 m (D05) spatial resolution 

(employing LES) were nested over Los Angeles. The domain with the highest resolution D05 (250 m) was 

centered on the community of East Los Angeles, Boyle Heights, West Commerce that has been identified 

for special study under California’s Assembly Bill 617 (AB617).  WRF/Chem was configured with two-

way nesting between 36km-12km-4km domains and one-way nesting between 4km-1km-250m domains. 

A second set of exposure fields was also developed using the University of California Davis / 

California Institute of Technology (UCD/CIT) CTM (Kleeman and Cass, 2001b). The UCD/CIT model was 

configured with one parent 24 km statewide domain and one nested 4 km domain covering the SoCAB 

(Figure S1).  One-way nesting was used between the domains. UCD/CIT model simulations employed a 

different set of emissions inventories. Primary dust emissions used by the WRF/Chem model are higher 

than the dust emissions used by the UCD/CIT model.  Comparison of the concentration fields predicted by 

both models suggests that different dust emissions can account for a change in predicted PM2.5 mass 

concentrations of approximately 1.5 µg m-3. The UCD/CIT model used standard 4km CARB mobile 

emissions developed using travel demand models combined with the EMFAC model.  The WRF/Chem 

model used mobile emissions with 1km spatial resolution developed using the methods summarized in 

Section 3.2. In addition to having different spatial resolutions, the different approaches used to develop 

these inventories yield slightly different spatial patterns for the mobile emissions.  Results from WRF/Chem 

and the UCD/CIT model will be compared to identify common trends.   
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3.2.4.Socio-economic data 

Socio-economic data were obtained from the American Community Survey (ACS) 2012-2016 (United 

State Census Bureau, 2020). The dataset describes four race/ethnicity groups that were analyzed in detail 

in the current study: Black (Black & African American alone), Hispanic (Hispanic or Latino, regardless of 

race), Asian (Asian alone), and non-Hispanic White (White, not Hispanic or Latino). Population maps for 

these race/ethnicity groups are shown in Figure S2-2 to S2-3 in Appendix 2 with a summary for each model 

domain presented in Table S2-2 in Appendix 2. The Hispanic fraction of the population increases as the 

model domains becomes more focused on central Los Angeles, rising from 38% in D01 to 67% in D05. 

Conversely, the Non-Hispanic White fraction of the population decreases steadily from 38% in D01 to 10% 

in D05.  Asian (13-16%) and Black and African American (6-10%) population fractions are more constant 

across the model domains D01 through D05.  The ACS dataset also includes seven income categories 

spanning the range from less than 50% of the poverty level to greater than twice the poverty level.  Income 

distributions across the model domains D04 and D05 are summarized in Table S2-3 in Appendix 2.  

Intermediate income levels are similar across domains, but 28% of the population in D05 is below the 

poverty level compared to 20% in D04, and only 42% of the population is more than 2x above the poverty 

level in D05 compared to 57% in D04.  These statistics illustrate that the inner D05 modeling domain 

employed in the current study contains a larger fraction of the poorest population.  D05 is a subset of D01-

D04, but the larger regions contain areas with cleaner air and a higher proportion of white residents.  Thus, 

analysis carried out over D01-D04 dilutes the disparities experienced by the poorest residents.   

   Socio-economic data with census tract resolution was used for the analysis. Within the primary study 

region (Los Angeles D02), 51% of census tracts are below 1 km resolution and 72% of census tracts are 

below 1.2 km resolution. A histogram of census tract size is shown in Figure S4. The resolution of the 

socio-economic data is well matched with the resolution of the model domains in the current study. 

Population data used in EJ assessment were regirded into spatial resolutions that was comparable to the 

CTM exposure fields. 
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Population weighted concentration were calculated for four race/ethnicity groups and two poverty 

level categories. Both absolute disparity and relative disparity were calculated and analyzed. Relative 

disparity results are expressed as relative percentage difference relative to the total population average 

(（𝑃𝑊𝐶𝑟𝑎𝑐𝑒/𝑖𝑛𝑐𝑜𝑚𝑒 − 𝑃𝑊𝐶̅̅ ̅̅ ̅̅ ̅） 𝑃𝑊𝐶̅̅ ̅̅ ̅̅ ̅ ∗ 100%⁄ ). 

3.2.5. Statistical power 

EJ assessments were performed using several combinations of domain size and spatial resolution in 

the current study.  Statistical power was used as a metric to evaluate the capability of each combination to 

detect a given disparity value and therefore to determine whether the combination of domain size and spatial 

resolution was suitable for future studies. Statistical power is calculated using standard statistical 

procedures involving Type II error during a test of the means in two samples. Type II error occurs when 

the null hypotheses is not rejected even though it is false. A lower probability of a Type II error (β) generates 

a higher statistical power (1-β) and a more sensitive test. Statistical power and Type II error for tests of the 

means are related to four parameters: mean of two samples (two races/ethnicities or two income groups); 

standard deviation of two samples; sample size, and Alpha level (α), which were provided in Appendix 2 

Section S2.2.3. We chose α = 0.01 in this study. The statistical power results are presented in Section 3.3.4.  
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3.3.Results and discussion 

3.3.1.CTM exposure fields and model performance  

 

Figure 3-1. Year 2016 predicted annual average PM2.5 mass concentration (𝜇𝑔 𝑚3⁄  )  at 12 km (a), 4 km 

(b), 1 km (c), 250 m (d) spatial resolution.  

Figure 3-1 shows the annual average PM2.5 mass concentration predicted by WRF/Chem in the year 

2016 at spatial resolutions of 12 km (D02, Figure 3-1a), 4 km (D03, Figure 3-1b), 1 km (D04, Figure 3-1c) 

and 250 m (D05, Figure 3-1d). Annual average concentrations of PM2.5 Elemental Carbon (EC), Organic 
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Carbon (OC), primary and secondary aerosol mass are shown in Figures S2-5 to S2-8 in Appendix 2. Thin 

gray lines in Figure 3-1 panels b,c,d represent state highways, black lines in panels a, b, c represent 

California GAI boundaries, which combine county boundaries and air basin boundaries. Pollutants with 

shorter atmospheric lifetimes (such as primary particles) have concentrations that rapidly decay downwind 

of emissions locations (Karner et al., 2010). Higher spatial resolution therefore reveals sharper 

concentration spatial gradients around major traffic corridors and large stationary emissions sources. 

Maximum concentrations and the number of “hotspots” both increase with finer spatial resolution in Figure 

3-1, yielding a more complex exposure field that captures the influence of both local sources as well as 

regional background concentrations.   
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Figure 3-2. Year 2016 annual PM2.5 EC, OC, primary, and secondary aerosol mass concentration (𝜇𝑔 𝑚3⁄  ) 

at 1 km (domain D04) and 250 m (domain D05) spatial resolution. Dashed line is state highway. 

Figure 3-2 illustrates annual-average concentrations of PM2.5 EC, OC, primary mass, and secondary 

mass predicted at 1 km (D04) and 250 m (D05) spatial resolution. Figure 3-2 shows that PM2.5 EC 

concentrations are elevated around major transportation corridors, with sharper spatial gradients coming 

into focus at finer spatial resolution (Figure 3-2a, D04 vs. D05). Increased PM2.5 EC concentrations can also 

be observed around major surface streets at 250 m resolution (Figure 3-2a, D05). Predictions at 12 km and 

4 km spatial resolution are too coarse to detect elevated PM2.5 EC concentrations adjacent to highways or 

major roadways, but these coarser predictions do still capture the general increase over the urban area 
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(Figure S2-5 in Appendix 2).  PM2.5 OC concentration fields are smoother than PM2.5 EC concentration 

fields at all spatial resolutions (Figure 3-2b vs. Figure Figure 3-2a and Figure S2-6 vs. Figure S2-5 in 

Appendix 2). Primary PM2.5 OC (Figure 3-2b) is emitted by a larger number of sources (food cooking, traffic, 

biomass combustion) than PM2.5 EC (primarily traffic) in the current simulations.  Secondary reactions in 

the atmosphere also produce PM2.5 OC over periods of hours to days, which smooths the resulting 

concentration fields.  Primary PM2.5 mass (Figure 3-2c) consisting of EC, primary OC, metals, and other 

crustal elements responds to spatial resolution similarly to EC, with sharper spatial gradients revealed at 

higher resolution. In contrast, secondary PM2.5 mass (Figure 3-2d and Figure S2-8 in Appendix 2) has 

relatively smooth spatial gradients that do not change significantly as spatial resolution is increased.  The 

overall results illustrated in Figure 3-2 show that finer spatial resolution captures the sharp gradients 

associated with primary pollutants such as EC but reveals few additional features for secondary aerosol.  

Predicted concentrations of PM2.5 mass, EC, and OC were compared to all available measurements 

during the study period (Figure S2-12 to S2-13 in Appendix 2). Daily PM2.5 mass, Mean Fractional Bias 

(MFB) and Mean Fractional Error (MFE) of the CTM predictions at 12km, 4km, 1km and 250m are 

calculated at ten available sites. Daily PM2.5 EC, OC MFB and MFE are calculated at one site (downtown 

Los Angeles). Monthly average / daily predicted and measured PM2.5 mass, EC, OC at Downtown Los 

Angeles site are shown in Appendix 2 (Figure S2-10 and Figure S2-11). In general, simulations at all spatial 

resolutions capture time trends in PM2.5 mass, EC, and OC concentrations. PM2.5 mass, EC, OC have been 

slightly overestimated in summer months, which was caused by underestimation of wind speed of summer 

months. All MFB are ≤ 60% and MFE values are ≤ 75%, meeting typical CTM performance criteria(Boylan 

and Russell, 2006). Three out of four sites that used 1 km spatial resolution met typical CTM performance 

goals(Boylan and Russell, 2006) (MFB ≤ 30% and MFE ≤ 50%). Model performance (both MFB and MFE) 

improved by  5% when the spatial resolution was increased from 4 km to 1 km; model performance 

improved an additional 4% when the spatial resolution was increased from 1 km to 250 m. It is noteworthy 

that model performance degrades slightly as spatial resolution increases from 12 km to 4 km, and then 

improves as spatial resolution increases from 4 km to 1 km to 250 m at the available measurement sites. 
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UCD/CIT Model performance is summarized in Figure S9. UCD/CIT model results meet typical CTM 

performance goals (Boylan and Russell, 2006) (MFB ≤  30% and MFE ≤  50%) for all available 

measurement sites. 

Model performance as a function of location was analyzed by comparing annual-average predicted 

concentration to measurements across the study domain as recommended by Paolella et al. (Paolella et al., 

2018) The reasonably high correlation coefficient calculated in this analysis (R2 = 0.61 in Figure S2-14) 

shows that predicted concentration fields have a spatial pattern that is consistent with measured 

concentrations.  

While the CTM error analysis builds confidence in the accuracy of the overall modeling system, it 

does not address the key issue of the appropriate combination of domain size and spatial resolution to 

capture a sufficiently large population with enough concentration contrast to best support epidemiological 

studies. 

3.3.2. EJ analyses at different CTM domain size and spatial 

resolution 

The following sections analyze air quality EJ as a function of the CTM domain size and spatial 

resolution. Nine combinations of domain size and spatial resolution were chosen for analysis, including 

D01 - 36KM, D02 – 12KM, D03 – 12KM, D03 – 4KM, D04 – 4KM, D04 – 1KM, D05 – 4KM, D05 - 1KM 

and D05 – 250M. The domain size-resolution combinations selected for analysis were constrained by the 

computational burden at fine spatial resolution and sufficiently large sample size at coarse resolution.  Fine-

scale domains with more than 10,000 grid cells were not used in order to maintain reasonable computational 

burden. Coarse-scale domains with fewer than 20 grid cells were not used to maintain sufficiently large 

sample size.  This experimental design reflects the trade-off between spatial resolution and domain size at 

the core of the present analysis.   

Results are stratified by the population socio-economic class information available in the public ACS 

datasets. One EJ assessment is based on combined race/ethnicity (Black and African American, Hispanic, 
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Asian, and non-Hispanic White) and two income categories (below the poverty level and above the poverty 

level). A second EJ assessment is based on income alone using seven categories (the highest of which is 2x 

more than the poverty level).  Annual-average population-weighted concentrations (PWC) of PM2.5  mass, 

EC, OC, primary mass, and secondary mass are calculated to represent exposures for each socio-economic 

group across all CTM domains and spatial resolutions (Figure S2-15 for race-income D04, 05, Figure S2-

16 for race-income D01,02,03, Figure S2-17 for income alone D04-D05 in Appendix 2).  

Absolute and relative disparities of PM2.5 mass and its components were calculated across all 

WRF/Chem CTM domains and for their intersection with UCD/CIT CTM domains, including statewide 

24km, 4km on D03 (UCD/CIT, D03-4KM), and 4km on D04 (UCD/CIT, D04-4KM). UCD/CIT results 

were developed independently from WRF/Chem results and so they serve as a comparison group to identify 

trends common across model platforms.  

In general, Los Angeles residents in lower socio-economic groups are predicted to experience higher 

exposure to air pollutants, especially primary pollutants, regardless of CTM domain size and spatial 

resolution.  This finding is consistent with the results from previous studies over Los Angeles (Cushing et 

al., n.d.; Paolella et al., 2018; Tessum et al., 2019). However, the current study predicts that exposure to 

secondary PM2.5 mass was similar across all races and income categories.  Below we discuss further details 

of the combined effects of CTM domain size and spatial resolution on the EJ results and the statistical 

power of the analysis. 
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3.3.2.1Absolute disparity 

 

Figure 3-3. Pollutant exposure difference between the maximum disparity groups.  Comparison groups in 

(a) are Black and African American below poverty level vs. non-Hispanic White above poverty level 

except for D01, 36KM result.  Comparison groups in panel (b) are people who are less than 0.5x the 

poverty level vs. people who are more than 2x the poverty level. CTM domains are shown in Figure S2-1.   

 

Figure 3-3 summarizes the exposure difference between the largest disparity groups across all 

combinations of CTM domain size and resolution as a function of race-income (Figure 3-3 (a)) and income 
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alone (Figure 3-3 (b)). The largest absolute disparity in the current study was observed between low-income 

Black and African American and high-income non-Hispanic White groups, except at the statewide domain 

level D01, 36 km (see caption in Figure 3-3 (a)). Observed race-income related maximum exposure 

disparities were 1.63 to 5.18 𝜇𝑔/𝑚3 for PM2.5 mass; 0.12 to 0.4 𝜇𝑔/𝑚3 for PM2.5  EC; 0.63 to 2.0 𝜇𝑔/𝑚3 

for PM2.5  OC; 1.25 to 4.25 𝜇𝑔/𝑚3 for primary mass; 0.12 to 0.75 𝜇𝑔/𝑚3 for PM2.5  secondary.  The choice 

of model domain size at a constant resolution changed calculated absolute disparity values by 12%-28%.  

The choice of model spatial resolution at a constant domain size changed calculated absolute disparity 

values by 1%-6%. Changing of domain size has relatively larger effect on absolute disparity. Note that 

income level did not have a statistically significant effect on air pollution exposure over the largest domain 

(D01) that employed the coarsest spatial resolution. When exposures were analyzed without regard to 

income level, the maximum disparity between race groups decreased approximately 8% (D01) to 18% (D04) 

(shaded area in Figure 3-3 (a)).  

Absolute exposure disparities between different racial groups calculated by WRF/Chem and the 

UCD/CIT model are compared across statewide, D03-4KM, and D04-4KM domains in in Figure S2-19 in 

Appendix 2.  The trends in exposure disparity as a function of domain size and domain resolution are 

consistent between the two CTM predictions.  Absolute values of exposure disparities calculated with the 

models are in better agreement when over-predictions in dust emissions in the WRF/Chem model were 

subtracted from the predicted concentration fields. The agreement between results produced by these 

independent models builds confidence in the exposure disparities identified in the current study.   

Hypothesis tests were conducted for population-weighted PM2.5 mass exposures across race and 

poverty levels to further investigate poverty-related disparity.  The population-weighted exposures are 

calculated with a finite number of grid cells with a total count that is far smaller than the number of people 

in the study region.  The calculated population exposure can therefore be viewed as a sub-sample of the 

individualized population exposure (that is impractical to calculate). Test statistics were calculated using 

the weighted mean and the weighted standard deviation for each population exposure across all available 
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model grid cells (summarized in Tables S2-4 to S2-8 in Appendix 2). Further details of the calculation 

approach are provided in Appendix 2 and Tables S2-9 to S2-10. P-values were calculated to test the 

hypothesis that each paired comparison group had the same exposure. Three stratifications were considered: 

(i) combined race and poverty level; (ii) race only; and (iii) poverty level only. Statistically significant 

maximum exposure disparities (p-values < 1%) were identified in most CTM configurations when 

considering race and poverty level together or race alone, except for the comparison between low-income 

Asian and high-income White groups. The dependence on CTM domain size and spatial resolution became 

more apparent when testing the smaller effects of poverty alone.  Statistically significant differences by 

poverty level were only detected at higher resolution regional/community-level domain (4km at D03, 1km 

at D04 and 250m at D05) that had sufficient combined size and resolution. All of the subsequent tests 

involving income levels will focus on regional/community-level domains in order to maintain statistical 

power at a meaningful level.   

The largest air pollution exposure disparities based on income occur between the highest and the lowest 

income categories, but the maximum income exposure disparities (Figure 3-3 (c)) were approximately 50% 

smaller than maximum race exposure disparities (shaded bar in Figure 3-3 (a)) over the income categories 

tested.  The effect of income was further analyzed by comparing exposure disparities between households 

with income greater than $200,000/yr and households with income below $10,000/yr in D03, D04, and D05 

(see Table S2-11 in Appendix 2).  Exposure disparity for PM2.5 mass is 1.5-4 times higher when comparing 

these more divergent income categories, with similar increases for the exposure disparities in the 

components of PM2.5 mass.  These results suggest that income is an important factor in air pollution 

exposure disparity, but it must be recognized that income and race are often highly correlated (see (Paolella 

et al., 2018) for discussion on this topic).  More than 80% of the households with income greater than 

$200,000/yr in the current study are non-Hispanic White, making it is difficult to separate income vs. race 

contributions to exposure disparity.  
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Figure 3-3 illustrates how maximum exposure disparity for primary and secondary PM responds to 

CTM domain size and spatial resolution. The largest statewide domain (D01) has the lowest maximum 

exposure disparity for primary PM due to the corresponding coarse spatial resolution. In contrast, exposure 

disparities for secondary PM increase with domain size regardless of spatial resolution since spatial 

gradients for secondary pollutants occur over larger distances.  Maximum exposure disparity for all PM2.5 

mass and components increased from source-oriented WRF/Chem statewide D01 to region-level D03, then 

decreased from D03 to D05.  

Two trends are apparent when comparing results with different spatial resolutions but the same domain 

size (D03, 04, and D05) in Figure 3-3. Within the community-level domain (D05), the exposure disparity 

increased with spatial resolution (4 km-1 km-250 m). The opposite trend is observed in the regional domain 

(D03 and D04), where the exposure disparity slightly decreased with spatial resolution (12 km-4 km-1 km). 

D03 and D04 include more coastal areas that inherently have lower exposures because they have fewer 

upwind sources. Thus, analysis conducted in D03 and D04 captures the increased disparity between those 

who live closer to the coast (non-Hispanic White or wealthy people) and those who live in inland (other 

non-White categories). In this case, the effects of the larger domain size overwhelm the effects of the higher 

spatial resolution. 
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3.3.2.2Relative disparity 

 

Figure 3-4. Exposure difference relative to population average for (a,d) PM2.5 total mass, (b,e) primary 

PM2.5 mass, and (c,f) secondary PM2.5 mass as a function of domain size and resolution. Upper panels 

analyze race/ethnicity and lower panels analyze income.  

-24% -12% 0% 12% 24% 36%

(c) PM2.5 Secondary

-24% -12% 0% 12% 24% 36%

(b) PM2.5 Primary

-24% -12% 0% 12% 24% 36%

B
la

ck
H

is
p

an
ic

A
si

an
n

o
n

-H
is

p
an

ic
W

h
it

e

(a) PM2.5 mass

-6% -4% -2% 0% 2% 4% 6%

Ratio of Income to
Poverty Level

< 0.50

(0.5, 0.99)

(1.0, 1.24)

(1.25, 1.49)

(1.50, 1.84)

(1.84, 1.99)

> 2.0

(f) PM2.5 Secondary

-6% -4% -2% 0% 2% 4% 6%

Ratio of Income to
Poverty Level

< 0.50

(0.5, 0.99)

(1.0, 1.24)

(1.25, 1.49)

(1.50, 1.84)

(1.84, 1.99)

> 2.0

(e) PM2.5 Primary

-6% -4% -2% 0% 2% 4% 6%

Ratio of Income to
Poverty Level

< 0.50

(0.5, 0.99)

(1.0, 1.24)

(1.25, 1.49)

(1.50, 1.84)

(1.84, 1.99)

> 2.0

(d) PM2.5 mass

D01, 36KM D02, 12KM D03, 12KM D03, 4KM D04, 4KM

D04, 1KM D05, 4KM D05, 1KM D05, 250M



 

| CHAPTER 3. Spatial Resolution Required to Model Air Pollution Environmental Justice in Southern California 

60 

 

 

Figure 3-4 illustrates deviations from the total population average concentrations estimated for each 

socio-economic group for PM2.5 total mass, primary mass, and secondary mass (similar results for PM2.5 

EC and OC are presented in Figure S2-18 in Appendix 2). Overall, Black and African American and 

Hispanic residents experience higher than average exposure to PM2.5 total mass (2% - 23%) and to PM2.5 

secondary aerosol (1% - 10%); Non-Hispanic White and Asian residents experience lower than average 

exposure to PM2.5 total mass (4% - 13%) and to PM2.5 secondary aerosol (1% - 6%). People with income 

lower than twice the poverty level generally experience similarly higher air pollution exposures, whereas 

people with income more than twice the poverty level experience lower air pollution exposure. Further 

refinement of income categories at higher levels would likely reveal even greater levels of exposure 

disparity. 

Relative exposure disparities between different racial groups calculated by WRF/Chem and the 

UCD/CIT model are compared across statewide, D03-4KM, and D04-4KM domains with results provided 

in Figure S2-20 in Appendix 2.  Trends in exposure disparities across different racial groups are in strong 

agreement between the two model predictions.  Black and African American and Hispanic residents 

consistently have higher than average exposure to total PM2.5, while non-Hispanic White residents 

consistently have lower than average exposure.  Asian residents have exposure levels that are very close to 

average.  The biological significance of the PM2.5 exposure disparities can be quantified using the methods 

that are used to estimate the public health burden of air pollution exposure.  The mortality risk ratio (RR) 

associated with air pollution exposure is often represented using the equation 

𝑅𝑅 = 𝑒𝛽(𝐶𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒−𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) (5) 

where C_exposure is the exposure concentration and C_background is the background concentration 

for the pollutant of interest.  (Krewski et al., 2009) performed a follow-up analysis of the American Cancer 

Society (ACS) cohort and derived a β value of 1.036 for exposure to PM2.5 mass.  Applying eq (5) to the 

population-weighted-concentrations experienced by each racial group in domain D04-4KM yields a risk 
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ratio for Black and African American residents that is approximately 30% higher than the risk ratio for the 

Non-Hispanic White group.  It should be noted that the risk ratio calculation is non-linear and so a more 

exact treatment would apply eq (5) separately for residents in different exposure bands and then combine 

the results.  The current analysis provides a rough estimate of health impacts, with a more exact treatment 

described in other work (see for example (Li et al., 2022).    

CTM domain size and spatial resolution combine to influence the exposure disparities illustrated in 

Figure 3-3 and Figure 3-4.  Maximum exposure disparities generally come into clearest focus when 

intermediate combinations of domain size and spatial resolution are used since this balanced configuration 

captures exposure gradients for both primary and secondary PM.  The exception to this finding in the current 

study is that Hispanic exposure disparities were highest in the largest domain (D01) that covered the entire 

state of California.  Results for exposure disparity based on income shown in the lower panels of Figure 

3-4 do not include the largest spatial domain because these findings were not statistically significant (see 

Tables S2-9 to S2-10 in Appendix 2 and associated discussion section 3.3), but the intermediate 

combinations of domain size and spatial resolution once again bring the largest exposure disparities into 

clearest focus.  

The asymmetry of the exposure disparities in Figure 3-4 are noteworthy.  Within larger domains (D01-

D03), the maximum exposure disparities based on race were +23% for the highest exposure group and -13% 

for the lowest exposure group. Within smaller domains (D04-405), the asymmetry pattern reversed, with 

+6% for the highest exposure group and -10% for the lowest exposure group based on race. Similar 

asymmetry patterns were observed for maximum exposure disparities based on income: +4% for the highest 

exposure group and -3% for the lowest exposure group within the larger domain D04. Smaller but similar 

deviations (+2%/-2%) were observed for the highest and lowest exposure groups within the smaller domain 

D05.  This asymmetry was largely driven by exposure to primary PM, with substantially lower exposure 

disparities associated with secondary PM.   Smaller domains have higher average concentrations that can 

reduce the maximum exposure disparities. The combined trends illustrated in Figure 3-3 and Figure 3-4 
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emphasize the need for a balanced selection of domain size and spatial resolution when quantifying 

exposure disparities, with slightly higher priority given to selection of a sufficiently large domain to 

represent the large-scale exposure features. Increasing the spatial resolution beyond approximately 1 km 

appears to produce diminishing returns in the current study. 

3.3.3. Exposure distribution  

 

Figure 3-5. PM2.5 mass exposure distribution across racial-ethnic population. (a), (b), (c), (d) focus on 

spatial resolution and domain scope changes on racial-ethnic population exposure distribution.  

Population profile at a given concentration level can be found by following a horizontal line across each 

sub-panel and comparing results from lines with the same color across panels. 

 

Figure 3-5 illustrates the distribution of PM2.5 mass exposure disparities across different race/ethnicity 

groups as a function of the CTM domain and spatial resolution.  Calculations using different CTM domain 

size and spatial resolution are shown as different colors within each panel of Figure 3-5.  Exposure 

distributions are divided into concentration deciles and exposures for each race/ethnicity group are 

expressed on a relative scale within each decile.  Similar exposure distributions for PM2.5 EC, OC, primary 

mass and secondary mass are presented in the Appendix 2 (Figure S2-21).  The results in Figure 3-5 and 

Figure S2-21 illustrate which race/ethnicity groups experience the highest and lowest PM exposures in 

California. For reference, the PM2.5 mass racial/ethnicity compositions of absolute concentration deciles for 
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each domain-resolution combination are shown in Figure S2-22. It should be noted that each race/ethnicity 

group comprises a different fraction of domain total population, and so it is not expected that exposure 

distributions would be equal when comparing between race/ethnicity groups.  Rather, the most equitable 

distribution of exposures in Figure 3-5 would be for each race/ethnicity group to have relatively uniform 

exposure across all concentration deciles (straight vertical line).   

The sloped exposure distributions illustrated in Figure 3-5  reflect the disparities discussed in the 

previous sections.  Results vary slightly with domain size, but Hispanic and Black and African American 

racial groups experience increased exposure to the highest deciles of PM concentration while the non-

Hispanic White group experiences lower exposure to the highest concentration.  Balanced combinations of 

domain size and domain resolution once again bring the disparities (slope of each line) into sharpest focus.  

Domain size generally does not change the slope of the exposure distribution lines for Hispanic and non-

Hispanic White groups because their populations are distributed more uniformly across California (De La 

Cruz-Viesca et al., 2016).  Domain size has a larger influence on the shape and slope of the exposure 

distribution lines for Asian and Black and African American groups because these populations are more 

concentrated in urban areas.   

Figure 3-5 shows that lower spatial resolution, especially 4 km, 12 km and 36 km, generates larger 

fluctuations across the exposure distribution because the coarse resolutions cannot adequately resolve the 

combined population and concentration spatial gradients. A larger grid cell incorporates a larger fraction of 

the population into one decile. Breaking large grid cells into small grid cells divides the same population 

among multiple concentration deciles resulting in a smoother (and more realistic) exposure distribution. 

This same issue will influence the calculated average exposure for each socio-economic group shown in 

Figure 3-3 and Figure 3-4, emphasizing the need for a sufficiently fine spatial resolution to resolve EJ issues.   

3.3.4.Statistical Power  

The analysis presented in the previous sections shows that CTM calculations for EJ assessment that 

balance both domain size and spatial resolution in the context of race and income patterns can obtain 
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meaningful results with reduced computational burden.  This finding is illustrated with an example in Figure 

3-6 showing the statistical power of different CTM configurations over Southern California to correctly 

identify PM2.5 mass exposure disparities between groups in cases where the true disparity is 0.5 μg/m3. 

The horizontal axis of Figure 3-6 represents increasing spatial resolution to the right, while the vertical axis 

represents increasing active domain area (CTM grid cells with non-zero population) towards the top.  

Statistical power to detect the indicated concentration difference between maximum disparity groups is 

shown as color, with statistical power above 90% shown in red.  Figure 3-6  shows that EJ statistical power 

can be increased by either increasing the domain size or increasing the spatial resolution.  Achieving 

statistical power above 90% in our target area requires 4 km spatial resolution with a domain size greater 

than 104 km2, 1 km spatial resolution with domains size greater than 103 km2, or 250 m spatial resolution 

with domain size greater than 102 km2.   

 

Figure 3-6. Power of detecting a 0.5 𝜇𝑔/𝑚3 maximum exposure disparity  between groups  for each 

combination of spatial resolution and domain scope, including both source oriented WRF/Chem (dot) and 

UCD/CIT (triangle) CTM results.  A power of 90% indicates that there is a 90% probability of correctly 

concluding that exposures are different between the groups. 
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3.4.Discussion 

Increasing the spatial resolution of CTM calculations should increase the accuracy of the predicted 

concentration fields.  In the current study, simulations with higher spatial resolution were able to better 

resolve sharp spatial gradients downwind of major transportation corridors and large point sources.  Model 

performance improved by approximately 5% when the spatial resolution was increased from 4 km to 1 km; 

model performance improved an additional approximately 4% when the spatial resolution was increased 

from 1 km to 250 m.  This overall approximately 9% increase in model performance must be weighed 

against the need to reduce the spatial domain size from approximately 10,000 km2 (4 km resolution) to 

approximately 320 km2 (250 m resolution) in order to keep the computation burden manageable.  The 

limited coverage of the 250 m simulations reduces the population in the study region and it prevents an 

analysis of the concentration gradients that occur over lengths of 100’s of km. 

Envrionmental disparities by race/ethnicity groups and poverty groups were done at nine resolution-

domain combinations. A regional analysis with 4 km or 1 km spatial resolution appears to bring EJ issues 

into focus across the different scales in Southern California. In the current study, 4 km spatial resolution 

with a domain size greater than 104 km2 or 1 km spatial resolution with domains size greater than 103 km2 

identify PM2.5 exposure disparities as large as 17.5% that translates into a 30% increase in the mortality risk 

ratio.  The air pollution domains balance the accuracy of model predictions vs. measurements, they include 

populations in all important subregions, and they maximize the accuracy of the exposure distributions 

across all socio-economic groups.   

The statistical power for each domain-resolution combination calcualted in the current study is 

determined by the spatial distribution of pollution and the demographics of regional housing patterns within 

each doman.  The shape of the relationship between statistical power vs. domain-resolution identified in 

the current study is expected to be typical for other regions, but the exact thresholds for achieving a target 

level of statistical power at a relevant level of exposure disparity will need to be recalculated for each new 

study domain.  The current study provides a single data point that fine-scale spatial resolution below 1km 
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may not be needed (or even optimal if it requires diminished domain size). Similar studies should be carried 

out in other geographic regions in order to determine the appropriate CTM domain size and spatial 

resolution for EJ assessment in the context of their spatial distributions for race and income. 
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Chapter 4.                                                        

Adoption of Low-Carbon Fuels Reduces 

Race/Ethnicity Disparities in Air Pollution 

Exposure in California 

4.1. Introduction 

Exposure to atmospheric pollutants such as airborne particles with diameter less than 2.5 µm (PM2.5) 

is estimated to cause 3.3 million premature deaths per year worldwide (Lelieveld et al., 2015b).  The 

majority of this excess mortality occurs in heavily populated regions of Asia, but even cleaner regions in 

North America and Europe experience a public health burden associated with air pollution (Organization, 

2021; Strak et al., 2021).  Numerous environmental justice (EJ) studies have shown that lower socio-

economic classes in the United States experience higher levels of air pollution, which subjects them to a 

lifetime of health risk (Anderson et al., 2018b; Bravo et al., 2016; Colmer et al., 2020; Cushing et al., 2015; 

Liu et al., 2021; Miranda et al., 2011; Tessum et al., 2021; Thakrar et al., 2020). This exposure disparity 

can come from many different sources of air pollution, including transportation (Gunier et al., 2003; 

Houston et al., 2014; Rowangould, 2013), food cooking (Shah et al., 2020), residential combustion (Tessum 

et al., 2019), electricity (Thind et al., 2019) and industrial facilities (Perlin et al., 2002). Exposure to poor 

air quality at any stage of life is associated with a variety of health problems that burden our collective 

health care system and reduces our economic output. A sustainable future in an increasingly globalized and 

competitive world requires that we minimize costs for avoidable illness to help all people reach their full 

potential regardless of their socio-economic class.  
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Energy consumption across the economy is inherently associated with air pollution, linking the issues 

of climate change and air quality.  A recent study suggests that global air pollution mortality could double 

by the year 2050 under a business-as-usual (BAU) energy scenario (Lelieveld et al., 2015b).  Many previous 

studies have estimated health co-benefits of various GHG reduction pathways, including adopting carbon 

capture and sequestration (CCS) technology, limiting bioenergy, using renewable energy in electricity 

generation, and reducing fossil fuels in power plants (Dimanchev et al., 2019; Markandya et al., 2018; 

Ramaswami et al., 2017; Sampedro et al., 2020; Wang et al., 2020; West et al., 2017; Zapata et al., 2018a). 

Global reductions in GHG emissions have been estimated to reduce premature mortality by 17%-23%. The 

health co-benefits in many scenarios exceed the mitigation costs. India and China obtain greater co-benefits 

than other countries (Markandya et al., 2018; Sampedro et al., 2020), but impressive life-saving and health 

co-benefits were also demonstrated in the US by adopting the United States (US) Clean Power Plan 

(Driscoll et al., 2015; Levy et al., 2016), sub-national renewable energy policies (Dimanchev et al., 2019) 

and multi-sector GHG mitigation pathway (Zhang et al., 2017, 2016). However, these same studies also 

concluded that air quality improvements and health co-benefits varied significantly by region, suggesting 

that location-specific analyses may be warranted.  

California is the most populous state / province in North America, has the largest sub-national 

economy in the world, and is home to six out of the ten most polluted cities in the US based on annual-

average PM2.5 concentrations (American Lung Association, 2019).  California is leading North America in 

the adoption of new sustainable energy sources to mitigate climate change. State law AB32 commits 

California to reduce GHG emissions to 1990 levels by 2020 (California Air Resource Board, 2006); 

California Governor’s Executive Order S-3-05 commits California to an additional 80% reduction by 2050 

(Gov Arnold Schwarzenegger, 2005). This massive reduction in GHG emissions will require a 

transformation in the energy system that will involve choices about technological, fuel and energy resources. 

All of these choices will fundamentally change the patterns of air pollution exposure in California.  Multiple 

previous studies have evaluated the health co-benefits that can be achieved under various GHG mitigation 

pathways (Kleeman et al., 2013; Wang et al., 2020; Zapata et al., 2018a; Zhao et al., 2019), but very few 
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studies have explicitly explored the intersection of GHG emissions reductions, air pollution exposures, and 

racial disparities in exposure.   

Here we conduct a comprehensive analysis of health co-benefits, racial disparities, and source / 

composition in air pollution exposure under six future energy scenarios and four future meteorology 

scenarios in California. Air pollution exposure is calculated for four racial groups defined by the American 

Community Survey (ACS): Black, Hispanic, Asian, and White (United State Census Bureau, 2020). Public 

health benefits associated with reduced air pollution in different energy scenarios are calculated using 

standard epidemiological relationships (US EPA, 2021).  Energy scenarios are identified that reduce the 

racial disparity in air pollution exposure and total population exposure.  The most promising strategies / 

emissions sources to reduce future racial disparities / total population exposure to air pollution are then 

discussed.    

4.2. Methodology 

4.2.1. Energy Scenarios 

Future energy scenarios for California are described in detail by Li et al.(Yin Li et al., 2022) and so 

only a brief summary is presented in here.  All energy scenarios were created using the CA-TIMES energy 

economic model (McCollum et al., 2012; Yang et al., 2015) that predicts the statewide least-cost technology 

mix across all energy sectors in California to achieve target GHG reductions subject to external policy 

constraints.  Three energy scenarios achieved the objective of an 80% reduction in GHG emissions relative 

to 1990 levels, while the remaining scenarios achieved lower reductions.  Table 4-1 summarizes the major 

features of each energy scenario. 
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Table 4-1. Energy scenarios descriptions 

Scenario Name Description 

BAU 
A business-as-usual scenario that includes current regulations and future growth 

projections. 

GHGAi 

A strict GHG reduction scenario that achieves 80% reduction of GHG emission 

(relative to 1990 levels) by the year 2050.  More than 60% of California’s primary 

energy supplied by renewables including biomass, wind, and solar. 

2030CAP 

A loose GHG reduction scenario that meets current policy references but only 

achieves a 40% GHG reduction by the year 2030 with no further reductions 

thereafter. 

CCS 

A scenario that allows for more combustion to generate electricity by focusing on 

adoption of carbon capture and sequestration technology.  Meets the 80% GHG 

reduction target by counting “negative emissions” from carbon capture technology. 

NGB 
A variation of the GHGAi scenario that allows for 20% more natural gas combustion 

for residential and commercial buildings. 

NGT 
A variation of the GHGAi scenario that allows for 20% more natural gas combustion 

for electricity generation 

 

Criteria pollutant emissions with 4km spatial resolution associated with each energy scenario were 

calculated with the CA-REMARQUE model (Yin Li et al., 2022). CA-REMARQUE applies tailored 

procedures for each energy sector in California to estimate how the adoption of low-carbon fuels will 

modify criteria pollutant emissions.  Emissions from the production and combustion of bio-fuels 

incorporate the latest measurement data available in the literature.   

4.2.2. Meteorological Scenarios 

Meteorological scenarios were produced using the Weather Research and Forecast (WRF) model v3.4 

(NACR, 2012) based on initial and boundary conditions predicted by the Community Climate System 

Model (CCSM) (Gent et al., 2011) and the Canadian Earth Systems Model (CanESM) (Swart et al., 2019).  

The global climate scenarios associated with Representative Concentration Pathway 4.5 (RCP4.5) and 

RCP8.5 were selected for both CCSM and CanESM, yielding four different meteorological scenarios.  

Thirty vertical layers were used up to a top height of approximately 15 km. The maximum spatial resolution 
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of the results used in the present analysis was 4km.  Thirty-two weeks were randomly selected for study 

across the ten-year window from 2046 to 2055.  Sensitivity analysis indicates that the average air pollution 

concentrations predicted over this thirty-two week sample captures the long-term average concentrations 

with a standard error of 0.23 µg m-3 in the presence of the El Nino Southern Oscillation (ENSO). 

4.2.3. Air Quality Simulations 

Air quality simulations were performed using the UCD/CIT chemical transport model (Kleeman and 

Cass, 2001a; Ying et al., 2007).  Three nested domains were used to cover all of California at 24 km 

resolution, Southern California at 4 km resolution, and Central / Northern California with 4 km resolution.  

Fifteen telescoping vertical levels were used up to a total height of 5 km with the first ten levels in the 

lowest 1 km of the atmosphere.  Numerous previous studies have demonstrated the suitability of this model 

configuration when simulating historical pollution events in California (Hu et al., 2017, 2015, 2014; Laurent 

et al., 2014; Li et al., 2020; Mahmud et al., 2012; Ostro et al., 2015). 

All simulations used the SAPRC11 chemical mechanism to predict oxidant concentrations and the 

formation of photochemical products including ozone (O3), acids such as nitric acid (HNO3), and semi-

volatile organic species.  The condensation of inorganic salts such as ammonium nitrate (NH4NO3) was 

predicted using the ISSOROPIA thermodynamic routine (Fountoukis and Nenes, 2007) coupled with the 

APCD gas-particle partitioning scheme (Jacobson, 2010).   The formation of secondary organic aerosol 

(SOA) was simulated using an n-product model tuned to account for vapor wall losses during smog chamber 

experiments (Cappa et al., 2016).  The ability of the modeling system to accurately predict PM2.5, PM0.1, 

and particle number concentrations at locations across California is described in detail by Yu et al. (Yu et 

al., 2019). 

4.2.4. Socio-economic data 

Socio-economic data from the American Community Survey (ACS) 2012-2016 (United State Census 

Bureau, 2020) was used to calculate air pollution exposure for different race/ethnicity groups in California. 
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The ACS dataset includes race/ethnicity information for Black (Black & African American alone), Hispanic 

(Hispanic or Latino, regardless of race), Asian (Asian alone), and non-Hispanic White (White, not Hispanic 

or Latino) at the census tract level. The future EJ analysis focuses on four geographic regions across 

California: (i) Los Angeles (LA), (ii) San Diego (SD), (iii) San Joaquin Valley (SJV), and (iv) the San 

Francisco Bay Area & Sacramento (SFBA & SAC). The population densities of each race within each of 

these geographic regions are shown in Figure S1-S10. These four regions include more than 90% of 

California’s population, making the EJ analysis in current study representative of the entire state.  

Table 4-2 shows the race/ethnicity composition of the population in each geographic region analyzed 

in the current study. Black & African American residents account for 4-6% of the total population in each 

region, Asian residents account for 6-20% of the total population, White residents account for 30-48% of 

the total population, and Hispanic residents account for 26-54% of the total population.  Figures S3-1 to 

S3-10 in Appendix 3 show that some race/ethnicity groups are clustered in sub-regions of each domain.  

Specifically, Black & African American residents are clustered into neighborhoods south of central Los 

Angeles, and Asian residents are clustered into neighborhoods in Oakland.  These clustering effects have a 

significant impact on the air pollution exposure for race/ethnicity groups.
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Table 4-2. Socio-economic data summary 

 Population Percentage 

Region LAa SFBA & SACb SJVc SDd LA SFBA & SAC SJV SD 

All 14,384,814 11,299,258 2,526,861 2,967,636     

Black1 920,808 674,400 99,250 146,401 6.40% 5.97% 3.93% 4.93% 

Hispanic2 6,690,133 2,921,051 1,364,228 934,465 46.51% 25.85% 53.99% 31.49% 

Asian3 2,141,542 2,287,506 159,652 357,288 14.89% 20.24% 6.32% 12.04% 

White4 4,270,607 4,901,766 853,299 1,420,956 29.69% 43.38% 33.77% 47.88% 

1 Black and African American; 2 Hispanic or Latino, regardless of races; 3 Asian Alone; 4 non-Hispanic White 
a Los Angeles; b San Francisco Bay Area & Sacramento; c San Joaquin Valley; d San Diego 
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4.2.5. Population exposure, environmental justice, and health co-

benefits calculations 

PM2.5 and PM0.1 population weighted concentrations (PWC) were calculated for total population and 

each race/ethnicity group under an ensemble of six energy scenarios and four meteorological scenarios in 

four sub-regions in California. Absolute/relative exposure and absolute disparity by race/ethnicity were 

analyzed to show the ability of each scenario i) to reduce air pollutants exposure for all residents; and ii) to 

mitigate the exposure disparity between races/ethnicities. Results are shown in Section 4.3.1 and 4.3.2.  

The health co-benefits of PM2.5  and PM0.1  within each member of the ensemble was calculated using 

the Environmental Benefits Mapping and Analysis Program – Community Edition (BenMap-CE) v1.4.8 

developed by US EPA (US EPA, 2021).  The BAU scenario was used as a baseline and the GHGAi, 

2030CAP, CCS, NGB and NGT were used as controls in the BenMap analysis. Four health impact functions 

were analyzed, including Krewski et al., 2009, Laden et al., 2006, Lepeule et al., 2012 and Pope et al., 2002 

(Krewski et al., 2009; Laden et al., 2006; Lepeule et al., 2012; Pope et al., 2002). Economic benefits were 

then calculated with the value of a statistical life (VSL) of $7.6M. Results are shown in Section 4.3.3. 

Emissions source contributions to PM2.5 / PM0.1 exposure were analyzed for each scenario, 

race/ethnicity, and region. Nine emissions source sectors were used in this study, including i) tire & brake 

wear; ii) on-road mobile tailpipe; iii) off-road equipment; iv) aircraft & marine vessels; v) residential & 

food cooking; vi) electricity generation; vii) fuel supply that depends on the energy scenario; viii) fuel 

supply that doesn’t change with scenarios; and ix) biomass burning & construction dust (wildfires are 

excluded due to inherent uncertainty about location and timing). Further details of the emissions patterns 

associated with each sector under each scenario are discussed by Li et al. (Yin Li et al., 2022).  Results are 

shown in Section 4.3.4. The further investigation of impacts of each source contribution to total PWC and 

EJ are presented in Section 4.3.5.  



 

| CHAPTER 4. Adoption of Low-Carbon Fuels Reduces Race/Ethnicity Disparities in Air Pollution Exposure in CA 

75 

 

4.3. Results 

4.3.1. Absolute exposure 

  

Figure 4-1. Future year (2050) PM2.5 (left) and PM0.1 (right) Population Weighted Concentrations 

(PWC) by energy scenario and race/ethnicity across four regions in California. Each bar and associated 

uncertainty range represents the average and standard deviation across four meteorological scenarios 

(CCSM8.5, CCSM4.5, CAN8.5, CAN4.5).  
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Figure 4-2. Change in PM2.5 mass and PM0.1 mass absolute exposure disparities under different future 

energy scenarios. Absolute exposure disparities between race/ethnicity groups were calculated as the 

difference between the group with the highest exposure concentration and the group with the lowest 

exposure concentrations.   Top panels show absolute values of population-weighted concentrations, while 

bottom panels show changes relative to the BAU scenario. 

Figure 4-1 shows population-weighted concentrations (PWC) for PM0.1 and PM2.5 mass in four 

different California regions: Los Angeles, San Diego, the Bay Area & Sacramento, and the San Joaquin 

Valley. Results for individual race/ethnicity groups and for the average across all groups are shown for each 

energy scenario.  All exposure concentrations were averaged across the four meteorology scenarios, with 

uncertainty bars shown to represent one standard deviation between the meteorological scenarios.  

Meteorological variability influences PM0.1 and PM2.5 mass concentrations but does not significantly affect 

comparisons between different energy scenarios.  The absolute exposure concentrations for individual 

meteorological scenarios are provided in Appendix 3 Figure S3-11 to S3-18. 
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Both PM2.5 and PM0.1 absolute exposure concentrations vary across regions. The highest PM2.5 and 

PM0.1 concentrations are predicted to occur in Los Angeles, followed by the San Joaquin Valley, with lower 

absolute exposure concentrations predicted in San Diego and the Bay Area & Sacramento. Averaged across 

all energy scenarios, PM2.5 absolute exposure ranges from 8.2 μg/m3 to 12.5 μg/m3, PM0.1 absolute exposure 

ranges from 1.3 μg/m3 to 2.2 μg/m3. 

The choice of future energy scenario influences the absolute PWC for PM2.5 and PM0.1.  Absolute 

PWCs of both PM2.5 and PM0.1 are highest in the BAU scenario and lowest in the GHGAi scenario for all 

regions.  The PM2.5 exposure concentrations in the CCS and 2030CAP scenarios are only slightly lower 

than the concentrations in the BAU scenario. The PM2.5 exposure concentrations in the NGT and NGB 

scenarios are slightly higher than the concentrations in the GHGAi scenario.  

PM0.1 exposure concentrations are more variable than PM2.5 exposure concentrations on a relative scale 

across energy scenarios and geographical regions. For example, NGT produces 8.2% / 5.5% higher PM0.1 

exposure than GHGAi / NGB in Los Angeles, but the corresponding relative increase in PM2.5 

concentrations is only 2.3% / 1.6%. In the San Francisco Bay Area and Sacramento,  NGB increases PM0.1 

exposure by 12% / 10% compared to GHGAi / NGT, but corresponding increases to PM2.5 exposure are 

only 2.7% / 2.5%. Thus, relative changes to PM0.1 concentrations across energy scenarios can be as much 

as four times greater than relative changes to PM2.5 concentrations. These results once again reflect the 

greater variability of PM0.1 emissions than PM2.5 emissions across different energy scenarios (Yin Li et al., 

2022; Zapata et al., 2018b).   

Absolute exposure disparities are commonly used to quantify the severity of an environmental justice 

problem (Clark et al., 2017; Harper et al., 2013b; Liu et al., 2021; Paolella et al., 2018). Absolute exposure 

disparities between race/ethnicity groups were calculated as the difference between the group with the 

highest exposure concentration (minority) and the group with the lowest exposure concentrations.  The 

lowest exposure group was consistently White residents in this study.  Exposure disparities for PM2.5 

concentrations exist in all geographical regions within California, with the maximum value predicted in 
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Los Angeles and the minimum value predicted in San Diego (see Figure 4-2).  Locations with high exposure 

disparity have neighborhoods dominated by one race/ethnicity group with air pollution concentrations that 

are significantly different from regional average concentrations.    

Trends in absolute exposure disparities across energy scenarios are similar to the trends in the 

underlying PM2.5 and PM0.1 absolute exposure concentrations.  None of the clean fuel energy scenarios can 

eliminate environmental disparity in the future year 2050, but adoption of low-carbon energy sources in the 

year 2050 reduces the race/ethnicity disparity in air pollution exposure in California by as much as 20% for 

PM2.5 mass and by as much as 40% for PM0.1 mass (see Figure 4-2).  Deeper reductions in the carbon 

intensity of energy sources progressively reduced exposure to PM2.5 mass and PM0.1 mass for all California 

residents.  The greater adoption of low-carbon fuels also reduced the race/ethnicity disparity in the PM 

exposure.  The three energy scenarios that achieved an ~80% reduction in GHG emissions relative to 1990 

levels (GHGAi, NGB, NGT) simultaneously produced the greatest reduction in PM exposure for all 

California residents and the greatest reduction in the race/ethnicity disparity of that exposure.  The energy 

scenarios that allow continued use of combustion to generate a substantial fraction of California’s energy 

demand (2030CAP, CCS) typically produce less than half of the reduction in absolute exposure disparities. 
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4.3.2. Relative exposure 

  

Figure 4-3. Future year (2050) PM2.5 mass (left) and PM0.1 mass (right) exposure disparity (relative to 

total population) by scenario and race/ethnicity across four regions in California. Each bar represents the 

average across four meteorological scenarios (CCSM8.5, CCSM4.5, CAN8.5, CAN4.5).  

Figure 4-3 shows the PM2.5 and PM0.1 exposure disparity (relative to average exposure) for Black & 

African American, Hispanic, Asian, and non-Hispanic White residents in different geographic regions 

within California.  Results are averaged across all meteorological scenarios but shown individually for all 

energy scenarios.  Details of each meteorology scenario are shown in Figure S3-19 to S3-26 in Appendix 

3. Relative exposure disparities greater than zero indicate that the race/ethnicity group has greater-than-

average exposure, while relative exposure disparities less than zero indicate that the race/ethnicity group 

has less-than-average exposure.  Black & African American residents experienced higher-than-average 

exposure to PM2.5 and PM0.1 in all future energy scenarios in all study regions (Los Angeles, San Francisco, 

Sacramento, San Diego, and the San Joaquin Valley).  Asian residents in San Francisco experienced higher-

than-average exposure to air pollution in all future energy scenarios. Peak exposure disparities reached ~10% 
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for PM2.5 and ~20% for PM0.1. White residents experience lower-than-average exposures in all regions, with 

peak disparity values of approximately -10% for both PM2.5 and PM0.1. Hispanic residents generally 

experience exposure concentrations that are close to average. Asian residents experience lower-than-

average PM2.5 exposure concentrations in Los Angeles but higher-than-average exposure concentrations in 

the San Francisco Bay Area and Sacramento.  

The results summarized in Figure 4-3 reflect the spatial distribution of each race/ethnicity group within 

each geographic region.  Black & African American residents in California are clustered into neighborhoods 

near the center of urban cores or near major transportation corridors where air pollution emissions are higher.  

The historical policies that have produced these housing patterns are beyond the scope of the current study, 

but interested readers are referred to studies on the effects of “redlining” (see for example (Nardone et al., 

2020; Zenou and Boccard, 2000)).  Due to their proximity to higher emissions, Black & African American 

residents often experience higher-than-average exposure concentrations. White residents are more 

dispersed in suburban neighborhoods that are further away from urban cores. This housing pattern leads to 

lower-than-average exposure for White residents.  Asian residents are clustered near urban cores in 

Northern California (such as downtown San Francisco, San Jose, etc.) leading to higher-than-average 

exposure concentrations.  Asian residents are dispersed in suburban neighborhoods in Southern California, 

leading to lower-than-average exposure concentrations in this sub-region.  The contrast between exposure 

concentrations for Asian residents living in Northern California vs. Southern California emphasizes the 

importance of the distance between the home address and the urban core when calculating exposure 

concentrations. 
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4.3.3. Health Co-benefits  

 

Figure 4-4. Avoided mortality and public health benefits associated with low-carbon energy scenarios 

(relative to the BAU scenario) in Northern California (SFBA&SAC, SJV) and Southern California (LA, 

SD).  Public health benefits calculated using Value of a Statistical Life (VSL) estimated to be $7.6M in the 

year 2050. 

Figure 4-4 quantifies the avoided mortality and public health benefits associated with each energy 

scenario.  Health benefits per 1M residents are similar for Asian and Black & African American residents, 

slightly lower for Hispanic residents, and slightly higher for White residents (see right panel Figure 4-4).  

These patterns reflect the spatial distribution of the population comprising each racial group relative to the 

average air pollution exposure fields. Total health benefits for each racial category expressed as avoided 

mortality and public health savings (billions of USD) are calculated by multiplying average health benefits 

by total population (see left panel of Figure 4-4).   Energy scenarios with deeper cuts to GHG emissions 

produce greater public health benefits for all racial categories.   
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4.3.4. Source contributions 

 

Figure 4-5. PM2.5 source contributions in Los Angeles area by energy scenarios and race/ethnicity. 

Each value represents the average across four meteorological scenarios. 
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Figure 4-6. PM0.1 source contributions in Los Angeles area by energy scenarios and race/ethnicity.  

Each value represents the average across four meteorological scenarios. 

 

Figure 4-5 and Figure 4-6 show predicted exposure to primary sources of PM2.5 and PM0.1 for different 

race/ethnicity groups in Los Angeles under the six different energy scenarios.  The X-axis in Figure 4-5 

and 4-6 represents the primary contribution from each source to the total PM exposure.  Similar plots for 
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other geographic regions are shown in Figure S3-27 to S3-32 in Appendix 3. All results are based on the 

average of the four meteorological scenarios since trends within each meteorological scenario were 

consistent.  

Different sources dominate exposure to PM2.5 vs. PM0.1. Tire & brake wear, residential & cooking, 

unchanged fuel supply, and construction dust are the major sources for PM2.5.  Emissions from these sources 

generally do not change significantly between energy scenarios, and so the predicted PM2.5 source 

contributions are relatively constant across Figure 4-5.  Off-road equipment, residential & cooking, 

electricity generation, and unchanged fuel supply are the major sources of PM0.1 exposure. The fuels used 

for off-road equipment and electricity generation change significantly between energy scenarios, and so 

there is significant variability in PM0.1 source contributions illustrated in Figure 4-6. PM0.1 concentrations 

are dominated by primary emissions (Hu et al., 2014) leading to sharper spatial gradients (Karner et al., 

2010).  PM0.1 concentrations are therefore influenced by local emissions to a larger degree than PM2.5 

concentrations, making the spatial distribution of each race/ethnicity group more important when 

determining exposure concentrations.   

It is noteworthy that residential & cooking emissions are a dominant source for both PM2.5 and PM0.1.  

These emissions are related to human activities, and they are located close to residences, leading to higher 

intake fractions (Evans et al., 2002; Marshall et al., 2005, 2003).  Targeted reductions for residential & 

cooking sources could be used to reduce future PM concentrations. 

4.3.5. Potential for Further Improvements  

The GHGAi scenario improves public health, but it does not completely eliminate race/ethnicity 

disparity in exposure to air pollution in California.  The detailed source apportionment information 

embedded in the UCD/CIT model can be analyzed to identify additional measures to further reduce 

disparity.  This analysis will use the GHGAi scenario as the most promising starting point for further 

improvements. 
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4.3.5.1 Improvements for Total Population Exposure 

 

Figure 4-7. PM2.5 source impact on public health (regardless of race) for GHGAi energy scenario. X-

axis indicates emissions (source) changes between BAU and GHGAi scenario. Y-axis indicates PWC 

changes between BAU and GHGAi scenario for specific source. All results averaged across four 

meteorological scenarios. 
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Figure 4-8. PM0.1 source impact on public health (regardless of race) for GHGAi energy scenario. X-

axis indicates emissions (source) changes between BAU and GHGAi scenario. Y-axis indicates PWC 

changes between BAU and GHGAi scenario for specific source.  All results averaged across four 

meteorological scenarios. 

Figure 4-7 illustrates the efficiency of PM2.5 emissions reductions in the GHGAi scenario quantified 

as the change in total exposure concentrations (without regard for race/ethnicity). Similar plots for other 

energy scenarios shown in Figure S3-33 to S3-36 in Appendix 3.  The horizontal axis of each subpanel in 

Figure 4-7 indicates the amount of emissions reductions in the GHGAi scenario relative to the BAU 

scenario for each of the indicated source categories.  The vertical axis of each subpanel indicates the 
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corresponding change in population-weighted concentration.  The position of each symbol in Figure 4-7 

reflects the intake fraction of the source emissions determined by the emissions location relative to the 

population.  The size of the symbol in Figure 4-7 is proportional to the amount of PM2.5 emissions associated 

with the indicated source category.  Emissions from residential and food cooking sources are large, have 

high intake fraction, and they have been reduced by only a modest amount in the GHGAi scenario.  Further 

reductions in emissions from residential and food cooking sources could significantly reduce PM2.5 

exposure in the future years. 

PM2.5 tailpipe emissions from on-road mobile sources undergo the greatest relative reduction in the 

GHGAi scenario, but the corresponding absolute reduction in population-weighted concentration is modest 

because tailpipe emissions from motor vehicles were already quite low in the BAU scenario due to the 

adoption of advanced emissions control technology.  The near-total elimination of tailpipe emissions from 

motor vehicles achieved by converting the majority of the light-duty vehicle fleet to non-combustion power 

therefore has modest benefits for public health in the GHGAi scenario.  It is noteworthy that tire and brake-

wear emissions from mobile sources are significantly greater than tailpipe emissions in the GHGAi scenario. 

Further reductions from mobile sources should focus on reduced dust from braking systems (Cai et al., 

2019; Gramstat, 2018) and development of new tire compounds (Dalmau et al., 2020; Fonseca et al., 2020; 

Panko et al., 2018) in order to further reduced PM2.5 exposure. 

Figure 4-8 illustrates the efficiency of PM0.1 emissions reductions using the same format as Figure 4-7. 

Results for other energy scenarios are shown in Figure S3-37 to S3-40 in Appendix 3. Large residential and 

cooking emissions are once again identified as a category that has high PM0.1 intake fraction and that has 

undergone only partial emissions controls in the GHGAi energy scenario.  Electricity generation is the next 

most promising source of PM0.1 emissions reduction, but the GHGAi scenario already controls these 

emissions by >50% and the intake fraction is relatively low because most electricity generation stations are 

located far from major population centers.   
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Based on Figure 4-7 and Figure 4-8, aircraft emissions have the lowest relative reduction in both PM2.5 

and PM0.1 emissions in the GHGAi scenario, suggesting that this category could be targeted for further 

reductions.  Such measures would reduce primary PM2.5 / PM0.1 (shown in Figure 4-7 + 4-8) and nucleated 

ultrafine particles (not shown) (Yu et al., 2019). 

 

4.3.5.2 Improvements to Reduce Disparity across Race/Ethnicity 

 

Figure 4-9. PM2.5 source impact on exposure disparity between races for GHGAi energy scenario. X-

axis indicates emissions (source) changes between BAU and GHGAi scenario. Y-axis indicates emission 
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absolute disparity changes between BAU and GHGAi scenario for specific source. All results averaged 

across four meteorological scenarios. 

 

Figure 4-10. PM0.1 source impact on exposure disparity between races for GHGAi energy scenario. X-

axis indicates emissions (source) changes between BAU and GHGAi scenario. Y-axis indicates emission 

absolute disparity changes between BAU and GHGAi scenario for specific source.  All results averaged 

across four meteorological scenarios. 

Reducing PM2.5 exposure disparities across race/ethnicity requires that emissions reductions be 

prioritized for source categories that disproportionately affect groups with the highest exposure 

concentrations.  Figure 4-9 illustrates the emissions reduction for each source category in the GHGAi 
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scenario relative to the BAU scenario along with the corresponding reduction in absolute disparity.  Plots 

for other energy scenarios are shown in Figure S3-41 to S3-48 in Appendix 3. Ideal emissions sectors for 

further reductions are represented as large circles in the upper left quadrant of each plot.  Large residential 

and food cooking emissions are a promising sector for further emissions reductions across all regions since 

each unit of emissions reduction produces a significant reduction in disparity.  Further reductions in 

electricity generation emissions would reduce disparity in LA, but would have lower impact in other regions.  

Figure 4-10 identifies candidate emissions sectors that could be targeted to reduce PM0.1 exposure 

disparities.  Large emissions from residential and food cooking and electricity generation contribute 

strongly to PM0.1 exposure disparities across all regions.  These sources could be targeted in future efforts 

to reduce PM0.1 exposure disparities. 
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4.3.5.3 Balancing Benefits for Total Population and Reduced Disparity 

 

Figure 4-11. PM2.5 source impact on total population exposure and exposure disparity based on race for 

GHGAi energy scenario. X-axis indicates largest disparity changes between BAU and GHGAi scenario 

for each specific source. Y-axis indicates PWC changes between BAU and GHGAi scenario for each 

specific source.  All results averaged across four meteorological scenarios. 
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Figure 4-12. PM0.1 source impact on total population exposure and exposure disparity based on race for 

GHGAi energy scenario. X-axis indicates largest disparity changes between BAU and GHGAi scenario 

for each specific source. Y-axis indicates PWC changes between BAU and GHGAi scenario for each 

specific source.  All results averaged over four meteorological scenarios. 

The ideal future energy scenario will reduce exposure for the total population while simultaneously 

reducing exposure disparity between race/ethnicity groups. Figure 4-11 illustrates how changes in the 

GHGAi scenario relative to the BAU scenario affected total population exposure to PM2.5 and the absolute 

exposure disparity.  Figure 4-12 illustrates the same plot for PM0.1 concentrations.  Results for other 

scenarios are shown in Figure S3-49 to S3-56 in Appendix 3. All points in the upper right quadrant of each 
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sub-panel indicate beneficial reductions in both disparity and total population exposure.  Points below the 

1:1 line (45o angle) reduce disparity by a larger amount than they reduce total population exposure.  All 

points in Figure 4-11 and Figure 4-12  generally fall above the 1:1 line, indicating that statewide adoption 

of low carbon energy sources reduces total population exposure by an amount that is greater than or equal 

to the corresponding reduction in exposure disparities between racial groups.  This finding suggests that 

statewide energy policies are not the ideal tool to reduce exposure disparities across race/ethnicity 

categories.  Additional emissions controls may need to be applied in targeted neighborhoods to eliminate 

exposure disparity. 

 

4.4. Discussion 

Total population exposure to PM2.5 and PM0.1 in California decreased when GHG mitigation strategies 

using low-carbon fuels or carbon-capture and sequestration were adopted compared to a Business as Usual 

(BAU) scenario in the year 2050.  The relative pattern of air pollution exposure for different GHG 

mitigation strategies scenarios was consistent across the four meteorology scenarios considered in the 

present analysis. The greatest exposure reduction occurred under the deepest GHG reduction scenario 

(GHGAi), closely followed by two scenarios with slightly higher exposure due to increased natural gas 

utilization (NGB and NGT).  Population-weighted PM2.5 exposure averaged across all energy scenarios 

ranged from 8.2 μg/m3 to 12.5 μg/m3
 depending on the region (LA, SD, SFBA & SAC, SJV), while PM0.1 

exposure ranged from 1.3 μg/m3 to 2.2 μg/m3. Within the same region, relative reductions in PM0.1 

concentrations due to the adoption of low-carbon energy were up to four times larger than relative 

reductions in PM2.5 concentrations (10-12% reduction for PM0.1 vs. 2.5-2.7% reduction for PM2.5).  

Trends in PM2.5 and PM0.1 absolute exposure disparity between race/ethnicity groups under different 

energy scenarios were similar to trends in total population exposure. Deep GHG reduction scenarios, 

including GHGAi, NGT, and NGB, produced the greatest reduction in absolute exposure disparity for PM2.5 

and PM-0.1.  None of the clean energy scenarios completely eliminated air pollution exposure disparity in 
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the future, but adoption of low-carbon-energy sources did reduce the race/ethnicity disparity in California 

by as much as 20% for PM2.5 mass and by as much as 40% for PM0.1 mass.  

Black & African American residents experienced higher-than-average exposure to PM2.5 and PM0.1 in 

all future energy scenarios in all study regions (LA, SD, SFBA & SAC, SJV).  Asian residents in San 

Francisco experienced higher-than-average exposure to air pollution in all future energy scenarios.  Peak 

exposure disparities reached ~10% above the average for PM2.5 and ~20% above the average for PM0.1. 

White residents in all regions experienced lower-than-average exposures in all energy scenarios, with peak 

disparity values of approximately -10% below the average for both PM2.5 and PM0.1. Health co-benefits 

calculations predict that adoption lower carbon energy scenarios (GHGAi, NGT, NGB) produce greater 

public health saving for all races/ethnicities. Health benefits per 1M residents are similar for Asian and 

Black & African American residents, slightly lower for Hispanic residents, and slightly higher for White 

residents. 

The pattern of exposure disparities identified in the current study reflects the geographical distribution 

of each race/ethnicity group relative to the urban cores of each study city.  Black & African American 

residents in California are more likely to live in urban cores or near major transportation corridors / 

industrial facilities where air pollution emissions are higher. In contrast, White residents are more dispersed 

in suburban areas that are further away from concentrated emissions sources.  Additional emissions controls 

at the regional or local level will be needed to address these location-based disparities. Future demographic 

changes associated with population aging and population migration could either reduce or increase the need 

for additional emissions controls depending on how those changes affect the clustering of race/ethnicity 

groups towards urban cores. 

Three source categories were identified for potential additional controls to further reduce PM2.5/PM0.1 

exposure disparities: i) residential heating & food cooking, ii) tire and brake wear emissions, and iii) 

electricity generation.  Local or regional emissions controls that target these categories could include the 

adoption electric heating to replace biomass combustion and natural gas combustion, modification of 
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commercial cooking methods to reduce smoke emissions, increased use of regenerative braking to reduce 

brake emissions, development of new tire compounds to reduce tire wear emissions, and selective 

upgrading of electrical generating equipment to solar/wind/geothermal/hydro sources with battery backup.  

Future studies should consider the cost-effectiveness of each additional measure to create an optimized 

strategy to reduce PM2.5/PM0.1 exposure disparities in California. 

 



 

| CHAPTER 5. Conclusions 

96 

 

 

 

Chapter 5. Conclusions 

A framework was established to improve the emissions inventories and to evaluate relationship 

between CTM configurations and health impact assessments (including health co-benefit and EJ 

assessments). This framework was then applied to the year 2050 in California to quantify levels of air 

pollution exposure disparity and health co-benefit under six energy scenarios that reduce GHG emission by 

80% (relative to 1990 levels).  

In the first phase of research, ten spatial surrogates including total population, total housing, single 

family housing, total employment, service & commercial employment, industrial employment, agricultural 

employment, industrial-related, off-road construction, and on-road construction were updated for the base 

year 2010 and future years from 2015 to 2040 in 5- year increments. Socio-economic data (SED) surrogates 

were updated using the latest version of census-based datasets at finer resolution. Off-road construction, 

on-road construction and industrial-related surrogates were developed using new methods to more 

accurately describe the location of construction projects and industrial facilities.  Adoption of the new 

spatial surrogates caused changes to the spatial distribution of air pollution emissions in air quality 

calculations.  The changes to the off-road construction surrogate resulted in the largest shift in PM emissions 

distribution for year 2015, followed by changes to the on-road construction surrogate. Industrial-related, 

service & commercial employment, and off-road construction surrogates all contributed to changes in NOx 

emissions. The changes to SED-derived surrogates were subtle and did not significantly influence emissions. 

Air quality simulations were carried out over the entire year 2016 to examine the impact of the new 

surrogate methodologies on simulated concentration fields. Changes to predicted pollutant concentrations 

followed the same pattern as changes in emissions, which indicates that proximity to sources is a dominant 

factor to determine the impact of spatial surrogates on model performance. The updated spatial surrogates 

generally improved predicted PM mass and EC concentrations in the Sacramento area (~10% for PM, ~3% 
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for EC), the Bay Area (~3% for PM, ~1.5% for EC), and the region surrounding Los Angeles (~5% for PM, 

~4% for EC).  The updated spatial surrogates also improved predicted NOx concentrations in the core 

region of Los Angeles (~6%). These improvements indicate that development and adoption of new 

methodologies for emissions spatial surrogates can improve the accuracy of regional chemical transport 

models for criteria air pollutants.   

In the second phase of research, the effects of CTM spatial resolution and domain size on EJ 

assessments were studied based on present-day conditions in California. Emissions inventories were 

downscaled from 4km to 1km / 250m by fourteen spatial surrogates including ten updated / developed 

spatial surrogates obtained in phase one. A full set of WRF/Chem simulation was conducted with spatial 

resolution ranging from 250 m to 36 km, comparable to census tract sizes, over domains ranging in size 

from 320 km2 to 10,000 km2. Simulations with higher spatial resolution were able to better resolve sharp 

spatial gradients downwind of major transportation corridors and large point sources. Model performance 

improved by ~5% when the spatial resolution was increased from 4 km to 1 km; model performance 

improved an additional ~4% when the spatial resolution was increased from 1 km to 250 m.  Overall 9% 

improvement of WRF/Chem model accuracy was detected as spatial resolution increased from 4 km to 250 

m, with similar results expected for future simulations.  Exposure disparity results are consistent with 

previous findings: the average Non-Hispanic White person in the study domain experiences PM2.5 mass 

concentrations 6-14% lower than the average resident, while the average Black and African American 

person experiences PM2.5 mass concentrations that are 3-22% higher than the average resident.  Predicted 

exposure disparities were a function of the model configuration.  Increasing the spatial resolution finer than 

approximately 1 km produced diminishing returns because the increased spatial resolution came at the 

expense of reduced domain size in order to maintain reasonable computational burden.  Increasing domain 

size to capture regional trends, such as wealthier populations living in coastal areas, identified larger 

exposure disparities but the benefits were limited.  In the current study, 4 km spatial resolution with a 

domain size greater than 104 km2 or 1 km spatial resolution with domains size greater than 103 km2 appear 

to be resonable CTM configurations for our desirable air pollution disparity analysis.  These configurations 
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represent a balanced approach between statistical power, sensitivity across socio-economic groups, and 

computational burden when predicting current and future air pollution exposure disparities in Los Angeles. 

It is worth noting that the exact thresholds for achieving a target level of statistical power at a relevant level 

of exposure disparity is unique to each geographic region. Similar studies should be carried out in other 

geographic regions in order to determine the appropriate CTM domain size and spatial resolution for EJ 

analysis in the context of their spatial distributions for race and income. 

In the final phase of research, a series of EJ assessment and health co-benefit analyses were conducted 

for future year 2050 at 4km spatial resolution under six future energy scenarios, across four major regions 

in California. Six different energy scenarios constructed using the energy-economic optimization model 

CA-TIMES were evaluated in future years.  Criteria pollutant emissions were developed for each energy 

scenario using the CA-REMARQUE model using 4km spatial resolution over four major geographic areas 

in California: the greater San Francisco Bay Area including Sacramento (SFBA&SAC), the San Joaquin 

Valley (SJV), Los Angeles (LA), and San Diego (SD).  The Weather Research & Forecasting (WRF) model 

was used to predict future meteorology fields by downscaling two different climate scenario (RCP4.5 and 

RCP8.5) generated by two different GCMs (the Community Climate System Model and the Canadian Earth 

Systems Model). Simulations were performed over 32 weeks randomly selected during the 10-year window 

from the year 2046 to 2055 to build up a long-term average in the presence of ENSO variability. An 

environmental justice (EJ) analysis shows that adoption of low-carbon energy sources in the year 2050 

reduces the race/ethnicity disparity in air pollution exposure in California by as much as 20% for PM2.5 

mass and by as much as 40% for PM0.1 mass.  The trends associated with low-carbon energy adoption were 

relatively stable across the ensemble of locations and scenarios.  Deeper reductions in the carbon intensity 

of energy sources progressively reduced exposure to PM2.5 mass and PM0.1 mass for all California residents.  

The greater adoption of low-carbon fuels also reduced the racial disparity in the PM exposure.  The three 

energy scenarios that achieved an ~80% reduction in GHG emissions relative to 1990 levels simultaneously 

produced the greatest reduction in PM exposure for all California residents and the greatest reduction in the 
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racial disparity of that exposure. These findings suggest that the adoption of low-carbon energy can improve 

public health and reduce racial disparities through an improvement in air quality.
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Chapter 6. Future Research Needs 

The pattern of exposure disparities identified in this study reflects the geographical distribution of each 

race/ethnicity group relative to the urban cores of each study city.  Black & African American residents in 

California are more likely to live in urban cores or near major transportation corridors / industrial facilities 

where air pollution emissions are higher. However, White residents are more likely living in suburban areas 

that are further away from concentrated emissions sources.  Additional emissions controls at the regional 

or local level will be needed to address these location-based disparities. Future demographic changes 

associated with population aging and population migration could either reduce or increase the need for 

additional emissions controls depending on how those changes affect the clustering of race/ethnicity groups 

towards urban cores. 

Residential heating & food cooking, tire & brake wear emissions and electricity generation were found 

to be three most potential source categories that can be further reduce PM2.5/PM0.1 exposure disparities. 

Future studies should consider the cost-effectiveness of each additional measure to create an optimized 

strategy to reduce PM2.5/PM0.1 exposure disparities in California. 
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Appendix 1 

 

S1.1 Introduction 

Table S 1-1. Full list of California Air Resources Board (CARB) spatial surrogates 

Surrogate Number Surrogate Name Surrogate Number Surrogate Name 

100 Airports 431 OILWELL 

110 All_PavedRds 432 OIL_SEEP 

120 AutobodyShops 440 Population 

140 Comm_Airports 450 Pop_ComEmp_Hos 

150 Drycleaners 460 Ports 

160 DryLakeBeds 470 POTWs 

170 Elev5000ft 480 PrimaryRoads 

180 Employ_Roads 485 TRU 

190 Forestland 490 Raillines 

200 GasStations 491 LINEHAUL 

211 GASWELL 500 RailYards 

212 GAS_SEEP 510 Rds_HE 

214 GAS_DISTRIBUTION 512 PEST_NO_ME_BR 

220 GolfCourses 514 PEST_ME_BR 

230 HE_Sqft 520 RefinieriesTankFarms 

240 Hospitals 530 ResGasHeating 

250 Housing 540 Residential_Chg 

260 Housing_Autobody 550 ResNonResChg_IndEmp 

270 Housing_Com_Emp 560 Restaurants 

280 Housing_Restaurants 561 CHARBROILING 

300 Industrial_Emp 570 ResWoodHeating 

310 InlandShippingLanes 571 ResOilHeat 

320 Irr_Cropland 572 ResLPGHeat 

321 NON_PASTURE_AG 580 Res_NonRes_Chg 

323 HARVEST 585 CONSTRUCTION_EQUIP 

330 Lakes_Coastline 590 SandandGravelMines 

332 FERRIES 610 SecondaryPavedRds 

333 FISHING_COMM 620 Service_Com_Emp 

334 TUG_TOW 630 
Ser_ComEmp_Sch_GolfC_Ce

m 

335 LAKES_RIVERS_RECBOAT 640 Shiplanes 

336 
OCEAN_LAKES_RECBOA

T 
641 CREW_SUPPLY 

338 OCEAN_RECBOAT 650 SingleHousingUnits 

339 DREDGE 660 UnpavedRds 
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341 LANDFILLS 672 Devplnd_HiDensity 

343 COMPOST 674 Devplnd_LoDensity 

350 LiveStock 680 Wineries 

351 CAFO 690 LANDPREP 

352 SILAGE 720 FARMRD_VMT 

353 CATTLE_FEEDLOTS 730 INDUSTRIAL 

354 CATTLE_RANGE 731 PRINT 

355 POULTRY 732 WOOD 

356 HORSE_RANCHES 733 AEROSPACE 

360 Metrolink_Lines 734 CANCOIL 

380 MiltaryBases 735 FABRIC 

382 MILITARY_AIRCRAFT 736 MARINE 

383 MILITARY_SHIPS 737 METALFURN 

384 MILITARY_TACTICAL 738 METALPARTS 

390 NonIrr_Pastureland 739 OTHERCOAT 

391 PASTURE 740 PAPER 

400 NonRes_Chg 741 PLASTIC 

412 Fugitive_Dust 742 SEMICONDUCT 
  743 WOODFURN 
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S1.2 Input Datasets 

Table S 1-2. Available MPOs/COGs and CSTDM data source 

County Name Counties Covered  Website  

FRESNO Fresno Council of Governments Fresno www.fresnocog.org 

KERN Kern Council of Governments Kern www.kerncog.org  

KINGS Kings County Association of 
Governments 

Kings www.kingscog.org  

MADERA Madera County Transportation 
Commission 

Madera http://www.ca-ilg.org/MPO-
profile/madera-county-

transportation-commission  

SSM* San Joaquin Council of 
Governments, Stanislaus 
Council of Governments, 

Merced County Association of 
Governments 

San Joaquin, 
Stanislaus, Merced 

www.sjcog.org 
www.stancog.org 
www.mcagov.org 

 

MTC Metropolitan Transportation 
Commission 

Alameda, Contra 
Costa, Marin, Napa, 
San Francisco, San 

Mateo, Santa Clara, 
Solano, Sonoma 

www.mtc.ca.gov   

SACOG Sacramento Area Council of 
Governments 

El Dorado, Placer, 
Sacramento, Sutter, 

Yolo, Yuba 

www.sacog.org  

SCAG Southern California Association 
of Governments 

Imperial, Los 
Angeles, Orange, 

Riverside, San 
Bernardino, Ventura 

www.scag.ca.gov  

SLOCOG San Luis Obispo Council of 
Governments 

San Luis Obispo www.slocog.org  

SBCAG Santa Barbara County 
Association of Governments 

Santa Barbara www.sbcag.org  

SANDAG San Diego Association of 
Governments 

San Diego www.sandag.org  

others California Department of 
Transportation / California 
Statewide Travel Demand 

Model 

All remaining 
counties not listed 

above 

http://www.dot.ca.gov/hq/tpp
/offices/omsp/statewide_mod

eling/cstdm.html  

* SSM: Counties of San Joaquin, Stanislaus, Merced 

  

http://www.fresnocog.org/
http://www.kerncog.org/
http://www.kingscog.org/
http://www.ca-ilg.org/MPO-profile/madera-county-transportation-commission
http://www.ca-ilg.org/MPO-profile/madera-county-transportation-commission
http://www.ca-ilg.org/MPO-profile/madera-county-transportation-commission
http://www.sjcog.org/
http://www.stancog.org/
http://www.mcagov.org/
http://www.mtc.ca.gov/
http://www.sacog.org/
http://www.scag.ca.gov/
http://www.slocog.org/
http://www.sbcag.org/
http://www.sandag.org/
http://www.dot.ca.gov/hq/tpp/offices/omsp/statewide_modeling/cstdm.html
http://www.dot.ca.gov/hq/tpp/offices/omsp/statewide_modeling/cstdm.html
http://www.dot.ca.gov/hq/tpp/offices/omsp/statewide_modeling/cstdm.html
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S1.2.1 Improvement of spatial surrogates for industrial-related activities 

 

Figure S 1-1. NAICS codes composition analysis for current CARB industrial-related surrogate. 

 

Figure S 1-2. Comparison of 2014 LEHD manufacturing employment and ARB industrial-related 

spatial surrogate 730 for Los Angeles area. 
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Figure S 1-3. Comparison between 2015 STORM industrial activity permit data and 2014 LEHD 

manufacturing employment data at Los Angeles area. 
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Figure S 1-4.  Comparison between 2015 STORM industrial activity permit data and 2015 industrial 

employment surrogate created in Section 1.2.1 at Los Angeles area. 
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S1.2.2 Future off-road construction equipment surrogate 

 

 

Figure S 1-5. Correlation between county-level number of construction project and population 

growth for year 2010 to 2015. 

S1.2.3 Future on-road construction equipment surrogate 

        Figure S 1-6 summarizes the procedure to create future on-road construction surrogates as a flow 

chart. The red dashed box contains the steps needed to generate possible construction events at each future 

year. The green dashed box shows how to generate surrogate at the target year in shapefile format.  

        The datasets used by the statistical forecast model were provided by the University of California 

Pavement Research Center (UCPRC). Treatments are divided into 13 work codes, and further separated 

into 30 treatments. Each work code can be linked to several treatment as shown in Table S 1-3. 
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Figure S 1-6. Flowchart of future-year on-road construction-related surrogate algorithm 
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Table S 1-3 Cross reference table for treatments and work codes 

Treatment Work Code 

New CRCP Lane Lane replacement 

CRCP Lane Replacement Lane replacement 

New PCC Lane Lane replacement 

PCC Lane Replacement Lane replacement 

PCC Overlay Lane replacement 

Repair PCC Slabs Lane replacement 

Dowel Bar Retrofit Grind/Replace slabs 

Groove PCC Pavement Grind 

Grinding Grind 

Grind/Replace Slabs Grind/Replace slabs 

Slab Replacement with Pre-Cast Slab replacement 

Slab Replacement Slab replacement 

Slab Replacement with Asphalt Slab replacement 

HMA Overlay on PCC Lane replacement 

Crack Seat and Overlay CSOL 

Full Depth Reclamation Full Depth Reclamation 

Hot In-Place Recycling Cold In-Place 

Cold In-Place Recycling Cold In-Place 

New HMA Lane Lane replacement 

HMA Lane Replacement Lane replacement 

HMA Thick Overlay Thick Overlay 

HMA Medium Overlay Medium Overlay 

HMA Thin Overlay Thin Overlay 

Mill and Fill Thin Overlay 

Microsurfacing Seal Coat 

Chip Seal Seal Coat 

Slurry Seal Seal Coat 

Digouts Digouts 

Fog Seal Seal Coat 

Unknown Unknown 

Unknown Seal Cracks 

 

  



 

| APPENDIX 1.  

125 

 

The main features of each dataset used for the on-road construction statistical forecast model are as 

follows:  

SHOPP 10-year plan: Master Work Plan xlsx. This spreadsheet tabulates each planned construction 

event from 2012 to 2022. Similar to Caltrans construction project records, SHOPP records are based on 

highway number, start/end postmile value, and start/end date for each constructed road segment. SHOPP 

records also describe the last treatment type which is needed to estimate the timing and type of subsequent 

treatments. 

Current road segment condition: Network Master Data.xlsx. In this spreadsheet, each California 

highway is divided into coarse segments described by start/end post mile value, last treatment type, 

treatment age, climate zone, and ESAL level. Road segments in the Inland Valley, Central Coast, Desert, 

and South Coast are in the mild climate zone. Other road segments are in the severe climate region. ESAL 

has three level, level-A ESAL is larger than 300,000, level-C ESAL is smaller than 60,000, and level-B is 

between A and C. Level-A ESAL indicates heavy traffic loads to the road segment, which means reduced 

time between treatments. Treatment types in this table are summarized as work codes (Table S 1-3). 

Network Master Data also comes with a shapefile version, which was used in Step 2 shown in Figure S 1-

6. 

Probability of transitioning table: tpm.xlsx. This spreadsheet lists the probability that a construction 

project is needed to apply the next road treatment based on age, ESAL level and climate region. This table 

uses 30 treatment types instead of work code (Table S 1-3). Figure S 1-7 shows an example based on data 

within tpm.xlsx and clarifies how the 13 work codes relate to the 30 possible treatments. Figure S 1-7 

assumes the road segment is ESAL level A, the climate zone is mild, and the last work code was grind. 

Under work code grind, there are two corresponding treatments – groove PCC pavement or grinding. If the 

last treatment was groove PCC pavement, the possible next treatment types and probabilities at each age 

year are shown in the upper figure. NA means no treatment will apply at this year. If the last treatment was 

grinding, the possible next treatment types and probabilities are shown in the bottom figure. The Monte 
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Carlo simulation assumes equal probabilities for all treatments under the same work code.  The sum of 

treatment probabilities (including no treatment) is 1.0 in each year. Figure S 1-7 shows that the probability 

of treatment in a given year increases with age since last treatment. 



 

| APPENDIX 1.  

127 

 

 

Figure S 1-7. Stacked probability of transitioning for treatment Grind at Level-B ESAL and mild 

climate zone. x-axis P is probability, y-axis Year is years since the last treatment – Grind happened. NA 

means no transitions. 
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Figure S 1-8. 2015 on-road construction surrogate (from realistic dataset), and future year on-road 

construction surrogates (2020 -2040, in 5-yr interval). Red line sections indicate construction projects, 

gray lines indicate California highway system. 
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S1.3 Improvement of spatial surrogates from socio-economic data 

Table S 1-4. Available years of Socioeconomic Datasets 

MPO/COG/CSTDM Available Years 

FRESNO 2014, 2017, 2020, 2023, 2025, 2032, 2035, 2040 
KERN 2014, 2017, 2020, 2023, 2025, 2032, 2035, 2040 
KINGS 2014, 2017, 2018, 2020, 2023, 2025, 2032, 2035, 2040 
SSM* 2014, 2017, 2020, 2023, 2025, 2032, 2035, 2040 
MTC 2010, 2015, 2020, 2030, 2040 

SACOG 2008, 2020, 2035 
SCAG 2012, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2025, 2026, 2031 

SLOCOG 2010, 2020, 2035 
SBCAG 2010, 2020, 2035, 2040 

SANDAG 2012, 2020, 2025, 2030, 2035, 2040, 2050 
CSTDM 2010, 2015, 2020, 2035, 2040 

* SSM: Counties of San Joaquin, Stanislaus, Merced 

 

S1.3.1 Surrogates of total population, total housing, single family and total 

employment 

        Table S 1-5 shows how total population was derived for different counties in California.   The 

“Source” column in Table S 1-5 indicates the data source, the “Population Variables” column indicates the 

names of the variables used to construct total population, and the “Description” column describes how the 

variables were manipulated to create total population.  “Existing” means directly translating the original 

variable; “Sum” means total population is the sum of variables listed in the “Population Variables” column. 

For example, FRESNO total population was calculated as the sum of population by age: POP0005, 

POP0514, POP1517, POP1824, POP2554, POP5564, POP6574, POP75.  In contrast, MPO data for MTC 

has a variable named TOTPOP which can be directly converted to total population in the final product. 
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Table S 1-5. Strategy of improving total population spatial surrogate 

County Source Population Variables Description 

FRESNO MPOs POP0005  POP0514  POP1517  POP1824 
POP2554  POP5564  POP6574  POP75 

Sum 

KERN MPOs POP0005  POP0514  POP1517  POP1824 
POP2554  POP5564  POP6574  POP75 

Sum 

KINGS MPOs POP0005  POP0514  POP1517  POP1824 
POP2554  POP5564  POP6574  POP75 

Sum 

MADERA MPOs POP0005  POP0514  POP1517  POP1824 
POP2554  POP5564  POP6574  POP75 

Sum 

SSM* MPOs POP0005  POP0514  POP1517  POP1824 
POP2554  POP5564  POP6574  POP75 

Sum 

MTC MPOs TOTPOP Existing 

SACOG MPOs POP Existing 

SCAG MPOs POP Existing 

SLOCOG MPOs POP0019 POP2024 POP2544 POP4564 
POP6500 

Sum 

SBCAG MPOs POPULATION Existing 

SANDAG MPOs hhp, gq_civ, gq_mil Sum 

others CSTDM Pop Existing 

* SSM: Counties of San Joaquin, Stanislaus, Merced 

 

    Methods used to create single family spatial surrogates are shown in Table S 1-6.  Counties in central 

California divide single family by age;. MTC and SCAG have existing single family housing. SLOCOG 

divides single family housing into detached (RUG1), attached (RUG2), and multi-family (RUG3). CSTDM 

and SACOG do not provide data on single family housing thus the fraction of single-family housing to total 

housing in these regions was estimated based on information from other MPOs/COGs. From the frequency 

distribution of (total households/single family households) where data is available for the year 2010, we 

found single family accounts for approximately 1/3 of total households. Based on these results, we 

calculated the number of single-family households as (total households/2.7) for CSTDM and SACOG. 
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Table S 1-6. Strategy of single-family households spatial surrogate 

County Source Single Family Description 

FRESNO MPOs RU1_AGE1524RU1_AGE2564 

RU1_AGE6574 

RU1_AGE75 

Sum 

KERN MPOs RU1_AGE1524 

RU1_AGE2564 

RU1_AGE6574 

RU1_AGE75 

Sum 

KINGS MPOs RU1_AGE1524 

RU1_AGE2564 

RU1_AGE6574 

RU1_AGE75 

Sum 

MADERA MPOs RU1_AGE1524 

RU1_AGE2564 

RU1_AGE6574 

RU1_AGE75 

Sum 

SSM* MPOs RU1_AGE1524 

RU1_AGE2564 

RU1_AGE6574 

RU1_AGE75 

Sum 

MTC MPOs SFDU Existing 

SACOG  HouseHold / 2.7 Calculate  

SCAG MPOs SFDU Existing 

SLOCOG MPOs RUG1 

RUG2 

Sum 

SBCAG MPOs SINGLE_FAM Existing 

SANDAG MPOs hs_sf Existing  

others CSTDM Household / 2.7 Calculate  

* SSM: Counties of San Joaquin, Stanislaus, Merced 

 

        All MPOs/COGs and CSTDM have total employment and total household information that was 

directly used in the final spatial surrogate field. Table S 1-7 shows an example of how the total household 

spatial surrogate was developed in California. 
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Table S 1-7 Strategy used to create total household spatial surrogate 

County Source Households Variables  Description 

FRESNO MPOs TOTHH Existing 
KERN MPOs TOTHH Existing 
KINGS MPOs TOTHH Existing 

MADERA MPOs TOTHH Existing 
SSM* MPOs TOTHH Existing 
MTC MPOs TOTHH Existing 

SACOG MPOs HouseHold Existing 
SCAG MPOs HH Existing 

SLOCOG MPOs TOTHH Existing 
SBCAG MPOs HOUSEHOLDS Existing 

SANDAG MPOs hh Existing 
others CSTDM hh Existing 

* SSM: Counties of San Joaquin, Stanislaus, Merced 
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Table S 1-8. Accuracy analysis for total population and total households* 

  2010 2015 If did 

interpolation 
  POP HH POP HH 

FRESNO Total 940143.8287 317441.2761 1006201.626 340159.0301 Yes 

 Census 932642 321955 974861 327780 2014 

 Error -0.80% 1.40% -3.21% -3.78% 2017 

KERN Total 787196.3049 253429.6716 878341.7144 285375 Yes 

 Census 839627 264461.31a 882176 259700 2014 

 Error 6.24% 4.17% 0.43% -9.89% 2017 

KINGS Total 134607.3333 41014.66667 143410.6667 43736.66667 Yes 

 Census 152982 40796.31 150965 42561.45 2014 

 Error 12.01% -0.54% 5.00% -2.76% 2017 

MTC Total 7162615 2612482 7414396 2726202 No 

 Census 7150739 2608023 7654869 2662572  

 Error -0.17% -0.17% 3.14% -2.39%  

SACOG Total 2265861.167 843891.8333 2392904.083 905428.9167 Yes 

 Census 2134977 785968.11a 2260697 823683.25 2008 

 Error -6.13% -7.37% -5.85% -9.92% 2020 

SANDAG Total 3091352.75 1090418.5 3253035.5 1131180.375 Yes 

 Census 3224432 1068797 3299521 1094157 2015 

 Error 4.13% -2.02% 1.41% -3.38% 2020 

SCAG Total 18045521.5 5759141.5 18755419.25 6081292 Yes 

 Census 18051853 5888842.77a 18859954 5901400 2012 

 Error 0.04% 2.20% 0.55% -3.05% 2016 

SLOCOG Total 252958.0002 99755 259906.8185 102551.5 Yes 

 Census 269599 103576 281401 112396.08a 2010 

 Error 6.17% 3.69% 7.64% 8.76% 2020 

SSM Total 1354918 450019.6667 1474607.667 489779.6667 Yes 

 Census 1455557 496956 1532949 505813 2014 

 Error 6.91% 9.44% 3.81% 3.17% 2017 

CSTDM Total 9516684 3308834 10022257 3552490 No 

LA Census 9818605 3262069 10137915 3,263,069  

county Error 3.07% -1.43% 1.14% -8.87%  

CSTDM Total 1682993 595954 1867548 661093 No 

Santa Clara Census 1781642 604204 1918044 621,463  

county Error 5.54% 1.37% 2.63% -6.38%  

aEstimated from total households multiplied by an average occupancy rate of 0.93. 

* error of each MPO/COG/CSTDM region for total population (POP) and total households (HH) 

calculated as (Census – Total)/Census 
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S1.3.2 Surrogates of industrial employment, service & commercial employment, 

agricultural employment 

        Table S 1-9, Table S 1-10 and Table S 1-11 show the optimal strategy to map MPOs/COGs and 

CSTDM employment data to the definitions in Table 1-2 without invoking LEHD information. The third 

column in each Table lists the MPOs/COGs fields that are combined using the operator listed in the fourth 

column to create intermediate variables (EAgri, EInd, or ESerCom) that contain employment within the 

NAICS codes listed in the fifth column. The operator “EXISTING” indicates a single native MPOs/COGs 

and CSTDM variable contributes to the intermediate variable, while the operator “SUM” indicates that 

multiple native MPOs/COGs and CSTDM variables contribute to the intermediate variable.   

        The basic uniform strategy shows that more than half of the employment data map to blended 

NAICS categories rather than the individual NAICS categories. For example, MTC, SCAG and SLOCOG 

combined Mining Sector (21) employment and Agriculture Sector (11) employment in a single native field. 

CSTDM and SACOG combined Agriculture Sector (11) employment with various Industry Category 

employment types.  SACOG omitted employment in the Information Sector (51) and the Administrative 

Sector (56).  

        The intermediate variables defined in Table S 1-9, Table S 1-10, and Table S 1-11 provide a basis 

for interpolating the MPOs/COGs and CSTDM data for the years needed. Python function UniCategory.py 

creates these intermediate variables and assigns a value of 0.0001 to any missing values (for example, 

SACOG and CSTDM agriculture category). 
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Table S 1-9. Agricultural employment basic uniform strategy 

County Source Agriculture Variables 

(EAgri) 

Description NAICS (11) 

FRESNO MPOs EMPOTH Existing 11 

KERN MPOs AGRICULTUR  Existing 11 

KINGS MPOs AGRICULTUR  Existing 11 

MADERA MPOs AGRICULTUR Existing 11 

SSM* MPOs Ag_Other Existing 11, 21, 81** 

MTC MPOs AGREMPN Existing 11, 21** 

SACOG MPOs (calculate#) Estimate  

SCAG MPOs Ag_emp Existing 11, 21 

SLOCOG MPOs AG_MINING Existing 11, 21 

SBCAG MPOs AGRICULTUR Existing 11 

SANDAG MPOs emp_ag Existing  11, 21 

others CSTDM (calculate#) Estimate  

* SSM: Counties of San Joaquin, Stanislaus, Merced 

** bold numbers mean this NAICS sector shouldn’t be in this category 
# means this category will be calculated by Python programs 

 
  



 

| APPENDIX 1.  

136 

 

Table S 1-10. Industrial employment basic uniform strategy 

County Source Industry Variables  

(EInd) 

Description NAICS (21, 22, 23, 31-33, 42, 48-

49) 

FRESNO MPOs EMPIND Existing 21, 22, 31-33, 42, 48-49 

KERN MPOs  MINING, UTILITIES, 

CONSTRUCTN, 

MANUFACTUR, 

WHOLESALE, WAREHOUSE 

Sum 21, 22, 23, 31-33, 42, 48-49 

KINGS MPOs  MINING, UTILITIES, 

CONSTRUCTN, 

MANUFACTUR, 

WHOLESALE, WAREHOUSE 

Sum 21, 22, 23, 31-33, 42, 48-49 

MADERA MPOs  MINING, UTILITIES, 

CONSTRUCTN, 

MANUFACTUR, 

WHOLESALE, WAREHOUSE 

Sum 21, 22, 23, 31-33, 42, 48-49 

SSM* MPOs  Industrial Sum 22, 23, 31-33, 42, 48-49 

MTC MPOs MWTEMPN Existing 22, 31-33, 42, 48-49 

SACOG MPOs EMPIND Existing 11**, 21, 22, 23, 31-33, 42, 

[49]*** 

SCAG MPOs Const_emp, Manu_emp, 

Whole_emp, Trans_emp 

Sum 22, 23, 31-33, 42, 48-49 

SLOCOG MPOs LIGHT_IND Existing 22, 23, 31-33, 42, 48-49 

SBCAG MPOs INDUSTRIAL Existing 21, 22, 23, 31-33, 42, 48-49 

SANDAG MPOs emp_const_, emp_const1, 
emp_utilit, emp_util_1, 

emp_cons_1, emp_cons_2, 
emp_mfg_pr, emp_mfg_of, 

emp_whsle_, emp_trans 

Sum  22, 23, 31-33, 42, 48-49 

others CSTDM Prim_Sec, Tran_U, Whole,  Sum 11, 22, 23, 31-33, 42, 48-49 

* SSM: Counties of San Joaquin, Stanislaus, Merced 

** bold numbers mean this NAICS sector shouldn’t be in this category 

*** bracket means this NAICS is missing in this MPO 
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Table S 1-11. Service & commercial employment basic uniform strategy 

County Source Service & Commercial Variables  

(ESerCom) 

Description NAICS (44-45, 51-56, 61, 62, 

71, 72, 81, 92) 

FRESNO MPOs EMPRET, EMPOFC, EMPEDU, EMPMED, 

EMPSVC, EMOFOO, EMPGOV 

Sum 23, 44-45, 51-56, 61, 62, 71, 

72, 81, 92 

KERN MPOs RETAIL, INFORMATIN, FINAN_INSR, 

REALESTATE, SVC_PROF, SVC_MNGMNT, 

SVC_ADMIN, EDUCATION, HEALTH, 

ENT_REC, ACCOMODTNS, FOOD, 

SVC_OTHER, PUBLIC 

Sum 44-45, 51-56, 61, 62, 71, 72, 

81, 92 

KINGS MPOs RETAIL, INFORMATN, FINAN_INSR, 

REALESTATE, SVC_PROF, SVE_MNGMNT, 

SVC_ADMIN, EDUCATION, HEALTH, 

ENT_RECM, ACCOMODTNS, FOOD, 

SVC_OTHER, PUBLIC 

Sum 44-45, 51-56, 61, 62, 71, 72, 

81, 92 

MADERA MPOs RETAIL, INFORMATN, FINAN_INSR, 

REALESTATE, SVC_PROF, SVE_MNGMNT, 

SVC_ADMIN, EDUCATION, HEALTH, 

ENT_RECM, ACCOMODTNS, FOOD, 

SVC_OTHER, PUBLIC 

Sum 44-45, 51-56, 61, 62, 71, 72, 

81, 92 

SSM* MPOs Retail, Office, Public_Civ, Education, 

Hotel_Hosp, Health 

Sum 44-45, 51-56, 61, 62, 71, 72, 

92 

MTC MPOs RETEMPN, FPSEMPN, HEREMPN, 

OTHEMPN 

Sum 23, 44-45, 51-56, 61, 62, 71, 

72, 81, 92 

SACOG MPOs EMPEDU, EMPFOOD, EMPGOV, EMPOFC, 

EMPOTH, EMPRET, EMPSVC, EMPMED 

Sum 44-45, 48, [51]**, 52-55, 

[56], 61, 62, 71, 72, 81, 92 

SCAG MPOs Ret_emp, Infor_emp, FIRE_emp, 

Prof_emp, Educ_emp, ArtEnt_emp, 

OthSer_emp, PubAdm_emp 

Sum 44-45, 51-56, 61, 62, 71, 72, 

81, 92 

SLOCOG MPOs RETAIL, OFFICE, GOVERNMENT, 

EDUCHEALTH, LEIS_HOSP, OTHERSVCS 

Sum 44-45, 51-56, 61, 62, 71, 72, 

81, 92 

SBCAG MPOs COMMERCIAL, OFFICE_EMP, SERVICE_EM Sum 44-45, 51-56, 61, 62, 71, 72, 

81, 92 

SANDAG MPOs emp_retail, emp_prof_b, emp_prof_1, 

emp_pvt_ed, emp_pvt__1, emp_health, 

emp_person, emp_amusem, emp_hotel, 

emp_restau, emp_pers_1, emp_religi, 

emp_pvt_hh, emp_state_, emp_fed_no, 

emp_fed_mi, emp_state1, emp_stat_1, 

emp_public 

Sum  44-45, 51-56, 61, 62, 71, 72, 

81, 92 

others CSTDM Retail, Office, EduMed, LeisHops, OthServ Sum 44-45, 51-56, 61, 62, 71, 72, 

81, 92 

* SSM: Counties of San Joaquin, Stanislaus, Merced 

** bracket means this NAICS is missing in this county 
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        When MPOs/COGs and CSTDM data did not align with standard output years, interpolation to 

those standard output years was performed using the Python for intermediate variables (EAgri, EInd, or 

ESerCom) and any native MPO/CSTDM variables that were used with the LEHD modification procedure 

described in following paragraphs.  Table S 1-12 lists the native categories which required interpolation, 

and which intermediate variable they contribute to.  Using Fresno as an example, the category EMPOFC 

requires interpolation. Following interpolation, Construction (23) was separated from the Service & 

Commercial employment total and added to Industry employment total to satisfy the standard NAICS 

category definitions. 
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Table S 1-12. Other categories which required interpolation by year 

* SSM: Counties of San Joaquin, Stanislaus, Merced 

 

        Table S 1-13 summarizes a variable comparison table for step of unifying category and step of 

interpolating by years. For example, variable TPOP (total population) in unifying category corresponds to 

TotPop in step of interpolating by years. 

  

 Categories which need to be interpolated 

County Agriculture (EAgri) Industry (EInd) Service & commercial 

(ESerCom) 

FRESNO  EMPOFC (23) 

SSM* Ag_Other (21, 81)  

MTC AGREMPN (21) OTHEMPN (23) 

SACOG EMPIND (11) EMPSVC (48), EMPOFC 

SCAG Ag_emp (21)  

SLOCOG AG_MINING (21)  

SANDAG emp_ag (21)  

CSTDM Prim_Sec (11)  
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Table S 1-13. Lookup table for variable names between step of unifying category and step of 

interpolating by years 

Type Variable Name in UniCategory.py Variable Name in InterpoYear.py 

 

 

 

Common 

TPOP TotPop 

THH TotHousing 

SF SingleF 

MF MultiF 

TEmp TotalEmp 

EAgri EmpAgri 

EInd EmpIndu 

ESerCom EmpSerCom 

FRESNO EMPOFC fre_ofc 

SSM* Ag_Other ssm_agri 

MTC AGREMPN mtc_agri 

OTHEMPN mtc_oth 

SACOG EMPIND sac_ind 

EMPOFC sac_ofc 

EMPSVC sac_svc 

SCAG Ag_emp sca_agri 

SLOCOG Ag_Mining slo_agmin 

SANDAG emp_ag san_agri 

CSTDM Prim_sec cst_prim 

* SSM: Counties of San Joaquin, Stanislaus, Merced 

 

        LEHD has very detailed employment information corresponding to individual NAICS code 

categories. It is possible to examine the employment in the LEHD sectors corresponding to each lumped 

intermediate variable summarized in Table S 1-9 through Table S 1-11.  The ratio of each individual LEHD 

sector to the LEHD lumped category total provides a profile that can be multiplied into the MPO/CSTDM 

lumped intermediate variable to estimate employment by individual NAICS code.  This procedure yields 

employment fields for each NAICS code but it inherently assumes that the LEHD employment profile stays 

constant for all years. 

        Table S 1-14 shows which MPOs/COGs or CSTDM regions required disaggregation using LEHD 

data and what operations were carried out to estimate employment for each NAICS categories.  Using 

FRESNO as an example, construction sector (23) is in the MPO variable EMPOFC along with various 
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unrelated service and commercial employment categories (51, 52, 53, 54, 55, 56). The fraction of 

construction employment in EMPOFC f(23) is estimated as LEHD  construction sector (23) divided by 

LEHD sectors (23+51+52+53+54+55+56). 

 

Table S 1-14. Calculation expression for obtaining fraction of specific sectors by using LEHD 

dataset 

County Sharing Expression (Number is NAICS code) 

FRESNO f(23) 23 / (23 + 51 + 52 + 53 + 54 + 55 + 56)) 

SSM*  f(21) 21 / (11 + 21 + 81) 

f(81) 81 / (11 + 21 + 81) 

MTC f(21) 21 / (11 + 21) 

f(23) 23 / (23 + 51 + 92) 

SACOG f(11) 11 / (11 + 21 + 22 + 23 + 31-33 + 42) 

f(48-49) 48-49 / (48-49 + 71 + 81) 

SLOCOG f(21) 21 / (11 + 21) 

SANDAG F(21) 21 / (11 + 21) 

CSTDM f(11) 11 / (11 + 21 + 23 + 31-33) 

* SSM: Counties of San Joaquin, Stanislaus, Merced 

 

        Table S 1-15. lists all expressions that separate misplaced sectors from native MPOs/COGs and 

CSTDM variables and place them in other categories to be consistent with the NAICS variables listed in 

Table 1-2. Using FRESNO as an example, estimated Construction employment (23) is separated from the 

Service and Commercial Employment total and added to the Industry employment total.  

        A special case occurs for the SACOG EMPSVC variable that includes contributions from NAICS 

category 48. The standard NAICS definitions group categories 48-49 and LEHD data follow this convention.  

Thus, LEHD data can only estimate the combined total of NAICS 48-49 from the variable EMPSVC in the 

SACOG.  In the current study the combined ratio of NAICS 48-49 was used to estimate the fraction of 

EMPSVC attributed to NAICS 48 in the SACOG. 
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Table S 1-15. Calculation expression for modifying MPOs/COGs and CSTDM categories by using 

LEHD OnTheMap dataset 

County Variables Expression 

FRESNO EmpIndu EmpIndu + fre_ofc * f(23) 

 EmpSerCom EmpSerCom - fre_ofc * f(23) 

SSM** EmpAgri EmpAgri – ssm_agri * ( f(21) + f(81) ) 

EmpIndu EmpIndu + ssm_agri * f(21) 

EmpSerCom EmpSerCom + ssm_agri * f(81) 

MTC EmpAgri EmpAgri – mtc_agri * f(21) 

EmpIndu EmpIndu + mtc_agri * f(21) + mtc_oth * f(23) 

EmpSerCom EmpSerCom - mtc_oth * f(23) 

SACOG EmpAgri EmpAgri + sac_ind * f(11) 

EmpIndu EmpIndu – sac_ind * f(11) + sac_svc * f(48-49) 

EmpSerCom EmpSerCom - sac_svc * f(48-49) 

SLOCOG EmpAgri EmpAgri – slo_agmin * f(21) 

 EmpIndu EmpIndu + slo_agmin * f(21) 

SANDAG EmpAgri EmpAgri – san_agri * f(21) 

EmpIndu EmpIndu + san_agri * f(21) 

CSTDM EmpAgri EmpAgri + cst_prim * f(11) 

EmpIndu EmpIndu - cst_prim * f(11) 

** SSM: Counties of San Joaquin, Stanislaus, Merced 

 

        Missing Service & Commercial employment data in the SACOG was estimated using LEHD data 

and growth rate derived from the SACOG data. A specific program was written to address this missing 

SACOG data problem for Information employment (51) and Administrative and Support employment (56). 

A summary of the procedure is presented below: 

• Base year 

(1) Calculate ratio of (51, 56) in MPO and LEHD data to make sure the sector from LEHD is 

consistent with MPO data. Here we choose EMPOFC category in the SACOG data as a 

reference of (51, 56) ratio since EMPOFC is the most similar category to (51, 61): 

𝑓𝑀𝑃𝑂/𝐿𝐸𝐻𝐷 =  
𝐸𝑀𝑃𝑂𝐹𝐶 𝑖𝑛 𝑀𝑃𝑂

𝐸𝑀𝑃𝑂𝐹𝐶 𝑠𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝐿𝐸𝐻𝐷
 

(2) Calculate (51, 61) value in MPO: 

𝑉𝑎𝑙𝑢𝑒𝐼𝑛𝑀𝑃𝑂(51,56) = 𝑓𝑀𝑃𝑂/𝐿𝐸𝐻𝐷 × 𝑉𝑎𝑙𝑢𝑒𝐼𝑛𝐿𝐸𝐻𝐷(51,56) 

(3) Modify corresponding MPO/CSTDM-based category: 
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𝐸𝑚𝑝𝑆𝑒𝑟𝐶𝑜𝑚 = 𝐸𝑚𝑝𝑆𝑒𝑟𝐶𝑜𝑚 + 𝑉𝑎𝑢𝑙𝑒𝐼𝑛𝑀𝑃𝑂(51,56)
𝑏𝑎𝑠𝑒 𝑦𝑒𝑎𝑟

 

(4) Update total employment: 

𝑇𝑜𝑡𝑎𝑙𝐸𝑚𝑝 = 𝑇𝑜𝑡𝑎𝑙𝐸𝑚𝑝 + 𝑉𝑎𝑢𝑙𝑒𝐼𝑛𝑀𝑃𝑂(51,56)
𝑏𝑎𝑠𝑒 𝑦𝑒𝑎𝑟

 

• Future year 

(1) Use base year data to calculate future year data. First to calculate growth rate of (51, 56): 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒(51,56) =  
𝑉𝑎𝑢𝑙𝑒𝐼𝑛𝑀𝑃𝑂𝐸𝑀𝑃𝑂𝐹𝐶

𝑓𝑢𝑡𝑢𝑟𝑒 𝑦𝑒𝑎𝑟
−  𝑉𝑎𝑢𝑙𝑒𝐼𝑛𝑀𝑃𝑂𝐸𝑀𝑃𝑂𝐹𝐶

𝑏𝑎𝑠𝑒 𝑦𝑒𝑎𝑟
 

𝑉𝑎𝑢𝑙𝑒𝐼𝑛𝑀𝑃𝑂𝐸𝑀𝑃𝑂𝐹𝐶
𝑏𝑎𝑠𝑒 𝑦𝑒𝑎𝑟  

(2) Calculate future year (51, 56): 

𝑉𝑎𝑢𝑙𝑒𝐼𝑛𝑀𝑃𝑂(51,56)
𝑓𝑢𝑡𝑢𝑟𝑒 𝑦𝑒𝑎𝑟

 = 𝑉𝑎𝑢𝑙𝑒𝐼𝑛𝑀𝑃𝑂(51,56)
𝑏𝑎𝑠𝑒 𝑦𝑒𝑎𝑟

 ( 1 + 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒(51,56))  

(3) Modify corresponding MPO/CSTDM-based category: 

𝐸𝑚𝑝𝑆𝑒𝑟𝐶𝑜𝑚 = 𝐸𝑚𝑝𝑆𝑒𝑟𝐶𝑜𝑚 +  𝑉𝑎𝑢𝑙𝑒𝐼𝑛𝑀𝑃𝑂(51,56)
𝑓𝑢𝑡𝑢𝑟𝑒 𝑦𝑒𝑎𝑟

 

(4) Update total employment: 

𝑇𝑜𝑡𝑎𝑙𝐸𝑚𝑝 = 𝑇𝑜𝑡𝑎𝑙𝐸𝑚𝑝 +  𝑉𝑎𝑢𝑙𝑒𝐼𝑛𝑀𝑃𝑂(51,56)
𝑓𝑢𝑡𝑢𝑟𝑒 𝑦𝑒𝑎𝑟
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S1.4 Relationships between surrogates and emissions  

 

Figure S 1-9. Annual PM2.5 EC Emission difference between updated case and base case for type 4 

– off-road diesel emission on 2016. Figure (a) shows northern California, figure (b) shows southern 

California. 
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Figure S 1-10. Annual PM2.5 OC Emission difference between updated case and base case for type 

8 – natural gas emission on 2016. Figure (a) shows northern California, figure (b) shows southern 

California. 
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Figure S 1-11. Annual PM2.5 Emission difference between updated case and base case for type 9 – 

miscellaneous emission on 2016. Figure (a) shows northern California, figure (b) shows southern 

California. 
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Figure S 1-12. Surrogate difference between updated case off-road construction equipment 

surrogate 587 and base case surrogate 585 for year 2015. (a) shows Northern California, (b) shows 

Southern California. Gray line is California State Highway 
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Figure S 1-13. Surrogate difference between updated case on-road construction equipment 

surrogate 588 and base case surrogate 585 for year 2015. (a) shows Northern California, (b) shows 

Southern California. Gray line is California State Highway 
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Figure S 1-14. Surrogate difference between updated case on-road construction equipment surrogate 

588 and base case surrogate 585 for year 2015. (a) shows Northern California, (b) shows Southern 

California. Gray line is California State Highway 
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Figure S 1-15. Relationship between service & commercial employment, industrial-related 

surrogates and PM2.5 OC, NOx in natural gas emission. Figure (a) and (c) are surrogate difference 

between original and updated service & commercial/industrial-related surrogates at Sacramento county. 

Figure (b) (d) are PM2.5 OC and NOx difference in natural gas emission at the same corresponding 

area. 
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Appendix 2 

S2.1 Methodology 

Table S 2-1. Surrogates used to downscale 4km emissions to 1km/250m emissions 

Emissions Surrogate Name Data Source 

Area 

Off-road construction equipment 

see details in reference paper: DOI 

10.1016/j.atmosenv.2020.117665  

On-road construction equipment 

Total population 

Service & Commercial employment 

Single-family housing 

Industrial-related/industrial employment 

Forestland 

California Air Resource Board (CARB) 
Residential heating gas 

Unpaved road 

Farm road VMT 

Restaurant 
Food service market dataset from Esri 

(NACIS 7225) 

Residential wood burning Census Data 

Secondary paved road1 Tiger/Line shapefile, S1400 + S1630 + 

S1640 

Primary road1 Tiger/Line shapefile, S1100 + S1200 

Mobile 

Tire & brake wear 
0.86*(gasoline mobile) + 0.14*(diesel 

mobile) 

Gasoline mobile 0.7*(AADT) + 0.3*(all road length) 

Diesel mobile 
0.8*(Truck AADT) + 0.2*(truck road 

length) 

Point  Directly processed by SMOKE 
 

1  Roads in this shapefile are divided into 13 types based on its function and dimension. Followed the 

CARB definition of these two surrogates, primary road surrogate includes S1100 (primary road), S1200 

(secondary road); secondary paved road surrogate includes S1400 (local neighborhood road, rural road, 

city street), S1630 (ramp), S1640 (service drive usually along a limited access highway). 

S2.1.1 Gasoline and diesel mobile surrogate data sources 

Gasoline vehicle traffic count – Average Annual Daily Traffic (AADT) can be found in Federal 

Highway Administration HPMS website 

(https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm, accessed August 2020).  

Diesel vehicle traffic count – Truck AADT (with three or more axles) were obtained from Caltrans. 

https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm
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All road shapefile can be found in US Census Bureau (https://www.census.gov/geographies/mapping-

files/time-series/geo/tiger-line-file.html, accessed August 2020).  

Truck road network can be found in Freight Analysis Framework (Federal Highway Administration, 

https://ops.fhwa.dot.gov/freight/freight_analysis/faf/, accessed August 2020). 

S2.1.2 Chemical transport model domain settings 

 

Figure S 2-1. WRF-Chem and UCD/CIT domain settings. Gird cells in each domain listed below. 

D01: 38 x 38; D02: 24 x 24; D03: 27 x 27; D04: 40 x 40; D05: 80 x 64; UCD/CIT statewide 24KM: 43 x 

42; UCD/CIT SOUTHCA4KM: 102 x 60. 

 

 

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://ops.fhwa.dot.gov/freight/freight_analysis/faf/
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S2.1.3 Environment justice analysis 

 

Figure S 2-216. Population distribution over WRF-chem domain 4 & 5 (Los Angeles, California, 

US) by race & ethnicity. 
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Figure S 2-3. Population distribution over WRF-chem domain 2 & 3 and UCD/CIT 4KM domain 

(California South Coast) by race & ethnicity. 

 

Table S 2-2. Population by race/ethnicity summary of D01 – D05. Hispanic refers to Hispanic or 

Latino; White refers to White alone, not Hispanic or Latino; Asian refers to Asian alone; Black refers to 

Black & African American alone. Dataset is from ACS 2012-2016.  

Domain Total population Hispanic White Asian Black 

D01 37,911,191 14,643,677 14,567,169 5,275,929 2,163,112 

D02 20,820,288 9,119,153 7,131,465 2,672,181 1,330,157 

D03 13,075,358 5,955,699 3,909,022 2,051,040 828,927 

D04 5,868,760 3,060,596 1,207,408 880,960 593,772 

D05 1,778,440 1,189,405 169,603 241,691 157,722 
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Table S 2-3. Population by ratio of income to poverty level of D01 – D05. Dataset is from ACS 2012-

2016.  

Ratio of income to 
poverty level 

D04 D05 

Under .50 456,831 194,678 

.50 to .99 695,480 299,631 

1.00 to 1.24 378,316 154,563 

1.25 to 1.49 364,165 143,364 

1.50 to 1.84 464,053 170,319 

1.85 to 1.99 178,352 63,508 

2.00 and over 3,331,564 752,377 

Total Population 5,868,760 1,778,440 

 

 

 

Figure S 2-4. American Community Survey (ACS) 2012-2016 data Census tract resolution histogram 

within domain D02, which covers the urban Los Angeles area. 
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S2.2 Results 

S2.2.1 High resolution model results  

 

Figure S 2-5. WRF-chem 2016 Annual average PM2.5 EC concentration at 12km (a), 4km (b), 1km 

(c), 250m (d) spatial resolution.  
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Figure S 2-617. WRF-chem 2016 Annual average PM2.5 OC concentration at 12km (a), 4km (b), 

1km (c), 250m (d) spatial resolution.  
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Figure S 2-7. WRF-chem 2016 Annual average PM2.5 Primary mass concentration at 12km (a), 4km 

(b), 1km (c), 250m (d) spatial resolution 
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Figure S 2-8. WRF-chem 2016 Annual average PM2.5 Secondary mass concentration at 12km (a), 

4km (b), 1km (c), 250m (d) spatial resolution 
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Figure S 2-9. UCD/CIT Year 2016 daily PM2.5 mass, EC, OC Mean Fractional Bias (MFB) and 

Mean Fractional Error (MFE) for available measurement sites. 
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Figure S 2-10. WRF-chem Year 2016 monthly average predicted and measured PM2.5 MASS (a), 

EC (b), OC (c) concentrations at 12km, 4km, 1km and 250m spatial resolution  
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Figure S 2-11. WRF-chem Year 2016 daily predicted and measured PM2.5 MASS (a), EC (b), OC 

(c) concentrations at 12km, 4km, 1km and 250m spatial resolution  
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Figure S 2-12. WRF-chem Year 2016 daily PM2.5 mass, EC, OC Mean Fractional Bias (MFB) and 

Mean Fractional Error (MFE) for available measurement sites in D04. 
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Figure S 2-13. WRF-chem Year 2016 daily PM2.5 mass, EC, OC Mean Fractional Bias (MFB) and 

Mean Fractional Error (MFE) for available measurement sites in D03, outside of D04. 
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Figure S 2-14. Annual average comparison between Model predictions and Observations for all 

available sites in D03. Blue data point is 4km, Red data point is 1km, black data point is 250m. R2 is 0.6114 

for 4km data points, Normalized Mean Bias (NMB) is 0.36; Normalized Mean Error (NME) is 0.38; Mean 

Fractional Bias (MFB) is 0.031; and Mean Fractional Error (MFE) is 0.032. 
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S2.2.2 EJ analysis – race, species, and spatial resolution 

 

Figure S 2-15. WRF-chem Annual average PM2.5 MASS, EC, OC, primary, secondary aerosol 

population weighted concentration at 250m, 1km, 4km spatial resolution, domain D04, D05 by race and 

poverty level. Error bars are weighted standard deviation. 
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Figure S 2-16. WRF-chem Annual average PM2.5 MASS, EC, OC, primary, secondary aerosol 

population weighted concentration at 36km, 12km, and 4km spatial resolution, domain D01, D02, and 

D03 by race and poverty level. Error bars are weighted standard deviation. 
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Figure S 2-17. WRF-chem Annual average PM2.5 MASS, EC, OC, primary, secondary aerosol 

population weighted concentration at 250m, 1km, 4km spatial resolution, domain D04, D05 by ratio of 

income to poverty level. Error bars are weighted standard deviation. 
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Figure S 2-18. Exposure difference relative to population average for (a,c) PM2.5 EC, (b,d) 

PM2.5OC as a function of domain size and resolution. Right panels analyze race/ethnicity. Left panels 

analyze income. 
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Figure S 2-19. Maximum Disparity comparison between WRF/Chem & UCD/CIT model (race only). 

Maximum disparities for all PM metrics occur between Black and non-Hispanic White. Bars represent 

WRF/Chem results. Horizontal black lines represent WRF/Chem results after the subtraction of excess dust 

emissions. Triangle, diamond, and asterisk symbols represent UCD/CIT results. R2 represents correlations 

between WRF/Chem and UCD/CIT for all species listed here.  
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Figure S 2-20. Relative disparity comparison between WRF/Chem & UCD/CIT model (consider race 

only). The maximum disparities are all between Black and non-Hispanic White. Bars represent WRF/chem 

results. Dashes represent WRF/chem results but accounts for dust affects. Scattered dots represent 

UCD/CIT results. R2 represents the correlation between WRF/Chem and UCD/CIT model. 

 

S2.2.3 Type I hypothesis test 

The statistical tests were carried out as a comparison of weighted means (xw) between different 

populations.  Weighted means (𝑥̅𝑤 ) were calculated using weighting factors (wi = population count) in 

each grid cell multiplied with the concentration in that grid cell and then divided by the sum of all weighting 

factors.   
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𝑥𝑤 =
∑ 𝑥𝑖𝑤𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 

where: 

𝑤𝑖 – weight for the 𝑖𝑡ℎ observation, population for 𝑖𝑡ℎ grid cell in this study 

∑ 𝑤𝑖
𝑁
𝑖=1  – total population within domain in this study 

𝑥𝑖 –concentration for 𝑖𝑡ℎ grid cell in this study 

𝑁 – the number of grid cells used in the sample 

The number of sample points N in this calculations is the number of grid cells used in the model 

simulation.  Sample weighted standard deviations were calculated with the equation: 

𝑠𝑤 =
√∑ 𝑤𝑖(𝑥𝑖 − 𝑥̅𝑤)2𝑁

𝑖=1

√(𝑁′ − 1) ∑ 𝑤𝑖
𝑁
𝑖=1

𝑁′

 

where 

𝑁′ - the number of non-zero weights, number of non-zero grid cell used in the sample 

 

Given: 

𝜇𝑤1 = population weighted mean of sample 1 

𝜇𝑤2 = population weighted mean of sample 2 

𝑛1 = sample size of sample 1 

𝑛2 = sample size of sample 2 

𝑠𝑤1 = weighted standard deviation of sample 1 

𝑠𝑤1 = weighted standard deviation of sample 2 

𝐻0 : 𝜇1 = 𝜇2 

𝐻1 : 𝜇1 ≠ 𝜇2 



 

| APPENDIX 2.  

173 

 

Two-sample hypothesis tests on the population weighted means were conducted using the test statistic  

𝑇 =
(𝑥̅𝑤1 − 𝑥̅𝑤2) − (𝜇𝑤1 − 𝜇𝑤2)

√𝑠𝑤1
2

𝑛1
⁄ +

𝑠𝑤2
2

𝑛2
⁄

 

that follows the T distribution with n1 + n2 -2 degrees of freedom.  Results can be expressed either as 

rejection / failure to reject H0 at the specified confidence level 𝛼 = 0.01, or as a P-value that can be 

compared to α. 

Table S 2-4. Mean value, standard deviation (std) and N number used in Type I hypothesis test shown 

in Table S2-9. Socioeconomic classes are considered both race and poverty level. Mean is exposure 

concentration within certain domain. N is sample size.  

 

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2 u1 u2

mean 17.27 14.39 17.42 14.59 18.02 16.11 18.16 15.94 18.13 15.93

std 1.83 3.11 1.91 3.08 1.12 1.96 1.23 2.29 1.21 2.30

N 100 100 1454 1581 20 20 296 320 4049 5033

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2 u1 u2

mean 16.97 14.39 17.12 14.59 17.71 16.11 17.78 15.94 17.76 15.93

std 2.19 3.11 2.21 3.08 1.77 1.96 1.76 2.29 1.76 2.30

N 100 100 1565 1581 20 20 320 320 5099 5033

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2 u1 u2

mean 15.85 14.39 16.35 14.59 17.10 16.11 17.32 15.94 16.09 15.93

std 2.51 3.11 2.52 3.08 1.90 1.96 2.04 2.29 2.33 2.30

N 100 100 1526 1581 20 20 303 320 5078 5033

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2 u1 u2

mean 17.27 15.04 17.42 15.71 18.02 16.74 18.16 16.88 18.13 16.89

std 1.83 2.76 1.91 2.64 1.12 1.95 1.23 2.05 1.21 2.08

N 100 100 1454 1578 20 20 296 319 4049 4739

Asian; below poverty level

black & African American; below poverty level

Asian;at or above poverty level

D04, 4KM D04, 1KM D05, 4KM D05, 1KM D05, 250M

Race & Poverty level

Hispanic or Latino, below poverty level

white only, no hispanic or Latino, at or above poverty level

white only, no hispanic or Latino, at or above poverty level

D04, 4KM D04, 1KM D05, 4KM D05, 1KM D05, 250M

D04, 4KM D04, 1KM D05, 4KM D05, 1KM D05, 250M

D04, 4KM D04, 1KM D05, 4KM D05, 1KM D05, 250M

black & African American; below poverty level

white only, no hispanic or Latino, at or above poverty level
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Table S 2-5. Mean value, standard deviation (std) and N number used in Type I hypothesis test shown 

in Table S2-10. Socioeconomic classes are considered both race and poverty level. Mean is exposure 

concentration within certain domain. N is sample size.  

 

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2

mean 15.94 11.13 15.15 9.97 11.61 8.12 5.48 4.28

std 3.38 3.97 3.18 3.78 5.16 3.81 4.09 3.36

N 560 630 87 97 467 585 668 750

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2

mean 14.59 11.13 13.39 9.97 10.79 8.12 5.82 4.28

std 3.81 3.97 3.73 3.78 4.87 3.81 3.71 3.36

N 598 630 89 97 534 585 742 750

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2

mean 14.00 11.13 12.65 9.97 10.16 8.12 4.74 4.28

std 3.52 3.97 3.40 3.78 4.19 3.81 3.85 3.36

N 484 630 75 97 573 585 621 750

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2

mean 15.94 12.69 15.15 11.23 11.61 10.01 5.48 4.53

std 3.38 3.88 3.18 3.76 5.16 4.18 4.09 3.79

N 560 612 87 97 467 568 668 714

white only, no hispanic or Latino, at or above poverty level

black & African American; below poverty level

Asian;at or above poverty level 

D01, 36KM

D01, 36KM

D01, 36KM

D01, 36KM

Race & Poverty

black & African American; below poverty level

white only, no hispanic or Latino, at or above poverty level

Hispanic or Latino, below poverty level 

white only, no hispanic or Latino, at or above poverty level 

Asian; below poverty level 

D03, 4KM D03, 12KM D02, 12KM

D03, 4KM D03, 12KM D02, 12KM

D03, 4KM D03, 12KM D02, 12KM

D03, 4KM D03, 12KM D02, 12KM
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Table S 2-6. Mean value, standard deviation (std) and N number used in Type I hypothesis test shown 

in Table S2-9. Socioeconomic classes are considered race only. Mean is exposure concentration within 

certain domain. N is sample size.  

 

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2 u1 u2

mean 16.93 14.41 17.08 14.60 17.94 16.23 18.00 16.09 17.97 16.09

std 2.01 3.11 2.08 3.09 1.20 1.97 1.33 2.32 1.32 2.33

N 100 100 1546 1581 20 20 319 320 4808 5078

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2 u1 u2

mean 16.50 14.41 16.71 14.60 17.54 16.23 17.60 16.09 17.58 16.09

std 2.39 3.11 2.41 3.09 1.84 1.97 1.83 2.32 1.84 2.33

N 100 100 1581 1581 20 20 320 320 5120 5078

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2 u1 u2

mean 15.15 14.41 15.79 14.60 16.82 16.23 16.97 16.09 16.98 16.09

std 2.73 3.11 2.63 3.09 1.95 1.97 2.05 2.32 2.07 2.33

N 100 100 1580 1581 20 20 319 320 4857 5078

black & African American

white only, no hispanic or Latino

Hispanic or Latino

white only, no hispanic or Latino

Asian

white only, no hispanic or Latino

D04, 4KM D04, 1KM D05, 4KM D05, 1KM D05, 250M

Race only 

D04, 4KM D04, 1KM D05, 4KM D05, 1KM D05, 250M

D04, 4KM D04, 1KM D05, 4KM D05, 1KM D05, 250M



 

| APPENDIX 2.  

176 

 

Table S 2-7. Mean value, standard deviation (std) and N number used in Type I hypothesis test shown 

in Table S2-9. Socioeconomic classes are considered race only. Mean is exposure concentration within 

certain domain. N is sample size.  

 

 

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2

mean 15.23 11.22 14.24 10.05 11.17 8.16 5.66 4.27

std 3.74 3.97 3.57 3.78 5.04 3.83 4.05 3.37

N 599 630 89 97 503 585 712 750

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2

mean 13.87 11.22 12.37 10.05 10.04 8.16 5.47 4.27

std 3.92 3.97 3.92 3.78 4.74 3.83 3.73 3.37

N 628 630 97 97 591 585 757 750

H0 u1-u2=0 u1

H1 u1-u2>0 u2

u1 u2 u1 u2 u1 u2 u1 u2

mean 12.85 11.22 11.40 10.05 10.16 8.16 4.55 4.27

std 3.85 3.97 3.73 3.78 4.19 3.83 3.80 3.37

N 612 630 97 97 573 585 723 750

Asian

white only, no hispanic or Latino

D03, 4KM D03, 12KM D02, 12KM

D03, 4KM D03, 12KM D02, 12KM

D01, 36KM

D01, 36KM

D01, 36KM

black & African American

white only, no hispanic or Latino

Race only

D03, 4KM D03, 12KM D02, 12KM

Hispanic or Latino

white only, no hispanic or Latino
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Table S 2-8. Mean value, standard deviation (std) and N number used in Type I hypothesis test shown 

in Table S2-9 and S2-10. Socioeconomic classes are considered poverty level only. Mean is exposure 

concentration within certain domain. N is sample size. 

 

H0 u1-u2=0 u1

H1 u1-u2>0 u2

below at or above below at or above below at or above below at or above

mean 16.77 15.93 17.32 16.89 18.13 17.90 17.76 17.50

std 2.31 2.30 2.02 2.08 1.21 1.37 1.76 1.86

N 4516 5033 4110 4739 4049 4463 5099 5116

below at or above below at or above below at or above below at or above

mean 16.78 15.94 17.32 16.88 18.16 17.92 17.78 17.52

std 2.32 2.29 2.04 2.05 1.23 1.36 1.76 1.85

N 4516 5033 4110 4739 4049 4463 5099 5116

below at or above below at or above below at or above below at or above

mean 16.75 16.11 17.10 16.74 18.02 17.90 17.71 17.47

std 1.94 1.96 1.90 1.95 1.12 1.23 1.77 1.87

N 4516 5033 4110 4739 4049 4463 5099 5116

below at or above below at or above below at or above below at or above

mean 14.69 14.59 16.35 15.71 17.42 16.97 17.12 16.58

std 3.18 3.08 2.52 2.64 1.91 2.12 2.21 2.45

N 4516 5033 4110 4739 4049 4463 5099 5116

below at or above below at or above below at or above below at or above

mean 14.55 14.39 15.85 15.04 17.27 16.83 16.97 16.35

std 3.13 3.11 2.51 2.76 1.83 2.06 2.19 2.44

N 4516 5033 4110 4739 4049 4463 5099 5116

below at or above below at or above below at or above below at or above

mean 12.07 11.13 14.00 12.69 15.94 15.03 14.59 13.67

std 3.86 3.97 3.52 3.88 3.38 3.82 3.81 3.93

N 629 630 484 612 560 529 598 628

below at or above below at or above below at or above below at or above

mean 10.91 9.97 12.65 11.23 15.15 14.01 13.39 12.09

std 3.76 3.78 3.40 3.76 3.18 3.66 3.73 3.97

N 97 97 75 97 87 82 89 97

below at or above below at or above below at or above below at or above

mean 8.51 8.12 11.31 10.01 11.61 11.06 10.79 9.84

std 4.02 3.81 4.12 4.18 5.16 5.01 4.87 4.70

N 583 585 458 568 467 471 534 585

below at or above below at or above below at or above below at or above

mean 4.19 4.28 4.74 4.53 5.48 5.72 5.82 5.38

std 3.37 3.36 3.85 3.79 4.09 4.04 3.71 3.73

N 749 750 621 714 668 687 742 750

D03, 4KM

D03, 12KM

D02, 12KM

D01, 36KM

(race), below

(race), at or above

D05, 250M

D05, 1KM

D05, 4KM

D04, 1KM

D04, 4KM

Asianno Hispanic or Latino African & Black Hsipanic
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Table S 2-9. P-value of Type I hypothesis test for selected socioeconomic classes, target for PM2.5  

mass. 𝐻0: 𝑢1 = 𝑢2; 𝐻1: 𝑢1 > 𝑢2; 𝛼 = 1%. D04 – regional-level; D05 – community-level 

𝑢1 𝑢2 D04, 4KM D04, 1KM D05, 4KM D05, 1KM D05, 250M 

Race & Poverty level      

Black, low1 White, high2 0.00% 0.00% 0.04% 0.00% 0.00% 

Hispanic, low White, high 0.00% 0.00% 0.51% 0.00% 0.00% 

Asian, low White, high 0.01% 0.00% 5.68%* 0.00% 0.04% 

Black, low Asian, high 0.00% 0.00% 0.85% 0.00% 0.00% 

Race only      

Black, total3 White, total 0.00% 0.00% 0.12% 0.00% 0.00% 

Hispanic, total White, total 0.00% 0.00% 1.82% 0.00% 0.00% 

Asian, total White, total 3.43% 0.00% 17.41% 0.00% 0.00% 

Poverty level only      

Black, low Black, high 4.93% 0.00% 37.95% 1.09% 0.00% 

Hispanic, low Hispanic, high 2.85% 0.17% 33.71% 3.10% 0.00% 

Asian, low Asian, high 1.42% 0.00% 28.11% 0.39% 0.00% 

White, low White, high 35.62% 17.99% 15.57% 0.00% 0.00% 
1 Black who below poverty level (low income Black) 

2 Non-Hispanic White who at or above poverty level (high income White) 

3 Total Black without poverty information 

* bold % means not significant when 𝛼 = 1% 
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Table S 2-10. P-value of Type I hypothesis test for selected socioeconomic classes, target for PM2.5  

mass. 𝐻0: 𝑢1 = 𝑢2; 𝐻1: 𝑢1 > 𝑢2; 𝛼 = 1%. D01 – statewide; D02 – South Coast; D03 – region-level 

𝑢1 𝑢2 D01, 36KM D02, 12KM D03, 12KM D03, 4KM  

Race & Poverty level      

Black, low1 White, high2 0.00% 0.00% 0.00% 0.00%  

Hispanic, low White, high 0.00% 0.00% 0.00% 0.00%  

Asian, low White, high 1.04%* 0.00% 0.00% 0.00%  

Black, low Asian, high 0.00% 0.00% 0.00% 0.00%  

Race only      

Black, total3 White, total 0.00% 0.00% 0.00% 0.00%  

Hispanic, total White, total 0.00% 0.00% 0.00% 0.00%  

Asian, total White, total 6.85% 0.00% 0.66% 0.00%  

Poverty level only      

Black, low Black, high 68.96% 4.75% 1.68% 0.00%  

Hispanic, low Hispanic, high 15.73% 0.05% 1.11% 0.00%  

Asian, low Asian, high 86.15% 0.00% 0.53% 0.00%  

White, low White, high 1% 4.48% 4.08% 0.00%  

1 Black who below poverty level (low income Black) 

2 Non-Hispanic White who at or above poverty level (high income White) 

3 Total Black without poverty information 

* bold % means not significant when 𝛼 = 1% 

 

 

Table S 2-11. Exposure disparity (units: μg/m^3) by PM2.5 species between top income 

category “household income > $200,000” and bottom income category “household income < 

$10,000”.  Income dataset is from ACS 2012-2016 household income.  

Domain D03 D04 D05 

Resolution 4KM 1KM 250M 

PM2.5 MASS 2.661 1.669 1.483 

PM2.5 EC 0.217 0.155 0.151 

PM2.5 OC 1.062 0.683 0.636 

PM2.5 Primary 2.328 1.554 1.415 

PM2.5 Secondary 0.327 0.107 0.064 
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S2.2.4 Exposure distribution by race/ethnicity 

 

Figure S 2-21. PM2.5 EC, OC, primary aerosol mass and secondary aerosol mass exposure distribution 

across racial-ethnic population. Figures focus on spatial resolution and domain scope changes on racial-

ethnic population exposure distribution. 
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Figure S 2-22. PM2.5 mass exposure distribution across racial-ethnic population using different 

domain – resolution combinations. Values at each concentration decile (y axis) describe the racial 

composition at that concentration level (x axis).  Comparisons between panels show the effects of domain 

size and resolution. 
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Appendix 3 

S3.1 Socio-economic data 

 

Figure S 3-1. Total population density of Southern California.  
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Figure S 3-2. Hispanic or Latino population density of Southern California.  
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Figure S 3-3. Black & African American population density of Southern California. 
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Figure S 3-4. Asian population density of Southern California. 
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Figure S 3-5. White population density of Southern California. 
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Figure S 3-6. Total population density of Northern California.  
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Figure S 3-7. Hispanic or Latino population density of Northern California. 
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Figure S3-8. Black & African American population density of Northern California. 
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Figure S 3-9. Asian population density of Northern California.  
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Figure S 3-10. White population density of Northern California.  
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S3.2 Absolute exposure 

 

Figure S 3-11. Future year 2050 PM2.5 absolute exposure by energy scenario and race/ethnicity at 4 

regions in California. Exposures under CCSM8.5 met scenarios. Error bar represents population weighted 

standard deviation. The category on the far right quantifies absolute disparity between racial groups. 
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Figure S 3-12. Future year 2050 PM2.5 absolute exposure by energy scenario and race/ethnicity at 4 

regions in California. Exposures under CCSM4.5 met scenarios. Error bar represents population weighted 

standard deviation. The category on the far right quantifies absolute disparity between racial groups. 
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Figure S 3-13. Future year 2050 PM2.5 absolute exposure by energy scenario and race/ethnicity at 4 

regions in California. Exposures under CAN8.5 met scenarios. Error bar represents population weighted 

standard deviation. The category on the far right quantifies absolute disparity between racial groups. 

 



 

| APPENDIX 3.  

195 

 

 

 

Figure S 3-14. Future year 2050 PM2.5 absolute exposure by energy scenario and race/ethnicity at 4 

regions in California. Exposures under CAN4.5 met scenarios. Error bar represents population weighted 

standard deviation. The category on the far right quantifies absolute disparity between racial groups. 
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Figure S 3-15. Future year 2050 PM0.1 absolute exposure by energy scenario and race/ethnicity at 4 

regions in California. Exposures under CCSM8.5 met scenarios. Error bar represents population weighted 

standard deviation. The category on the far right quantifies absolute disparity between racial groups. 
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Figure S 3-16. Future year 2050 PM0.1 absolute exposure by energy scenario and race/ethnicity at 4 

regions in California. Exposures under CCSM4.5 met scenarios. Error bar represents population weighted 

standard deviation. The category on the far right quantifies absolute disparity between racial groups. 
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Figure S 3-17. Future year 2050 PM0.1 absolute exposure by energy scenario and race/ethnicity at 4 

regions in California. Exposures under CAN8.5 met scenarios. Error bar represents population weighted 

standard deviation. The category on the far right quantifies absolute disparity between racial groups. 
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Figure S 3-18. Future year 2050 PM0.1 absolute exposure by energy scenario and race/ethnicity at 4 

regions in California. Exposures under CAN4.5 met scenarios. Error bar represents population weighted 

standard deviation. The category on the far right quantifies absolute disparity between racial groups. 
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S3.3 Relative exposure 

 

Figure S 3-19. Future year 2050 PM2.5 mass relative exposure (to total population) disparity by 

scenario and race/ethnicity at 4 regions in California under met scenario CCSM8.5. 

 



 

| APPENDIX 3.  

201 

 

 

Figure S 3-20. Future year 2050 PM2.5 mass relative exposure (to total population) disparity by 

scenario and race/ethnicity at 4 regions in California under met scenario CCSM4.5. 
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Figure S 3-21. Future year 2050 PM2.5 mass relative exposure (to total population) disparity by 

scenario and race/ethnicity at 4 regions in California under met scenario CAN8.5. 
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Figure S 3-22. Future year 2050 PM2.5 mass relative exposure (to total population) disparity by 

scenario and race/ethnicity at 4 regions in California under met scenario CAN4.5. 
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Figure S 3-23. Future year 2050 PM0.1 mass relative exposure (to total population) disparity by 

scenario and race/ethnicity at 4 regions in California under met scenario CCSM8.5. 
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Figure S 3-24. Future year 2050 PM0.1 mass relative exposure (to total population) disparity by 

scenario and race/ethnicity at 4 regions in California under met scenario CCSM4.5. 
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Figure S 3-25. Future year 2050 PM0.1 mass relative exposure (to total population) disparity by 

scenario and race/ethnicity at 4 regions in California under met scenario CAN8.5. 



 

| APPENDIX 3.  

207 

 

 

Figure S 3-26. Future year 2050 PM0.1 mass relative exposure (to total population) disparity by 

scenario and race/ethnicity at 4 regions in California under met scenario CAN4.5. 
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S3.4 Source composition 

 

Figure S 3-27. PM2.5 source contributions in Bay Area & Sacramento by energy scenarios and 

race/ethnicity. Each value represents the average across four meteorological scenarios. 
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Figure S 3-28. PM0.1 source contributions in Bay Area & Sacramento by energy scenarios and 

race/ethnicity. Each value represents the average across four meteorological scenarios. 
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Figure S 3-29. PM2.5 source contributions in San Joaquin Valley by energy scenarios and 

race/ethnicity. Each value represents the average across four meteorological scenarios. 
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Figure S 3-30. PM0.1 source contributions in San Joaquin Valley by energy scenarios and 

race/ethnicity. Each value represents the average across four meteorological scenarios. 
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Figure S 3-31. PM2.5 source contributions in San Diego by energy scenarios and race/ethnicity. Each 

value represents the average across four meteorological scenarios. 
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Figure S 3-32. PM0.1 source contributions in San Diego by energy scenarios and race/ethnicity. Each 

value represents the average across four meteorological scenarios. 
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S3.5 Potential for Further Improvements 

S3.5.1 Improvements for Total Population Exposure 

 

 

Figure S 3-33. PM2.5 source impact on public health (regardless of race) for CCS energy scenario. 

X-axis indicates emissions (source) changes between BAU and CCS scenario. Y-axis indicates PWC 

changes between BAU and CCS scenario for specific source. All results averaged across four 

meteorological scenarios. 
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Figure S 3-34. PM2.5 source impact on public health (regardless of race) for 2030CAP energy 

scenario. X-axis indicates emissions (source) changes between BAU and 2030CAP scenario. Y-axis 

indicates PWC changes between BAU and 2030CAP scenario for specific source. All results averaged 

across four meteorological scenarios. 
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Figure S 3-35. PM2.5 source impact on public health (regardless of race) for NGB energy scenario. 

X-axis indicates emissions (source) changes between BAU and NGB scenario. Y-axis indicates PWC 

changes between BAU and NGB scenario for specific source. All results averaged across four 

meteorological scenarios. 
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Figure S 3-36. PM2.5 source impact on public health (regardless of race) for NGT energy scenario. 

X-axis indicates emissions (source) changes between BAU and NGT scenario. Y-axis indicates PWC 

changes between BAU and NGT scenario for specific source. All results averaged across four 

meteorological scenarios. 
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Figure S  3-37. PM0.1 source impact on public health (regardless of race) for CCS energy scenario. 

X-axis indicates emissions (source) changes between BAU and CCS scenario. Y-axis indicates PWC 

changes between BAU and CCS scenario for specific source.  All results averaged across four 

meteorological scenarios. 
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Figure S 3-38. PM0.1 source impact on public health (regardless of race) for 2030CAP energy 

scenario. X-axis indicates emissions (source) changes between BAU and 2030CAP scenario. Y-axis 

indicates PWC changes between BAU and 2030CAP scenario for specific source.  All results averaged 

across four meteorological scenarios. 
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Figure S 3-39. PM0.1 source impact on public health (regardless of race) for NGB energy scenario. 

X-axis indicates emissions (source) changes between BAU and NGB scenario. Y-axis indicates PWC 

changes between BAU and NGB scenario for specific source.  All results averaged across four 

meteorological scenarios. 

 



 

| APPENDIX 3.  

221 

 

 

Figure S 3-40. PM0.1 source impact on public health (regardless of race) for NGT energy scenario. 

X-axis indicates emissions (source) changes between BAU and NGT scenario. Y-axis indicates PWC 

changes between BAU and NGT scenario for specific source.  All results averaged across four 

meteorological scenarios. 
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S3.5.2 Improvements to Reduce Disparity across Race/Ethnicity 

 

Figure S 3-41. PM2.5 source impact on exposure disparity between races for CCS energy scenario. 

X-axis indicates emissions (source) changes between BAU and CCS scenario. Y-axis indicates emission 

absolute disparity changes between BAU and CCS scenario for specific source. All results averaged across 

four meteorological scenarios. 
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Figure S 3-42. PM2.5 source impact on exposure disparity between races for 2030CAP energy 

scenario. X-axis indicates emissions (source) changes between BAU and 2030CAP scenario. Y-axis 

indicates emission absolute disparity changes between BAU and 2030CAP scenario for specific source. All 

results averaged across four meteorological scenarios. 
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Figure S 3-43. PM2.5 source impact on exposure disparity between races for NGB energy scenario. 

X-axis indicates emissions (source) changes between BAU and NGB scenario. Y-axis indicates emission 

absolute disparity changes between BAU and NGB scenario for specific source. All results averaged across 

four meteorological scenarios. 
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Figure S 3-44. PM2.5 source impact on exposure disparity between races for NGT energy scenario. 

X-axis indicates emissions (source) changes between BAU and NGT scenario. Y-axis indicates emission 

absolute disparity changes between BAU and NGT scenario for specific source. All results averaged across 

four meteorological scenarios. 
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Figure S 3-45. PM0.1 source impact on exposure disparity between races for CCS energy scenario. 

X-axis indicates emissions (source) changes between BAU and CCS scenario. Y-axis indicates emission 

absolute disparity changes between BAU and CCS scenario for specific source. All results averaged across 

four meteorological scenarios. 

 



 

| APPENDIX 3.  

227 

 

 

Figure S 3-46. PM0.1 source impact on exposure disparity between races for 2030CAP energy 

scenario. X-axis indicates emissions (source) changes between BAU and 2030CAP scenario. Y-axis 

indicates emission absolute disparity changes between BAU and 2030CAP scenario for specific source. All 

results averaged across four meteorological scenarios. 
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Figure S 3-47. PM0.1 source impact on exposure disparity between races for NGB energy scenario. 

X-axis indicates emissions (source) changes between BAU and NGB scenario. Y-axis indicates emission 

absolute disparity changes between BAU and NGB scenario for specific source. All results averaged across 

four meteorological scenarios. 

 



 

| APPENDIX 3.  

229 

 

 

Figure S 3-48. PM0.1 source impact on exposure disparity between races for NGT energy scenario. 

X-axis indicates emissions (source) changes between BAU and NGT scenario. Y-axis indicates emission 

absolute disparity changes between BAU and NGT scenario for specific source. All results averaged across 

four meteorological scenarios. 

 

S3.5.3 Balancing Benefits for Total Population and Reduced Disparity 
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Figure S 3-49. PM2.5 source impact on total population exposure and exposure disparity based on 

race for 2030CAP energy scenario. X-axis indicates largest disparity changes between BAU and 2030CAP 

scenario for each specific source. Y-axis indicates PWC changes between BAU and 2030CAP scenario for 

each specific source.  All results averaged across four meteorological scenarios. 
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Figure S 3-50. PM2.5 source impact on total population exposure and exposure disparity based on 

race for CCS energy scenario. X-axis indicates largest disparity changes between BAU and CCS scenario 

for each specific source. Y-axis indicates PWC changes between BAU and CCS scenario for each specific 

source.  All results averaged across four meteorological scenarios. 
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Figure S 3-51. PM2.5 source impact on total population exposure and exposure disparity based on 

race for NGB energy scenario. X-axis indicates largest disparity changes between BAU and NGB scenario 

for each specific source. Y-axis indicates PWC changes between BAU and NGB scenario for each specific 

source.  All results averaged across four meteorological scenarios. 
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Figure S 3-52. PM2.5 source impact on total population exposure and exposure disparity based on 

race for NGT energy scenario. X-axis indicates largest disparity changes between BAU and NGT scenario 

for each specific source. Y-axis indicates PWC changes between BAU and NGT scenario for each specific 

source.  All results averaged across four meteorological scenarios. 
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Figure S 3-53. PM0.1 source impact on total population exposure and exposure disparity based on 

race for 2030CAP energy scenario. X-axis indicates largest disparity changes between BAU and 2030CAP 

scenario for each specific source. Y-axis indicates PWC changes between BAU and 2030CAP scenario for 

each specific source.  All results averaged across four meteorological scenarios. 
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Figure S 3-54. PM0.1 source impact on total population exposure and exposure disparity based on 

race for CCS energy scenario. X-axis indicates largest disparity changes between BAU and CCS scenario 

for each specific source. Y-axis indicates PWC changes between BAU and CCS scenario for each specific 

source.  All results averaged across four meteorological scenarios. 
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Figure S 3-55. PM0.1 source impact on total population exposure and exposure disparity based on 

race for NGB energy scenario. X-axis indicates largest disparity changes between BAU and NGB scenario 

for each specific source. Y-axis indicates PWC changes between BAU and NGB scenario for each specific 

source.  All results averaged across four meteorological scenarios. 
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Figure S 3-56. PM0.1 source impact on total population exposure and exposure disparity based on 

race for NGT energy scenario. X-axis indicates largest disparity changes between BAU and NGT scenario 

for each specific source. Y-axis indicates PWC changes between BAU and NGT scenario for each specific 

source.  All results averaged across four meteorological scenarios. 

 

 

 

 




