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Abstract 

-

Integration of multiple testing techniques is required to demonstrate high quality of 
software. Technique integration has three basic goals: incremental testing capabilities, 
extensive error detection, and cost-effective application. We are experimenting with the 
use of process programming as a mechanism of integrating testing techniques. Having set 
out to integrate DATA FLOW testing and RELAY, we proposed synergistic use of these 
techniques to achieve all three goals. We developed a testing process program much as we 
would develop a software product from requirements through design to implementation 
and evaluation. We found process programming to be effective for explicitly integrat­
ing the techniques and achieving the desired synergism. Used in this way, process pro­
gramming also mitigates many of the other problems that plague testing in the software 
development process. 

This work was supported in part by the National Science Foundation under grants 
CCR-8704311 and CCR-8996102, with cooperation from the Defense Advanced Research 
Projects Agency (ARPA Orders 6100 and 6108, Program Code 7Tl0). 
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Note to Reviewers 

This paper describes an experiment in integrating testing techniques through process pro­
gramming. The body of the paper outlines our experimental objectives and the process 
program development effort. The entire paper is a bit long, but includes as an appendix the 
process program that we implemented. Although the code is not required to appreciate our 
experiment, we felt it important to include it as convincing evidence of the value of process 
programming in this endeavor. We do not believe it is necessary for the reviewer to read all 
of the code to evaluate the paper effectively. 
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1 Introduction 

The need for high quality software is becoming increasingly acute, and recognition of this need 
is becoming more widespread. While techniques such as superior development methodologies 
can do much to improve software quality, there is still a prevailing consensus that software 
quality can neither be obtained nor convincingly demonstrated without significant testing 
activities. In recognition of this, software testing researchers and practitioners have developed 
a spectrum of tools and techniques. As it becomes clear that these tools and techniques 
have varying strengths and weaknesses, more attention is focussed on integrating tools and 
techniques. 

It is now widely agreed that there is no single, uniform approach to testing and that there 
is no single, fixed tool or toolset that can be expected to mee~ the diversity of testing needs. 
This is not a failing of the tools and techniques, but rather is integral to the nature of the 
testing activity. While most practitioners agree that testing aims to determine and assure that 
software products are of "high quality," most testing researchers now agree that there is no 
absolute, fixed notion of what "software quality" means. Instead there is growing agreement 
that software must satisfy a variety of qualities such as robustness, functional correctness, 
efficiency, adaptability, and reliability. Different projects place different emphasis on different 
qualities and accordingly have different testing requirements. Thus, we believe that software 
testing should be viewed as a process whose goal is to satisfy testing requirements that must 
be enunciated as part of the overall software product requirements. 

We believe, therefore, that customized testing processes, which integrate multiple tech­
niques, are required to meet specific testing requirements. Effective integration entails more 
than simply chasing the best testing techniques and coalescing them into a testing system. 
Effective technique integration must provide more extensive quality assessment and error de­
tection than any single technique, support incremental use of multiple techniques, and yield 
substantial savings over unintegrated, multiple technique use. 

We suggest that testers approach the task of creating customized testing processes to 
meet individual testing requirements by considering their task to be a software development 
task. Ideally, software testers should have at their disposal large libraries of reusable software 
testing techniques and process specifications and designs, along with tool fragments that could 
be reused and recombined according to the dictates of their requirements. - Software testers 
would then use typical software development techniques to create testing processes. They 
would design, implement, and exe~ute their processes and finally evaluate them to assure 
that stated testing requirements are fulfilled, maintaining their testing processes as necessary. 

What has just been described is the notion of process programming applied to the testing 
process. Process programming provides a formalism for defining relationships among tool 
fragments and software objects in support of technique integration [Ost87]. A process program 
manages the testing process by integrating testing techniques and manipulating software and 
test objeCts generated by the techniques. 
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Unfortunately, testers currently face a bewildering diversity of techniques and tools, which 
rarely have well defined specifications and are rarely elegantly decomposed into modules. 
Thus, current testing tools and techniques are poorly suited to being used to effectively 
develop customized testing processes. In addition, testers are unfamiliar with how to exploit 
software product development techniques to develop software processes. . . 

This paper describes a research project aimed at evaluating our hypothesis that existing 
software testing tools and techniques can be effectively integrated into larger testing processes 
by decomposing them into smaller modular capabilities and programming these modules into 
a larger integrated testing process. We attempted to integrate two existing testing techniques 
- DATA FLOW testing [RW85, CPRZ86] and RELAY [RT88] - into an integrated testing 
process, which we call DFMRELAY (DATA FLOW tie RELAY). We considered the synthesis of 
the integrated technique to be a software development activity - i.e., we developed a process 
program combining the two techniques. This paper describes the development activity we 
engaged in, evaluates our results, and discusses how these results are applicable to the general 
problem of developing testing process programs. 

1.1 Objectives of Testing Technique Integration 

Current testing systems offer widely ranging testing capabilities, but provide little or no 
support for integration and choice of technique application. Testing is already a human 
intensive effort without having to agonize over integration. Technique integration is vital is 
to provide effective support for software testers with diverse testing requirements. Integration 
provides a testing environment that is a cohesive set of testing components and test objects 
working concertedly. 

Appropriate technique integration increases error detection capabilities and provides more 
extensive quality assessment than any single technique. Most testing techniques expedite 
detection of particular error class( es). To achieve extensive error detection capabilities, we 
must combine techniques that detect different, complementary sets of errors. Moreover, as 
software must satisfy a variety of qualities, techniques that assess different software qualities 
must be integrated to meet overall testing objectives. 

Multiple testing techniques should be applied in an incremental fashion. It is seldom cost­
effective to begin testing by using an expensive, comprehensive technique. Such techniques 
are better used to demonstrate high reliability after some confidence has been achieved. 
Otherwise, unnecessary, repeated application of the expensive technique will be required 
after correcting errors that might have been found with a less costly technique. It is preferred 
to integrate techniques to provide testing "levels" that range from low cost, low powered 
capabilities to high cost, high powered capabilities. Higher-cost techniques can profitably 
use information gained by lower-cost technique application. Effective technique integration 
enables this approach. 

Substantial savings in computation and human effort can be achieved through technique 
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Richardson et.al.: Integrating Testing Techniques 3 

integration that avoids duplication of effort and takes advantage of possible areas of cooper­
ati.on. Producing the information needed to select test case's is a major cost of any testing 
technique, regardless of the selection criterion. Integrating techniques requiring some com­
mon information allows that information to be shared and reduces cost in technique appli­
cation. Integrating techniques requiring some common functionality allows tool fragments to 
be shared and reduces cost in tool development. Testing effort is also reduced by integrating 
techniques whose criteria might be satisfied by some common test cases. Moreover, explicit 
technique integration improves software quality by minimizing discontinuities in user activity, 
which reduces testing efficacy. 

We carried out experimentation aimed at evaluating these ideas by integrating 
DATA FLOW testing and RELAY to achieve adequate code coverage augmented by more com­
prehensive error detection. These sophisticated testing techniques are prime candidates for 
integration, because they address different error classes yet share common functionality and 
use common information. Both are based on the same flow graph representation and both 
require symbolic evaluation and reasoning capabilities for test data selection. RELAY can, 
moreover, profitably employ the test cases generated by DATA FLOW testing, which is the 
less costly technique, thus promoting incremental testing. We hypothesize that software 
testers will not infrequently encounter the need to integrate such techniques and that effec­
tive integration of them can achieve significant runtime efficiencies through the reuse of shared 
code and shared intermediate results. We therefore performed an experiment to verify this 
hypothesis. 

2 Requirements for Integrating 
DATA FLOW and RELAY Testing 

In our experiment, the testing requirements were that testing provide adequate control 
and data fl.ow coverage and that comprehensive error detection be provided. We selected 
DATA FLOW testing to satisfy the first requirement, allowing the user to specify the desired 
adequacy criterion, and RELAY to satisfy the second, allowing the user to specify fault classes 
for which error detection must be guaranteed. Thus, our testing requirements are that test­
ing satisfy both the DATA FLOW and the RELAY criteria. We proceeded to develop a testing 
process that integrates these two techniques. We approached this process development as we 
would approach the development of product software - namely by identifying requirements, 
then developing specifications, design, and finally code. In these sections, we summarize our 
experiences and indicate the software products we produced. 

The integrated testing process must meet two sorts of requirements - functional require­
ments, which are tantamount to the functionality of the two testing techniques themselves, 
and performance requirements, which require that the integrated process be more efficient 
(faster and cheaper) than the combination of the individual processes. As will be seen in later 
sections, this latter performance requirement drives development strongly in the direction of 
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sharing software artifacts that are common to the two techniques. This section describes 
the functional requirements that characterize DATA FLOW testing and RELAY and indicates 
performance characteristics that must be achieved in an acceptable integration of the two 
techniques. 

2.1 DATA FLOW Functional Requirements 

DATA FLOW testing entails exercising a set of paths that cover particular uses of defined 
variables. Rapps and Weyuker define a family of criteria for selecting some or all subpaths 
from a definition to some or all uses of that definition[RW85]. Ntafos' family of criteria requires 
variable-length chains of alternating definitions and uses [Nta84]. The family of criteria due 
to Laski and Korel forces the selection of different combinations of definitions that reach a 
statement, where many variables may be referenced [LK83]. Clarke et.al. present a uniform 
model for defining and comparing the three families[CPRZ86]. Our testing process must 
develop test path sets that meet one or more of these adequacy criteria and use these paths 
in the testing process. It should be observed that these DATA FLOW criteria are treated 
mostly as adequacy measures in past work, but that we consider them as test data selection 
techniques as we1J. 

A DATA FLOW criterion determines a set of def-use associations1 , where a def-use as­
sociation is a sequence of definitions that must reach uses upon execution of a test datum. 
In our experiment, we focused_on one specific criterion - Rapps' and Weyuker's all-uses. 
All-uses requires coverage of at least one definition-clear subpath from each definition to each 
use reachable by that definition. Thus, the d~f-use associations for the all-uses criterion are 
simply def-use pairs. A def-use association condition describes constraints on input data 
that would execute a definition-clear subpath covering the association. To select test data 
satisfying a DATA FLOW criterion, all def-use association conditions must be solved. 

2. 2 RELAY Functional Requirements 

RELAY is a model for fault-based testing and analysis [RT88]. Fault-based testing techniques 
select test data that expedites detection of particular types of faults in source code. Fault­
based testing techniques typically generate test data that distinguishes the tested program 
from alternatives that differ by the defined types of faults. A common assumption is that the 
tested program is "almost correct" and is faulty by at most a single definable fault 2 • 

RELAY develops revealing conditions that are necessary and sufficient for detection of faults 
from selected fault classes. A source-cede fault must originate an error during execution 

1 The term def-use association is borrowed from Rapps and Weyuker, but can be generalized to refer to 
Ntafos' chains or the definition combinations of Laski and Korel. 

2 This assumption essentially implies that the faults in the tested program can be detected by distinguishing 
it from the afore-mentioned alternatives. 

. ! 

-1 

I 

. I 
.I 1 

i 

I 

I 



I c 

I ( 

I -: 

1- '; 

\. 
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that transfers through all computations and data fl.ow until it is revealed as an observable 
failure (e.g., upon output or at some other oracle point). For a potential fault, a revealing 
condition consists of an originating context error condition and a chain transfer condition. 

The context error condition guarantees origination (the origination condition) and transfer 
through the computations in the statement containing the fault (the computational transfer 

condition). The chain transfer condition guarantees transfer along some def-use chain (the 
data flow transfer condition) to failure and computational transfer at each use in the chain. 
The RELAY model is described more completely elsewhere [RT88]. 

A RELAY criterion specifies source code locations and class( es) of potential faults that 
may occur at those locations. For example, one such RELAY criterion is variable reference 
faults for the entire program; another is conditional operator faults in loop conditions. To 
select test d~ta that guarantees fault detection for a RELAY criterion, revealing conditions 
for each specified potential fault (fault class and location) are generated and then must be 
solved. In our experiment, we focused on one specific criterion - all variable reference faults. 

2.3 DFMRELAY Performance Requirements 

Important hypotheses of this research are that the functional characteristics of DATA FLOW 
testing and RELAY can be combined to do incremental testing with increased error detection 
capabilities and that this can be done in such a way that the resulting process is less costly than 
independently applying the two component techniques. We take this cost characterization as 
a requirement of our testing process as well. 

These performance requirements seemed feasible and generate several subgoals. First, 
information required by both techniques must be shared rather than generated independently 
by the techniques. Second, we use the techniques incrementally and require that DATA FLOW 
testing be completed before RELAY. As a fault-based technique, RELAY requires some con'." 
fidence that the software is "almost correct". By employing DATA FLOW testing first, we 
demonstrate this proposition. Third, we require that unnecessary test case generation be 
avoided by checking those test cases generated by DATA FLOW testing for reusability by 
RELAY. Since DATA FLOW testing is computationally cheaper than RELAY, this will reduce 
costs. Fourth, any subfunctions required commonly by the two techniques should be accom­

plished by shared tool fragments. Fifth, the combination of DATA FLOW testing and RELAY 
enhances error detection. DATA FLOW testing expedites detection of erroneous uses of defi­
nitions and is complete up to the chosen adequacy criterion. DATA FLOW does not, however, 

guarantee that such an error is reflected in the output. RELAY guarantees the detection of 
potential faults identified by the chosen RELAY criterion, but this criterion does not neces­
sarily require module "coverage" - that is, only certain statements and fault classes might 
be selected. Thus, RELAY complements DATA FLOW by more fully testing the actual compu-
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tations in which a definition is used and ensuring that errors are observed as failures. And, 
DATA FLOW complements RELAY by providing a more coverage-oriented criterion. Thus, our 
requirements force the two techniques to be integrated in a way that is more cost-effective 

. than applying both independently. 

3 Process Program Specification 

In our experiment, we next developed specifications for the integrated testing process. The 
specification formalism we used to express the functional characteristics of the two major 
functional components consists of devising a pre- and post-condition pair with a minimal 
description of functionality 

pre-condition: specifies the conditions under which the computation of this functional capa­
bility can be used; 

post-condition: specifies the state that can be assumed to have been achieved after computa­
tion of this functional capability; 

function: serves as the high-level specification for the process program to be used to achieve 
the functional cap_ability. 

3.1 DATA FLOW Testing Process Specification 

DATA FLOW testing is specified as follows: 

pre-condition: DATA FLOW testing can be applied to a module that has been translated to an 
internal representation and represented by a control flow graph. Any persistent test set 
(possibly empty) is also input. 

post-condition: DATA FLOW testing provides a persistent test set that satisfies a selected 
DATA FLOW adequacy criterion. 

function: For a chosen DATA FLOW adequacy criterion, determine the required def-use associ­
ations, mark those covered by data in the persistent test set, and augment the persistent 
test set to cover the remaining def-use associations. 

3.2 . RELAY Testing Process Specification 

RELAY testing is specified as follows: 
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pre-condition: RELAY can be applied to a module that has been translated to an "internal 
representation anq represented by a control flow graph. A_ny persistent test set (possibly 
empty) is also input. 

post-condition: RELAY provides a persistent test set that guarantees fault detection for the 
chosen RELAY criterion. 

function: For a chosen RELAY criterion, determine the potential faults, mark those detected 
by data in the persistent test set, and augment the persistent test set to guarantee 
detection of the remaining potential faults. 

3.3 D~ELAY Process Specification 

Dft>4RELAY is specified as follows: 

pre-condition: DFl><tRELAY can be applied to a module that has been translated to an internal 
representation and represented by a control flow graph. Any persistent test set (possibly 
empty) is also input. 

post-condition: DFMRELAY provides a persistent test set that satisfies a selected DATA FLOW 
adequacy criterion and guarantees fault detection for the chosen RELAY criterion. 

function: For a chosen DATA FLOW adequacy criterion, determine the required def-use associ­
ations, mark those covered by data in the persistent test set, and augment the persistent 
test set to cover those remaining. For a chosen RELAY criterion, determine the poten­
tial faults, mark those detected by data in the persistent test set, and augment the 
persistent test set to guarantee detection of those remaining. 

4 Process Program Design 

We continued to develop th~ DFl><tRELAY process program by first constructing a high-level 
design that efficiently and synergistically combines DATA FLOW and RELAY. We then itera­
tively refined the design by further developing the constituent techniques and their integration. 
The low-level design identifies common tool fragments and shared objects as well as inter­
fragment, inter-object, and object-fragment relationships. Because of this, the design shows 

how we achieved the required functionality while also meeting performance requirements of 
lower total testing process execution time as well as the requirements of reduced develop­
ment costs. We describe the functionality in an informal, structured English PPDL (Process 
Program Design Language) and show relationships in object/control flow diagrams. 
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4.1 D FMRELAY Process High-Level Design 

DFl><tRELAY can not be used unless its pre-condition is satisfied. This pre-condition states 
that the module is translated into an internal represensation and represented by a control 
fl.ow graph. Otherwise, front-end analysis tool components are activated to generate the inter­
nal representation and control flow graph. Our process program begins with the application 
of DATA FLOW testing. Given a selected DATA FLOW adequacy criterion, each def-use asso­
ciation that must be covered is identified and a Def-Use association condition is generated. 
These associations are marked as having been covered or not by the user-selected test data, 
and each specific test datum that covers the association becomes an attribute of the associa­
tion. Additional test data is selected to cover the unmarked associations, and the appropriate 
attribution of data to association is made. Now, RELAY comes into play. Given a selected 
RELAY criterion, each potential fault (origination location and fault class) that must be de­
tected is identified and a revealing condition is generated. Rather than simply select data for 
the revealing condition, we determine if any of the previously selected test data satisfies the 
condition. We need not check all data, only the data attributed to the def-use associations 
on the transfer route. If Offutt 's claim that most data that satisfies the origination condition 
is effective at transferring the error3 [DGK+ss], then this should be an extremely effective, 
synergistic integration of DATA FLOW testing and RELAY. 

As an example of the integrated use of DATA FLOW testing and RELAY consider the 
module shown in figure 1. The required def-use associations and conditions for all-uses are 
shown in Table 1. These def-use associations are covered by the paths ( ni, n2, n3, n4, n Jinal) 

and (n1, n2, n3, ns, nfinaz). A test data set that covers these paths is {(x = 4, y = 1); (x = 
O, y = O)}. Table 1 shows the attribution of test data to def-use associations. In fact, 
this set would be a likely choice as most constraint solution schemes select the "simplest" 
solution[RC85] 

Now, suppose that the user selects incorrect variable reference as the fault class. One such 
potential fault occurs at node n2 , where RELAY postulates that the reference to x should be 
to y.4 The origination condition is (x =/; y) and the computational transfer condition at n2 is 

(y =/; 0). Thus, the co~text error condition is (x =/; y) and (y =/; 0). The transfer route for this 
fault is (n2 ••• n4 ), and the chain transfer condition is (x * y = 4). The revealing condition, 
therefore, is (x =/; y) and (y =/; 0) and (x*Y = 4). Checking the test data attributed to the def­
use associations that intersect this transfer route demonstrates that this revealing condition 
is satisfied by the test datum ( 4,1 ). On the other hand, for an incorrect variable reference 

. to x at node n3 , the transfer route is (n3 .. . ns) and the revealing condition is (x =/; y) and 

( x * y =/; 4). Checking the test data attributed to the def-use associations that intersect this 

3 Our terminology, not Offutt's 
4 This assumes that x and y are the only variables in the module. 
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ni -input(x,y); 
n2 

n3 

n4 
ns 

n6 

dn(v) 
cun(v) 
pun(v) 

x := x *Yi 
y := 2 * x +'Yi 
if x = 4 then 

output(x); 
else 

output(y); 
end if; 

True 

cus(x) 

stands for definition of v at node n 
stands for computation-use of v at node n 
stands for predicate-use of v at node n 

di(x), di(Y) 

d3(y),cu3(x),cu3(y) 

cu6(Y) 

Figure 1: Control-fl.ow Graph of Error-Module 
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def-use association 
di ( x) ... cu2( x) 
di(Y) ... cu2(Y) 
di(Y) ... cu3(y) 
d2 ( X) ••• CU3 ( X) 

d2 ( x) ... pu4 ( x) 
d2(x) ... 1pu4(x) 
d2(x) ... pus(x) 
d3(Y) ... cu6(Y) 

condition 
true 
true 
true 
true 

(x*y=4) 
(x*y#4) 
(x*y=4) 
(x*y#4) 

attribute test data 
(4,1) (0,0) 
(4,1) (0,0) 
(4,1) (0,0) 
( 4,1) (0,0) 
(4,1) 
(0,0) 
(4,1) 
(0,0) 

Table 1: Required Def-Use Associations 
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transfer route demonstrates that this revealing condition has not been satisfied. RELAY must 
select test data by solving the revealing condition. 

Figure 2 provides a high-level design of the DFMRELAY process in a structured English 
PPDL. Figure 3 illustrates this process and the relationships among the tool fragments and 
objects. Note that this is not strictly a sequential process; many sub-activities can go on in 
parallel. This parallelism is expressed in the code through control-flow primitive actions which 

we call triggers. A triggeris a .signal that causes the activation of a parallel, asynchronous 
task, which is assumed to run to termination independent of the activity which triggered it. 

4.2 DATA FLOW Testing Process Design 

We refined our design by developing the major step in the DATA FLOW testing process: 
the generation of the def-use association conditions. A path selection component selects an 
initial path (a sequence of nodes through the control flow graph from the start node to the 

definition) and an activating path for the def-use association (a def-clear sequence of nodes 
from the definition to the use). A symbolic evaluator interprets each node sequence in terms 
of symbolic values, providing a path condition and path values that represent the function of 

the path and is also used to re-evaluate a path representation in terms of modified symbolic 
values. A reasoning component checks [path] condition feasibility (possibly incrementally 
during interpretation). When a condition is infeasible, the path selection component must 

modify at least one selected path (depending on where and why the infeasibility occurred). 
Figure 4 shows a high-level design of the def-use association condition generator. 

, I. 

'' I 

I 
! 

J 



I ,' 

t - .. ~ 

Richardson et. al.: Integrating Testing Techniques 

-- Determine DATA FLOW Coverage Requirements: 
choose DATA FLOW adequacy criterion; 
determine def-use associations to be covered; 
for each def-use association loop 

generate def-use association condition; 
-- Check Tests for Coverage: 
for each test case in the persistent test set loop 

if test case satisfies the def-use association condition then 
mark def-use association as satisfied by test case; 

end if; 
end loop; 
if def-use association not marked as satisfied then 

-- Additional Testing Required: 
select test data that satisfies the def-use association condition; 
mark def-use association as satisfied by this test case; 
trigger testing for newly-selected test case; 

end if; 
end loop; 
-- Determine RELAY Requirements: 
choose RELAY criterion; 
determine potential faults to be covered; 
for each potential fault loop 

generate revealing condition; 
-- Check Tests for Coverage: 
for each test case marked by the first def-use association 

along the transfer route loop 
if test case satisfies the revealing condition then 

mark revealing condition as satisfied by test case; 
end if; 

end loop; 
if revealing condition not marked as satisfied then 

-- Additional Testing Required: 
select test data that satisfies the revealing condition; 
mark revealing condition as .satisfied by this test case; 
trigger testing for newly-selected test case; 

end if; 
end loop; 

Figure 2: High-Level Design of the DFMRELAY Process 
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select Initial.Seq 

symbolically interpret 

Initial.Seq 

& check feasibility 

of Initial.PC 

DataFlowOb · ect 

DefUseAssn; 
DUAssnCond 

Initial 

.. .. .. Seq; 

PV; 
PC 
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Seq; 
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select Activ .Seq 

symbolically interpret 
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infe ible 

Fragment-Fragment 

Object-Fragment 

Object-Object 

Figure 4: DATA FLOW: Def-Use Association Condition Generator 
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4.3 RELAY Testing Process Design 

We also refined the major step in the RELAY process: the generation of revealing condition 
generations. As with the similar step in the DATA FLOW process, a path selection component 
selects an initial path, a transfer route (a sequence of nodes through which the fault transfers 

to output), and an activating path for the transfer route. A symbolic evaluator interprets 
these paths and later re-evaluates them. A reasoning component checks condition feasibility. 
Figure 5 shows a high-level design of the revealing condition generator. 

4.4 DFMRELAY Process Low-Level Design 

In developing the modular decomposition of the DFMRELAY process, we identified the fol­

lowing major functional and data modules. Note that many of these are shared by the two 
techniques. 

Functional Modules 

• Internal representation translator: must be triggered if the source module has not 
yet been translated to internal representation 

• CFG Generator: mt~st be triggered if the source tnodule has not yet been repre­
sented as a control flow graph; 

• Path Selector: given nodes to be traversed (e.g., initial node to internal node, 
def-use pair, transfer route) selects a sub-path covering those nodes; 

• Symbolic Evaluator: interprets a path in terms of symbolic values or re-evaluates 
a symbolic expression in terms of other symbolic values; 

• Reasoning Component: checks feasibility of a COD:dition, checks input data for 
condition satisfaction, and selects input data that satisfies a condition; 

• DATA FLOW Testing: allows user to "start up" DATA FLOW testing by choosing a 
DATA FLOW adequacy criterion, determines the required def-use associations, and 

gener~tes the def-use association conditions; 

• RELAY: allows user to "start up" RELAY by choosing a RELAY criterion, determines 
the potential faults, and generates the revealing conditions; 

Data Modules 

• attributed parse tree representation: internal form of the source code (accessed by 

virtually all components); 

1 .'' 
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• Control Flow Graph Representation: graph representation of the source code ( ac­
cessed by virtually all components); 

• DATA FLOW Objects: def-use association, def-use association condition, and rela­
tionship to test case; 

• RELAY Objects: potential fault, revealing condition, and relationship to test case; 

• Persistent Test Set: maintains all generated test cases, test case execution results, 
and relationships to test requirements; 

• Test Harness: surrounds the module and executes it on a test case, updating 
the persistent test set with actual output, and determining if an error has been 
revealed. 

The Appendix provides the code for part of the Data Flow l><l RELAY process program. 

5 Process Program Analysis 

We used process programming to explicitly integrate DATA FLOW testing and RELAY as 
an experiment. We wanted to study how process programming could be used to guide the 
development of customized testing processes to meet specific stated testing requirements. 
The development of the process program helped us devise a hybrid testing process which 
combines DATA FLOW testing and RELAY in a highly efficient way, that enables effective 
reuse of intermediate data and common subprocessing steps. 

Our process program satisfies the following goals: 

1. Information required by both techniques is shared; 

2. DATA FLOW testing is completed before RELAY; 

3. Tests are not duplicated and unnecessary tests are not generated; 

4. Similar subactivities are accomplished by shared tool fragments; 

5. Error detection is increased. 

We observe a number of benefits arising from th~ use of software development techniques 
to create this process program. In that we began by studying the requirements for the 
synthesized process, we were forced to make our testing goals explicit. Thus we wered precise 
about just what sorts of efficiencies we were attempting to gain by the synthesis of the 
two testing techniques. While we believe that significant efficiencies were achieved, further 
evaluation of DFMRELAY and comparison with the runtime characteristics of the individual 
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techniques are necessary. These further evaluations are tantamount to testing and evaluation 
of the DFMRELAY testing process. It is possible for this evaluation to be far more precise and 

definitive because our process development technique produced a requirements specification 
against which to evaluate our process. If it turns out that our process program is not optimal 
with respect to these requirements, we believe that our process will be easy to improve by 
using software maintenance techniques. 

We also note that the development of an actual, tangible process program facilitates empir­
ical evaluation of technique efficacy-both for the individual techniques and for the integrated 
technique. A problem with previous attempts at empirical evaluation of testing techniques 
has been that such evaluations have. tended to be quite subjective. This is particularly true 
of combinations of techniques. Our evaluations of such characteristics as speed of testing 
processes and tools greatly facilitated and rigorized by the fact that we can readily treat this 
activity as a code instrumentation and monitoring activity. 

Another advantage of process programming is that it provides clear incentives to halting 
the creation of larger, clumsier, and more overloaded testing tools. Software testing tool 
developers have long recognized that testing needs are large and demanding. Their response 
has typically been . to build growing, monolithic tools and techniques. We believe that the 
proper solution to the problem of meeting diverse testing needs is the development of process 
programs, constructed out of carefully designed, well-engineered, test tool modules. This 
research indicates how this might be done and, we believe, also indicates the subtle, but 

important, difference between devoting programming effort to constructing monolithic tools 
and devoting programming effort to developing testing processes. 

In continuing the development of larger, more complex tools, test tool developers pursue 
an essentially bottom-up approach to the problem of meeting diverse testing needs. They 
make it increasingly difficult to pick and choose from the constituent capabilities of the sys­
tems they build, as the systems are becoming more opaque and more tightly bound together 
internally. Process programming is a top-down approach to meeting software testers needs. 
It obliges testers to consider testing requirements, design effective solutions, and then code 
these solutions. Ultimately, this approach will fail if software testers have to design and code 
these solutions from scratch. On the other hand, we believe that it is possible for software 
testers to design these solutions out of reusable test tool modules and then assemble their 
custom testing processes by some modest amount of programming, with heavy reuse of test 

tool modules. In the described experiment, we found it rather easy to identify the modules 
needed to meet our needs. We believe that similar experiments can and should point the way 
to the assembly of a basis set of small, :flexible, efficient modules that would support a wide 
variety of testing objectives when reassembled under the guidance of a process pi:ogramming 
approach. 
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The very fact that software testing process programming compels software developers to 
think seriously early in the development lifecycle seems important, in itself. Software testing 
is often slighted in the software development process. This has been attributed to a variety of 
factors. We believe that an appropriate testing process program approaches solutions to many 
of these. A poor understanding of what testing should include is often the cause of confusion 

during the testing phase. A testing process program makes the scope of the testing process 
explicit. Failure to plan for the testing phase often results in over confidence in theresults of a 
few good test runs. A testing process program forces the user to plan for testing and makes it 
easy to see when the testing actually performed is less than what was originally planned. The 
expense and human intensity of the testing process often causes the testing phase to be cut 
short due to cost overrun. A testing process program can be designed to reduce overall testing 
costs through effective reuse of testing artifacts and processing steps. In addition, a testing 
process program can be designed to be highly proactive, thereby requiring less human effort. 
The process program can supervise much of the iterative, mechanical application of tools, 
storing of intermediate data and comparison of test results. As these are tedious activities, 
the use of the process program can potentially reduce the cost and improve the quality of 
the testing process itself. In addition, a testing process can be programmed to automatically 
trigger sequences of testing processes without human intervention and could possibly be used 
to optimize use of computing resources. For example, we are beginning experimentation with 
a process program designed to trigger regression testing whenever a software change is made. 

6 Conclusion 

We have presented the results of an experiment to use process programming to integrate 
DATA FLOW testing and RELAY. The process program we developed makes explicit the 

synergistic application of the two techniques and :management of the test objects produced by 
both techniques. Our process program was developed using ,a traditional software development 
approach entailing the writing of requirements, specifications, design, and code, as well as 

evaluation and maintenance. Our analysis of this experiment highlights numerous advantages 
of using process programming to integrate these techniques. Our experience encourages us 
to believe that this approach is more generally useful, and we intend to use it to develop a 
variety of other customized testing processes. It is significant to note that the TEAM testing 
environment, which is currently under development, also plans to use process programming 
to manage the integration of a diverse assortment of testing techniques [CRZ88]. 

We see this work as leading to the definition and implementation of a growing library of 
small, flexible, basic testing tool modules. While the one process program described here is 
specific to DATA FLowtesting and RELAY, it is clear that large portions of it may be re-used. 
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In our design, we successfully isolated generic. components and reusable information. In the 
future, we expect that, as we program increasing numbers and varieties of testing processes, 

we will identify a growing collection of such testing tool modules. This collection should grow 
into a library that is widely applicable in facilitating the development of other customized 
testing process programs. 

We intend to explore the development of software environment infrastructure support 
mechanisms to facilitate the efficient execution of such testing processes. In particular, 

·through the Arcadia software environment research project we are developing object man­
agement capabilities which should be effective in supporting the manipulation of software 
test objects [TBC+88]. Automatic triggering capabilities, which will support the execution 
of increasingly pro-active testing processes in which changes automatically trigger appropri­

ate activities. For example, we are developing testing process programs which specify that 
a change in a software product ( eg. code or requirements specification) automatically trig­
gers the generation of new or altered test case sets; and that a change in a test case set 
automatically triggers test runs on the new test cases. 

We believe that the results of our first experiment are encouraging, but that more such 
work is needed. We will be continuing to develop testing process programs. We expect to 

learn which techniques are most profitably integrated, what process programs should look like, 
what characteristics process programming languages should have, how well people interact 
with process programs, and what a comprehensive library of test tool modules should contain. 
We expect to provide more examples of custom testing process programs and evaluations of 
their strengths and weaknesses. 
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A DF"MRELAY Process Program Implementation 

A.1 APPL/ A Overview 

Our DFMRELAY process program is written in APPL/ A [Sut88], which is an extension to Ada. · 
APPL/ A provides constructs for the definition of relations that represent persistent data and 
independent, concurrent processes acting on the data. Complete APPL/ A programs can be 

translated into Ada, compiled, and executed. 
An APPL/ A relation declares a single tuple and associated entry and constraint dec­

larations in addition to standard Ada constructs. An entry is an operation on a relation; 
the possible operations are insert, update, delete, find, and select. A tuple element 
has mode of in, out, or in out. Components of mode in are created outside the tuple. 

Components of mode out (in out) are created (updated) inside of the tuple by way of the 
determines clause. Only components of modes in and in out may be inserted into the 
tuple. A constraint on a relation or on tuples and their attributes are conditions that must 
be satisfied by the relation. 

Section A.2 provides a Uses Chart for the modules specified in section A.3. The APPL/ A 
relations are complete (no bodies are required). We have omitted the entry calls for brevity 
and because they can be inferred from the tuple ~eclarations. The Ada package specifications 
are included for the procedural portions of our implementation, but the package bodies have 
been omitted. 

A.2 Uses Chart 

The following table shows a uses chart of the functional and data modules described in the 

low-level design. The code for these modules follows. 
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Module Uses 

DoDFTieRela.y U serinterface . ) 

ModuleToBeTested 
Int Rep 

ModuleToBeTested Int Rep 
ControlFlowGraph 
Data.Flow 
DataFlowObject 
Relay 
RelayObject 

DataFlowObject Test Case 
Data.Flow 
ControlFlowGraph 
Reasoning 
Path Object 
Data 

Data.Flow ModuleToBeTested 
ControlFlowGraph 
Reasoning 
DataFlowObject 
PathObject 

RelayObject ModuleToBeTested 
Relay 
ControlFlowGraph 
Test Case 
Reasoning 
Path Object 

ContextErrorO bject Reasoning 
Chain TransferO bject Path Object 

Reasoning 
Relay ModuleToBeTested 

ControlFlowGraph 
ContextErrorObject 
ChainTransferObject 
Reasoning 
Path Object 

Reasoning Data 
SequenceOfN odes 
Test Case 

SymEval SequenceOfN odes 
Reasoning 

Path Object SequenceOfN odes 
Reasoning 

PathSelector Path Object 
Test Case Data 

ControlFlowGraph 
Test Harness 

SequenceOfN odes ControlFlowGraph 
TestHarness Data 
Data 
ControlFlowGraph Int Rep 
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A.3 APPL/ A Code 

with Userinterface; 
with IntRep; 
with ModuleToBeTested; 

procedure DoDFtieRelay is 
ModuleCode : IntRep.Node; 
DataFlowCriterion : ModuleToBeTested.DataFlovCriterionType; 
RelayCriterion : ModuleToBeTested.RelayCriterionType; 

begin 
-- determines what code to test: 
Userinterface.get(ModuleCode); 
-- determines Data Flow criterion: 
Userinterface.get(DataFlowCriterion); 
-- determines Relay criterion: 
Userinterface.get(RelayCriterion); 

ModuleToBeTested.Insert(DataFlowCriterion, 
RelayCriterion, 
ModuleCode); 

Data Flov (note that some of this may execute concurrently 
with Relay) 

Determine Data Flow Adequacy criterion: 

determine def-use associations to be covered: 
this will be done automatically vhen a 
DataFlovCriterion is inserted. 

for each def-use association condition loop: 
generate def-use association conditions: 
these vill be done automatically when the DUAssnGenerator 
inserts the association into the tuple. 

Check Tests for Coverage: 
these will be checked automatically when the 
DUAssnGenerator inserts the association into the tuple 

Additional Testing Required: 
these will be checked automatically when the 
DUAssnGenerator inserts the association into the tuple. 

-- Trigger Testing For Each Newly-Selected Test Objects: 

23 
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-- this will be done automatically when any new 
-- test case object is inserted. 

end loop 

RELAY (note that some of this may execute concurrently 
with Data Flow) 

Determine Relay criterion: 

determine potential faults to be covered: 
this will be done automatically when a 
RelayCriterion is inserted. 

for each potential fault loop: 
-- Generate Revealing Conditions: 

this will be done automatically when any new 
RelayObjectTuple is created. 

Check Tests For Coverage: 
these will be checked automatically when the 

-- PotentialFaultGenerator inserts a new tuple. 

Additional Testing Required: 
this will be done when the 
PotentialFaultGenerator inserts a new tuple. 

Trigger Testing For Newly-Selected Test Case: 
this will be done automatically when any new 
test case object is inserted. 

end DoDataFlowRelay; 

with IntRep; 
with ControlFlowGraph; 
with DataFlow; 
with DataFlowObject; 
with Relay; 
with RelayObject; 

relation ModuleToBeTested is 

type RelayCriterion is array(natural range <>) of 
Relay.FaultClassType; 

type DataFlowCriterion is 
(AllDUPaths, AllUses, AllCUses, AllPUses, 
ContextCoverage, OrderedContextCoverage, 
Required2Tuples, Required3Tuples, Required4Tuples); 

24 
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type ModuleToBeTestedTuple is tuple 
DFCriterion in DataFlovCriterion; 
RCriterion 
Module Code 
StartNode 
FinalNode 
DFObj 
RelayObj 

end tuple; 

determines 

in RelayCriterion; 
in IntRep.Node; 
out ControlFlovGraph.Node; 
out ControlFlovGraph.Node; 
out DataFlovObject.DataFlovObjectTuple; 
out RelayObject.RelayObjectTuple; 

t.ModuleCode determines t.StartNode and t.FinalNode 
by ControlFlovGraph.Create(t.ModuleCode, 

t.StartNode, 
t.FinalNode); 

t.DFCriterion determines t.DFObj 
by DataFlov.DUAssnGenerator(t.DFCriterion); 

t.RCriterion determines t.RelayObj 
by Relay.PotentialFaultGenerator(t.RCriterion); 

end ModuleToBeTested; 

vith TestCase; 
vith DataFlov; 
vith ControlFlovGraph; 
vith Reasoning; 
vith PathObject; 
vith Data; 

relation DataFlovObject is 

type DataFlovObjectTuple is tuple 
DefUseAssn in Reasoning.Sequence; 
InitPath out PathObject.PathObjectTuple; 
ActivPath out PathObject.PathObjectTuple; 
DUAssnCond out Reasoning.CNFCondition; 
TestCaseList in out TestCase.AccessTest; 

end tuple; 

A DefUseAssn is a Def-Use Association, which is a path 
from a definition to a use. The DUAssnCond describes 
a path from the StartNode to the use. 

The DefUSeAssn is inserted by DataFlov.DUAssnGenerator. 
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The DUAssnCond is the combined condition from both the 
initial path and the active path. 

Data Flov vill search through all of the test case list 
trying to find a test case that vill satisfy the DUAssnCond. 

dependencies 

t.DefUseAssn determines t.InitPath 
by PathSelector.SelectSeq(StartRode t t.DefUseAssn.Rode, 

t. Ini tPath); 
determine the Initial Path: 
The selector vorks by selecting a node, calling the 
interpreter to interpret that node, and then calling 
the feasibility checker to make sure that the subpath 
created by the addition of that node is feasible. 
Thus, the InitPath returned vill be a feasible path. 

t.DefUseAssn determines t.ActivPath 
by PathSelector.SelectSeq(t.DefUseAssn, 

t .ActivPath); 
determine the Activating Sequence: 
The selector vorks the same vay for choosing the ActivPath. 

t.InitPath and T.ActivPath determines t.DUAssnCond 
by DataFlov.DUAssnCondGenerator(t.InitPath, 

t.ActivPath, 
t.DUAssnCond); 

-- Evaluate ActivPV and ActivPC in terms of InitialPV and 
check the feasibility of Initial.PC and Activ.PC 

-- to find the Association Condition. 

t.DUAssnCond determines t.TestCaseList by 
iterate over the existing test cases, 
if a test case satisfies the DUAssnCond then 
add it to the TestCaseList. 

declare 
AccTest : TestCase.AccessTest; 
Data : TestData.Data; 

begin 
for t in TestCase loop 

if Reasoning.Satisfies(DUAssnCond,t) then 
nev AccTest; 
AccTest.Test := t; 
AccTest.Rext := TestCaseList; 
TestCaseList := AccTest; 

end if; 
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end loop; 

if TestCaseList • null then 
nev TestCaseList; 
Data:= Reasoning.Select(t.DUAssnCond); 
TestCase.Insert(Data, 1111

); 

Test Case. Find( true, Data, 1111
, t. TestCaseList. Test) ; 

t.TestCaseList.Next :=null; 
end if; 

end; -- declare 
end DataFlovObject; 

with ModuleToBeTested; 
with ControlFlovGraph; 
with Reasoning; 
with DataFlowObject; 
with PathObject 

package DataFlow is 

procedure DUAssnGenerator(DFCriterion in 
ModuleToBeTested.DataFlowCriterion); 

Generate the Def-Use Associations. As each association 
is generated it is inserted into a DataFlovObjectTuple. This 
insertion triggers the ge~eration of the Def-Use Conditions. 

-- The exiting test cases are then checked to see if any of them 
-- satisy the conditions. If no test cases satisfy the condition, 
-- then a new test case is generated. 

procedure DUAssnCondGenerator 
(InitialPath : in PathObject.PathObjectTuple, 
ActivatingPath : in PathObject.PathObjectTuple, 
Condition : out Reasoning.CNFCondition); 

Determines the condition by 
evaluating the Activating Path Value and the 
Activating Path Condition in terms of the Initial Path Valu; 
and checking the feasibility of the 
(Initial Path Condition and Activating Path Condition). 

end DataFlov; 

with ModuleToBeTested; 
with Relay; 
with Test Case; 
with Reasoning; 
with PathObject; 
with ControlFlovGraph; 
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relation RelayObject is 

type RelayObjectTuple is tuple 
OrigLoc in ControlFlovGraph.Node; 
FaultClass in Relay.FaultClassType; 
InitPath out PathObject.PathObjectTuple; 
ContEC out ContextError.ContextErrorTuple; 
Chain Trans out ChainTransfer.ChainTransferTuple; 
RevealCond out Reasoning.CNFCondition; 
TestCaseList out TestCase.AccessTest; 

end tuple; 

OrigLoc is the point of the potential fault. 

FaultClass is the type of the potential fault. 

RevealCond is the revealing condition for that potential fault. 

-- TestCaseList is the test cases that satisfy the revealing condition. 
This is of mode out because only those test cases which satisfied 
the DUAssnCond for the OrigLoc could possibly 
satisfy the Revealing Condition. 

dependencies 

t.OrigLoc determines t.ChainTrans.TransRoute 
by Relay.SelectTransferRoute(t.OrigLoc, 

t.ChainTrans); 
-- Note: when an object of type ChainTransferTuple is 

inserted, as it is by SelectTransferRoute, 
Relay.SelectActivatingSequence is triggered by the 
ChainTransfer relation. Therefore, when this trigger 
is completed both the TransRoute and the Activating 
Sequence will be defined. After the Activating 
Sequence is defined, the ChainTC will be evaluated. 
Again, this is being triggered from within 
the Chain Transfer relation. 

In addition, the SelectSeq procedure may not 
be used because the transfer conditions must be 
instantiated for each node along the transfer route. 

t.OrigLoc determines t.InitPath 
by PathSelector.SelectSeq(ModuleToBeTested.StartNode 

&: t.OrigLoc, 
t.InitPath); 
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t.OrigLoc and t.FaultClass and 
t.InitPath determines t.ContEC 
by Relay.GenerateContextErrorCondition(t.OrigLoc, 

t.FaultClass, 
t. InitPath, 
t.ContEC); 

t.InitPath and t.ContEC and t.ChainTrans determines t.RevealCond 
by t.RevealCond := and(t.InitPath.PC, 

and(t.ContEC.CompTC, 
t.ChainTrans.ChainTC)); 

t.RevealCond determines t.TestCaseList by 
declare 

AccTest 
Data 
TestC 

begin 

TestCase.AccessTest: 
Data.TestData: 
TestCase.AccessTest: 

for t in DataFlowObject 
where t.DefUseAssn.Node = t.OrigLoc loop 

TestC := t.TestCaseList: 
while TestC /= null. loop 

if Reasoning.Satisfies(RevealCond,TestC.Test.all) then 
new AccTest: 
AccTest.Test := TestC.Test: 
AccTest.Next := TestCaseList; 
TestCaseList := AccTest: 

end if: 
TestC := TestC.Next: 

end loop: 
end loop; 

if TestCaseList = null then 
new TestCaseList: 
Data :m Reasoning.Select(t.RevealCond); 
TestCase.Insert(Cond, 1111

): 

TestCase.Find(true, Cond, 1111 ,t.TestCaseList.Test); 
t.TestCaseList.Next :=null; 

end if; 
end; -- declare 

end.RelayObject: 

vith Reasoning; 
relation ContextErrorObject is 
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type ContextErrorTuple is tuple 
ContextEC in Reasoning.CNFCondition; 
OrigC in Reasoning.CNFCondition; 
CompTC in Reasoning.CNFCondition; 

end tuple; 

end ContextErrorObject; 

vith PathObject; 
with Reasoning; 

relation ChainTrasferObject is 
A TransRoute is a series of nodes that may or may not have 
edges between them. The Seq of the ActivPath must be subpath, 
i.e. every node in the sequence is connected by an edge to the 

-- next node. 

type ChainTransferTuple is tuple 
TransRoute in Sequence; 
ActivPath out PathObject.PathObjectTuple; 
ChainTC out Reasoning.CNFCondition; 

end tuple; 

dependencies 

-- Select the transfer route 
t.TransRoute determines t.ActivPath 

by PathSelector.SelectSeq(t.TransRoute, 
t.ActivPath); 

t.ActivPath determines t.ChainTC 
by Relay.GenerateChainTransferCondition(t.ActivPath, 

end ChainTransferObject; 

with ModuleToBeTested; 
with ControlFlovGraph; 
with ContextErrorObject; 
with ChainTransferObject; 
vith Reasoning; 
vith PathObject; 

pack~ge Relay is 

type FaultClassType is 
(ConstantReferenceFault, 

t.ChainTC); 
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VariableReferenceFault, 
VariableDefinitionFault, 
BooleanOperatorFault, 
RelationalOperatorFault, 
ArithmeticOperatorFault): 

See [Rich86] for a description of these faults. 

procedure PotentialFaultGenerator 
(RCriterion: in out ModuleToBeTested.RelayCriterion): 

This generates all the potential faults and 
inserts them into a RelayObject. It is called from 

-- ModuleToBeTested. 

procedure GenerateContextErrorCondition 
(OrigLoc in ControlFlovGraph.Node, 
FaultClass 
InitPath 
Cont EC 

in FaultClassType, 
in PathObject.PathObjectTuple, 
out ContextErrorObject.ContextErrorTuple): 

The OrigLoc and the FaultClass are used to determines the 
the initial path. Once the feasibility of the InitialPC has been 
checked, the feasibility of the ContextEC (Con~ext Error Condition) 
is checked. It is called from RelayObject. 

procedure SelectTransferRoute 
(OrigLoc : in ControlFlovGraph.Node, 
TransRoute : out ChainTransferObject.ChainTransferTuple); 

Select a transfer route from the origination location (OrigLoc) 
to an output. It is called from RelayObject. 

procedure GenerateChainTransferCondition 
(TransRoute in PathObject.PathObjectTuple, 
Ch~inTC : out Reasoning.CNFCondition): 

Determine the Chain Transfer Conditions from the Transfer Route. 

In parallel to this, the OrigLoc and FaultClass 
are also used to determines the Chain (a ChainTransfer tuple). 
From the Chain, an activating path is selected. 

When the Chain~C (Chain Transfer Condition, which is 
the Path Condition and the computational transfer condition) 
is feasible, and a feasible ContextEC has been found, 
the ActivPV and ActivPC and the ChainTC are all 
re-evaluated in terms of the InitialPV (Initial Path Value). 

If InitialPC and ContextEC and ActivPC and ChainTC are all 
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feasible then a revealing condition has been found. Otherwise, 
either pick a nev initial path, or a nev transfer route, or both. 

end Relay; 

with Data; 
with SequenceOfNodes; 
with TestCase; 

package Reasoning is 

type CNFCondition is private; 
type Value is private; 

function Select(Condition : in CNFCondition) return Data.Datatype; 
Returns data that will satisfy Condition. Unsolvable is 

-- raised if Condition is not Feasible. 

unsolvable : exception; 
-- No data could be found to satisfy the CNFCondition 

function Feasible(Condition : in CNFCondition) return boolean; 

Returns FALSE if Condition describes the empty set; 
otherwise it will be TRUE. 

function Satisfies(Condition : in CNFCondition, 
TheData : in Data.Datatype) return boolean; 

-- Returns is TRUE if TheData satisfies Condition. 
private 

CNFCondition is a Conjunctive Normal Form Condition 
i.e. (av b v c)(d v e) 

-- Value is the symbolic value of a path. 
-- Each variable is described by a syntax tree of the operations upon 
-- that variable. 

subtype SymVar is string; 
for nov ve will keep the symbolic variables represented 
as strings. We expect to ~se a symbol table package 
in the future. 

type SymValNode; 

type AccessSymValueNode is access SymValNode; 

type SymValNode is record 
ValueNode : IntRep.Node; 
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Next : AccessSymValueNodei 
end record; 

type VarValuePair is record 
Var : SymVar i 
Val : SymValueNodei 

end recordi 

type Disjunct is array(natural range <>) of SymValNode; 

type CNFCondition is array (natural range <>) of Disjuncti 

type Value is array (natural range <>) of VarValuePairi 
end Reasoningi 

with SequenceOfNodesj 
with Reasoningi 
package SymEval is 

procedure Intetj:>ret(Path in SequenceOfNodes.Sequence, 
PathValues out Reasoning.Value, 
PathCondition out Reasoning.CNFCondition)j 

Symbolically interprets a path providing 
the path value and the path condition. 

procedure Eval(Values in Reasoning.Value, 
PathVal in out Reasoning.Value, 
PathCond in out Reasoning.CNFCondition)j 

Symbolically evalute PathVal and PathCond in terms of Values. 

end SymEvali 

with SequenceOfNodesj 
with Reasoning; 
with SymEval; 

relation PathObject is 

type PathObjectTuple is tuple 
Seq : in SequenceOfNodes.Sequence; 
PV : out Reasoning.Value; 

The PV is the set of symbolic values for the variables in the 
Seq(uence). 

PC : out Reasoning.CNFConditionj 
The PC is the path condition for execution of 

the nodes in Seq(uence). 
end tuple; 

33 



Richardson et.al.: Integrating Testing Techniques 

dependencies 
t.Seq determines t.PV and t.PC 

by SymEval.Interpret(t.Seq, t.PV, t.PC); 
Execute the sequence to determine the path value and 
the path condition. 

constraints 
every t in PathObject satisfies 

(t. Seq /= null); 
-- There is always a sequence 
end every; 

end PathObject; 

with PathObject; 
package PathSelector is 

type Sequence; 
type AccessSequence is access Sequence; 
type Sequence is record 

Node : ControlFlovGraph.Node; 
Next : AccessSequence; 

end record; 
-- Note: A sequence does not necessarily define a complete path. 

procedure SelectSeq(Skeleton : in NodeSeq, 
Path : out PathObject.PathObjectTuple); 

From a skeleton (a sequence of def - use,def - use,def ... use) 
select a complete path. 

end PathSelector; 

with Data; 
with ControlFlovGraph; 
with TestHarness; 

relation TestCase is 

type TestCaseTuple is tuple 
InputData 
OutputDesc 
ActualOutput 

end tuple; 

in Data.DataType; 
in Data.DataType; 
out Data.DataType; 

type AccessTest is access TestCaseTuple; 
type ListOfTests; 
type AccessTest is access ListOfTests; 
type ListOfTests is record 
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Test : AccessTestTuple; 
Next : AccessTest; 

end record; 

dependencies 
t.InputData and t.OutputDesc determines t.ActualOutput 

by TestHarness.Execute(t.InputData, 
t.OutputDesc, 
t.ActualOutput); 

constraints 
every t1 in TestCase satisfies 

no t2 in TestCase satisfies 
(t1.InputData = t2.InputData) and 
(t1.0utputDesc = t2.0utputDesc); 

end no; 
end every; 

end TestCase; 

with ControlFlovGraph; 
relation SequenceOfNodes is 

-- This defines a complete sequence 
type Sequence is tuple 

Node : in ControlFlovGraph.Node; 
Edge : in ControlFlovGraph.Edge := null; 
NextNode : in ControlFlovGraph.Node; 

end tuple; 

constraints 
every t in Sequence satisfies 

if t.Edge /=null then 
t.Edge.FromNode = t.Node; 
t.Edge.ToNode = t.NextNode; 

end if; 
end every; 

end SequenceOfNodes; 

with Data; 
package TestHarness is 

procedure Execute(InputData 
OutputDesc 
ActualOutput 

IllegalResult : exception; 

in Data.Datatype, 
in Data.Datatype, 
out Data.Datatype); 

The module, when run on the InputData, 
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returns a value in conflict vith the 
OutputDesc. 

NeverHalts exception; 
The module, when run on the InputData, 

does not halt within the time limit; 

TypeConflict exception; 
The types of InputData or OutputDesc do 

not match the types of the inputs or outputs of 
the module. 

end TestHarness; 

package Data is 
TypeDefinitions is defined in Debus, page 4. 

-- ImageOfValue is a variable length string vhich is the 
-- image of the value. 
type ConstraintClass is (RangeClass, ValueClass); 
type Datatype (Constraint : ConstraintClass := RangeClass) is 

record 
case Constraint is 

when RangeClass => 
Type of Range 
Start Range 
EndRange 

when ValueClass => 
TypeofValue 
The Value 

end case; 
end record; 

end Data; 

with IntRep; 
package ControlFlowGraph is 

Typ~Definitions; 

ImageOfValue; 
ImageOfValue; 

TypeDefinitions; 
ImageOfValue; 

This is a very simplified form of the proposed 
ControlFlovGraph package. 

subtype Node is IntRep.NodeNumber; 
type EdgeRecord; 
type Edge is access EdgeRecord; 
type EdgeRecord is record 

FromNode : Node; 
ToNode Node; 

end record; 

procedure Create(ModuleCode in IntRep.Node, 
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StartNode : out Node, 
FinalNode : out Node); 

-- This creates a Control Flov Graph representation of the module 
-- code. 

end ControlFlovGraph; 
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