
UC Irvine
ICS Technical Reports

Title
Integrating testing techniques through process programming

Permalink
https://escholarship.org/uc/item/0b0614bj

Authors
Richardson, Debra
Aha, Stephanie Leif
Osterweil, Leon

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0b0614bj
https://escholarship.org
http://www.cdlib.org/

(,-1

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Jntegrating Testing Techniques
Through Process Programming

(Technical Report 89-18)

Debra ~chardso~.
Stephanie Leif Aha

Leon Osterweil

May 1989

Information and Computer Science
University of California

Irvine, CA 92717

Abstract

-

Integration of multiple testing techniques is required to demonstrate high quality of
software. Technique integration has three basic goals: incremental testing capabilities,
extensive error detection, and cost-effective application. We are experimenting with the
use of process programming as a mechanism of integrating testing techniques. Having set
out to integrate DATA FLOW testing and RELAY, we proposed synergistic use of these
techniques to achieve all three goals. We developed a testing process program much as we
would develop a software product from requirements through design to implementation
and evaluation. We found process programming to be effective for explicitly integrat­
ing the techniques and achieving the desired synergism. Used in this way, process pro­
gramming also mitigates many of the other problems that plague testing in the software
development process.

This work was supported in part by the National Science Foundation under grants
CCR-8704311 and CCR-8996102, with cooperation from the Defense Advanced Research
Projects Agency (ARPA Orders 6100 and 6108, Program Code 7Tl0).

I

I ~

I ·'

. l'

Note to Reviewers

This paper describes an experiment in integrating testing techniques through process pro­
gramming. The body of the paper outlines our experimental objectives and the process
program development effort. The entire paper is a bit long, but includes as an appendix the
process program that we implemented. Although the code is not required to appreciate our
experiment, we felt it important to include it as convincing evidence of the value of process
programming in this endeavor. We do not believe it is necessary for the reviewer to read all
of the code to evaluate the paper effectively.

j

I-'

I •,

I I

(-

I

Richardson et.al.: Integrating Testing Techniques 1

1 Introduction

The need for high quality software is becoming increasingly acute, and recognition of this need
is becoming more widespread. While techniques such as superior development methodologies
can do much to improve software quality, there is still a prevailing consensus that software
quality can neither be obtained nor convincingly demonstrated without significant testing
activities. In recognition of this, software testing researchers and practitioners have developed
a spectrum of tools and techniques. As it becomes clear that these tools and techniques
have varying strengths and weaknesses, more attention is focussed on integrating tools and
techniques.

It is now widely agreed that there is no single, uniform approach to testing and that there
is no single, fixed tool or toolset that can be expected to mee~ the diversity of testing needs.
This is not a failing of the tools and techniques, but rather is integral to the nature of the
testing activity. While most practitioners agree that testing aims to determine and assure that
software products are of "high quality," most testing researchers now agree that there is no
absolute, fixed notion of what "software quality" means. Instead there is growing agreement
that software must satisfy a variety of qualities such as robustness, functional correctness,
efficiency, adaptability, and reliability. Different projects place different emphasis on different
qualities and accordingly have different testing requirements. Thus, we believe that software
testing should be viewed as a process whose goal is to satisfy testing requirements that must
be enunciated as part of the overall software product requirements.

We believe, therefore, that customized testing processes, which integrate multiple tech­
niques, are required to meet specific testing requirements. Effective integration entails more
than simply chasing the best testing techniques and coalescing them into a testing system.
Effective technique integration must provide more extensive quality assessment and error de­
tection than any single technique, support incremental use of multiple techniques, and yield
substantial savings over unintegrated, multiple technique use.

We suggest that testers approach the task of creating customized testing processes to
meet individual testing requirements by considering their task to be a software development
task. Ideally, software testers should have at their disposal large libraries of reusable software
testing techniques and process specifications and designs, along with tool fragments that could
be reused and recombined according to the dictates of their requirements. - Software testers
would then use typical software development techniques to create testing processes. They
would design, implement, and exe~ute their processes and finally evaluate them to assure
that stated testing requirements are fulfilled, maintaining their testing processes as necessary.

What has just been described is the notion of process programming applied to the testing
process. Process programming provides a formalism for defining relationships among tool
fragments and software objects in support of technique integration [Ost87]. A process program
manages the testing process by integrating testing techniques and manipulating software and
test objeCts generated by the techniques.

Richardson et. al.: Integrating Testing Techniques 2

Unfortunately, testers currently face a bewildering diversity of techniques and tools, which
rarely have well defined specifications and are rarely elegantly decomposed into modules.
Thus, current testing tools and techniques are poorly suited to being used to effectively
develop customized testing processes. In addition, testers are unfamiliar with how to exploit
software product development techniques to develop software processes. . .

This paper describes a research project aimed at evaluating our hypothesis that existing
software testing tools and techniques can be effectively integrated into larger testing processes
by decomposing them into smaller modular capabilities and programming these modules into
a larger integrated testing process. We attempted to integrate two existing testing techniques
- DATA FLOW testing [RW85, CPRZ86] and RELAY [RT88] - into an integrated testing
process, which we call DFMRELAY (DATA FLOW tie RELAY). We considered the synthesis of
the integrated technique to be a software development activity - i.e., we developed a process
program combining the two techniques. This paper describes the development activity we
engaged in, evaluates our results, and discusses how these results are applicable to the general
problem of developing testing process programs.

1.1 Objectives of Testing Technique Integration

Current testing systems offer widely ranging testing capabilities, but provide little or no
support for integration and choice of technique application. Testing is already a human
intensive effort without having to agonize over integration. Technique integration is vital is
to provide effective support for software testers with diverse testing requirements. Integration
provides a testing environment that is a cohesive set of testing components and test objects
working concertedly.

Appropriate technique integration increases error detection capabilities and provides more
extensive quality assessment than any single technique. Most testing techniques expedite
detection of particular error class(es). To achieve extensive error detection capabilities, we
must combine techniques that detect different, complementary sets of errors. Moreover, as
software must satisfy a variety of qualities, techniques that assess different software qualities
must be integrated to meet overall testing objectives.

Multiple testing techniques should be applied in an incremental fashion. It is seldom cost­
effective to begin testing by using an expensive, comprehensive technique. Such techniques
are better used to demonstrate high reliability after some confidence has been achieved.
Otherwise, unnecessary, repeated application of the expensive technique will be required
after correcting errors that might have been found with a less costly technique. It is preferred
to integrate techniques to provide testing "levels" that range from low cost, low powered
capabilities to high cost, high powered capabilities. Higher-cost techniques can profitably
use information gained by lower-cost technique application. Effective technique integration
enables this approach.

Substantial savings in computation and human effort can be achieved through technique

-1

I I

I -:

' r

I

Richardson et.al.: Integrating Testing Techniques 3

integration that avoids duplication of effort and takes advantage of possible areas of cooper­
ati.on. Producing the information needed to select test case's is a major cost of any testing
technique, regardless of the selection criterion. Integrating techniques requiring some com­
mon information allows that information to be shared and reduces cost in technique appli­
cation. Integrating techniques requiring some common functionality allows tool fragments to
be shared and reduces cost in tool development. Testing effort is also reduced by integrating
techniques whose criteria might be satisfied by some common test cases. Moreover, explicit
technique integration improves software quality by minimizing discontinuities in user activity,
which reduces testing efficacy.

We carried out experimentation aimed at evaluating these ideas by integrating
DATA FLOW testing and RELAY to achieve adequate code coverage augmented by more com­
prehensive error detection. These sophisticated testing techniques are prime candidates for
integration, because they address different error classes yet share common functionality and
use common information. Both are based on the same flow graph representation and both
require symbolic evaluation and reasoning capabilities for test data selection. RELAY can,
moreover, profitably employ the test cases generated by DATA FLOW testing, which is the
less costly technique, thus promoting incremental testing. We hypothesize that software
testers will not infrequently encounter the need to integrate such techniques and that effec­
tive integration of them can achieve significant runtime efficiencies through the reuse of shared
code and shared intermediate results. We therefore performed an experiment to verify this
hypothesis.

2 Requirements for Integrating
DATA FLOW and RELAY Testing

In our experiment, the testing requirements were that testing provide adequate control
and data fl.ow coverage and that comprehensive error detection be provided. We selected
DATA FLOW testing to satisfy the first requirement, allowing the user to specify the desired
adequacy criterion, and RELAY to satisfy the second, allowing the user to specify fault classes
for which error detection must be guaranteed. Thus, our testing requirements are that test­
ing satisfy both the DATA FLOW and the RELAY criteria. We proceeded to develop a testing
process that integrates these two techniques. We approached this process development as we
would approach the development of product software - namely by identifying requirements,
then developing specifications, design, and finally code. In these sections, we summarize our
experiences and indicate the software products we produced.

The integrated testing process must meet two sorts of requirements - functional require­
ments, which are tantamount to the functionality of the two testing techniques themselves,
and performance requirements, which require that the integrated process be more efficient
(faster and cheaper) than the combination of the individual processes. As will be seen in later
sections, this latter performance requirement drives development strongly in the direction of

Richardson et. al.: Integrating Testing Techniques 4

sharing software artifacts that are common to the two techniques. This section describes
the functional requirements that characterize DATA FLOW testing and RELAY and indicates
performance characteristics that must be achieved in an acceptable integration of the two
techniques.

2.1 DATA FLOW Functional Requirements

DATA FLOW testing entails exercising a set of paths that cover particular uses of defined
variables. Rapps and Weyuker define a family of criteria for selecting some or all subpaths
from a definition to some or all uses of that definition[RW85]. Ntafos' family of criteria requires
variable-length chains of alternating definitions and uses [Nta84]. The family of criteria due
to Laski and Korel forces the selection of different combinations of definitions that reach a
statement, where many variables may be referenced [LK83]. Clarke et.al. present a uniform
model for defining and comparing the three families[CPRZ86]. Our testing process must
develop test path sets that meet one or more of these adequacy criteria and use these paths
in the testing process. It should be observed that these DATA FLOW criteria are treated
mostly as adequacy measures in past work, but that we consider them as test data selection
techniques as we1J.

A DATA FLOW criterion determines a set of def-use associations1 , where a def-use as­
sociation is a sequence of definitions that must reach uses upon execution of a test datum.
In our experiment, we focused_on one specific criterion - Rapps' and Weyuker's all-uses.
All-uses requires coverage of at least one definition-clear subpath from each definition to each
use reachable by that definition. Thus, the d~f-use associations for the all-uses criterion are
simply def-use pairs. A def-use association condition describes constraints on input data
that would execute a definition-clear subpath covering the association. To select test data
satisfying a DATA FLOW criterion, all def-use association conditions must be solved.

2. 2 RELAY Functional Requirements

RELAY is a model for fault-based testing and analysis [RT88]. Fault-based testing techniques
select test data that expedites detection of particular types of faults in source code. Fault­
based testing techniques typically generate test data that distinguishes the tested program
from alternatives that differ by the defined types of faults. A common assumption is that the
tested program is "almost correct" and is faulty by at most a single definable fault 2 •

RELAY develops revealing conditions that are necessary and sufficient for detection of faults
from selected fault classes. A source-cede fault must originate an error during execution

1 The term def-use association is borrowed from Rapps and Weyuker, but can be generalized to refer to
Ntafos' chains or the definition combinations of Laski and Korel.

2 This assumption essentially implies that the faults in the tested program can be detected by distinguishing
it from the afore-mentioned alternatives.

. !

-1

I

. I
.I 1

i

I

I

I c

I (

I -:

1- ';

\.

Richardson et.al.: Integrating Testing Techniques 5

that transfers through all computations and data fl.ow until it is revealed as an observable
failure (e.g., upon output or at some other oracle point). For a potential fault, a revealing
condition consists of an originating context error condition and a chain transfer condition.

The context error condition guarantees origination (the origination condition) and transfer
through the computations in the statement containing the fault (the computational transfer

condition). The chain transfer condition guarantees transfer along some def-use chain (the
data flow transfer condition) to failure and computational transfer at each use in the chain.
The RELAY model is described more completely elsewhere [RT88].

A RELAY criterion specifies source code locations and class(es) of potential faults that
may occur at those locations. For example, one such RELAY criterion is variable reference
faults for the entire program; another is conditional operator faults in loop conditions. To
select test d~ta that guarantees fault detection for a RELAY criterion, revealing conditions
for each specified potential fault (fault class and location) are generated and then must be
solved. In our experiment, we focused on one specific criterion - all variable reference faults.

2.3 DFMRELAY Performance Requirements

Important hypotheses of this research are that the functional characteristics of DATA FLOW
testing and RELAY can be combined to do incremental testing with increased error detection
capabilities and that this can be done in such a way that the resulting process is less costly than
independently applying the two component techniques. We take this cost characterization as
a requirement of our testing process as well.

These performance requirements seemed feasible and generate several subgoals. First,
information required by both techniques must be shared rather than generated independently
by the techniques. Second, we use the techniques incrementally and require that DATA FLOW
testing be completed before RELAY. As a fault-based technique, RELAY requires some con'."
fidence that the software is "almost correct". By employing DATA FLOW testing first, we
demonstrate this proposition. Third, we require that unnecessary test case generation be
avoided by checking those test cases generated by DATA FLOW testing for reusability by
RELAY. Since DATA FLOW testing is computationally cheaper than RELAY, this will reduce
costs. Fourth, any subfunctions required commonly by the two techniques should be accom­

plished by shared tool fragments. Fifth, the combination of DATA FLOW testing and RELAY
enhances error detection. DATA FLOW testing expedites detection of erroneous uses of defi­
nitions and is complete up to the chosen adequacy criterion. DATA FLOW does not, however,

guarantee that such an error is reflected in the output. RELAY guarantees the detection of
potential faults identified by the chosen RELAY criterion, but this criterion does not neces­
sarily require module "coverage" - that is, only certain statements and fault classes might
be selected. Thus, RELAY complements DATA FLOW by more fully testing the actual compu-

Richardson et.al.: Integrating Testing Techniques 6

tations in which a definition is used and ensuring that errors are observed as failures. And,
DATA FLOW complements RELAY by providing a more coverage-oriented criterion. Thus, our
requirements force the two techniques to be integrated in a way that is more cost-effective

. than applying both independently.

3 Process Program Specification

In our experiment, we next developed specifications for the integrated testing process. The
specification formalism we used to express the functional characteristics of the two major
functional components consists of devising a pre- and post-condition pair with a minimal
description of functionality

pre-condition: specifies the conditions under which the computation of this functional capa­
bility can be used;

post-condition: specifies the state that can be assumed to have been achieved after computa­
tion of this functional capability;

function: serves as the high-level specification for the process program to be used to achieve
the functional cap_ability.

3.1 DATA FLOW Testing Process Specification

DATA FLOW testing is specified as follows:

pre-condition: DATA FLOW testing can be applied to a module that has been translated to an
internal representation and represented by a control flow graph. Any persistent test set
(possibly empty) is also input.

post-condition: DATA FLOW testing provides a persistent test set that satisfies a selected
DATA FLOW adequacy criterion.

function: For a chosen DATA FLOW adequacy criterion, determine the required def-use associ­
ations, mark those covered by data in the persistent test set, and augment the persistent
test set to cover the remaining def-use associations.

3.2 . RELAY Testing Process Specification

RELAY testing is specified as follows:

I

I

'· I

I

.. !

_'

~ ·1

i

j

I ,-

I (

I ,,'

I I

Richardson et.al.: Integrating Testing Techniques 7

pre-condition: RELAY can be applied to a module that has been translated to an "internal
representation anq represented by a control flow graph. A_ny persistent test set (possibly
empty) is also input.

post-condition: RELAY provides a persistent test set that guarantees fault detection for the
chosen RELAY criterion.

function: For a chosen RELAY criterion, determine the potential faults, mark those detected
by data in the persistent test set, and augment the persistent test set to guarantee
detection of the remaining potential faults.

3.3 D~ELAY Process Specification

Dft>4RELAY is specified as follows:

pre-condition: DFl><tRELAY can be applied to a module that has been translated to an internal
representation and represented by a control flow graph. Any persistent test set (possibly
empty) is also input.

post-condition: DFMRELAY provides a persistent test set that satisfies a selected DATA FLOW
adequacy criterion and guarantees fault detection for the chosen RELAY criterion.

function: For a chosen DATA FLOW adequacy criterion, determine the required def-use associ­
ations, mark those covered by data in the persistent test set, and augment the persistent
test set to cover those remaining. For a chosen RELAY criterion, determine the poten­
tial faults, mark those detected by data in the persistent test set, and augment the
persistent test set to guarantee detection of those remaining.

4 Process Program Design

We continued to develop th~ DFl><tRELAY process program by first constructing a high-level
design that efficiently and synergistically combines DATA FLOW and RELAY. We then itera­
tively refined the design by further developing the constituent techniques and their integration.
The low-level design identifies common tool fragments and shared objects as well as inter­
fragment, inter-object, and object-fragment relationships. Because of this, the design shows

how we achieved the required functionality while also meeting performance requirements of
lower total testing process execution time as well as the requirements of reduced develop­
ment costs. We describe the functionality in an informal, structured English PPDL (Process
Program Design Language) and show relationships in object/control flow diagrams.

Richardson et. al.: Integrating Testing Techniques 8

4.1 D FMRELAY Process High-Level Design

DFl><tRELAY can not be used unless its pre-condition is satisfied. This pre-condition states
that the module is translated into an internal represensation and represented by a control
fl.ow graph. Otherwise, front-end analysis tool components are activated to generate the inter­
nal representation and control flow graph. Our process program begins with the application
of DATA FLOW testing. Given a selected DATA FLOW adequacy criterion, each def-use asso­
ciation that must be covered is identified and a Def-Use association condition is generated.
These associations are marked as having been covered or not by the user-selected test data,
and each specific test datum that covers the association becomes an attribute of the associa­
tion. Additional test data is selected to cover the unmarked associations, and the appropriate
attribution of data to association is made. Now, RELAY comes into play. Given a selected
RELAY criterion, each potential fault (origination location and fault class) that must be de­
tected is identified and a revealing condition is generated. Rather than simply select data for
the revealing condition, we determine if any of the previously selected test data satisfies the
condition. We need not check all data, only the data attributed to the def-use associations
on the transfer route. If Offutt 's claim that most data that satisfies the origination condition
is effective at transferring the error3 [DGK+ss], then this should be an extremely effective,
synergistic integration of DATA FLOW testing and RELAY.

As an example of the integrated use of DATA FLOW testing and RELAY consider the
module shown in figure 1. The required def-use associations and conditions for all-uses are
shown in Table 1. These def-use associations are covered by the paths (ni, n2, n3, n4, n Jinal)

and (n1, n2, n3, ns, nfinaz). A test data set that covers these paths is {(x = 4, y = 1); (x =
O, y = O)}. Table 1 shows the attribution of test data to def-use associations. In fact,
this set would be a likely choice as most constraint solution schemes select the "simplest"
solution[RC85]

Now, suppose that the user selects incorrect variable reference as the fault class. One such
potential fault occurs at node n2 , where RELAY postulates that the reference to x should be
to y.4 The origination condition is (x =/; y) and the computational transfer condition at n2 is

(y =/; 0). Thus, the co~text error condition is (x =/; y) and (y =/; 0). The transfer route for this
fault is (n2 ••• n4), and the chain transfer condition is (x * y = 4). The revealing condition,
therefore, is (x =/; y) and (y =/; 0) and (x*Y = 4). Checking the test data attributed to the def­
use associations that intersect this transfer route demonstrates that this revealing condition
is satisfied by the test datum (4,1). On the other hand, for an incorrect variable reference

. to x at node n3 , the transfer route is (n3 .. . ns) and the revealing condition is (x =/; y) and

(x * y =/; 4). Checking the test data attributed to the def-use associations that intersect this

3 Our terminology, not Offutt's
4 This assumes that x and y are the only variables in the module.

, I·

; l

! I

\-

I ',

I-,_,

' : .

•, ,,,

\'

I \

Richardson et. al.: Integrating Testing Techniques

ni -input(x,y);
n2

n3

n4
ns

n6

dn(v)
cun(v)
pun(v)

x := x *Yi
y := 2 * x +'Yi
if x = 4 then

output(x);
else

output(y);
end if;

True

cus(x)

stands for definition of v at node n
stands for computation-use of v at node n
stands for predicate-use of v at node n

di(x), di(Y)

d3(y),cu3(x),cu3(y)

cu6(Y)

Figure 1: Control-fl.ow Graph of Error-Module

9

Richardson et.al.: Integrating Testing Techniques

def-use association
di (x) ... cu2(x)
di(Y) ... cu2(Y)
di(Y) ... cu3(y)
d2 (X) ••• CU3 (X)

d2 (x) ... pu4 (x)
d2(x) ... 1pu4(x)
d2(x) ... pus(x)
d3(Y) ... cu6(Y)

condition
true
true
true
true

(x*y=4)
(x*y#4)
(x*y=4)
(x*y#4)

attribute test data
(4,1) (0,0)
(4,1) (0,0)
(4,1) (0,0)
(4,1) (0,0)
(4,1)
(0,0)
(4,1)
(0,0)

Table 1: Required Def-Use Associations

10

transfer route demonstrates that this revealing condition has not been satisfied. RELAY must
select test data by solving the revealing condition.

Figure 2 provides a high-level design of the DFMRELAY process in a structured English
PPDL. Figure 3 illustrates this process and the relationships among the tool fragments and
objects. Note that this is not strictly a sequential process; many sub-activities can go on in
parallel. This parallelism is expressed in the code through control-flow primitive actions which

we call triggers. A triggeris a .signal that causes the activation of a parallel, asynchronous
task, which is assumed to run to termination independent of the activity which triggered it.

4.2 DATA FLOW Testing Process Design

We refined our design by developing the major step in the DATA FLOW testing process:
the generation of the def-use association conditions. A path selection component selects an
initial path (a sequence of nodes through the control flow graph from the start node to the

definition) and an activating path for the def-use association (a def-clear sequence of nodes
from the definition to the use). A symbolic evaluator interprets each node sequence in terms
of symbolic values, providing a path condition and path values that represent the function of

the path and is also used to re-evaluate a path representation in terms of modified symbolic
values. A reasoning component checks [path] condition feasibility (possibly incrementally
during interpretation). When a condition is infeasible, the path selection component must

modify at least one selected path (depending on where and why the infeasibility occurred).
Figure 4 shows a high-level design of the def-use association condition generator.

, I.

'' I

I
!

J

I ,'

t - .. ~

Richardson et. al.: Integrating Testing Techniques

-- Determine DATA FLOW Coverage Requirements:
choose DATA FLOW adequacy criterion;
determine def-use associations to be covered;
for each def-use association loop

generate def-use association condition;
-- Check Tests for Coverage:
for each test case in the persistent test set loop

if test case satisfies the def-use association condition then
mark def-use association as satisfied by test case;

end if;
end loop;
if def-use association not marked as satisfied then

-- Additional Testing Required:
select test data that satisfies the def-use association condition;
mark def-use association as satisfied by this test case;
trigger testing for newly-selected test case;

end if;
end loop;
-- Determine RELAY Requirements:
choose RELAY criterion;
determine potential faults to be covered;
for each potential fault loop

generate revealing condition;
-- Check Tests for Coverage:
for each test case marked by the first def-use association

along the transfer route loop
if test case satisfies the revealing condition then

mark revealing condition as satisfied by test case;
end if;

end loop;
if revealing condition not marked as satisfied then

-- Additional Testing Required:
select test data that satisfies the revealing condition;
mark revealing condition as .satisfied by this test case;
trigger testing for newly-selected test case;

end if;
end loop;

Figure 2: High-Level Design of the DFMRELAY Process

11

Richardson et. al.: Integrating Testing Techniques

Choose

Data Flow

Criterion

Determine

Def-Use

Associations

Def-Use

Association

Condition

Generator

, ,

, , , ,

, ,

, , , ,

, , , ,
I , ,

I
I

I
I

I
I

I , ,
, , , ,

I
I ,

, ,

DataFlowObjects

DefUseAssn;

DUAssnCond;

I
I

I
I

TestCaseList

RelayObjects

OrigLoc;

Fault Class;

Reve~Cond;

Test CaseList

, , , ,

Data Flow

Test Data

Checker

Test

Test Cases

InputData;

OutputDesc;

Actual Output

' ' I
I

I
I

' ' I
I

I
I

' '
Select

Test

Data

Figure 3: D~ELAY Process

Choose

RELAY

Criterion

Determine

Potential

Faults

Revealing

Condition

Generator

RELAY

Test Data

Checker

12

Relationships

Fragment-Fragment

Object-Fragment

Object-Object

-i

I <

I I

I ~·

(_

I - ,

I -

Richardson et. al.: Integrating Testing Techniques

select Initial.Seq

symbolically interpret

Initial.Seq

& check feasibility

of Initial.PC

DataFlowOb · ect

DefUseAssn;
DUAssnCond

Initial

.. Seq;

PV;
PC

I
I
I
I
I I
I I
I I
I I
I I
I I
I ,'
I I
I I
I I
I I

Activ

Seq;
PV;
PC

symbolically evaluate Activ.PV and Activ.PC

in terms of Initial.PY

& check feasibility

of Initial.PC/\ Activ.PC

select Activ .Seq

symbolically interpret

Activ.Seq

& check feasibility

of Activ.PC

Relationships

13

infe ible

Fragment-Fragment

Object-Fragment

Object-Object

Figure 4: DATA FLOW: Def-Use Association Condition Generator

Richardson et. al.: Integrating Testing Techniques 14

4.3 RELAY Testing Process Design

We also refined the major step in the RELAY process: the generation of revealing condition
generations. As with the similar step in the DATA FLOW process, a path selection component
selects an initial path, a transfer route (a sequence of nodes through which the fault transfers

to output), and an activating path for the transfer route. A symbolic evaluator interprets
these paths and later re-evaluates them. A reasoning component checks condition feasibility.
Figure 5 shows a high-level design of the revealing condition generator.

4.4 DFMRELAY Process Low-Level Design

In developing the modular decomposition of the DFMRELAY process, we identified the fol­

lowing major functional and data modules. Note that many of these are shared by the two
techniques.

Functional Modules

• Internal representation translator: must be triggered if the source module has not
yet been translated to internal representation

• CFG Generator: mt~st be triggered if the source tnodule has not yet been repre­
sented as a control flow graph;

• Path Selector: given nodes to be traversed (e.g., initial node to internal node,
def-use pair, transfer route) selects a sub-path covering those nodes;

• Symbolic Evaluator: interprets a path in terms of symbolic values or re-evaluates
a symbolic expression in terms of other symbolic values;

• Reasoning Component: checks feasibility of a COD:dition, checks input data for
condition satisfaction, and selects input data that satisfies a condition;

• DATA FLOW Testing: allows user to "start up" DATA FLOW testing by choosing a
DATA FLOW adequacy criterion, determines the required def-use associations, and

gener~tes the def-use association conditions;

• RELAY: allows user to "start up" RELAY by choosing a RELAY criterion, determines
the potential faults, and generates the revealing conditions;

Data Modules

• attributed parse tree representation: internal form of the source code (accessed by

virtually all components);

1 .''

I ,

Richardson et.al.: Integrating Testing Techniques

--------.....----------.- - - Initial

infe ible

select Initial.Seq

symbolically interpret

Initial.Seq
& check feasibility of

Initial.PC

Seq;
PV;
PC

I I
I I

I I
I I

I I
I I

I I

,' I
I I

I I

RelayObject

OrigLoc;
Fault Class;

RevealCond

Chain
/~ ! ~----£

infe ible
, I

1 Context

symbolically evaluate
Context.OrigC and Context.CompTC

& check feasibility of

I

: rrorCon
'I (OrigC;

Comp TC)

Activ;
TransCond

,,
t'
I
I
I
I
I
I
I
)

select
Chain. TransRoute

select

Chain.Activ .Seq

Seq;
PV;
PC

15

Context.ErrorCond

I
I
I
I
I
I
I

symbolically interpret Activ .Seq

symbolically evaluate Chain. Trans Con

& check feasibility of

Activ .PC /\ Chain. TransCond

)

symbolically evaluate

Chain.Activ.PV and Chain.Activ.PC and Chain.TransCond
in terms of Initial.PY

& check feasibility of Initial.Pc/\ Context.ErrorCond

/\ Chain.Activ .PC /\ Chain. TransCond

Figure 5: RELAY: Revealing Condition Generator

Relationships

Fragment-Fragment

Object-Fragment

Object-Object ·

Richardson et. al.: Integrating Testing Techniques 16

• Control Flow Graph Representation: graph representation of the source code (ac­
cessed by virtually all components);

• DATA FLOW Objects: def-use association, def-use association condition, and rela­
tionship to test case;

• RELAY Objects: potential fault, revealing condition, and relationship to test case;

• Persistent Test Set: maintains all generated test cases, test case execution results,
and relationships to test requirements;

• Test Harness: surrounds the module and executes it on a test case, updating
the persistent test set with actual output, and determining if an error has been
revealed.

The Appendix provides the code for part of the Data Flow l><l RELAY process program.

5 Process Program Analysis

We used process programming to explicitly integrate DATA FLOW testing and RELAY as
an experiment. We wanted to study how process programming could be used to guide the
development of customized testing processes to meet specific stated testing requirements.
The development of the process program helped us devise a hybrid testing process which
combines DATA FLOW testing and RELAY in a highly efficient way, that enables effective
reuse of intermediate data and common subprocessing steps.

Our process program satisfies the following goals:

1. Information required by both techniques is shared;

2. DATA FLOW testing is completed before RELAY;

3. Tests are not duplicated and unnecessary tests are not generated;

4. Similar subactivities are accomplished by shared tool fragments;

5. Error detection is increased.

We observe a number of benefits arising from th~ use of software development techniques
to create this process program. In that we began by studying the requirements for the
synthesized process, we were forced to make our testing goals explicit. Thus we wered precise
about just what sorts of efficiencies we were attempting to gain by the synthesis of the
two testing techniques. While we believe that significant efficiencies were achieved, further
evaluation of DFMRELAY and comparison with the runtime characteristics of the individual

-(

-1

I :

l _,.

I-•:

1- ~.:

(- •.'

' (,

' i

I - -,

Richardson et.al.: Integrating Testing Techniques 17

techniques are necessary. These further evaluations are tantamount to testing and evaluation
of the DFMRELAY testing process. It is possible for this evaluation to be far more precise and

definitive because our process development technique produced a requirements specification
against which to evaluate our process. If it turns out that our process program is not optimal
with respect to these requirements, we believe that our process will be easy to improve by
using software maintenance techniques.

We also note that the development of an actual, tangible process program facilitates empir­
ical evaluation of technique efficacy-both for the individual techniques and for the integrated
technique. A problem with previous attempts at empirical evaluation of testing techniques
has been that such evaluations have. tended to be quite subjective. This is particularly true
of combinations of techniques. Our evaluations of such characteristics as speed of testing
processes and tools greatly facilitated and rigorized by the fact that we can readily treat this
activity as a code instrumentation and monitoring activity.

Another advantage of process programming is that it provides clear incentives to halting
the creation of larger, clumsier, and more overloaded testing tools. Software testing tool
developers have long recognized that testing needs are large and demanding. Their response
has typically been . to build growing, monolithic tools and techniques. We believe that the
proper solution to the problem of meeting diverse testing needs is the development of process
programs, constructed out of carefully designed, well-engineered, test tool modules. This
research indicates how this might be done and, we believe, also indicates the subtle, but

important, difference between devoting programming effort to constructing monolithic tools
and devoting programming effort to developing testing processes.

In continuing the development of larger, more complex tools, test tool developers pursue
an essentially bottom-up approach to the problem of meeting diverse testing needs. They
make it increasingly difficult to pick and choose from the constituent capabilities of the sys­
tems they build, as the systems are becoming more opaque and more tightly bound together
internally. Process programming is a top-down approach to meeting software testers needs.
It obliges testers to consider testing requirements, design effective solutions, and then code
these solutions. Ultimately, this approach will fail if software testers have to design and code
these solutions from scratch. On the other hand, we believe that it is possible for software
testers to design these solutions out of reusable test tool modules and then assemble their
custom testing processes by some modest amount of programming, with heavy reuse of test

tool modules. In the described experiment, we found it rather easy to identify the modules
needed to meet our needs. We believe that similar experiments can and should point the way
to the assembly of a basis set of small, :flexible, efficient modules that would support a wide
variety of testing objectives when reassembled under the guidance of a process pi:ogramming
approach.

Richardson et. al.: Integrating Testing Techniques 18

The very fact that software testing process programming compels software developers to
think seriously early in the development lifecycle seems important, in itself. Software testing
is often slighted in the software development process. This has been attributed to a variety of
factors. We believe that an appropriate testing process program approaches solutions to many
of these. A poor understanding of what testing should include is often the cause of confusion

during the testing phase. A testing process program makes the scope of the testing process
explicit. Failure to plan for the testing phase often results in over confidence in theresults of a
few good test runs. A testing process program forces the user to plan for testing and makes it
easy to see when the testing actually performed is less than what was originally planned. The
expense and human intensity of the testing process often causes the testing phase to be cut
short due to cost overrun. A testing process program can be designed to reduce overall testing
costs through effective reuse of testing artifacts and processing steps. In addition, a testing
process program can be designed to be highly proactive, thereby requiring less human effort.
The process program can supervise much of the iterative, mechanical application of tools,
storing of intermediate data and comparison of test results. As these are tedious activities,
the use of the process program can potentially reduce the cost and improve the quality of
the testing process itself. In addition, a testing process can be programmed to automatically
trigger sequences of testing processes without human intervention and could possibly be used
to optimize use of computing resources. For example, we are beginning experimentation with
a process program designed to trigger regression testing whenever a software change is made.

6 Conclusion

We have presented the results of an experiment to use process programming to integrate
DATA FLOW testing and RELAY. The process program we developed makes explicit the

synergistic application of the two techniques and :management of the test objects produced by
both techniques. Our process program was developed using ,a traditional software development
approach entailing the writing of requirements, specifications, design, and code, as well as

evaluation and maintenance. Our analysis of this experiment highlights numerous advantages
of using process programming to integrate these techniques. Our experience encourages us
to believe that this approach is more generally useful, and we intend to use it to develop a
variety of other customized testing processes. It is significant to note that the TEAM testing
environment, which is currently under development, also plans to use process programming
to manage the integration of a diverse assortment of testing techniques [CRZ88].

We see this work as leading to the definition and implementation of a growing library of
small, flexible, basic testing tool modules. While the one process program described here is
specific to DATA FLowtesting and RELAY, it is clear that large portions of it may be re-used.

\ (

I ~ ;

j

J

I',

I-'

I '"

\ _,.'

, I

I.'

, I

I -,

Richardson et. al.: Integrating Testing Techniques 19

In our design, we successfully isolated generic. components and reusable information. In the
future, we expect that, as we program increasing numbers and varieties of testing processes,

we will identify a growing collection of such testing tool modules. This collection should grow
into a library that is widely applicable in facilitating the development of other customized
testing process programs.

We intend to explore the development of software environment infrastructure support
mechanisms to facilitate the efficient execution of such testing processes. In particular,

·through the Arcadia software environment research project we are developing object man­
agement capabilities which should be effective in supporting the manipulation of software
test objects [TBC+88]. Automatic triggering capabilities, which will support the execution
of increasingly pro-active testing processes in which changes automatically trigger appropri­

ate activities. For example, we are developing testing process programs which specify that
a change in a software product (eg. code or requirements specification) automatically trig­
gers the generation of new or altered test case sets; and that a change in a test case set
automatically triggers test runs on the new test cases.

We believe that the results of our first experiment are encouraging, but that more such
work is needed. We will be continuing to develop testing process programs. We expect to

learn which techniques are most profitably integrated, what process programs should look like,
what characteristics process programming languages should have, how well people interact
with process programs, and what a comprehensive library of test tool modules should contain.
We expect to provide more examples of custom testing process programs and evaluations of
their strengths and weaknesses.

Richardson 'et.al.: Integrating Testing Techniques 20

References
[CPRZ86] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. An investigation of data

flow path selection criteria. In Proceedings of the ACM SIGSOFT/IEEE Workshop on Software

Testing, pages 23-32, Banff, Canada, July 1986.

[CRZ88] Lori A. Clarke, Debra J. Richardson, and Steven J. Zeil. TEAM: A support environment for testing,
evaluation, and analysis. In Proceedings of ACM SIGSOFT '88: Third Symposium on Software
Development Environments, pages 153-162, Boston, MA, November 1988.

[DGK+88] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. Offutt. An extended

overview of the mothra software testing environment. In Proceedings of the ACM SIGSOFT/IEEE

Second Workshop on Sofware Testing, Analysis and Verification, Banff, Canada, July 1988. IEEE.

[LK83]

[Nta84]

[Ost87]

[RC85]

[RT88]

[RW85]

[Sut88]

Janusz W. Laski and Bogdan Korel. A data :flow oriented program testing strategy. IEEE Trans­

actions on Software Engineering, SE-9(3):347-354, May 1983.

Simeon C. Ntafos. On required element testing. IEEE Transactions on Software Engineering,

SE-10(6):795-803, November 1984.

Leon Osterweil. Software processes are software too. 9th International Conference on Software

Engineering, 1987.

Debra J. Richardson and Lori A. Clarke. Testing techniques based on symbolic evaluation. In
T. Anderson, editor, Software: Requirements, Specification and Testing, pages 93-110. Blackwell
Scientific Publications Ltd., 1985.

Debra J. Richardson and_ Margaret C. Thompson. The RELAY model of error detection and its

application. In Proceedings of the ACM SIGSOFT/IEEE Second Workshop on Software Testing,

Analysis and Verification, Banff, Canada, July 1988.

Sandra Rapps and Elaine J. Weyuker. Selecting software test data using data flow information.

IEEE Transactions on Software Engineering, SE-11(4):367-375, April 1985.

Stanley Sutton, Jr. The APPLA/ A programming language background, interim definition, and
status. Technical Report CU-88-11, Arcadia, October 1988.

[TBC+88] Richard N. Taylor, Frank C. Bell, Lori A. Clarke, Leon Osterweil, Richard W. Selby, Jack C.

Wileden, Alexander L. Wolf, and Michal Young. Foundations for the ARCADIA environment
architecture. In Proceedings of SIGSOFT'88: Third Symposium on Software Development Envi-

ronments. ACM, November 1988.

"I,

I,

I-<'

I ~·

I I

\ ··:

Richardson et.al.: Integrating Testing Techniques 21

A DF"MRELAY Process Program Implementation

A.1 APPL/ A Overview

Our DFMRELAY process program is written in APPL/ A [Sut88], which is an extension to Ada. ·
APPL/ A provides constructs for the definition of relations that represent persistent data and
independent, concurrent processes acting on the data. Complete APPL/ A programs can be

translated into Ada, compiled, and executed.
An APPL/ A relation declares a single tuple and associated entry and constraint dec­

larations in addition to standard Ada constructs. An entry is an operation on a relation;
the possible operations are insert, update, delete, find, and select. A tuple element
has mode of in, out, or in out. Components of mode in are created outside the tuple.

Components of mode out (in out) are created (updated) inside of the tuple by way of the
determines clause. Only components of modes in and in out may be inserted into the
tuple. A constraint on a relation or on tuples and their attributes are conditions that must
be satisfied by the relation.

Section A.2 provides a Uses Chart for the modules specified in section A.3. The APPL/ A
relations are complete (no bodies are required). We have omitted the entry calls for brevity
and because they can be inferred from the tuple ~eclarations. The Ada package specifications
are included for the procedural portions of our implementation, but the package bodies have
been omitted.

A.2 Uses Chart

The following table shows a uses chart of the functional and data modules described in the

low-level design. The code for these modules follows.

Richardson et. al.: Integrating Testing Techniques 22

Module Uses

DoDFTieRela.y U serinterface .)

ModuleToBeTested
Int Rep

ModuleToBeTested Int Rep
ControlFlowGraph
Data.Flow
DataFlowObject
Relay
RelayObject

DataFlowObject Test Case
Data.Flow
ControlFlowGraph
Reasoning
Path Object
Data

Data.Flow ModuleToBeTested
ControlFlowGraph
Reasoning
DataFlowObject
PathObject

RelayObject ModuleToBeTested
Relay
ControlFlowGraph
Test Case
Reasoning
Path Object

ContextErrorO bject Reasoning
Chain TransferO bject Path Object

Reasoning
Relay ModuleToBeTested

ControlFlowGraph
ContextErrorObject
ChainTransferObject
Reasoning
Path Object

Reasoning Data
SequenceOfN odes
Test Case

SymEval SequenceOfN odes
Reasoning

Path Object SequenceOfN odes
Reasoning

PathSelector Path Object
Test Case Data

ControlFlowGraph
Test Harness

SequenceOfN odes ControlFlowGraph
TestHarness Data
Data
ControlFlowGraph Int Rep

I

I '

I-

I <

\- ",

\ I'

I ·'

' \ -

," \

I, ~

I I

Richardson et. al.: Integrating Testing Techniques

A.3 APPL/ A Code

with Userinterface;
with IntRep;
with ModuleToBeTested;

procedure DoDFtieRelay is
ModuleCode : IntRep.Node;
DataFlowCriterion : ModuleToBeTested.DataFlovCriterionType;
RelayCriterion : ModuleToBeTested.RelayCriterionType;

begin
-- determines what code to test:
Userinterface.get(ModuleCode);
-- determines Data Flow criterion:
Userinterface.get(DataFlowCriterion);
-- determines Relay criterion:
Userinterface.get(RelayCriterion);

ModuleToBeTested.Insert(DataFlowCriterion,
RelayCriterion,
ModuleCode);

Data Flov (note that some of this may execute concurrently
with Relay)

Determine Data Flow Adequacy criterion:

determine def-use associations to be covered:
this will be done automatically vhen a
DataFlovCriterion is inserted.

for each def-use association condition loop:
generate def-use association conditions:
these vill be done automatically when the DUAssnGenerator
inserts the association into the tuple.

Check Tests for Coverage:
these will be checked automatically when the
DUAssnGenerator inserts the association into the tuple

Additional Testing Required:
these will be checked automatically when the
DUAssnGenerator inserts the association into the tuple.

-- Trigger Testing For Each Newly-Selected Test Objects:

23

Richardson et. al.: Integrating Testing Techniques

-- this will be done automatically when any new
-- test case object is inserted.

end loop

RELAY (note that some of this may execute concurrently
with Data Flow)

Determine Relay criterion:

determine potential faults to be covered:
this will be done automatically when a
RelayCriterion is inserted.

for each potential fault loop:
-- Generate Revealing Conditions:

this will be done automatically when any new
RelayObjectTuple is created.

Check Tests For Coverage:
these will be checked automatically when the

-- PotentialFaultGenerator inserts a new tuple.

Additional Testing Required:
this will be done when the
PotentialFaultGenerator inserts a new tuple.

Trigger Testing For Newly-Selected Test Case:
this will be done automatically when any new
test case object is inserted.

end DoDataFlowRelay;

with IntRep;
with ControlFlowGraph;
with DataFlow;
with DataFlowObject;
with Relay;
with RelayObject;

relation ModuleToBeTested is

type RelayCriterion is array(natural range <>) of
Relay.FaultClassType;

type DataFlowCriterion is
(AllDUPaths, AllUses, AllCUses, AllPUses,
ContextCoverage, OrderedContextCoverage,
Required2Tuples, Required3Tuples, Required4Tuples);

24

\'

I _/

I ,.

t
I ,,

l'

I, I

I t

i

Richardson et.al.: Integrating Testing Techniques

type ModuleToBeTestedTuple is tuple
DFCriterion in DataFlovCriterion;
RCriterion
Module Code
StartNode
FinalNode
DFObj
RelayObj

end tuple;

determines

in RelayCriterion;
in IntRep.Node;
out ControlFlovGraph.Node;
out ControlFlovGraph.Node;
out DataFlovObject.DataFlovObjectTuple;
out RelayObject.RelayObjectTuple;

t.ModuleCode determines t.StartNode and t.FinalNode
by ControlFlovGraph.Create(t.ModuleCode,

t.StartNode,
t.FinalNode);

t.DFCriterion determines t.DFObj
by DataFlov.DUAssnGenerator(t.DFCriterion);

t.RCriterion determines t.RelayObj
by Relay.PotentialFaultGenerator(t.RCriterion);

end ModuleToBeTested;

vith TestCase;
vith DataFlov;
vith ControlFlovGraph;
vith Reasoning;
vith PathObject;
vith Data;

relation DataFlovObject is

type DataFlovObjectTuple is tuple
DefUseAssn in Reasoning.Sequence;
InitPath out PathObject.PathObjectTuple;
ActivPath out PathObject.PathObjectTuple;
DUAssnCond out Reasoning.CNFCondition;
TestCaseList in out TestCase.AccessTest;

end tuple;

A DefUseAssn is a Def-Use Association, which is a path
from a definition to a use. The DUAssnCond describes
a path from the StartNode to the use.

The DefUSeAssn is inserted by DataFlov.DUAssnGenerator.

25

Richardson et.al.: Integrating Testing Techniques

The DUAssnCond is the combined condition from both the
initial path and the active path.

Data Flov vill search through all of the test case list
trying to find a test case that vill satisfy the DUAssnCond.

dependencies

t.DefUseAssn determines t.InitPath
by PathSelector.SelectSeq(StartRode t t.DefUseAssn.Rode,

t. Ini tPath);
determine the Initial Path:
The selector vorks by selecting a node, calling the
interpreter to interpret that node, and then calling
the feasibility checker to make sure that the subpath
created by the addition of that node is feasible.
Thus, the InitPath returned vill be a feasible path.

t.DefUseAssn determines t.ActivPath
by PathSelector.SelectSeq(t.DefUseAssn,

t .ActivPath);
determine the Activating Sequence:
The selector vorks the same vay for choosing the ActivPath.

t.InitPath and T.ActivPath determines t.DUAssnCond
by DataFlov.DUAssnCondGenerator(t.InitPath,

t.ActivPath,
t.DUAssnCond);

-- Evaluate ActivPV and ActivPC in terms of InitialPV and
check the feasibility of Initial.PC and Activ.PC

-- to find the Association Condition.

t.DUAssnCond determines t.TestCaseList by
iterate over the existing test cases,
if a test case satisfies the DUAssnCond then
add it to the TestCaseList.

declare
AccTest : TestCase.AccessTest;
Data : TestData.Data;

begin
for t in TestCase loop

if Reasoning.Satisfies(DUAssnCond,t) then
nev AccTest;
AccTest.Test := t;
AccTest.Rext := TestCaseList;
TestCaseList := AccTest;

end if;

26

"I

-j

I

I

~

\'

I I

\ ~',

I I

I .

I - ~1

Richardson et. al.: Integrating Testing Techniques

end loop;

if TestCaseList • null then
nev TestCaseList;
Data:= Reasoning.Select(t.DUAssnCond);
TestCase.Insert(Data, 1111

);

Test Case. Find(true, Data, 1111
, t. TestCaseList. Test) ;

t.TestCaseList.Next :=null;
end if;

end; -- declare
end DataFlovObject;

with ModuleToBeTested;
with ControlFlovGraph;
with Reasoning;
with DataFlowObject;
with PathObject

package DataFlow is

procedure DUAssnGenerator(DFCriterion in
ModuleToBeTested.DataFlowCriterion);

Generate the Def-Use Associations. As each association
is generated it is inserted into a DataFlovObjectTuple. This
insertion triggers the ge~eration of the Def-Use Conditions.

-- The exiting test cases are then checked to see if any of them
-- satisy the conditions. If no test cases satisfy the condition,
-- then a new test case is generated.

procedure DUAssnCondGenerator
(InitialPath : in PathObject.PathObjectTuple,
ActivatingPath : in PathObject.PathObjectTuple,
Condition : out Reasoning.CNFCondition);

Determines the condition by
evaluating the Activating Path Value and the
Activating Path Condition in terms of the Initial Path Valu;
and checking the feasibility of the
(Initial Path Condition and Activating Path Condition).

end DataFlov;

with ModuleToBeTested;
with Relay;
with Test Case;
with Reasoning;
with PathObject;
with ControlFlovGraph;

27

Richardson et. al.: Integrating Testing Techniques

relation RelayObject is

type RelayObjectTuple is tuple
OrigLoc in ControlFlovGraph.Node;
FaultClass in Relay.FaultClassType;
InitPath out PathObject.PathObjectTuple;
ContEC out ContextError.ContextErrorTuple;
Chain Trans out ChainTransfer.ChainTransferTuple;
RevealCond out Reasoning.CNFCondition;
TestCaseList out TestCase.AccessTest;

end tuple;

OrigLoc is the point of the potential fault.

FaultClass is the type of the potential fault.

RevealCond is the revealing condition for that potential fault.

-- TestCaseList is the test cases that satisfy the revealing condition.
This is of mode out because only those test cases which satisfied
the DUAssnCond for the OrigLoc could possibly
satisfy the Revealing Condition.

dependencies

t.OrigLoc determines t.ChainTrans.TransRoute
by Relay.SelectTransferRoute(t.OrigLoc,

t.ChainTrans);
-- Note: when an object of type ChainTransferTuple is

inserted, as it is by SelectTransferRoute,
Relay.SelectActivatingSequence is triggered by the
ChainTransfer relation. Therefore, when this trigger
is completed both the TransRoute and the Activating
Sequence will be defined. After the Activating
Sequence is defined, the ChainTC will be evaluated.
Again, this is being triggered from within
the Chain Transfer relation.

In addition, the SelectSeq procedure may not
be used because the transfer conditions must be
instantiated for each node along the transfer route.

t.OrigLoc determines t.InitPath
by PathSelector.SelectSeq(ModuleToBeTested.StartNode

&: t.OrigLoc,
t.InitPath);

28

'I

I

\ ~

I i

I' I

i / ,,

(\

i (
I

\ '

Richardson et. al.: Integrating Testing Techniques

t.OrigLoc and t.FaultClass and
t.InitPath determines t.ContEC
by Relay.GenerateContextErrorCondition(t.OrigLoc,

t.FaultClass,
t. InitPath,
t.ContEC);

t.InitPath and t.ContEC and t.ChainTrans determines t.RevealCond
by t.RevealCond := and(t.InitPath.PC,

and(t.ContEC.CompTC,
t.ChainTrans.ChainTC));

t.RevealCond determines t.TestCaseList by
declare

AccTest
Data
TestC

begin

TestCase.AccessTest:
Data.TestData:
TestCase.AccessTest:

for t in DataFlowObject
where t.DefUseAssn.Node = t.OrigLoc loop

TestC := t.TestCaseList:
while TestC /= null. loop

if Reasoning.Satisfies(RevealCond,TestC.Test.all) then
new AccTest:
AccTest.Test := TestC.Test:
AccTest.Next := TestCaseList;
TestCaseList := AccTest:

end if:
TestC := TestC.Next:

end loop:
end loop;

if TestCaseList = null then
new TestCaseList:
Data :m Reasoning.Select(t.RevealCond);
TestCase.Insert(Cond, 1111

):

TestCase.Find(true, Cond, 1111 ,t.TestCaseList.Test);
t.TestCaseList.Next :=null;

end if;
end; -- declare

end.RelayObject:

vith Reasoning;
relation ContextErrorObject is

29

Richardson et. al.: Integrating Testing Techniques

type ContextErrorTuple is tuple
ContextEC in Reasoning.CNFCondition;
OrigC in Reasoning.CNFCondition;
CompTC in Reasoning.CNFCondition;

end tuple;

end ContextErrorObject;

vith PathObject;
with Reasoning;

relation ChainTrasferObject is
A TransRoute is a series of nodes that may or may not have
edges between them. The Seq of the ActivPath must be subpath,
i.e. every node in the sequence is connected by an edge to the

-- next node.

type ChainTransferTuple is tuple
TransRoute in Sequence;
ActivPath out PathObject.PathObjectTuple;
ChainTC out Reasoning.CNFCondition;

end tuple;

dependencies

-- Select the transfer route
t.TransRoute determines t.ActivPath

by PathSelector.SelectSeq(t.TransRoute,
t.ActivPath);

t.ActivPath determines t.ChainTC
by Relay.GenerateChainTransferCondition(t.ActivPath,

end ChainTransferObject;

with ModuleToBeTested;
with ControlFlovGraph;
with ContextErrorObject;
with ChainTransferObject;
vith Reasoning;
vith PathObject;

pack~ge Relay is

type FaultClassType is
(ConstantReferenceFault,

t.ChainTC);

30

I ;

I

I •;

I -
I

' (

\ '

/ ..

I '
I

t'

(~

Richardson et. al.: Integrating Testing Techniques

VariableReferenceFault,
VariableDefinitionFault,
BooleanOperatorFault,
RelationalOperatorFault,
ArithmeticOperatorFault):

See [Rich86] for a description of these faults.

procedure PotentialFaultGenerator
(RCriterion: in out ModuleToBeTested.RelayCriterion):

This generates all the potential faults and
inserts them into a RelayObject. It is called from

-- ModuleToBeTested.

procedure GenerateContextErrorCondition
(OrigLoc in ControlFlovGraph.Node,
FaultClass
InitPath
Cont EC

in FaultClassType,
in PathObject.PathObjectTuple,
out ContextErrorObject.ContextErrorTuple):

The OrigLoc and the FaultClass are used to determines the
the initial path. Once the feasibility of the InitialPC has been
checked, the feasibility of the ContextEC (Con~ext Error Condition)
is checked. It is called from RelayObject.

procedure SelectTransferRoute
(OrigLoc : in ControlFlovGraph.Node,
TransRoute : out ChainTransferObject.ChainTransferTuple);

Select a transfer route from the origination location (OrigLoc)
to an output. It is called from RelayObject.

procedure GenerateChainTransferCondition
(TransRoute in PathObject.PathObjectTuple,
Ch~inTC : out Reasoning.CNFCondition):

Determine the Chain Transfer Conditions from the Transfer Route.

In parallel to this, the OrigLoc and FaultClass
are also used to determines the Chain (a ChainTransfer tuple).
From the Chain, an activating path is selected.

When the Chain~C (Chain Transfer Condition, which is
the Path Condition and the computational transfer condition)
is feasible, and a feasible ContextEC has been found,
the ActivPV and ActivPC and the ChainTC are all
re-evaluated in terms of the InitialPV (Initial Path Value).

If InitialPC and ContextEC and ActivPC and ChainTC are all

31

Richardson et. al.: Integrating Testing Techniques 32

feasible then a revealing condition has been found. Otherwise,
either pick a nev initial path, or a nev transfer route, or both.

end Relay;

with Data;
with SequenceOfNodes;
with TestCase;

package Reasoning is

type CNFCondition is private;
type Value is private;

function Select(Condition : in CNFCondition) return Data.Datatype;
Returns data that will satisfy Condition. Unsolvable is

-- raised if Condition is not Feasible.

unsolvable : exception;
-- No data could be found to satisfy the CNFCondition

function Feasible(Condition : in CNFCondition) return boolean;

Returns FALSE if Condition describes the empty set;
otherwise it will be TRUE.

function Satisfies(Condition : in CNFCondition,
TheData : in Data.Datatype) return boolean;

-- Returns is TRUE if TheData satisfies Condition.
private

CNFCondition is a Conjunctive Normal Form Condition
i.e. (av b v c)(d v e)

-- Value is the symbolic value of a path.
-- Each variable is described by a syntax tree of the operations upon
-- that variable.

subtype SymVar is string;
for nov ve will keep the symbolic variables represented
as strings. We expect to ~se a symbol table package
in the future.

type SymValNode;

type AccessSymValueNode is access SymValNode;

type SymValNode is record
ValueNode : IntRep.Node;

I :

I ,
!

I '

\ J'

: '
) ·:

''

i '

------ - ---- - --

Richardson et.al.: Integrating Testing Techniques

Next : AccessSymValueNodei
end record;

type VarValuePair is record
Var : SymVar i
Val : SymValueNodei

end recordi

type Disjunct is array(natural range <>) of SymValNode;

type CNFCondition is array (natural range <>) of Disjuncti

type Value is array (natural range <>) of VarValuePairi
end Reasoningi

with SequenceOfNodesj
with Reasoningi
package SymEval is

procedure Intetj:>ret(Path in SequenceOfNodes.Sequence,
PathValues out Reasoning.Value,
PathCondition out Reasoning.CNFCondition)j

Symbolically interprets a path providing
the path value and the path condition.

procedure Eval(Values in Reasoning.Value,
PathVal in out Reasoning.Value,
PathCond in out Reasoning.CNFCondition)j

Symbolically evalute PathVal and PathCond in terms of Values.

end SymEvali

with SequenceOfNodesj
with Reasoning;
with SymEval;

relation PathObject is

type PathObjectTuple is tuple
Seq : in SequenceOfNodes.Sequence;
PV : out Reasoning.Value;

The PV is the set of symbolic values for the variables in the
Seq(uence).

PC : out Reasoning.CNFConditionj
The PC is the path condition for execution of

the nodes in Seq(uence).
end tuple;

33

Richardson et.al.: Integrating Testing Techniques

dependencies
t.Seq determines t.PV and t.PC

by SymEval.Interpret(t.Seq, t.PV, t.PC);
Execute the sequence to determine the path value and
the path condition.

constraints
every t in PathObject satisfies

(t. Seq /= null);
-- There is always a sequence
end every;

end PathObject;

with PathObject;
package PathSelector is

type Sequence;
type AccessSequence is access Sequence;
type Sequence is record

Node : ControlFlovGraph.Node;
Next : AccessSequence;

end record;
-- Note: A sequence does not necessarily define a complete path.

procedure SelectSeq(Skeleton : in NodeSeq,
Path : out PathObject.PathObjectTuple);

From a skeleton (a sequence of def - use,def - use,def ... use)
select a complete path.

end PathSelector;

with Data;
with ControlFlovGraph;
with TestHarness;

relation TestCase is

type TestCaseTuple is tuple
InputData
OutputDesc
ActualOutput

end tuple;

in Data.DataType;
in Data.DataType;
out Data.DataType;

type AccessTest is access TestCaseTuple;
type ListOfTests;
type AccessTest is access ListOfTests;
type ListOfTests is record

34
/_

\ ~

-I

I I

I '

I ,

\- '

! "
(,,

I '

('

' \

I I
I

) '

Richardson et.al.: Integrating Testing Techniques

Test : AccessTestTuple;
Next : AccessTest;

end record;

dependencies
t.InputData and t.OutputDesc determines t.ActualOutput

by TestHarness.Execute(t.InputData,
t.OutputDesc,
t.ActualOutput);

constraints
every t1 in TestCase satisfies

no t2 in TestCase satisfies
(t1.InputData = t2.InputData) and
(t1.0utputDesc = t2.0utputDesc);

end no;
end every;

end TestCase;

with ControlFlovGraph;
relation SequenceOfNodes is

-- This defines a complete sequence
type Sequence is tuple

Node : in ControlFlovGraph.Node;
Edge : in ControlFlovGraph.Edge := null;
NextNode : in ControlFlovGraph.Node;

end tuple;

constraints
every t in Sequence satisfies

if t.Edge /=null then
t.Edge.FromNode = t.Node;
t.Edge.ToNode = t.NextNode;

end if;
end every;

end SequenceOfNodes;

with Data;
package TestHarness is

procedure Execute(InputData
OutputDesc
ActualOutput

IllegalResult : exception;

in Data.Datatype,
in Data.Datatype,
out Data.Datatype);

The module, when run on the InputData,

35

Richardson et. al.: Integrating Testing Techniques

returns a value in conflict vith the
OutputDesc.

NeverHalts exception;
The module, when run on the InputData,

does not halt within the time limit;

TypeConflict exception;
The types of InputData or OutputDesc do

not match the types of the inputs or outputs of
the module.

end TestHarness;

package Data is
TypeDefinitions is defined in Debus, page 4.

-- ImageOfValue is a variable length string vhich is the
-- image of the value.
type ConstraintClass is (RangeClass, ValueClass);
type Datatype (Constraint : ConstraintClass := RangeClass) is

record
case Constraint is

when RangeClass =>
Type of Range
Start Range
EndRange

when ValueClass =>
TypeofValue
The Value

end case;
end record;

end Data;

with IntRep;
package ControlFlowGraph is

Typ~Definitions;

ImageOfValue;
ImageOfValue;

TypeDefinitions;
ImageOfValue;

This is a very simplified form of the proposed
ControlFlovGraph package.

subtype Node is IntRep.NodeNumber;
type EdgeRecord;
type Edge is access EdgeRecord;
type EdgeRecord is record

FromNode : Node;
ToNode Node;

end record;

procedure Create(ModuleCode in IntRep.Node,

36

I '

I
(,

' '·

I ,,

('

i

I I

I ' , I

I i

I '

I

Richardson et. al.: Integrating Testing Techniques

StartNode : out Node,
FinalNode : out Node);

-- This creates a Control Flov Graph representation of the module
-- code.

end ControlFlovGraph;

37

