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Brain connectomics research has rapidly expanded using functional MRI (fMRI) and
diffusion-weighted MRI (dwMRI). A common product of these varied analyses is a
connectivity matrix (CM). A CM stores the connection strength between any two
regions (“nodes”) in a brain network. This format is useful for several reasons:
(1) it is highly distilled, with minimal data size and complexity, (2) graph theory
can be applied to characterize the network’s topology, and (3) it retains sufficient
information to capture individual differences such as age, gender, intelligence quotient
(IQ), or disease state. Here we introduce the UCLA Multimodal Connectivity Database
(http://umcd.humanconnectomeproject.org), an openly available website for brain network
analysis and data sharing. The site is a repository for researchers to publicly share CMs
derived from their data. The site also allows users to select any CM shared by another user,
compute graph theoretical metrics on the site, visualize a report of results, or download
the raw CM. To date, users have contributed over 2000 individual CMs, spanning different
imaging modalities (fMRI, dwMRI) and disorders (Alzheimer’s, autism, Attention Deficit
Hyperactive Disorder). To demonstrate the site’s functionality, whole brain functional and
structural connectivity matrices are derived from 60 subjects’ (ages 26–45) resting state
fMRI (rs-fMRI) and dwMRI data and uploaded to the site. The site is utilized to derive graph
theory global and regional measures for the rs-fMRI and dwMRI networks. Global and
nodal graph theoretical measures between functional and structural networks exhibit low
correspondence. This example demonstrates how this tool can enhance the comparability
of brain networks from different imaging modalities and studies. The existence of this
connectivity-based repository should foster broader data sharing and enable larger-scale
meta-analyses comparing networks across imaging modality, age group, and disease
state.

Keywords: graph theory, data sharing, functional connectivity, structural connectivity, resting-state fMRI,

diffusion-weighted MRI

INTRODUCTION
Successful neuroimaging data sharing efforts have taken a vari-
ety of organizational approaches, including top-down centralized
strategies and bottom-up grassroots efforts. Centralized projects
such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI;
http://www.adni-info.org) begin by defining a targeted subject
population, the type of imaging data to be included, and a set
of criteria to ensure the quality and similarity of the data collec-
tion across multiple sites and scanners. Grassroots projects like
the International Neuroimaging Datasharing Initiative (INDI;
http://fcon1000.projects.nitrc.org/index.html) are less restrictive
and encourage the broad sharing of data across centers, subject
pools, and scan types. Once data has been collected, it can be
stored in a database where users can search and download desired
data. This allows researchers to freely access the data, enabling

them to apply their own preprocessing and run custom analy-
ses. These sites typically collect image files in a specific format
such as NiFTI or DICOM along with relevant meta-information
about the data acquisition, the individual receiving the scan, and
the study design.

Another variety of neuroimaging databases store processed
data and/or analysis results. The BrainMap database (http://
brainmap.org) stores stereotaxic standard-space coordinates of
activation peaks from fMRI and PET data analyses and associated
metadata including the number of subjects, the subject disease
state (healthy or diseased), the applied analysis techniques, the
experimental paradigm, and the cognitive process under inves-
tigation (e.g., working memory) (Fox and Lancaster, 2002; Laird
et al., 2005). SUMS-DB is a database for sharing structural and
functional brain mapping study results, also based on stereotaxic
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coordinates (http://sumsdb.wustl.edu). These databases foster
meta-analyses by compiling findings across studies into a com-
mon coordinate space, allowing users to probe for findings within
a specific brain region or network.

In between the extremes of stereotaxic foci and raw data repos-
itories exist many intermediates of “processed” neuroimaging
data. Processed data can be beneficial in a shared data setting
because it requires less analysis by subsequent users than raw
data, while enabling more thorough re-analysis than a set of
significant spatial coordinates does. One example of processed
neuroimaging data that has been particularly useful in explaining
brain connectivity properties is the “connectivity matrix” (CM).
A typical connectivity analysis in a neuroimaging study mea-
sures the strength of connection between different brain regions.
Connection strength can be defined in a variety of ways. In
functional MRI (fMRI), the statistical correlation of BOLD inten-
sity changes in two regions is commonly used as a measure of
“functional connectivity.” In diffusion tensor imaging (DTI) and
related diffusion-weighted MRI (dwMRI) modalities, the den-
sity of axonal bundles or “structural connectivity” between two
regions can be quantified using fiber tractography methods. For
neuroimaging experiments whose field of view is sufficiently
large to cover the entire brain, one can determine the whole
brain connectivity “graph” by portioning the brain into con-
stituent regions and determining the direct connectivity between
every pair of regions. In this graph representation of connec-
tivity, the pattern of connections between nodes is stored in a
CM where rows/columns in the matrix represent brain regions
(nodes) and the matrix cell where these two regions intersect
stores the connection strength between the two regions (edges).

Graph theoretical analyses can be performed on a CM in order
to characterize a network’s global integration, local interconnec-
tivity, modularity, cost efficiency, and robustness to lesioning
(Bullmore and Sporns, 2009; Sporns, 2010). Analyses of CMs
derived from structural and functional neuroimaging modalities
have led to the recognition of a core set of structural hubs in
the posterior cingulate and precuneus (Hagmann et al., 2008);
the determination that functional network hubs coincide with
the sites of greatest amyloid deposition in Alzheimer’s Disease
(Buckner et al., 2009); and the discovery that flexible reconfig-
uration of functional connectivity modules is critical for motor
learning (Bassett et al., 2011b). CMs have been derived from
structural and fMRI data from the same subjects in several stud-
ies, indicating moderate correspondence of the structural and
functional connectivity strength between regions (Honey et al.,
2007, 2009; Hagmann et al., 2010).

Connectivity matrices are a highly distilled representation
of brain connectivity. Despite this reduction, they contain suf-
ficient information to capture individual characteristics such
as age (Dosenbach et al., 2010), gender (Yan et al., 2011),
intelligence quotient (IQ) (Li et al., 2009; van den Heuvel
et al., 2009b), and disease state (Supekar et al., 2008; Craddock
et al., 2009; Lo et al., 2010). Graph theory adds to the util-
ity of a CM by quantifying how brain regions are integrated
into a global unit, rather than how they act in isolation. A
great deal of research effort and funding has been dedicated
to describing the human connectome, which is at its essence

a CM (Sporns et al., 2005). CMs are therefore an ideal prod-
uct to compile and share with the community. Here we present
the UCLA Multimodal Connectivity Database (UMCD hence-
forth; http://umcd.humanconnectomeproject.org), a website that
allows CMs and meta-information to be uploaded and shared
with the public. It provides a dynamic, sortable search engine
for locating relevant datasets. It also provides a platform for
graph theory analysis of any publicly shared CM, reporting
basic graph properties, graph theoretical metrics, and interactive
3D/2D visualizations.

MATERIALS AND METHODS
THE UCLA MULTIMODAL CONNECTIVITY DATABASE
The UMCD is a public website found at http://umcd.

humanconnectomeproject.org. The site has five main options:

1. “Analyze a network,” where any publicly shared network can be
selected, analysis parameters can be configured, and the net-
work analysis is performed on the site (Figure 1). Once the
analysis is complete, the user is redirected to a Results page
(contents described below)

2. “Compare networks,” similar to “Analyze” but allows the user
to select two networks to compare side by side

3. “Lesion a network,” similar to “Analyze,” with the additional
option to select any subset of regions in the chosen network
to virtually “lesion,” setting all connections from the selected
nodes to zero; the results of the analysis for the unlesioned and
lesioned versions of the network are displayed side by side

4. “Browse networks,” allows the user to view all available net-
works and keyword search for specific datasets or sort all
datasets based on different criteria (Figure 2)

5. “Upload a network,” where the user can upload data, either to
share with the public or to keep private but compare to public
data (Figure 3).

The UMCD requires users to register with an email address
and a password in order to share data. Once an account has been
created, the user has the option to share data Publicly, in which
case any site visitor can analyze or download the data, or Privately,
allowing only the user to access this data when they are logged in.

Design
The UMCD is built with the web2py framework (http://
web2py.com). This Python-based framework uses the
Model-View-Controller (MVC) architecture. This enables
the seamless coupling of HTML pages with Python code and
libraries for performing data analysis and visualization. The site
uses a MySQL (http://www.mysql.com) database to store all
data including user account information and shared data. The
NetworkX Python library is used for all graph theory analyses
(http://networkx.lanl.gov). This open source library has excellent
documentation, an active community, and the ability to easily
create network-based visualizations. These visualizations are
rendered by passing custom NetworkX Graph objects from
NetworkX to matplotlib (http://matplotlib.sourceforge.net), an
extensive library for creating data visualizations in Python. All
mathematical and statistical calculations use the numpy (http://
numpy.scipy.org) and scipy (http://www.scipy.org) libraries.
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FIGURE 1 | The UCLA Multimodal Connectivity Database homepage,

where a user can configure the analysis for any CM publicly shared on

the site. The user can select from any of the studies for which data has been
publicly shared on this site with the “Study Name” dropdown menu. Once a
study is selected, all the individual brain networks that have been shared for

that study will appear in the “Network Name” dropdown menu. After
selecting an individual network to analyze, the user must specify a
“Weighting scheme” and “% of edges to include” for the analysis, choose
an orientation in which to render the analysis-based network images, and
click “Analyze.”

Analysis
On the analysis page, the user can select any “Study Name”
for which data has been shared. Once a Study Name has been
selected, the individual connectivity matrices associated with that
study name will become selectable in the “Network Name” drop-
down. The user can select any Network Name. To conduct the
network analysis, the user selects a Network Name and then must
specify two variables: the Weighting Scheme, which can be binary
(the default option) or weighted, specifying the % of edges to
include, which can be any integer value between 0 and 100 (20 is
the default option). An additional variable, Orientation, dictates
the imaging plane in which the network figures will be rendered:
axial (default), sagittal, or coronal view. Once all options are
specified, the user clicks the Analyze button to run the network
analysis.

The analysis can take between 10 s to 3 min depending on the
size of the network, the weighting scheme, and the threshold.
When the analysis is complete, the results are displayed on the
Analyzed Network page (Figure 4).

Meta-information for the network that has been analyzed
appears at the top of the page and includes the Atlas (i.e.,
parcellation scheme), Imaging Modality, Subject Pool, Group
Size, Age Range, Preprocessing Notes, and Funding Information.
Next, a table displays the following Global Network Metrics:
the Raw Connection Density (%), the Chosen Density (%),
Characteristic Path Length, Mean Clustering Coefficient, Number
of Components, Global Efficiency, Modularity (Q), and the small
world attributes Gamma, Lambda, and Sigma. Each metric con-
tains a tooltip with a brief description and a link to the NetworkX
function used to calculate the measure or the reference from
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FIGURE 2 | The “Browse All Data” page. Studies are initially listed in the
order in which they were shared by users. Any column can be sorted by
clicking on the heading, allowing for example the grouping of all DTI studies,
or the sorting of networks based on the age of the subject. The “Search”
field can be used to dynamically constrain which records from the database

are shown. The “View/Download” link takes the user to a “profile” page for
the individual network that contains more detailed information (see Figure 5).
The “Analyze” link takes the user to the “Analyze Network” page with the
“Study Name” and “Network Name” pre-selected, allowing the user to run a
network analysis simply by clicking “Analyze.”

FIGURE 3 | The “Upload New Data” page, where a user can upload a CM. Descriptions of each field are included in the main text.
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FIGURE 4 | The appearance of the UMCD report based on the analysis

of the NKI fcMRI group-average network, thresholded at 5% with

weighted edges. (A) The meta-information on the network and the global
network metrics, including basic edge statistics, graph theory measures,
and edge length measures, (B) the CM after thresholding, (C) the region
report, listing the graph theory measures for each node, (D) the bar plot of
node degree for each node, (E) the interactive 3D network rendering from

a top view with node color indicating module membership, (F) 2D network
plot with nodes laid out using the Fruchterman–Reingold force-directed
algorithm, with node color indicating module membership, (G) the 2D
network plot from the top/axial view, with node radius indicating node
degree, (H) 2D network plot with node radius indicating betweenness
centrality, (I) 2D network plot with node radius indicating clustering
coefficient.
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which the formula was taken. For a more complete description
of the graph measures calculated on the UMCD, the reader is
referred to (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010; Sporns, 2010). For each edge in the raw and thresholded
networks, the edge weight mean and standard deviation are
shown, along with the edge Euclidean length mean and standard
deviations.

The report contains a link to “View Regional Report” where
the following nodal network measures appear in a table: full
region name, degree, clustering coefficient, betweenness central-
ity, module membership, regional efficiency, and participation
coefficient. These measures can also be downloaded by click-
ing “Download Regional Measures as.txt” which links to a tab-
delimited text file containing all of these metrics. This file can be
easily loaded into Matlab or other statistical software in order to
perform offline statistical analysis.

The network analysis report includes both three-dimensional
and two-dimensional visualizations. The 3D network view is an
interactive rendered ball-and-stick model of the network imple-
mented using WebGL (Figure 2). The rendering engine is a mod-
ified version of the ChemDoodle Web Components javascript
library (http://web.chemdoodle.com). The center of mass for
each node in the network appears as a sphere whose radius cor-
responds to the specific network metric that is selected: degree,
betweenness centrality, clustering coefficient, regional efficiency,
or participation coefficient. For modularity, all radii are equal
and the node color indicates module membership. Each non-
zero connection in the network is shown as a cylinder directly
connecting the two nodes, whose radius is constant (= 1) for a
binary network analysis and is scaled for a weighted analysis. The
number of displayed edges is capped in order to allow smooth
rendering in the browser. Equivalent 2D figures are displayed for
the same set of network measures, where again the node radius
corresponds to the specific measure and the edge width corre-
sponds to edge weight. For each 2D network measure, a bar
graph shows the sorted distribution of values for each node in
the network.

The analysis also produces figures depicting the thresholded
CM with a color bar corresponding to the range of weights in
the network. The distribution of node degrees in the network
can be assessed with the Node Degree Histogram, which simply
bins the degree of each node in the network. Another represen-
tation of the network is shown in the Spring Embedded Plot.
This diagram collapses the connectivity structure of the network
into two dimensions, where each node’s “nearness” to each other
node is based on the degree of connectivity between them, based
on the Fruchterman–Reingold force-directed algorithm imple-
mented in NetworkX. Nodes that are in the same module have
the same color.

In order to compare two networks side by side, the networks
can be selected on the Compare Networks page. After the two
networks have been selected, the same set of options from the
Analyze Network page—Weighting Scheme and % of edges to
include—must be specified for each network. Once the analysis
is run, the same set of measures from the single network analy-
ses are computed for each network. The results are displayed side
by side.

Users can assess the impact of a virtual lesion on a net-
work using the Lesion a Brain Network page. Once a network is
selected, the user can press “Get Regions” in order to display a
checklist of all the brain regions in the given network. Any region
that is checked will be “lesioned,” meaning that all of the connec-
tions to this node from any other node in the network will be set
to zero. The unlesioned and lesioned networks will then be ana-
lyzed and the results will be presented side by side in the exact
same fashion as the Compare Networks results page.

Data sharing
Connectivity matrices can be shared on the Upload New Data
page (Figure 2). To share data, the following are required:
(1) Study Name, a succinct identifier for the location/purpose of
the study, e.g., UCLA_ICBM, (2) Network Name, a succinct name
for individual matrix to be uploaded, e.g., CONTROL_grpmean,
(3) the uploader’s email address, (4) Region Names File, a text
file listing the full name of each brain region in the network on
separate lines, (5) Region Names Abbreviations File, a text file
listing the abbreviated name of each region on separate lines,
(6) Region XYZ Centers File, a text file with (X, Y, Z) coordi-
nate for each region (preferably based on mm coordinates in
MNI152 space), (7) Connectivity Matrix File, a tab-delimited text
file containing the network CM, (8) Imaging Modality, and (9)
Share, the sharing status of the data, which can be public (view-
able and downloadable by any site visitor) or private (viewable
only by the sharer of the data when they are logged in). Other
requested meta-information includes the Scanner Device, Scan
Parameters, Age Range Minimum and Maximum (the same for an
individual subject, different for a group average), Gender, Subject
Pool, Group Size, Preprocessing Notes, and Funding Source.
Optional fields are also provided for specific imaging parameters
for Magnetic Resonance (MR; field strength, MR TR, MR TE, MR
Voxel Size, MR Field of View) and data processing steps for fMRI
(Motion Correction, Skull Stripping, Temporal Filtering, Spatial
Smoothing, Slice Timing Correction, Intensity Normalization,
EPI Unwarping, CSF Signal Regression, White Matter Signal
Regression, Global Signal Regression), dwMRI (Number of
Directions, Maximum b Value, Eddy Correction, Skull Stripping,
Deterministic Tractography, Probabilistic Tractography), and
structural MRI (sMRI; Skull Stripping, Intensity Normalization).

Data can be shared either for one network at a time or for a set
of matrices. In the case of a batch upload, the entries for each of
the four required text files simply needs to be stacked vertically for
as many networks as will be uploaded. For example, if the network
size was 100 × 100, the CM text file for six networks would be 600
rows by 100 columns. For the region names, region abbreviations,
and region coordinates files, the list simply needs to be repeated
as many times as there are networks. When performing a batch
upload, the meta-information need only be entered once and all
of the data can be uploaded with a single entry.

Data on the UMCD can be searched for on the Browse All Data
page (Figure 3). Each publicly shared network appears as a row
where each column lists a different field describing that entry, as
was specified on the Upload Data page when the data was shared.
If a user has shared any data privately and is logged in, those data
entries will also appear. Any column can be sorted by clicking on
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the column header, allowing the user to group data by imaging
modality or study name, for example. A search box allows the user
to enter any term and dynamically display only the rows that con-
tain that term, allowing rapid location of a dataset of interest. Any
row has an option to View/Download, linking to an individual
“profile” page for the network including the study and network
name, the study and subject information, and links to download
the raw CM (Figure 5).

If the user is logged in and accessing data they shared, they
can also edit or delete the entry on this page. The profile page
for each network also shows the number of times the network
has been analyzed or downloaded, as a measure of interest the
community has in this dataset. On the Browse Data page, each
entry also has an Analyze link, which will take the user to the
Analyze page with the form prefilled to run the analysis for this
network.

Users who wish to download all of the metadata or data for
a study can do so on the Browse Studies page. The metadata
for a study can be downloaded as either a Comma Separated
Value (CSV) or Javascript Object Notation (JSON) file using
a URL of the format http://humanconnectomeproject.org/get_
study_metadata.<filetype>/<studyname> where “filetype” is one
of csv or json and “studyname” is the study name provided by
the individual who shared the data. The connectivity matrices
for a given study can be downloaded in a zip file, along with

the region names, abbreviations, and XYZ centers, by access-
ing the URL http://humanconnectomeproject.org/get_study_
data/<studyname>.

At the time of writing, the UMCD has 2155 publicly avail-
able CMs. These include 1003 functional connectivity MRI
(fcMRI) matrices from the 1000 Functional Connectomes
sample (Biswal et al., 2010), 522 fcMRI matrices from
the ADHD200 sample (http://fcon1000.projects.nitrc.org/indi/
adhd200), 189 DTI matrices from the International Consortium
for Brain Mapping dataset (http://www.loni.ucla.edu/ICBM),
175 fcMRI/DTI matrices from a study of autistic children
(Rudie et al., under review), 55 DTI matrices from a study of
aging and genetic risk for Alzheimer’s Disease (Brown et al.,
2011), the 392 fcMRI/DTI matrices from the Nathan Kline
Institute/Rockland sample on the International Neuroimaging
Data-Sharing Initiative site (INDI; including the 60 subjects in the
26–45 age range and another 136 subjects outside that range, from
4 to 85), and a small set of other miscellaneous contributions.
All currently available matrices have largely complete metadata
including subject demographics, scan parameters, and prepro-
cessing notes. All currently available fMRI matrices are based on
Pearson correlation of regional timeseries and all DTI matrices are
based on tensor-based deterministic tractography. We anticipate
that fMRI and dwMRI matrices from more diverse processing
streams will eventually be shared on the site.

FIGURE 5 | The profile page for an individual CM. All of the
parameters specified by the sharer of the data appear’s on this page.
The CM and associated files (region names/abbreviations/XYZ centers)

can be downloaded by clicking the “file” links. The number of times the
network has been analyzed or downloaded by any user of the site are
also shown.
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Interface with neuroscience information framework
In order to facilitate the search of connectivity for specific brain
regions in data shared on the UMCD, it is important to inter-
face with various catalogs and wider scope data sharing initiatives.
The Neuroscience Information Framework (NIF; http://neuinfo.

org) is a project supported by the Blueprint for Neuroscience
Research, a pan-NIH initiative with a stated goal of facilitat-
ing data discovery and sharing among scientists (Gardner et al.,
2008). The NIF works with database partners to gather relevant
data and facilitate its’ discovery by making data searchable via
the user interface and web services. Since September of 2011,
public UMCD data has been included in the NIF data index
with brain region names aligned to NIF terminology. In order
to compensate for brain region naming heterogeneity, regional
name synonyms are aligned with the NIF standard ontology
(NIFSTD). These data are searchable as a part of the NIF pan-
mammalian brain connectivity data set. The human MRI func-
tional/structural connectivity can be viewed alongside rodent and
monkey connectivity data (http://neuinfo.org/nif/nifgwt.html?
query=nlx83091). To keep data up to date, NIF “crawls” the
UMCD and to find new data on a monthly basis, and cura-
tors are prompted to evaluate new data as changes are detected.
The current portal and web services are hit more than a mil-
lion times a month, increasing the possibility of users discovering
UMCD data.

GUIDELINES FOR DATA SHARING AND ANALYSIS
Data description and connectivity matrix derivation
To create a connectivity database that can maximize the research
and clinical utility of the contributed data, it is essential to first
define a set of best practices for deriving CMs. This section
will discuss the procedure for deriving CMs from different neu-
roimaging modalities and the methodological issues that need
to be addressed. We will limit the discussion to MRI modali-
ties. For any MRI data shared on the UMCD, the parameters of
the scan should be entered in the MR-specific fields and addi-
tional details should be noted in the Scan Parameters field on
the Upload Data page (http://umcd.humanconnectomeproject.
org/upload). This generally includes the magnetic field strength,
repeat time (TR), echo time (TE), scan duration, field of view,
voxel resolution, slice thickness/gap, and other modality-specific
factors.

fMRI preprocessing
When sharing fMRI-derived connectivity matrices on the UMCD,
the user should list check boxes for all included preprocessing
steps in the fMRI-specific fields and details should be noted in
the Preprocessing Notes field. fMRI-specific preprocessing steps
include motion correction, linear detrending, smoothing, statis-
tical removal of nuisance variables from white matter (WM), CSF
and whole brain signal, and bandpass filtering. For each step, the
user should also include which software program was used (FSL,
SPM, AFNI, in house, etc.). Although preprocessing methods
differ between laboratories, the UMCD does not enforce strict cri-
teria regarding data processing in the interest of remaining open
to a maximal number of contributions. Instead, the responsibil-
ity is placed with the contributor to ensure that their shared data

has been carefully processed, and equally with the site user to use
their own discretion for assessing data quality.

When a subject performs a task during fMRI, networks are
known to reconfigure to some degree based on the specific cogni-
tive demands of the task (Bassett et al., 2011b; Mennes et al., 2012;
Shirer et al., 2012). When task-based functional connectivity
matrices are submitted to the UMCD, they should be annotated
with a description of the task design and the cognitive processes
that the experimenter expected to engage.

Diffusion-weighted MRI preprocessing
When sharing dwMRI-derived CMs on the UMCD, the user
should specify the scan type as DTI, High Angular Resolution
Diffusion Imaging (HARDI), or Diffusion Spectrum Imaging
(DSI). In the dwMRI-specific fields, the user should note the
number of gradient directions included in the scan sequence
along with the maximum b-value, whether eddy correction was
performed, and the tractography method (deterministic or prob-
abilistic). In the Preprocessing Notes, the user should describe
the software package used and preprocessing details includ-
ing whether multiple dwMRI scans were acquired and aver-
aged, how diffusion tensors/Orientation Distribution Functions
(ODFs) were calculated, the tractography algorithm, any voxel-
wise masking criteria, and the maximal angular threshold allowed
for fibers to turn between adjacent voxels.

Parcellation scheme/choice of atlas
In order to obtain connection strengths between brain regions,
the regions must first be defined. This task typically takes
one of several routes. Structural parcellation takes a structural
image and parcellates it with an algorithm that uses anatom-
ical information in the image and prior models to deter-
mine cortical and subcortical regional boundaries. Common
analysis packages for performing parcellation are Freesurfer
(http://surfer.nmr.mgh.harvard.edu) and Automated Anatomical
Labeling (AAL) (Tzourio-Mazoyer et al., 2002). Functional par-
cellation can be performed on fMRI data based on a search for
regions whose functional connectivity patterns are statistically
similar in time and/or space (Craddock et al., 2012). A third strat-
egy is to use predefined subregions of cortex/subcortex from a
predefined atlas such as the Harvard-Oxford cortical/subcortical
probabilistic atlas distributed with the FMRIB Software Library
(FSL). The set of ROIs are normally spatially registered to the
subject’s image space where connectivity is to be estimated. A
fourth strategy is to use a set of meta-analytically defined coor-
dinates in a standard stereotactic space (e.g., MNI152) based on
sites of peak activation during behavioral tasks. Small regions
of interest, typically spheres of 5–10 mm radius, are created
around each coordinate and used as seeds to calculate connectiv-
ity strength with the remaining spheres (Power et al., 2011). For
any parcellation scheme, different tissue types may be included or
excluded. fMRI-based analyses are typically uninterested in WM
signal and may use gray matter ROIs. Conversely, dwMRI stud-
ies are more focused on water diffusion in WM and often use
the gray/WM interface as a starting point for tractography. In
this case, ROIs may include portions of both gray and WM. For
atlas-based ROIs, region boundaries are commonly defined using
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probabilistic estimates rather than hard cutoffs. In this case, the
user must decide a probability threshold above which to assign
regional labels.

For submission to the UMCD, the user should note the
atlas/software package used to parcellate the brain in the Atlas
field and any masking operation that was performed for each ROI
in the Preprocessing Notes field (e.g., gray matter, WM, proba-
bility threshold). For each ROI, the (x, y, z) spatial coordinate
describing its spatial location is also required in order to gen-
erate network renderings. The spatial center of mass is an ideal
descriptive coordinate for an ROI. Users are strongly encouraged
to use millimeter coordinates based in the Montreal Neurological
Institute coordinate system after registering their ROIs to the
MNI152 average brain. This is not strictly enforced and caution
is warranted for any site user planning to compare connectivity
loci across different datasets on the UMCD.

General connectivity matrix preprocessing
Once a CM has been calculated, there are a variety of post-
processing strategies that are specific to different imaging modal-
ities, software packages, and laboratories. We urge those who
share data on the UMCD to submit “raw” CMs. This precludes
thresholding of edge weights below a certain weight cutoff, bina-
rization of edges, or adjustment of weights to deal with issues of
non-normal distribution and negative weights. Additionally, all
current UMCD analyses assume that CMs are symmetric, mean-
ing that the connection weight from node i to j is identical to the
connection weight from j to i. The storage of raw data is neces-
sary for subsequent downloaders of the data to make their own
decisions about how to treat the data.

General connectivity matrix analysis
The only options the user can configure when running an analy-
sis on the UMCD are the weighting scheme and the edge density.
All graph measures calculated by the UMCD are interpretable
for binary and weighted graphs. While the various arguments
for using binary or weighted edges are beyond the scope of this
paper, it is generally helpful to test both options when ana-
lyzing a network in order to see how different graph metrics
will vary. The selected edge density will also affect the resultant
graph metrics. At very low edge densities the network is likely to
become disconnected, in which case path length-based measures
like characteristic path length and lambda cannot be calculated
for the graph as a whole. Other measures like global efficiency,
clustering coefficient, and modularity can be calculated for dis-
connected graphs. From an analysis perspective, sparse graphs
(with <=∼25% of edges connected) can be considered to have
higher “signal to noise” ratio (Alexander-Bloch et al., 2010), pre-
serving only the strongest connections in the network. On the
other hand, because the choice of threshold is arbitrary, any cho-
sen threshold may exclude some edges that correspond to true
biological connections. Thus, it is important to assess graph met-
rics across a range of different thresholds to ensure that they are
not an artifact of one specific threshold value. For these reasons,
users are encouraged to test different permutations of weight-
ing schemes and thresholds to assess how network characteristics
may vary.

There are important caveats with a general analysis pipeline
like the UMCD. A graph is a very general representation of con-
nectivity strengths in a network model of a system like the brain.
Graphs derived from different types of data, such as fMRI and
DTI-based graphs, may be more appropriate for certain net-
work measures than others. For example, in functional graphs
the edge weights are described based on a statistic, often the
correlation coefficient. In this case, path length-based measures
such as global efficiency may not be as meaningful as they are
in a structural network, where physical connection densities can
be measured. The UMCD does not attempt to stratify the net-
works based on the type of data from which they were derived.
It will provide the same complete set of graph theory measures
for any analysis. Additionally, most of the graph theory metrics
calculated on the UMCD are “unnormalized” with respect to a
random network. The only metrics that are calculated as ratios
of the true network value to the “pseudo” value from a randomly
wired network are gamma (normalized clustering coefficient) and
lambda (normalized characteristic path length). Caution is urged
to the user in interpreting graph measures to ensure they are used
appropriately.

Connectivity matrix comparison
In order to compare CMs across studies in a meaningful way,
all factors of each study’s data collection and analysis must be
considered. The imaging modality, scanner, scan sequence, sub-
ject pool, and analysis methods will all obviously impact the CM.
The regional names used for a given study will also be unique,
dependent on the parcellation scheme or atlas that was used to
define ROIs. In any attempt to compare CMs from different stud-
ies, the user should consider how similar the regions from the
studies are. This is a two-pronged issue: first, the spatial posi-
tion and extent of the ROIs may differ; second, the nomenclature
may differ. The UMCD only requests a name and spatial coor-
dinate for each ROI. This is an incomplete description, based on
a practical design decision to reduce file storage size and com-
plexity. However, this means that the similarity of ROIs across
studies cannot be fully assessed. Each ROI is uploaded with its
MNI stereotaxic coordinate, which can establish a coarse measure
of spatial similarity in ROI coordinates across studies. The spac-
ing of the full set of coordinates for a given CM can give an idea
of the density and average size of each ROI, assuming ROIs are
not overlapping. In order to find studies that have connectivity
estimates for a given region, the user is encouraged use the NIF
interface to the UMCD. There, a user could search for the infe-
rior frontal gyrus, pars triangularis, or Brodmann Area 45, and
obtain the same results based on their alignment in the NIFSTD.
A more systematic attempt to maximally align all regional names
from two different studies is outside the scope of the current
work but has been addressed elsewhere (Bug et al., 2008; Imam
et al., 2012). Of course, full alignment of ROIs may not be pos-
sible if the studies differ in the number of regions, the size of
the defined regions, or the set of regions that are excluded (e.g.,
subcortical nuclei). For all of these reasons, the user must care-
fully consider how comparable two datasets are, and carry this
in mind when comparing data from different studies shared on
the UMCD.
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EXAMPLE ANALYSIS
Here we perform an analysis based on publicly available DTI and
rs-fMRI data from 60 subjects that were part of the NKI/Rockland
study available for download on INDI (http://fcon1000.projects.
nitrc.org/indi/pro/nki.html).

Subjects
The purpose of this study was to generate a large scale, exten-
sively phenotyped dataset to explore brain/behavior relationships
in healthy individuals. For the current study, we were interested
in comparing functional and structural brain networks in healthy
adults. We selected 60 subjects from this sample for analysis, rang-
ing in age from 26 to 45 years, mean = 35.8 ± 6.3. Thirty-seven
males and 23 females were included. Subjects underwent diag-
nostic psychiatric interviews, along with a battery of psychiatric,
cognitive, and behavioral assessments. Full-scale IQ (FSIQ) was
measured with the Wechsler Abbreviated Scale of Intelligence.
The mean subject FSIQ was 104.1 ± 12.5.

MRI scans
Resting state fMRI was performed on a Siemens Trio 3T with
acquisition time = 10:55, TR = 2500 ms, TE = 30 ms, on 38
slices with a voxel size = 3 mm3. DTI had acquisition time =
13:32, TR = 10000 ms, TE = 91 ms, on 58 slices with a voxel
size = 2 mm3 along 64 diffusion-weighted gradients with b =
1000 s/mm2. A magnetization prepared rapid gradient echo
(MPRAGE) scan had either a longer sequence with acquisition
time = 10:42, TR = 2500 ms, TE = 3.5 ms on 192 slices with a
voxel size = 1 mm3 or a shorter sequence with acquisition time =
5:49, TR = 2500 ms, TE = 3.5 ms, on 192 slices with voxel size =
1 mm3. The raw data for these scans was accessed from http://fcon
1000.projects.nitrc.org/indi/pro/nki.html.

RS-fMRI/DTI processing
Resting state fMRI data was preprocessed using the following
pipeline: (1) corrected for differential slice timing using FSL’s
slicetimer, (2) rigid-body motion corrected each volume to the
middle volume using FSL Motion Correction using FMRIB’s
Linear Image Registration Tool (MCFLIRT), (3) stripped the skull
using FSL Brain Extraction Tool (BET), (4) spatially smoothed
the data with a Gaussian kernel with 5 mm full-width half maxi-
mum, (5) grand-mean scaled the entire 4D dataset, (6) band pass
temporal filtered the data from 0.08 to 0.009Hz, (7) performed
tissue-type segmentation of the MPRAGE using FSL FAST, (8)
registered cerebrospinal fluid (CSF) and WM masks to the first
fMRI volume, (9) mask the CSF and WM masks with conserva-
tive ventricular and core WM masks derived from the MNI152
atlas, (10) extracted mean timeseries from the core CSF, core WM,
and whole brain, (11) constructed a model that included time-
series for core CSF, core WM, whole brain signal, the six motion
parameters, and all temporal derivatives, performed linear regres-
sion with this model on the data, and obtained the residuals, (12)
ran motion scrubbing to identify TRs with a relative motion dis-
placement greater than 0.5 mm or a relative BOLD signal intensity
change greater than 0.5% (Power et al., 2012), and (13) registered
with FSL FLIRT to the MNI152 average brain with a 4 mm3 voxel
resolution in a three stage registration from fMRI > initial T2

structural > MPRAGE > MNI152. The residual BOLD data was
then analyzed using the spatially constrained spectral clustering
method (Craddock et al., 2012) in order to derive 188 gray mat-
ter/subcortical/cerebellar ROIs that were spatially contiguous and
maximally functionally homogenous across subjects. These ROIs
ranged in volume from 28 to 180 voxels. No subjects had more
than 100 TRs flagged by motion scrubbing and thus none were
dropped from subsequent analysis. An average of 9 ± 17 TRs
were flagged for removal. After marking flagged TRs, the mean
timeseries for each ROI was calculated and then correlated with
all remaining ROI timeseries (excluding flagged TRs) to derive a
188 × 188 functional connectivity MRI (fcMRI) matrix.

DTI data was corrected for motion and eddy current distor-
tions using FSL eddy_correct. The skull was stripped using FSL
BET. Diffusion tensors were estimated using Diffusion Toolkit
(http://trackvis.org/blog/tag/diffusion-toolkit/) and tractography
was run using the fiber assignment by continuous tracking
(FACT) algorithm (Mori and van Zijl, 2002), with an angle
threshold of 45◦. The fractional anisotropy (FA) map for each
subject was registered to the MNI152 average brain in a two-stage
registration from FA to MPRAGE using a mutual information
cost function and 7 degrees of freedom, then from MPRAGE to
MNI152 using a correlation ratio cost function and 12 degrees
of freedom. The transformation matrices were combined and
inverted. We then registered the 188 ROIs defined from the fMRI
data in standard space to each subject’s DTI space. Masks were
dilated by one voxel width in order to include the gray/WM inter-
face, and then thresholded in order to assign each voxel to only
the ROI for which it had the highest intensity value (greatest like-
lihood of membership). For each ROI, all fibers were counted that
intersected at least one voxel in the source ROI and at least one
voxel in any target ROI using custom code (http://ccn.ucla.edu/
wiki/index.php/UCLAMultimodalConnectivityPackage). In this
way the 188 × 188 structural CM was obtained.

Function/structure weight comparisons
Connection weights for functional and structural networks
were correlated with each other across subjects using Matlab
(The Mathworks, Natick, MA) in order to determine network
similarity.

Graph theory
All 120 matrices (60 functional + 60 structural) were uploaded
to the UMCD. The individual networks are publicly shared on
the site under the study name “NKI_Rockland.” The network
names are in the format “NKI_<subject_id>_<modality>,” e.g.,
“NKI_1013090_fcmri” and “NKI_1013090_dti.” For all fcMRI
matrices, we also sought to examine the effect of global signal
regression (GSR) on functional network topography and sim-
ilarity to structural networks. GSR is a controversial step in
fcMRI preprocessing. Proponents argue that this step controls
for common, non-brain sources of variation that affect the entire
image (Fox et al., 2009), while opponents have shown that this
step may obscure the distribution of connectivity weights and
introduce artifactual anticorrelations between networks (Murphy
et al., 2009; Saad et al., 2012). We therefore prepared a par-
allel set of CMs that were processed in identical fashion but
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without the GSR step. These matrices are labeled as, e.g.,
“NKI_1013090_fcmri_NoGSR.” From these individual matrices,
group-average functional and structural matrices were calculated.
These group average matrices increase the stability of connectiv-
ity estimates between regions for a relatively homogenous group
from a developmental/aging standpoint. The rationale was that
individuals in the 26–45 age range are fully mature but have
not yet experienced cognitive aging, placing them in the maxi-
mally “normal” adult age range. The group averages are named
“NKI_fcmri_avg_<age_range_min>_<age_range_max>” and
“NKI_dti_avg_<age_range_min>_<age_range_max>.” Finally,
in order to test the affect of GSR on the resultant networks, equiv-
alent functional connectivity matrices without the GSR stepped
are stored under the name “NKI_fcmri_avg_<age_range_min>_
<age_range_max>_NoGSR.”

For the current study, the goal was to demonstrate the capacity
of the UMCD to compare functional and structural CMs. Hence,
only the NKI_dti_avg_26_45, NKI_fcmri_avg_26_45_GSR, and
NKI_fcmri_avg_NoGSR matrices were analyzed. They are hence-
forth referred to as NKI_dti_avg, NKI_fcmri_avg_GSR, and
NKI_fcmri_avg_NoGSR. These matrices were analyzed at two
different edge density levels, 5 and 20%. The 5% threshold cre-
ated sparser matrices that preserved only the strongest edges
and highlighted different network modules. The DTI network
was disconnected at a 5% threshold, preventing the compu-
tation of characteristic path length and small worldness. At
the 20% threshold, all networks were fully connected, allow-
ing the computation of global path length-based measures.
Matrices were also analyzed with two different weighting schemes,
binary and weighted. For functional networks, edge weights
spanned a range of −1 to 1, as dictated by the Pearson cor-
relation formula. For structural networks, the fiber connec-
tion weights spanned four orders of magnitude (100–104). In
cases like these where the distribution of weights for different
matrices are significantly different, the binarization of network
weights can significantly obscure the underlying connectivity pat-
terns. However, binarization has advantages, including simpler
graph theory calculations and a more straightforward random-
ization scheme (degree preserving rewiring) for determining
null reference networks. We therefore found it pertinent to
examine both weighted and binarized functional and structural
networks.

Each matrix was analyzed and all global/regional measures
were downloaded from the UMCD and imported to Matlab. The
adjusted Rand index was used to quantify the similarity of mod-
ularity partitions in individual functional vs. structural networks,
where 0 indicates no agreement between nodes and 1 indicates
total agreement between all nodes.

RESULTS
BASIC GRAPH PROPERTIES
First, the similarity of functional and structural connec-
tion weights was assessed by Pearson correlation. For the
NKI_fcmri_avg_GSR and NKI_dti_avg CMs, the edge weight
correlation was r = 0.39 (all p < 10−5; Figure 6). When only
considering regions with existent structural connections (> 1
fiber, averaged across the group), the edge weight correlation

FIGURE 6 | Correlation of functional and structural connectivity

strengths for the group-average 188 × 188 connectivity matrices,

identified as NKI_fcmri_avg_GSR and NKI_dti_avg in the text.

increased to r = 0.42. For the NKI_fcmri_avg_NoGSR and
NKI_dti_avg, the edge weight correlation was r = 0.30 consid-
ering all connections. When limiting to only existent structural
connections, the correlation increased slightly to r = 0.34.

GLOBAL GRAPH THEORY MEASURES
Next, the fcMRI and DTI networks were compared to one
another using UMCD’s “Compare Networks” feature. The raw
NKI_fcmri_avg_GSR network was 100% connected with an
average edge weight of 0.017 ± 0.199 (Table 1). The aver-
age Euclidean distance between ROI coordinates was 83.5 ±
30.7 mm. The raw NKI_fcmri_avg_NoGSR network was also
100% connected, with a higher average edge weight of 0.28 ±
0.17, as expected. The average Euclidean distance between ROIs
was exactly the same as the GSR network, given that every ROI
is connected in the raw CMs. The raw NKI_dti_avg network was
76.04% connected with an average edge weight of 56.56 ± 156.10
and an average Euclidean distance of 76.85 ± 29.94 mm.

Network measures were assessed with binary edges at an edge
density of 20% (Table 1). The networks differed from each other
for nearly every metric. The measures are listed here in the
format (fcMRI GSR/NoGSR vs. DTI). The fcMRI network had
greater characteristic path length (CPL; 2.00/2.06 vs. 1.96), lower
clustering coefficient (CC; 0.57/0.57 vs. 0.62), equivalent global
efficiency (GE; 0.57/0.56 vs. 0.57), higher small worldness for
GSR (2.42/1.71 vs. 1.81), higher gamma for GSR (2.72/1.92 vs.
1.95), higher lambda (1.12/1.12 vs. 1.08), and higher modularity
(Q; 0.47/0.39 vs. 0.33).

NODAL GRAPH THEORY PROPERTIES
For the nodal measures, the Pearson correlations between
functional and structural measures were calculated across the 188
nodes (Table 2). For binarized networks thresholded at 20%, the
correlations were significant at a p-level of 0.01 for betweenness
centrality (r = 0.19, p = 0.008) and participation coefficient
(r = −0.2, p = 0.005) and nearly significant for clustering
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coefficient (r = 0.18, p = 0.016), though the betweenness
result was driven by outliers. The correlation was not signifi-
cant for strength (r = −0.06, p = 0.45) or regional efficiency
(r = −0.05, p = 0.54). For comparison, nodal measures were
also correlated between the functional and structural networks
for binary networks thresholded at 5% and weighted networks
thresholded at 5 and 20% (Table 2). Each of the measures was also
compared using the Spearman rank correlation. In no cases was
the Spearman correlation coefficient substantially different from
the Pearson correlation coefficient (mean difference in r:0.015).

A side-by-side visual comparison of the networks revealed the
fcMRI network had more bilateral connectivity (Figures 7 and 8),

particularly in the motor and visual cortices. The average length
of edges between nodes, as measured by Euclidean distance, was
longer in the fcMRI network than the DTI network (Table 1).
The nodes with the highest “hubness,” based on the combined
rank of strength, betweenness centrality, and regional efficiency
are shown in Table 3.

The functional network with GSR exhibited hubs in the
temporal lobe, cingulate cortex, parietal lobe, and cerebellum.
Without GSR, hubs were more apparent in occipital and tem-
poral lobes. Structural hubs were found in the subcortical areas
(thalamus, caudate, putamen, pallidum), medial temporal lobe,
and insula.

Table 1 | Basic network and global graph theory properties for the fcMRI networks with/without Global Signal Regression and the DTI

network.

Measure NKI_fcmri_avg_GSR NKI_fcmri_avg_NoGSR NKI_dti_avg

Raw density 100% 100% 76.04%

Raw edge weights 0.017 ± 0.199 0.28 ± 0.17 56.56 ± 156.10

Raw Euclidean distance 83.5 ± 30.7 mm 83.5 ± 30.7 mm 76.85 ± 29.94 mm

Thresholded edge weights 0.33 ± 14 0.54 ± 0.1 204.52 ± 249.66

Thresholded Euclidean distance 59.55 ± 30.41 mm 61.19 ± 29.84 mm 50.43 ± 22.74 mm

CPL 2.00 2.06 1.96

MCC 0.57 0.57 0.62

eGlob 0.57 0.56 0.57

Modularity 0.47 0.39 0.33

Small worldness 2.43 1.71 1.81

Gamma 2.72 1.92 1.95

Lambda 1.12 1.12 1.08

Table 2 | Correlation of nodal fcMRI and DTI graph theory measures across all 188 nodes for the NKI_fcmri_avg_GSR and NKI_dti_avg networks.

Binary, 5% Binary, 20% Weighted, 5% Weighted, 20%

Strength −0.02 (0.83) −0.06 (0.45) −0.02 (0.83) −0.06 (0.45)

Clustering coefficient 0.09 (0.2) 0.18 (0.016) 0.12 (0.11) 0.11 (0.12)

Betweenness centrality 0.15 (0.036) 0.19 (0.008)∗ 0.14 (0.06) 0.15 (0.04)

Regional efficiency −0.01 (0.91) −0.05 (0.54) −0.1 (0.15) −0.01 (0.93)

Participation coefficient 0.15 (0.04) −0.2 (0.005)∗ 0.15 (0.04) 0.04 (0.6)

Adjusted Rand index 0.19 0.09 0.19 0.12

Values are mean r-value (p-value) except for the Rand index. ∗Indicates significance at p < 0.01.

Table 3 | Regions with the highest combined rank for node strength, betweenness centrality, and regional efficiency, based on fcMRI/DTI

networks binarized and thresholded to keep the 20% strongest edges.

fcMRI w/ global signal regression, Binary 20% fcMRI w/out global signal regression, Binary 20% DTI, Binary 20%

Right planum polare Left temporal occipital fusiform gyrus Left thalamus

Right precuneus Right temporal occipital fusiform gyrus Right pallidum

Cerebellum vermis VI Right anterior cingulate Right thalamus

Right anterior middle temporal gyrus Left occipital fusiform gyrus Left pallidum

Right posterior parahippocampal gyrus Right temporal pole Left posterior parahippocampal gyrus

Left posterior cingulate Right precuneus Right putamen

Right anterior cingulate Right superior lateral occipital cortex Right posterior parahippocampal gyrus

Left posterior middle temporal Right temporooccipital inferior temporal gyrus Left insula

Right paracingulate Right posterior superior temporal gyrus Left caudate

Right posterior superior temporal gyrus Right planum polare Right hippocampus
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The strength, betweenness centrality, and modularity of
each node for the NKI_fcmri_avg_GSR and NKI_dti networks,
weighted and thresholded at 4% for visualization purposes,
are displayed visually on the 2D network in Figure 7. fcMRI
network nodes with high strength and betweenness centrality
were spatially distributed while in the DTI network they tended
to cluster in the subcortical nodes. The fcMRI modules cor-
responded to well-characterized functional systems including
the default mode network (turquoise), temporal lobe network
(blue), fronto-parietal network (light blue), dorsal and ventral
sensory-motor networks (blue and seafoam green), visual net-
work (yellow), posterior parietal network (orange), subcortical
network (line green), and cerebellar network (dark blue) (Power
et al., 2011; Tomasi and Volkow, 2011) (Figure 8). DTI modules
corresponded to neighboring anatomical regions including the
frontal lobe/anterior midline (blue), left temporal lobe/parietal
lobe/subcortex (seaform green), right temporal lobe/parietal lobe
(blue), right central midline/sensory-motor cortex/cingulate cor-
tex (turquoise), occipital lobe/right posterior parietal/temporal
lobe (light blue), and cerebellum (dark blue).

DISCUSSION
DATA SHARING AND NEUROINFORMATICS
The UMCD allows any user to publicly share brain connectivity
matrices, run graph theory-based analyses on the website, and
search available data across any imaging modality, demographic
category, or disease status. The ability to archive these data in their
complete form and make them publicly available should enable
more extensive brain connectivity meta-analyses. Here we illus-
trated the capability of the UMCD to compare functional (fMRI)
and structural (DTI) CMs derived from the same set of subjects
in order to assess similarities and differences in their connectivity
patterns.

The UMCD decreases the barrier to entry for performing a
graph-theory based analysis of a CM. We emphasize that this plat-
form is not primarily designed for statistical analysis. It is first
and foremost a data sharing site. We provide graph theory based
tools to allow users to explore and compare CMs of interest on
the site. While we consider the richness of this environment to
be beneficial, caution is warranted in the application and inter-
pretation of graph theory measures from UMCD. As with any
software package that provides quantitative data metrics, users are
urged to thoroughly consider how these measures were calculated
and whether they are appropriate to compare across individual,
imaging modality, or study.

MRI-based connectivity analyses offer hope in improving the
ability of a clinician to diagnose a neurological disease or neu-
ropsychiatric disorder. In order to achieve accurate diagnosis
of individual patients, sensitivity and specificity of classification
must be pushed to extremely high levels (Pepe et al., 2004). One
obvious way to improve classification accuracy is to increase the
number of training samples. Community-driven repositories are
an effective strategy for rapidly aggregating large amounts of
data from the international community (van Horn et al., 2004;
Milham, 2012). These repositories have already been leveraged
to build neuroimaging-based classifiers of neuropsychiatric disor-
ders such as Attention Deficit Hyperactive Disorder and evaluate

their efficacy (Cheng et al., 2012; Colby et al., 2012; Eloyan et al.,
2012). A downside of this strategy is the increased likelihood of
data with suspect quality. While users are encouraged to share
data on the UMCD only after publication, this is not strictly
enforced. We leave the accessors of the data the responsibility of
vetting data that they analyze on the UMCD or download for
off-site use.

One aim of the neuroinformatics field is the integration of
databases with one another into large federations (Akil et al.,
2011). These efforts are dependent on the establishment of
ontologies and the use of application programming interfaces
(APIs). The NIF is a semantic search engine that allows a user to
search a broad set of databases spanning many species, recording
methods, and laboratories (Gupta et al., 2008). The UMCD con-
nectivity data are regularly crawled by NIF as they are uploaded
to the system, using the region names associated with each
shared CM. This allows a NIF user to perform a connectivity-
based meta-analysis at a broader scale. This is a challenging task
because data from the various source databases catalogued by
NIF are often customized to a particular technique and a par-
ticular species, rather than across species and techniques. While
mapping Brodmann areas to corresponding cortical structures in
rodents may be an ill-posed problem, even simple differences such
as “cornu ammonis 1” vs. “Hippocampal region, CA1” present
a problem when comparing connectivity measures in different
datasets. Note, these are two perfectly valid ways to describe the
CA1 region and yet no computer will be able to find these terms
together because they are not lexical variants unless the computer
is told that these are in fact synonyms. Therefore, NIF superfi-
cially aligns brain region labels to the NIF standard ontology, the
NIFSTD, where labels can be toggled for search and browsing.
NIF also performs a search across all known synonyms per brain
region, as it is unlikely that all data will be aligned at any one
time. If users wish to investigate connectivity for a specific brain
region based on data in the UMCD, they should first perform a
search on the NIF system for that region. Once relevant datasets
have been identified, they can use the UMCD to further probe the
connectivity of their region of interest in those datasets.

COMPARISON OF FUNCTIONAL AND STRUCTURAL CONNECTIVITY
MATRICES
As a demonstration of the UMCD platform, we compared group-
averaged functional and structural connectivity matrices from a
group of 60 healthy subjects aged 26–45. Functional and struc-
tural graph theory-based studies have expanded in parallel in
recent neuroimaging literature. Several studies have made direct
comparisons of connectivity strengths in rs-fMRI and dwMRI
data (Hagmann et al., 2008; Honey et al., 2009) but to our knowl-
edge, none have systematically compared graph-theory based
measures. We found that despite a positive correlation of func-
tional and structural connectivity strengths, there was a low
correspondence of global and nodal graph theory measures. For
the connection weights of fcMRI and DTI networks, the correla-
tion was moderate but statistically significant. The fcMRI network
had greater characteristic path length (CPL; 2.00/2.06 vs. 1.96),
lower clustering coefficient (CC; 0.57/0.57 vs. 0.62), equivalent
global efficiency (GE;0.57/0.56 vs. 0.57), higher small worldness

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 28 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Brown et al. The UCLA multimodal connectivity database

FIGURE 7 | Two-dimensional network plots from fcMRI and DTI group

average networks. Networks are viewed from a top/axial view with edge
width proportional to connection strength and node radius/color related to the
given network measure. For each network, the top 4% of weighted edges

based on strength are shown. In the first row, the radius of each node is
based on its connection strength. In the second row, the radius of each node
is based on its betweenness centrality. The third row shows nodes grouped
into different modules by color.
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FIGURE 8 | Three-dimensional network renderings of the fcMRI and

DTI group average networks, thresholded to show the top 4% of

weighted edges based on connection strength. Node colors are based
on module membership. The same networks are shown from a top view
and a left side view. The fcMRI network shows modules agreeing with
known functional networks, longer edge Euclidean lengths, and more
bilateral connectivity. The DTI network shows more anatomically
confined modules, shorter edge Euclidean lengths, and more local
connectivity.

for GSR (2.42/1.71 vs. 1.81), higher gamma for GSR (2.72/1.92
vs. 1.95), higher lambda (1.12/1.12 vs. 1.08), and higher modular-
ity (Q;0.47/0.39 vs. 0.33). The differences in modularity highlight
the differences between these networks. The higher modularity in
the fcMRI networks relates to the longer path length, as fcMRI
networks are more spatially distributed. The DTI network has a
more regular, lattice-like topology. Importantly, GSR exaggerates
the differences between the fcMRI and DTI networks. Modularity
and small worldness both increase drastically in fcMRI data with
GSR applied, exaggerating the differences in global graph the-
ory measures to between the fcMRI and DTI networks. This
step may enhance within-module correlations while dampening
between-module correlations. Surprisingly, the weight correla-
tions for the fcMRI and DTI networks were more similar with
GSR applied. Thus, while individual functional and structural
weights are more similar after GSR, global network properties
become more dissimilar.

DTI and fMRI have their own limitations for determining
connectivity strengths. A tensor is a basic model of water diffu-
sion that is insufficiently complex for describing the intersection
of multiple fiber populations within a voxel (Wedeen et al.,
2008). DTI tractography therefore has limited ability to detect
crossing fibers. Alternative diffusion weighted imaging meth-
ods like DSI collect data with more gradient directions and
larger b-values. This enables the modeling of diffusion as a more
complex ODF, which can better resolve the intravoxel crossing
of fiber bundles. The corpus callosum can be difficult to fully

resolve using DTI because of its crossing with the heavily myeli-
nated corona radiata. Here we derived connectivity matrices from
DTI tractography and thus may have slightly underestimated
interhemispheric connectivity. Meanwhile, rs-fMRI functional
connectivity robustly detects bilaterally symmetric functional
connections (e.g., Damoiseaux et al., 2006). Future studies with
DTI data, DSI data, and resting state fMRI data will be required
to determine how variable the DTI/DSI interhemispheric con-
nectivity measures are, and how these both relate to rs-fMRI
connectivity strengths.

The comparison of nodal measures from functional and
structural networks revealed mostly non-significant correlations.
Importantly, the relationship tended to be non-significant regard-
less of the weighting scheme or weight threshold, suggesting that
these factors do not highly influence the network measures. The
only significant finding was a negative correlation of nodal partic-
ipation coefficients in binary networks at a 20% weight threshold.
In order to probe the relationship deeper, we examined the effects
of all structural regional measures—degree, clustering, between-
ness, regional efficiency, and participation—on functional partic-
ipation using hierarchical regression. The most significant model
for predicting functional participation included structural clus-
tering (p = 3.15 × 10−6) and participation (2.61 × 10−7), both
with negative coefficients. Thus, for binarized graphs thresholded
at 20%, low structural diversity and sparse local connectivity
related to higher functional diversity. A structural “connector”
region is one that is sparsely connected and bridges between dif-
ferent areas of the network. In these networks, structural connec-
tor regions tended to functionally interact with multiple different
functional modules.

Functional and structural modules had a low degree of cor-
respondence in these networks. One explanation for the dispar-
ity between these network types is simply that brain structure
and function are not isomorphic (Deco et al., 2011). While
the structural connective backbone does provide the scaffold-
ing upon which neuronal communication occurs, it may not
substantially constrain the functional integration and segrega-
tion of brain networks. Structural fiber connections do exist
between most intrinsic functional connectivity networks (van den
Heuvel et al., 2009a) but such connections do not necessarily
imply a similar community structure. Resting state functional
connectivity patterns have relatively high test–retest reliability
across sessions, indicative of a stable resting state configura-
tion (Shehzad et al., 2009). However, it has been demonstrated
that nodes of the brain’s functional network exhibit character-
istic macroscale reconfigurations in the service of motor tasks
(Bassett et al., 2011b), visual perception (Ekman et al., 2012),
and episodic memory (Shirer et al., 2012). It appears that cer-
tain brain regions may be more predisposed for task-related
adaptation while others maintain more stable roles maintain-
ing intrinsic connectivity (Mennes et al., 2012). Meanwhile,
the brain’s structural macroscale connectivity is known to be
largely static and reproducible on short timescales (days to
weeks) (Bassett et al., 2011a; Cammoun et al., 2012). The pres-
ence of an adaptive functional network on a static structural
scaffold obviously indicates some divergence of structural and
functional network properties. The aggregation of functional
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connectivity matrices across resting state and different tasks,
when collected in parallel with structural connectivity matri-
ces, should further our understanding of the constraints that
structural connectivity places on functional integration and
segregation.

CONCLUSIONS
Here we introduced the UCLA Multimodal Connectivity
Database, a web-based resource that is openly available for brain
network analysis and data sharing. Within this framework, a user
can share CMs derived from neuroimaging data or access the
matrices that have been publicly shared by other users. The site
allows the user to conduct a graph theory analysis of any shared
CM and view a report of global and nodal graph theory metrics,
3D and 2D network visualizations, along with study/demographic

information about the network. We hope that this website will
encourage broader sharing of CMs, enabling large-scale meta-
analyses of brain connectivity.
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