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Abstract
We study the properties of the Nakajima–Zwanzig memory kernel for a qubit immersed in a
many-body localized (i.e. disordered and interacting) bath. We argue that the memory kernel
decays as a power law in both the localized and ergodic regimes, and show how this can be
leveraged to extract t →∞ populations for the qubit from finite time (Jt � 102) data in the
thermalizing phase. This allows us to quantify how the long-time values of the populations
approach the expected thermalized state as the bath approaches the thermodynamic limit. This
approach should provide a good complement to state-of-the-art numerical methods, for which the
long-time dynamics with large baths are impossible to simulate in this phase. Additionally, our
numerics on finite baths reveal the possibility for unbounded exponential growth in the memory
kernel, a phenomenon rooted in the appearance of exceptional points in the projected Liouvillian
governing the reduced dynamics. In small systems amenable to exact numerics, we find that these
pathologies may have some correlation with delocalization.

1. Introduction

Central spin models are ubiquitous in physical and chemical settings, from electrons with hyperfine
coupling to nuclear spins inside quantum dots [1–4], to nitrogen-vacancy centers in diamond [5–7].
Depending on the couplings in these systems, the central spin may have long-lived, slow decaying dynamics
suitable for quantum information applications. The role of the bath in these cases is relegated to modeling
decoherence, and has not traditionally been considered to be important. The bath is usually taken to be
non-interacting, an assumption which has proven fruitful in the development of analytical [8–14] and
numerical [15–20] techniques. As such, these classes of baths—whether composed of bosons [21] or spins
[22]—are by now reasonably well understood [22–30].

Recent research has brought new focus to modifications of the bath by adding, for example, intra-bath
interactions and disorder. With these additions, the bath alone can exhibit novel dynamical phases such as
many-body localization (MBL), which serves as a basis for nonergodicity in generic systems with strong
disorder. Upon coupling to a bath, the long-ranged mediated interactions between constituents of the bath
can push the bath toward delocalization. Recent work [31, 32] has shown that a single qubit coupled
centrally to a 1D MBL spin chain can preserve localization provided that the magnitude of the central
coupling decays fast enough with the size of the bath. Delocalization can be achieved by a sufficiently strong
magnitude of central coupling, which the authors of [31] took to be signaled by quantum chaotic energy
level statistics. However, it was noted in [32] that the nature of the delocalized phase is unclear, as it could
be nonergodic. This could be reflected in the long-time value of the central qubit’s population not reaching
the thermal expectation but, as was found in [10] studying integrable central spin models perturbed away
from integrability, limitations of bath size prevent a definitive conclusion. An impediment is that at strong
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couplings, analytical and numerical approaches become scant due to the presence of interactions in the bath
and to the star-like geometry of problem.

The added complexity has a drawback in that such systems quickly become intractable computationally,
even for small bath sizes of ∼O(30) degrees of freedom. This is due to the exponential increase of states in
the Hilbert space that are involved in the dynamics. Moreover, large intra-bath interactions and disorder
can radically change the timescales of the bath and invalidate perturbative approaches to bath dynamics. In
this context, the case of MBL (in one dimension) is special in that it allows for a non-perturbative
description in terms of ‘l-bits’ [33–36]. Owing to this and to the slow growth of entanglement entropy
[37, 38], dynamics in the localized phase of MBL systems are by now well explored numerically and
analytically [36, 39–42]; however, these approaches generally fail on the ergodic side of the transition.

The dynamics of extended, thermalizing many-body systems are typically very difficult to simulate
exactly due to the rapid growth of entanglement. This is, for example, the limiting factor in methods based
on a tensor network ansatz for the wavefunction in which the bond dimension bounds the amount of
entanglement entropy that can be captured. A reasonable strategy then would be to extend the timescale of
the converged simulation using information that can be computed on the timescales before the breakdown
of the numerical method. Such an approach had been used successfully in the past to find the steady state
behavior of quantum impurity systems [43–45], and to show the existence of bistability in the
Anderson–Holstein model [46]. In those applications, the nontrivial dynamics of the impurity could be
described exactly using a memory kernel, derived using the projection operator formalism described by
Nakajima, Zwanzig and Mori [47–49].

While the Nakajima–Zwanzig theory is formally exact, it is oftentimes more demanding than other
formalisms to describe the dynamics because of the time-nonlocal memory kernel that naturally arises in
their approach. It only becomes computationally useful if the nonlocality can be restricted, e.g. large
timescale separation between bath and system dynamics lending to Markovian approximations, or if
memory kernel decays sufficiently rapidly such that it can be truncated for times �tc, where tc is the cutoff
time.

The use of memory kernels to study dynamics in central spin systems has seen various degrees of success
[13, 24, 26, 50]. For analytical tractability, such studies are usually restricted to noninteracting baths
without disorder and the memory kernel is expanded perturbatively. In the cases where such expansions are
valid, it has been found that the memory exhibits nonexponential decay at long times, with long-time
averaged population consistent with a nonergodic dynamics [24]. However within the perturbative
approach it is found that at higher orders of the expansion, the memory kernel can display secular
(unbounded) growth [24, 26]. In this work, we shall go beyond these approaches, taking into account the
presence of bath–bath interactions along with random disorder and directly computing the memory kernel,
therefore bypassing the possibility of pathological behaviors in the perturbation.

In this paper we study the memory kernel of a two-level system immersed in a bath modeled by a
many-body localizable spin chain. We do so with two goals in mind: to assess the feasibility of extending the
system dynamics from short time calculations when analytical and direct numerical approaches to compute
the system dynamics fail (i.e. on the thermalizing side of the MBL transition); and to understand how
interactions and disorder in the bath affect the memory kernel in properties such as timescales and tail
behavior.

To this end, we will work with a previously studied model [31] of a qubit (τ̂ x,y,z) coupled to a disordered
Heisenberg chain of L spins-1/2 (σ̂x,y,z

i ):

Ĥ = ĤS + ĤB + V̂ ,

ĤS = Ωτ̂ z

ĤB =
L∑

i=1

hi

2
σ̂z

i + J
L∑

i=1

1

4
σ̂z

i σ̂
z
i+1 +

1

2

(
σ̂+

i σ̂
−
i+1 + h.c.

)
V̂ =

γ

L

L∑
i=1

1

4
σ̂z

i τ̂
z +

1

2

(
σ̂+

i τ̂
− + h.c.

)
, (1)

where the τ̂ and σ̂ are Pauli matrices. The bath Hamiltonian ĤB corresponds to the disordered, isotropic
Heisenberg chain, where we take J = 1. The system–bath coupling terms V̂ are likewise given by the
Heisenberg interaction, with magnitude scaling as γ/L to ensure that localization can occur for finite γ. We
shall refer to γ as the strength of the central coupling. The random longitudinal fields hi are drawn
independently and uniformly from [−W, W]. The data we present here will be restricted to W/J = 6,
chosen such that the bath is localized for γ = 0 and experiences a central coupling-induced delocalization
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[31] around γ ≈ 5. Finally, the magnetic field is set to Ω = 0. Thus the qubit has no intrinsic dynamics and
is instead entirely dependent on the magnitude of the Overhauser field it experiences from the bath.

As noted in [31], the interacting central spin problem of equation (1) can be realized in dipolar spin
ensembles. Other platforms that allow for experimental realizations of this model include programmable
quantum simulators [51], NMR experiments with triphenylphosphine [52], or in superconducting qubit
circuits [53]; these approaches offer a high degree of control, for example by enabling the control of
intrabath interactions, random disordered Zeeman fields, and the strength of coupling γ.

The structure of this paper is as follows: we shall first define the memory kernel for reduced dynamics
and consider the role of disorder averaging; then we shall analyze the physics underlying the memory kernel
at short, intermediate, and long times; and finally we shall discuss the potential for the memory to be used
to augment short-time experimental or numerical data.

1.1. The Nakajima–Zwanzig equation
We quickly review the basics of the projection operator approach to generalized quantum master equations.
Any given Hamiltonian can be split into contributions ĤS acting only on the system, ĤB acting only on the
bath, and V̂ coupling the two. We will use the term ‘bath’ as a shorthand for the set of physical degrees of
freedom surrounding the central qubit. In particular, we do not assert the character of the bath to be
unchanged by coupling to the system. To each of the three aforementioned operators is associated a
corresponding Liouvillian superoperator (LS· ≡ [ĤS, ·], LB· ≡ [ĤB, ·], LV · ≡ [V̂ , ·]) generating dynamics
for the density matrix

i
dρ̂

dt
= i

d

dt
e−iLt ρ̂0 = Lρ̂(t) ≡ (LS + LB + LV )ρ̂(t). (2)

Oftentimes one is interested only in the dynamics of the system, in which case the bath degrees of freedom
can be projected out by tracing over the bath on both sides of the equation, where the bath trace is

TrBÔ =

dimHS∑
s,s′

dimHB∑
b

|s〉〈s′| 〈s ⊗ b|Ô|s′ ⊗ b〉. (3)

This is used to define the system reduced density matrix,

ρ̂S(t) = TrBρ̂(t). (4)

We shall additionally assume that the initial state is factorized, i.e. ρ̂0 = ρ̂S,0 ⊗ ρ̂B. By taking the bath trace
defined in (3) on both sides of (2) and using TrBLB = 0, we arrive at the exact expression

i
d

dt
ρ̂S(t) = LSρ̂S(t) + TrB

(
LV e−iLt(ρ̂S,0 ⊗ ρ̂B)

)
, (5)

which is an equation of motion for ρ̂S(t) that explicitly depends on knowledge of the time evolution of the
full system and bath. This equation of motion can be closed, i.e. involving only ρ̂S(t), by using Dyson’s
identity (see [54, 55]):

i
d

dt
ρ̂S(t) = LSρ̂S(t) − i

∫ t

0
dτK(t − τ)ρ̂S(τ). (6)

The memory kernel superoperator is formally defined as

K(t)ρ̂S = TrB

(
PLQe−iQLQtQLρ̂S ⊗ ρ̂B

)
. (7)

In the above equation, the projection superoperator is taken to be P· ≡ TrB( · ) ⊗ ρB and Q = I− P is its
complement. It is useful to define the system reduced propagator (superoperator) such that

US(t)ρ̂S,0 ≡ ρ̂S(t) = TrB(e−iLt ρ̂S,0 ⊗ ρ̂B). (8)

Knowledge of US allows for the generation of ρ̂S(t), and lets us write a Nakajima–Zwanzig equation [56]
involving only objects of one type, i.e. superoperators:

d

dt
US(t) = −iLSUS(t) −

∫ t

0
dt′ K(t − t′)US(t′), (9)

In this form, it becomes clear that one can solve for K directly from US. Note that no approximations have
been made and the dynamics generated by solving (9) and (7) are equivalent to solving (2) with the stated
assumptions on initial conditions.
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The derivation however, benefits from a simplification made possible by the form of the model
Hamiltonian in (1). Bath traces over the interaction Liouvillian LV with respect to a bath state ρ̂B of fixed
magnetization will be zero due to the conservation of total magnetization in the model, and if we choose ρ̂B

to have zero magnetization. Therefore the validity of (7) is not restricted to solely thermal baths
(ρ̂B ∝ e−βĤB ) nor bath eigenstates (

[
ρ̂B, ĤB

]
= 0).

The memory kernel K and the system propagator US, being linear mappings from the system Hilbert
space HS to itself, can be represented as (dim HS)2 × (dim HS)2 matrices. Requirements on unitarity and
hermiticity, along with the decoupling of populations and coherences in this magnetization-conserving
model, means that US is described by only two independent entries when the focus is solely on population
dynamics. The same extends to K by virtue of its relation to US. The two entries of US are computed by two
independent instances of the initial system state ρ̂S(0): one from the population of the |0〉 state when
ρ̂S(0) = |0〉〈0|, and the other from the population of the |1〉 state when ρ̂S(0) = |1〉〈1|. The initial bath state
is the same in both cases, with definite magnetization MB = 0. Because the total magnetization
M̂z = τ̂ z +

∑
i σ̂

z
i is conserved, these two trajectories must reside in independent parts of Hilbert space.

They are then combined in solving for the memory kernel, which can be done in the time domain by
discretizing the integro-differential equation (see the supplementary materials
(https://stacks.iop.org/NJP/24/013025/mmedia) for details). This, while posing no problem for the
projection operator formalism, leads to a strange scenario where the central qubit dynamics restricted to
one symmetry sector will depend on information from another, disjoint symmetry sector.

To skirt around this unsavory philosophical scenario, we can focus on only the population of the |0〉
state of the central qubit. Using the projection operator Pρ̂ = (|0〉〈0| ⊗ ρ̂B) Tr[(|0〉〈0| ⊗ ÎB)ρ̂], one can
repeat the same steps as before and obtain the scalar memory kernel for a single disorder realization as

K(t) = Tr
[
(|0〉〈0| ⊗ ÎB)LQe−iQLQtQL(|0〉〈0| ⊗ ρ̂B)

]
, (10)

satisfying the integro-differential equation

d

dt
p0(t) = −

∫ t

0
dt′ K(t − t′)p0(t′), (11)

or its Laplace-domain equivalent

K̃(z) = −z +
1

p̃0(z)
. (12)

Focusing on the population p0(t) of single state allows us to work with a scalar memory kernel K(t) and
simplifies the calculations. We will focus exclusively on the scalar memory kernel for the remainder of this
paper. While this may be an unconventional choice of projector and therefore also of a memory kernel, we
stress that the Nakajima–Zwanzig equation in its most general form does not depend on the choice of the P.
The only requirement is that the same observables of interest are contained in the domains of the different
projectors5.

Note that the memory kernel is akin to the self-energy for the reduced density matrix. Solving for it is
then tantamount to solving the exact problem. Yet there are still advantages to working with the memory.
For one, because of its relationship with the central qubit’s populations it is in principle a measurable
quantity. There is also the possibility for the memory to decay on timescales different from that of the
populations. Should the memory decay much faster, then it may be possible to leverage the timescale
separation to reduce the computational effort required to solve for the system dynamics at longer times.

1.2. Disorder averaged memory
Given that we are interested in disordered systems, suitable definitions of a memory kernel associated with
different disorder realizations depends on the quantity of experimental interest. The difference depends on
when the disorder averaging is performed. We denote by Kavg the case where the population p0 is averaged
over the disorder (p0) before solving for the memory kernel, satisfying

d

dt
p0(t) = −

∫ t

0
dt′ Kavg(t − t′)p0(t′). (13)

The other case, where the memory for disorder realization is found and then averaged, is denoted by K.
This latter case is relevant should one decide that the observable of interest is the memory kernel itself,
which is in principle possible since it is directly computable from the populations.

5 See [57] for a detailed demonstration of the equivalence of dynamics generated by different forms of generalized master equations
resulting from the interplay of projections and the presence of conserved quantities.
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It is not a priori clear how these two definitions are related. A reasonable guess might be that, upon
disorder averaging, the two definitions are equivalent. We argue that this is not necessarily correct. Suppose
that for every L the disorder-averaged population p0(t) exists, with initial condition p0(0) = 1. The
trajectory of the population for a single instance of disorder will have deviations from this average value,
p0(t) = p0(t) + δp(t). Since populations must be positive at all times, so should their Laplace transforms for
real, positive z. Using (12), the positivity of the Laplace transforms allows us to write

δ̃K(z) =
1

p̃0(z) + δ̃p(z)
− 1

p̃0(z)

=

∫ ∞

0
du e

−u
(

p̃0(z)+δ̃p(z)
)
− e−up̃0(z)

=

∫ ∞

0
du e−up̃0(z)

(
e−uδ̃p(z) − 1

)
. (14)

Since the exponential function is entire, the term in parentheses can be expanded as a series,

δ̃K(z) =

∫ ∞

0
du e−up̃0(z)

∞∑
n=1

(−u)n

n!

(
δ̃p(z)

)n
. (15)

Averaging this expression over disorder, we will have the n = 1 term vanish by definition of δp. But all
higher order terms—particularly ones with even powers—are not guaranteed to vanish. The consequence is
that Kavg = K for finite L.

The situation is modified in the thermodynamic limit owing to self-averaging. Intuitively, a small
subsystem interacting randomly with N � 1 degrees of freedom should have deviations from its mean
behavior that decrease as N increases. As a result, when the environment is sufficiently large, a single
realization of the random interaction should typically yield results close to the mean. This statement was
recently demonstrated [58], showing that the system reduced density matrix enjoys the typicality property
for system–bath interactions modeled by certain classes of random matrices. Importantly, [58] showed that
this self-averaging property holds at least up to a timescale T that increases with L. Thus if p0(0 � t � T) is
self-averaging, so must K(t) on the same interval, since to solve for K(t) up to time T in (11) requires only
p0(t) on [0, T]. In figure 1(b) we show the root-mean-squared fluctuations of p0(t) deeply in the
thermalizing phase of the bath-disordered Hamiltonian (1), and observe that they indeed decrease with
increasing bath size. Extrapolating to the thermodynamic limit, we should therefore have self-averaging of
the reduced density matrix of the central qubit. Then by extension the memory must self-average too. This
can be seen from (15), where fluctuations of a single realization of K(t) has deviations from Kavg(t) that are
bounded by the magnitude of the fluctuations in the population δp(t) = p0(t) − p0(t). In figure 1(a), we
find that K(t) and Kavg(t) generally tend to differ by |K(t) − Kavg(t)| ∼ O(10−3(γ2/4L)) up to timescales
t � O(102) for the system sizes we can simulate. We observe that this deviation can diverge exponentially
with a finite number of disorder realizations at long enough times, a phenomenon which we will return to
in section 2.3. Barring that, the self-averageness of the population p0(t)—which yields
Kavg(t) = K(t) ⇒ Kavg(t) = K(t) in the thermodynamic limit—gives us an alternate window into
understanding how the memory kernel behaves. For the remainder of this paper, we shall mostly discuss
Kavg(t) as we are interested also in the dynamics of the averaged population.

2. Results

We implement time evolution by approximating e−iĤt with Chebyshev polynomials [59, 60]. To reduce
computational costs, we use the conservation of total magnetization M̂z = τ̂ z +

∑
i σ̂

z
i in the model,

allowing us to restrict the dynamics to the symmetry sector with M̂z = −1. The system is prepared in the
ρ̂S,0 = |0〉〈0| state, while the bath state ρ̂B is initialized to be a Neel state, | . . . ↓↑↓↑↓ . . .〉. We expect similar
results should we choose different initial states within the sector of M̂z = −1.

A (matrix) memory kernel K with n independent entries can be computed directly from the populations
[56] using n different initial conditions, for each disorder realization. In this sense, there is added
computational benefit to restricting our discussion to only the scalar memory kernel K(t).

2.1. Short times
We can leverage the self-averaging property to gain some understanding of the short time behavior
(figure 1(c)) of Kavg(t). The derivatives of K(t) at t = 0 for a single disorder realization can be found

5
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Figure 1. (a) Comparison of the averaged memory kernel K and the memory kernel of the average Kavg for L = 16 deeply in the
localizing (γ = 1) and thermalizing (γ = 10) phases, with �500 disorder realizations. (b) Root-mean-squared fluctuations Δp0
of the population for γ = 10. (c) and (d) The scalar memory kernel of the averaged population, Kavg(t), for L = 12, onsite
disorder strength W = 6.0, and with 6400 disorder realizations. The memory is rescaled such that its initial value is 1, and
separated into the (c) short and (d) intermediate time regimes. For clarity, the data in the main panel of (d) are shifted up in
multiples of 0.1 away from the γ = 10 curve. (c, inset) Collapse of the short time memory upon rescaling the time by τ defined
in (17). (d, inset) The populations of the |0〉 state for the central qubit used to generate Kavg .

straightforwardly (see the supplementary materials) from those of p0(t), with the lowest orders being

K(t = 0) = −p(2)
0 (t = 0)

K(2)(t = 0) = −p(4)
0 (t = 0) +

(
p(2)

0 (t = 0)
)2

, (16)

where f (n) denotes the nth derivative. After averaging over disorder with an initial Neel state in the bath, we
have

Kavg(t)

γ2/4L
≈ 1 − 1

2

(
t

τK

)2

+ O(t4)

1

τK
≡
√

W2

3
+

3J

4

γ

L
+

3

4

γ2

L
− 3

4

γ2

L2
, (17)

where J = 1 in our model, and L is the number of spins in the bath. We see that the disorder strength W sets
the initial decay rate 1/τK. This can be roughly estimated for large W from Fermi’s golden rule, using our
argument that disorder-averaging effectively gives us a continuous spectrum with an effective
(root-mean-squared) bandwith ∼O(W

√
L), and a coupling strength ∼(γ/2L)2. While W sets the decay

timescale for Kavg(t), it is the quantity γ2/4L that sets the overall magnitude of Kavg(t) and so dictates the
timescale for p0(t). We expect so from the following scaling argument: assume that the memory kernel
converges to a limiting form in the thermodynamic limit as

lim
L→∞

Kavg(t)

γ2/4L
= k(t), (18)

where k(t) is independent of L and has a short time expansion given by (17). From the Nakajima–Zwanzig
equation,

dp0

dt
≈ −γ2

4L

∫ t

0
dτ k(τ)p0(t − τ), (19)

we rescale the time to t
′
= (γr/Ls)t and obtain

dp′0
dt′

= −γ2−2rL2s−1

4

∫ t′

0
dτ ′ k

(
Lsτ ′

γr

)
p′0(t′ − τ ′), (20)

where p′0(t′) ≡ p0(t′/(γrL−s)). We seek exponents r > 0 and s > 0 such that p′0(t′) will vary on the
timescale Δt′ ∼ 1. With the rescaled time, the k(Lsτ ′/γr) appearing in (20) will have largely decayed by
τ ′ ∼ γrL−s/(W/

√
3), a timescale much faster than that of p′0(t′). Hence we can approximate p′0(t′ − τ ′) in

6
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(20) as a constant, and estimate the strength of memory effects by integrating k(Lsτ ′/γr) up to its decay
time. This is roughly given by (

γ2−2rL2s−1

4

)(
γr/Ls

W/
√

3

)
=

√
3

4

γ2−r

W
Ls−1. (21)

We require s = 1 in order to have a converged p′0 on the timescale of t′ in the thermodynamic limit.
Furthermore, r = 1 so that a trivial rescaling of the Hamiltonian Ĥ → αĤ would not alter the strength of
the memory term. Thus we argue that the dynamics of the central qubit should proceed on the timescale
τp0 ∼ L/γ, consistent with our initial assumption that the population dynamics proceed much more slowly
than does its associated memory kernel. We show this rescaling of time in figure 1(b) and in the inset of
figure 1(d), where the former shows the fluctuations of p0(t) between disorder realizations for different
system sizes at fixed γ = 10, and the latter shows p0(t) for fixed L = 12 across γ. These figures show that the
lowest moments of the populations align on the timescale τp0 ∼ L/γ. This result is also consistent with the
result of [31] on the central qubit’s autocorrelation function,

∫
dτ 〈τ̂ z(t + τ)〉 〈τ̂ z(τ)〉, where it was

observed that there is an accumulation of spectral weight near ω ∼ γ/L.
With a clear separation between τK and τp0 , one may wonder whether the central qubit can be described

by an effective master equation. At least deep in the localized phase, the bath is too slow to act as an
effective reservoir for the central system. Correlation functions of the bath are argued [61, 62] to decay as a
power law t−ζ with 0 < ζ < 1, which makes memory effects crucial in dictating the behavior of p0(t) at long
times. We will return to discuss the long time behavior of the memory kernel below in section 2.3.

2.2. Intermediate times
As seen in figure 1(d), the memory past Jt� 1 takes on different behaviors depending on the coupling
strength, with increasingly damped oscillations as the combined system and bath transitions from
localization to thermalization. The inset of figure 1(d) shows that this behavior is not observable when
looking solely at the populations. The oscillation is dominated by frequencies in the range ω ∈ (4, 6), close
to the disorder strength W = 6. Such oscillations are not a feature unique to an interacting bath. They show
up in the non-interacting limit J = 0, in which the memory to lowest order in γ can be approximated by

KJ=0(t) ≈ γ2
⊥
L

sin (Wt)

Wt
+ O(γ3), (22)

where γ⊥ = γ/2. We see that oscillations are linked to the finite bandwidth W of frequencies in the bath
[43], which arises from precession about the local field on each site, (hi/2)σ̂z

i , and hi ∈ [−W, W]. When
interactions in the bath are turned on, we would expect them to provide a small renormalization to the
precession frequencies, as we are working with a hierarchy of scales such that W � J > γ. This assumes, of
course, that the bath dynamics are approximately describable with a precession picture even in the presence
of bath interactions.

To justify this picture more formally, we can leverage the description of MBL systems in terms of
quasi-local integrals of motion, which form the effective bath degrees of freedom that exhibit precession. At
intermediate times and at weak coupling, the memory kernel can be approximated by bath correlation
functions [63, 64],

K(t) ≈ γ2
⊥

L2

∑
i,j,±

Tr
[
σ̂±

i (t)σ̂∓
j (0)ρ̂B

]
. (23)

In the MBL phase, the bath spin operators σ̂±
i have large overlaps [33] with quasi-local operators Θ̂x,y,z

i with
which the bath Hamiltonian can be written as [33, 35, 62]

ĤB =

L∑
i=1

εiΘ̂
z
i +
∑

i,j

Ji,jΘ̂
z
i Θ̂

z
j + · · · , (24)

where the operators Θ̂x,y,z
i follow the Pauli commutation relations. The bath correlation functions oscillate

according to εi, at least when the bath is strongly localized. The distribution of εi will therefore dictate the
intermediate-time behavior of the memory kernel. For instance, if the distribution has sharp cutoffs like in
the case of box disorder, then it can be expected that the memory will display oscillatory behavior whenever
the stated approximations are applicable. We note that the picture of precessions is complicated at later
times by dephasing mechanisms arising from interactions—the two-body Ji,j terms and higher—in the
bath. Therefore, measurement of the memory kernel will yield some information on the parameters
entering the bath Hamiltonian (24).
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Figure 2. Average squared deviations on t ∈ [50, 100] of Kavg(t) in the thermalizing regime (γ = 10), as a function of disorder
realizations N. Solid lines denote 1/N decay and serve as guides to the eye.

At the other extreme, where the system strongly couples (γ� 5 for the value of W = 6 we have shown in
figure 1(d)) to the bath, the localization assumed above breaks down [32]. That is, the bath interactions
mediated by the qubit are strong enough that the bath cannot remain ‘close’ to its initial state, so the
expansion of the memory in terms of bath correlation functions no longer holds. In all, the contribution of
the bath to the system dynamics can no longer be parsed into contributions from (nearly) independent
oscillators. Instead, delocalization evidently serves to homogenize the influence of the bath, smoothing over
the randomness from the local fields hi, and damping out oscillations in Kavg(t) as observed in the red
curves of figure 1(d).

2.3. Long times
Within the particular parameters we have chosen to study in this model, we define ‘long times’ to
correspond to Jt� 10, a time past which the coherent oscillations in the bath have dephased. For the
purpose of extrapolating the dynamics, it is crucial to understand how quickly Kavg(t) decays, if it even does
so at all. However, since we can only numerically average over a finite number N of disorder realizations, we
cannot expect to observe a clear decay signal. Instead, we can ask whether the long time behavior of Kavg(t)
is consistent with small, possibly vanishing, values should we extrapolate our results to infinite N. Deeply in
the thermalizing phase, we show in figure 2 that the magnitude of time-averaged fluctuations〈

ΔK2
〉

[Ti,Tf ]
=
〈

K2
avg(t)

〉
[Ti,Tf ]

−
〈

Kavg(t)
〉2

[Ti,Tf ]
, (25)

in the tail portion Kavg(50 � t � 100) decays as 1/
√

N, and moreover decreases with increasing system
size as would be expected from self-averaging systems. In the above equation, we use the notation

〈g(t)〉[Ti,Tf ] =
∫ Tf

Ti
dt g(t)/(Tf − Ti).

The persistence of the finite N noise makes it difficult to conclusively show numerically whether K(t)
decays as algebraically or exponentially. While in section 2.1 we argued for a power law decay for the weakly
coupled, localized phase based on known phenomenology of MBL, this approach cannot work for the
strongly coupled, thermalizing phase. In the absence of weak coupling perturbative expansions we now turn
to the self-averaging relations Kavg ∼ K ∼ K to attempt to extract insights about the thermalizing phase.
Doing so requires discussion about the memory kernel for a single realization of disorder, which is what we
shall focus on for the remainder of this subsection.

For certain realizations of {hi}, we observe an increasing likelihood for the memory—both scalar- and
matrix-valued versions—to display unbounded exponential divergences with increasing coupling γ. We can
verify the divergence for small system sizes L � 6, where the Laplace transformed memory kernel can be
computed directly to yield the memory as a sum over simple poles, some of which with positive real parts.
Such contributions—which are necessary in order to correctly reproduce the population dynamics—lead to
an unbounded exponential increase of the memory for particular values of the coupling and magnitude of
disordered fields. We will return to discuss the origins and implications of such pathological behavior in
section 4.

We can motivate the consequences of exponentially growing contributions to K(t) by examining the
structure of the poles of its Laplace transform, K̃(z). Because the Hamiltonian is real and Hermitian, poles
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of K̃(z) are given by a real polynomial (see the supplementary materials for details). The polynomial will
only involve terms of even powers, z2n, because p0(t) = p0(−t). Thus if a pole sn exists with residue rn such
that Re sn = 0, it must be the case that poles −sn, s∗n and −s∗n must exist with residues rn, r∗n, and r∗n
respectively. Based on the distribution of the pole structure, any exponentially dampened part of the
memory (Re sn < 0) must be accompanied by an exponentially growing counterpart. We posit that in the
thermodynamic limit one of two situations must hold: (1) all off-axis poles converge toward the Im z axis as
L →∞, or (2) some poles still exist off-axis, which because of the conjugate pairs, contributes both
exponential decay and growth. In the first scenario, there are no isolated poles to cause exponential decay.
In the second scenario, any exponential decay is masked by exponential growth. Moreover, even if Re sn > 0
poles cancel upon disorder averaging, the same would happen to the Re sn < 0 poles by virtue of the
relationship between residues discussed above. Therefore we argue that even in the thermalizing phase, the
memory kernel for the dynamics we have defined should not exhibit exponential decay in the limit as
L →∞. This leaves open the possibility of power-law or stretched-exponential behavior. In the next section,
we will use infinite-time data from exact diagonalization to show that the long-time behavior of the
memory is consistent with a power-law decay. Finally, we reiterate the importance of the order of limits in
this problem. They must be taken as

lim
t→∞

lim
L→∞

lim
N→∞

(26)

to ensure that, reading from right to left, the population—and therefore the memory kernel—does not
recur and to ensure the validity of the approximation K ≈ Kavg.

3. Extracting long time information from the memory kernel

The memory kernel has a direct relation to steady state values of the reduced density matrix, provided that a
steady state exists [43–46]. While the past work was done using all d2 × d2 elements of the (matrix)
memory kernel, we can import their ideas to the scalar memory kernel and a single element of the reduced

density matrix. From the relationship between p̃0(z) and K̃avg(z), we can use the final value theorem to find

lim
z→0

zp̃0(z) = lim
z→0

1

1 + K̃avg(z)/z
(27)

lim
t→∞

p0(t) = lim
z→0

⎡⎢⎢⎢⎣1 +

∫ ∞

0
dt e−zt

≡κ(t)︷ ︸︸ ︷∫ t

0
dτ Kavg(τ)

⎤⎥⎥⎥⎦
−1

.

If κ(t) decays sufficiently quickly, we can extrapolate the z → 0 limit from the finite times accessible from
numerics. However, as we argued in the previous section, the memory cannot decay exponentially;
therefore there is no single cutoff time tc that can be used to approximate

lim
z→0

∫ ∞

0
dt e−zt

∫ t

0
dτ Kavg(τ) ≈

∫ tc

0
dt

∫ t

0
dτ Kavg(τ). (28)

A long time tail of Kavg(t) would have non-negligible contributions to the dynamics, and therefore much
care has to be taken in its use for extrapolations.

In lieu of a cutoff approximation, we turn again to the definition of Kavg,

K̃avg(z) = −z +
1

p̃0(z)
. (29)

We take an ansatz for the memory at small z,

κ̃(z) ≡ K̃avg(z)

z
≈
(
−1 +

1

p∞

)
+ a0zζ + a1z, (30)

where 0 < ζ < 1 and the long time limit of the average population p0(t) shall be denoted as p∞. Note that
we had argued in the previous section at least for the absence of exponential decay of the memory kernel in
the thermodynamic limit, based on the structure of the poles in Laplace space. The presence of terms like zζ

is consistent with long-time behavior as κ(t) ∼ t−ζ−1 ⇒ Kavg(t) ∼ t−ζ−2.
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Figure 3. (a) Infinite time value of the average population p0 deeply in the thermalizing phase (γ = 10) using (27) and (30).
Dashed lines and black crosses indicate respectively the fit to (30) and the extrapolated value for tc = ∞. Where available, squares
indicate the long time (t ∼ 1012) value of p0 calculated independently from exact diagonalization. (b) Fitted exponents ζ as a
function of system size. (c) Log–log plot of the long time limit of p0 versus the number of sites in the bath, L. Error bars in
(b) and (c) of the extrapolated quantities (L � 16) correspond to 95% confidence intervals for the parameter estimation. (d) The
integrated memory κ(t) for L = 12 over 7.7 × 105 realizations of disorder. The red curve is the asymptotic time-domain
behavior of zζ ⇒ t−1−ζ/Γ(−ζ), as extracted from the fit to (30).

To extrapolate the long time populations, we compute κ(t) defined in (27) and approximate its Laplace
transform

κ̃(z) ≈
∫ tmax

0
dt e−ztκ(t). (31)

This result is then fitted using (30) to find p∞ and b0 and the amplitudes an. Such an approximation for the
Laplace transform is admissible only if κ(t) has decayed to sufficiently small values at t = tmax, and for
z � tmax

−1. We find that the results of using such an extrapolation procedure agree well with the values from
independent calculations using exact diagonalization (figure 3(a)). Thus we are able to obtain estimates for
the long-time population of the central qubit for system sizes (L� 16) larger than those obtainable through
exact diagonalization. In particular, this allows us to see how the central qubit approaches the thermalized
limit p0 = 1/2 with increasing bath size. In figure 3(c), p∞ is consistent with power law decay
p∞ − 1/2 ∼ L−1.03, which is in line with the scaling given by the infinite temperature phase space average,

H|0〉(Mz = −1)

H(Mz = −1)
=

(
L

L/2

)
(

L+1
L/2

) =
1

2
+

1

2(L + 1)
, (32)

measuring the relative sizes of the Hilbert spaces for eigenstates occupying |0〉 and |1〉. We stress that
because the memory must decay with time, this procedure cannot be used in finite systems for a single
disorder realization, as the population will generally not reach a steady state in such circumstances.

Furthermore, since we have estimates of the true value of p∞ obtained independently from exact
diagonalization, we can compare (30) to a more generic alternative where κ̃(z) is analytic about z = 0. Such
is the case if κ(t) were to, for example, decay exponentially or faster. For different system sizes and disorder
distributions, we have found that only the power-law ansatz is able to smoothly interpolate between known
z = 0 values of κ̃(z) from exact diagonalization and z > 0 values of κ̃(z) calculated from finite time
dynamics (see the supplementary materials for an example). Thus, while we have been unable to
mathematically prove the existence of a long-tail in Kavg(t), we have at least found numerical corroboration
for the validity of our claim.

We note that, at least for L � 14, we find that the exponent ζ is system size dependent, for both box
(figure 3(b)) and Gaussian distributed disorder. In the absence of intrabath interactions (J = 0), we observe
that the integrated kernel κ(t) acquires a large oscillatory component with a decaying envelope at long times
for γ = 10, which dominates over the κ(t) ∼ t−1−ζ behavior seen with J = 1 (cf figure 3(d)), see section
four of the supplementary materials. We further argue in the supplementary materials that if one takes the
bath to initially be at infinite temperature, there will be a temporal power-law decay of the memory as ∼t−3

which implies that ζ → 1 in this limit. Altogether, this suggests that ζ is at least a quantity dependent on
intrabath interactions as well as the initial state; we cannot clarify whether there is a limiting value as
L →∞ for initial states of fixed energy density, such as that considered in this work.

One may wonder what advantage this method confers to obtaining infinite-time populations, compared
to simply simulating the population dynamics to longer time. For one, it is not always clear the timescales at
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which one can be sure that the system will have relaxed. This point is made more salient by the possibility of
small, long-tailed memories which implies similar behaviors in the population dynamics. In this work, we
have argued that it suffices to be able to observe whether the memory has reached the regime of power-law
decay, at which point one can use (30). We stress that power-law behavior may become more apparent at
earlier times in the memory than compared to the population, such as what we have observed in this work.
While the t−ζ−1 contribution to κ(t) may be subtle—on the order of 10−3 in all system sizes and disorder
distributions we examined (see figure 3(d) for an example)—it is always possible to systematically improve
its resolution simply by performing more disorder averaging.

4. Unbounded exponential growth of the memory kernel

We return now to the observation made in section 2.3 about memory kernels growing exponentially in time
for certain realizations of the disorder. As seen in figure 4(a), this can show up in the disorder averaged
memory K(t), which can only be approximated via sampling over a finite number of disorder realizations.
In figure 4(b) we show the maximum real part of the poles—corresponding to the maximum rate of
exponential growth ν—for specific set of {hi} with L = 4. Intriguingly, ν is not monotonic with respect to
γ, and displays square root singularities when going from ν = 0 to finite ν. The sharpness of these
singularities even with L = 4 indicates that they should not be associated with thermodynamic phase
transitions. Instead, we believe they stem from exceptional points (EPs) in the generator of projected
dynamics, QLQ, which are related to generalized avoided crossings. This generator is responsible for the
time evolution of the memory kernel, as seen in (7). By choosing to focus on only a subset of all the
physical degrees of freedom in the problem, we were forced to define projection operators P that are not
self-adjoint in the space of operators [65, 66]. For example, in operator space the projection operator
associated with the scalar memory kernel is P = ||0〉〈0| ⊗ ρ̂B

) (
|0〉〈0| ⊗ ÎB

∣∣, where the adjoint of the
operator state vector has action (

Â
∣∣B̂) = Tr

(
Â†B̂
)
. (33)

The condition of being self-adjoint Liouville space is

P† =

(∑
i

∣∣∣Âi ) (B̂i

∣∣∣)†

=
∑

i

∣∣∣B̂i ) (Âi

∣∣∣ = P. (34)

Writing P in this way, it is clear that even if we project on to a thermal state of the bath, ρ̂B ∝ e−βHB , the
projector P still cannot be self-adjoint unless the bath is in an infinite temperature state. Thus the projected
Liouvillian QLQ is also not self-adjoint, a property which allows EPs to occur. We have verified that the
same phenomenon occurs even if we work with larger projection superoperators leading to matrix-valued
memory kernels. We have additionally verified numerically that features unique to EPs such as the
coalescence of eigenvalues and self-orthogonality are also present (see supplementary materials).

Interestingly, we note that the region in (W, γ)-space (figure 4(c)) for which MBL is predicted to be
stable in the thermodynamic limit appears to be correlated with a suppressed ν. While we are currently
unable to prove that this is not a coincidence—such system sizes cannot inform us about the stability of
MBL—it is possible that this provides a window into the character of the eigenstates, which are argued to
be radically altered at large enough γ due to percolating networks of resonance states [32]. At the same
time, it is known that the presence of EPs limits the radius of convergence for perturbative expansions
[67, 68], and is postulated to be linked to quantum phase transitions [69, 70]. To fully explore any link
between EPs, delocalization, and the breakdown of perturbative approaches to MBL will require a separate,
in-depth study.

Heuristically speaking, delocalization with increasing coupling is the result of singular behavior in the
full Hamiltonian, a fact which should be reflected in both the eigenstates and the spectrum. In finite
systems, these may be isolated occurrences whose singular properties are smoothed out upon taking
expectation values. Our numerical observations suggest that the non-Hermiticity of the projected
Liouvillian is highly sensitive to such singularities. We suspect this may be further indication of a deeper
connection between localization and long-time pathologies in the memory kernel, but we are unable to
clarify the underlying physics at this time. However, we will note that the situation may be altered by
introducing a large bias on the central qubit, e.g. Ωτ̂ z, the analysis of which we will leave for future work.
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Figure 4. (a) The averaged memory kernel K and the memory kernel of the averaged dynamics Kavg , for L = 14 and γ = 10. The
two curves are approximately the same up to t � 40, past which they diverge exponentially owing to certain disorder realizations
contributing to K . (b) Maximum rate ν of exponential growth for L = 4 across a range of couplings with a fixed realization of
disorder. The rate is computed by solving for the poles of Laplace-transformed memory kernel using 4096 bits of precision.
Transitions from zero ν to finite ν are sharply discontinuous, and are well captured by fits to half ellipses (dashed red lines).
(c) Disorder averaged ν for L = 4. The black line and its surrounding error bands indicate the L →∞ phase boundary
determined in reference [31]. The dashed black line is the asymptotic behavior of the boundary as argued in reference [32].

5. Discussion and conclusions

In this work we have undertaken the study of the time-nonlocal memory kernel describing how a
many-body localizable ‘bath’ affects the population dynamics of a central qubit. While the memory is
formally defined in terms of Liouvillians, the dimensions of which quickly grow to be computationally
intractable with increasing size of the Hilbert space, we are able to compute it numerically exactly from
existing methods for simulating dynamics in closed quantum systems [56]. We note in passing that the
method we use in this work is general, and can easily be formulated to describe the dynamics of the central
qubit’s coherence, as might be relevant for some recent NMR experiments [52]. With this method we are
able to directly examine the behavior of the memory kernel, parsing it into three regimes: short,
intermediate, and long times.

On short timescales (Jt � 1) is where the majority of the memory’s decay occurs, irrespective of whether
localization (at small γ) or delocalization (at large γ) is present. Properties of the memory on this timescale
largely dictate the timescale of the dynamics for the central qubit’s populations. We note that (17) holds for
arbitrary unbiased (i.e. zero mean) distributions of onsite fields with variance W2/3 and bath–bath
interaction strength J. On intermediate timescales (Jt � 10) in the localized phase, the memory should
exhibit dynamical signatures that result from the distribution of effective couplings for the emergent local
integrals of motion describing the localized bath. For example, if the disorder distribution has sharp cutoffs,
then this is manifest as oscillations in the memory. These oscillations are damped out as γ is increased,
tuning the system and bath into the thermalized phase. This behavior strongly depends on the distribution
of disorder, as well as on the presence of bath–bath interactions. Finally, at long times (Jt� 10) we observe
pathological exponential divergence of the memory kernel for certain realizations of disorder, deep in the
thermalizing phase. We find that this comes from EPs in the projected Liouvillian generating the dynamics
of the memory kernel, which come about at real values of the coupling γ due to the non-Hermiticity of the
projection superoperator used to define the projected dynamics in the Nakajima–Zwanzig formalism.
Unlike past work [65] that treated such exponential divergences as unphysical and should therefore be
discarded, we have taken the view here that the divergences have a meaningful impact on the population
dynamics. We argued that after disorder averaging the memory kernel, such pathological behaviors should
preclude any exponential decay of the memory. Instead, we find that the tail of the memory is consistent
with a power-law decay ∼ t−2−ζ , where 0 < ζ < 1. We find that this form still holds true for different
distributions of disorder. However, in the noninteracting bath case of J = 0, the strictly power law decay
appears to be replaced with an oscillatory component with a decaying amplitude that we find to be
consistent with a power-law. In the interacting (J = 1) case, such a power-law ansatz allows us to extract
estimates of the disorder-averaged infinite-time population of the central qubit, solely from finite-time
simulations. While such a procedure was shown in the past to work well when one could define a cutoff
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time for the memory kernel [43], here we have argued for the possibility that no cutoff time exists and
demonstrated a proof-of-concept approach for extracting the infinite time populations in such a scenario.

In the model we have studied in this paper, we have taken the central coupling to scale to zero as γ/L, in
accordance with references [31, 32] which have argued for its necessity to perturbatively preserve localized
eigenstates. As a consequence, we have argued that there arises a separation of timescales between the
population dynamics (τp0 ) and its associated memory kernel (τK). Should we repeat our arguments from
section 2.1 with a central coupling scaling as γ/Lq, we find that these two timescales remain separated for
q > 1/2, but coincide for 0 < q � 1/2. It is not clear whether such a separation of timescales—where
τp0 � τK as L →∞—is required for the preservation of localization. Heuristically speaking however,
having τp0 � τK does not appear at first glance to be strong enough to preserve all aspects of MBL. One of
the dynamical hallmarks of MBL is a logarithmically slow spreading of entanglement, i.e. spins on sites i
and i + L/2 become entangled after a timescale ∼ exp(L/2ξ) with ξ being the localization length [36].
Based on our view of the system dynamics from the memory kernel, the interaction between these two sites
mediated by the central qubit should proceed on a timescales growing as a power of L, which is much
shorter than the dephasing time ∼ exp(L/2ξ) and thus may accelerate the dephasing process responsible for
the slow dynamics in the MBL phase. However, it was noted in reference [31] that the central qubit at best
facilitates a subextensive transport of magnetization which augments, but does not destroy, the logarithmic
growth of bipartite entanglement.

Our work also raises tantalizing questions about possible connections between poles of the Laplace-
transformed memory kernel and thermalization/delocalization. To this end, some work [67, 71–73] has
been done to connect the proliferation of EPs in non-Hermitian systems to the appearance of quantum
phase transitions and chaos. By focusing on a subpart of a closed system, we are forced to consider
non-Hermitian Liouvillians giving rise to EPs in the space of operators. Explorations in this direction may
benefit from insights from the physics of Feshbach resonances. Of course, we are severely limited by the
system sizes amenable to numerical studies, thus we are able to do little more than remark on the
coincidences we observe.

On the more practical side, we have demonstrated that there may be enough information from finite
time dynamics to yield knowledge about long time limits, should they exist. While we have only
demonstrated the extrapolation to t = ∞ of the population of the central qubit, we should in principle be
able to use the same memory kernel and the Nakajima–Zwanzig equation in (10) to extend the computed
dynamics to longer times. That this is even possible should not be too surprising, given that (10) when
discretized over time gives the same form as the ansatz underlying linear prediction [74, 75], a method
widely used for extending dynamical calculations. What we have shown in this work is that there may be
more physical content in such a procedure than was previously appreciated. To explore these ideas more
thoroughly warrants careful attention, particularly in regard to stability and applicability, which we shall
leave for future work.

Finally, we note that any possibility of a pathological memory kernel at real γ can be erased by choosing
to work with self-adjoint projection superoperators P. One may be interested in doing so, for example, in
order to approximate system dynamics from low order, analytical expansions of the memory kernel. In that
case it would be beneficial to know that the error introduced by the approximation is not exponentially
divergent with time. It is as yet unclear whether self-adjoint projectors necessarily yield improvements, since
pathological behaviors can still occur for complex couplings γ to limit convergence of naïve series
expansions. We note, however, that previous work [26, 76] saw benefits from applying symmetry-adapted
‘correlated projectors’—which, we should point out, are manifestly self-adjoint in Liouville space—to low
order expansions of the memory kernel. We leave clarification of this point for future work.
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