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Measurement Scheduling for Cooperative
Localization in Resource-Constrained Conditions

Qi Yan1, Li Jiang2 and Solmaz S. Kia3, Senior Member, IEEE

Abstract—This paper studies the measurement scheduling
problem for a group of N mobile robots moving on a flat
surface that are preforming cooperative localization (CL). We
consider a scenario in which due to the limited on-board
resources such as battery life and communication bandwidth
only a given number of relative measurements per robot are
allowed at observation and update stage. Optimal selection of
which teammates a robot should take a relative measurement
from such that the updated joint localization uncertainty of the
team is minimized is an NP-hard problem. In this paper, we
propose a suboptimal greedy approach that allows each robot
to choose its landmark robots locally in polynomial time. Our
method, unlike the known results in the literature, does not
assume full-observability of CL algorithm. Moreover, it does not
require inter-robot communication at scheduling stage. That is,
there is no need for the robots to collaborate to carry out the
landmark robot selections. We discuss the application of our
method in the context of an state-of-the-art decentralized CL
algorithm and demonstrate its effectiveness through numerical
simulations. Even though our solution does not come with
rigorous performance guarantees, its low computational cost
along with no communication requirement makes it an appealing
solution for operations with resource constrained robots.

Index Terms—Localization, multi-robot systems, planning,
scheduling and coordination

I. INTRODUCTION

WE consider the problem of relative measurement
scheduling in cooperative localization (CL) for a team

of mobile robots. In cooperative localization mobile robots
improve their localization accuracy by jointly processing the
relative measurements they take with respect to each other [1].
Cooperative localization is of interest in operations where ac-
cess to global positioning signal (GPS) and external landmarks
for positioning aid (to conduct SLAM) are challenging, e.g.,
in underwater operations [2], [3] or in indoor localization
for firefighters [4], [5]. In the past two decades CL has
been studied extensively in the literature with the the focus
being mainly on the design of decentralized CL algorithms,
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e.g., [1], [3], [6]–[10]. To process every inter-agent relative
measurement, the robots need to communicate with each
other. In decentralized algorithm designs, the focus is to
remove the need for all-to-all communication to reduce the
communication load. The communication cost however still
can be high if the robots take measurements from every robot
that is in their measurement zone.

The problem of computation/communication cost reduction
via smart management of inter-robot relative measurements
has been studied in [11]–[15]. One of the approaches used is to
determine the optimal measurement frequency given resource
constraints [11], [12]. The methods used in [11] and [12]
assume a fixed sensing topology throughout the operation
and use covariance upper bound analysis to determine the
relative measurement frequency in the team. These methods
use the steady-state covariance upper bound obtained by the
Discrete-time Algebraic Riccati Equation (DARE) and the cor-
responding Continuous Algebraic Riccati Equation (CARE).
The convergence of the Riccati recursion requires that the
overall system is observable [11], [12], which means there
must be at least one robot accessing absolute positioning in-
formation such as GPS signals or known landmarks [16]. The
observability requirement is however a very hard constraint
and cannot be satisfied in many conditions such as in uncharted
indoor environments or underwater operations. The method
used in [11] relies on exhaustive search, which may not be a
practical choice for real-time implementation.

Another approach for cost management in CL is via mea-
surement scheduling, in which robots get restricted to take
only certain number of relative measurements but they have
to choose their landmark robots1 in a way that the position-
ing uncertainty is minimized. Some results on measurement
scheduling can be found in [13]–[15]. The uncertainty measure
that is minimized in these work is mainly the logarithm of the
determinant (logdet) of the joint covariance matrix of the team,
which is indeed a measure of the volume of the uncertainty
ellipsoid [17]. It is known in the literature that the optimal
measurement scheduling for CL is an NP-hard problem [15],
[18]. Therefore, the main effort is on proposing suboptimal so-
lutions with reasonable computational complexity. The studies
in [13], [14] use some form of greedy algorithms to carry out
the landmark robot selections. Tzoumas et al. [17], [19] and
Zhang et al. [18] analyze the supermodularity of the logdet
of the joint covariance matrix to propose suboptimal greedy
measurement scheduling solutions with known optimality gap.
They also investigate the time complexity of their proposed

1A landmark robot is a robot that another robot takes measurement from.
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greedy algorithm for a Kalman filter based CL algorithm.
In an alternative approach, Singh et al. [15] employ the
trace of the joint covariance as the objective function and
propose a suboptimal greedy solution for the measurement
scheduling of multi-robot CL. The above methods whether
using logdet or trace of the joint covariance as objectives
function however, suffer from high inter-robot communication
cost in scheduling process. Moreover, they all require real-time
robot locations to compute observation matrices for scheduling
purpose. Sensor scheduling is of interest in other localization
algorithms, as well. Interested reader can see [20], [21] for
some recent studies.

In this letter, we present a novel method for relative mea-
surement scheduling in a CL algorithm that allows the robots
moving on a flat surface to decide locally what other team
members to take relative measurements from so that a high
accuracy is achieved when they are constrained to take limited
number of measurements. Our special focus is on design of a
measurement scheduling algorithm that does not require inter-
robot communication. That is, there is no need for the robots to
collaborate to carry out the landmark robot selections. We also
seek a solution that does not assume full-observability, and can
be carried with reasonable computational complexity in real-
time. Our proposed solution is a greedy landmark selection
heuristic that works based on minimizing an upper-bound on
the total uncertainty of the team. We use the logdet of the joint
covariance matrix as our uncertainty measure to reduce while
conducting measurement scheduling. We show through numer-
ical examples that, even though our proposed solution does not
have rigorous performance guarantees, its application results
in a localization performance comparable to that achieved by
the landmark selection algorithm of [19] that comes with a
known optimality gap. We provide a computational complexity
analysis and show that our algorithm has considerable lower
computational cost than that of [19]. This low computational
cost along with no communication requirement makes our
algorithm an attractive landmark selection solution for opera-
tions with resource constrained robots.

II. PROBLEM FORMULATION AND OBJECTIVE STATEMENT

In this section, we review the joint Extended Kalman Filter
(EKF) CL for position estimation on which we place our work.
Then, we present our objective statement.

A. Problem formulation

Consider a group of N robots moving on a flat terrain. The
equation of motion of each robot i ∈ V = {1, · · · , N} is
described by

xi(k + 1) = f i(xi(k), vi(k), φi(k))

= xi(k) +

[
δt vi(k) cos(φi(k))
δt vi(k) sin(φi(k))

]
,

(1)

where state xi(k) = [xi(k), yi(k)]> is the absolute position of
the robot with respect to a global map. Here, vi is the linear
motion velocity, φi is the robot’s orientation and δt > 0 is the
stepsize. Each robot i ∈ V uses a wheel encoder to measure
its linear velocity vim = vi + ηiv , and a compass to compute

its absolute orientation φim = φi + ηiφ to propagate its states
according to

x̂i−(k + 1) = f i(x̂i+(k), vim(k))

= x̂i+(k) +

[
δt vim(k) cos(φim(k))
δt vim(k) sin(φim(k))

]
.

(2)

Here, ηiv ∼ N(0, σvi) and ηiφ ∼ N(0, σφi) are the white
zero-mean Gaussian noises contaminating, respectively, the
linear velocity and orientation measurements. Hereafter, the
superscript + and − stand for a posterior (updated) and a
priori (propagated) estimation, respectively. Let x̃i−(k) =
xi(k)−x̂i−(k) and x̃i+(k) = xi(k)−x̂i+(k) be, respectively,
the propagated and updated state errors. Using the motion
dynamics (1), we obtain

x̃i−(k + 1) = x̃i+(k)

+ δt

[
cos(φim(k)) −vim(k) sin(φim(k))
sin(φim(k)) vim(k) sin(φim(k))

] [
ηiv(k)
ηiφ(k)

]
.

Then, the propagated error covariance using the linearized
model of the motion dynamics (1) is

P i−(k + 1) = P i+(k) +Qi(k), (3a)

P−ij(k + 1) = P+
ij(k), j ∈ {1, · · · , N}\{i}, (3b)

where i ∈ V and the incremental term Qi(k) is

Qi(k) = (δt)2C(φim(k))

[
σ2
vi 0
0 (vim)2σ2

φi

]
C>(φim(k)).

(4)
Here, C(φ) is the rotational matrix with respect to orientation
φ. Next, let the relative measurement taken by robot a from
robot b at timestep k, denoted by a k−→ b, be the relative po-
sition

zab(k) = hab(x
a(k),xb(k)) + νab(k) (5)

= C>(φa(k))

([
xb(k)
yb(k)

]
−
[
xa(k)
ya(k)

])
+ νab(k)

where νab is the white-Gaussian measurement noise. The
relative position measurement is obtained from inter-robot
ranging and bearing sensors on robot a, e.g., via a Kinect
camera and augmented reality (AR) tags [22]. In other words,

zab(k) = ρab(k)

[
cos(φab(k))
sin(φab(k))

]
+ νab(k)

where ρab and φab are, respectively, the true relative range
and relative bearing between robots a and b. Let ρabm =
ρab + ηρa and φabm = φab + ηθa be, respectively, the mea-
sured relative range and relative bearing contaminated by
measurement noises ηρa ∼ N(0, σρa) and ηθa ∼ N(0, σθa).
By linearizing (5), the measurement innovation z̃ab(k) =
zab(k)− hab(x̂a−(k), x̂b−(k)) can be obtained as

z̃ab(k) = Hab,a(k)x̃a−(k) +Hab,b(k)x̃b−(k)

+C>(φam(k))J(x̂b−(k)− x̂a−(k))ηaφ(k) + νab(k)
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with Hab,a(k) = −C>(φam(k)), Hab,b(k) = C>(φam(k))

and J =

[
0 1
−1 0

]
. The covariance of innovation z̃ab(k) can

be written as [16]

Sab(k) = Hab,a(k)P a−(k)Hab,a(k)>+

Hab,a(k)P−ab(k)Hab,b(k)>+

Hab,b(k)P b−(k)Hab,b(k)>+

Hab,b(k)P−ba(k)Hab,a(k)>+

Rφabm
(k) +Rzab(k),

where

Rφabm
(k) = σ2

φaC
>(φam(k))J(x̂b−(k)− x̂a−(k))

× (x̂b−(k)− x̂a−(k))>J>C(φam(k)),
(6a)

Rzab(k) = E[νab(k)νab(k)>]

= C(φabm (k))

[
σ2
ρa 0
0 (ρabm (k)σθa)2

]
C>(φabm (k)).

(6b)

We note that Rφabm
and Rzab are due to local absolute

orientation measurement error and relative position measure-
ment noise, respectively. Given the measurement innovation
and its corresponding covariance matrix Sab(k), following
the standard EKF framework, we now obtain the state and
covariance update as

x̂i+(k + 1) = x̂i−(k + 1) +Ki(k + 1)z̃ab(k + 1), (7a)

P i+(k + 1) = P i−(k + 1)

−Ki(k + 1)Sab(k + 1)Ki(k + 1)>
(7b)

P+
ij(k + 1) = P−ij(k + 1)

−Ki(k + 1)Sab(k + 1)Kj(k + 1)>
(7c)

Ki(k + 1) =
02 if no measurement,
(P−ia(k + 1)H>ab,a(k + 1)

+ P−ib(k + 1)H>ab,b(k + 1))S−1
ab

if a k+1−−→ b,

(7d)

To process multiple concurrent measurements, we use sequen-
tial updating (see [23, page 103]). Let VA(k) be the set of the
robot that have taken a relative measurement with respect to
other robots at timestep k. Let ViB(k) be the set of the landmark
robots of robot i ∈ VA(k).Then, the total number of relative
measurements at timestep k is ns(k) =

∑|VA(k)|
i=1 |ViB(k)|. In

sequential updating, the measurements are processed one by
one, starting with using the first measurement to update the
predicted estimate and error covaraince matrix, and proceeding
with next measurement to update the current updated state
estimate and error measurements. That is, we let x̂i+(k +
1, 0) = x̂i−(k + 1), P i+(k + 1, 0) = P i−(k + 1), i ∈ V ,

and P+
i,l(k + 1, 0) = P i−

il (k + 1) for l ∈ V\{i}. Then, the
sequential updating proceeds (starting at j = 1),

for a ∈ VA(k + 1),

for b ∈ VaB(k + 1),

x̂i+(k + 1, j) ← r.h.s of (7a),

P i+(k + 1, j)← r.h.s of (7b),

P+
il (k + 1, j) ← r.h.s of (7c),

j ← j + 1,

(8)

where at each j, x̂i−(k+1), P i−(k+1), and P−il (k+1) in (7)
are replaced by, respectively, x̂i+(k+1, j−1), P i+(k+1, j−
1), and P+

il (k + 1, j − 1). Then the final update at timestep
k + 1 is x̂i+(k + 1) = x̂i+(k + 1, ns(k + 1)), P i+(k + 1) =
P i+(k+1, ns(k+1)), and P+

il (k+1) = P+
il (k+1, ns(k+1)),

i ∈ V , l ∈ V\{i}.
In what follows, we let P+

c be the updated joint covariance
of the team after all the concurrent relative measurements are
processed, i.e.,

P+
c (k) =

P
1+(k) · · · P+

1N (k)
...

. . .
...

P+
N1(k) · · · PN+(k)

 , (9)

where P i+(k) = E[x̃i+(k)x̃i+(k)>] and P+
ij(k) =

E[x̃i+(k)x̃j+(k)>].

B. Objective statement

The joint EKF based CL algorithm described by (2), (3),
and (8) can be implemented in a decentralized manner fol-
lowing the methods proposed in [1], [7]–[9]. For example,
an approach based on the interim-master decentralized CL
IMDCL algorithm of [7] is as follows. Every robot maintains
and propagates its own state estimate (2) and corresponding
error covariance (3a). Every robot also stores a local copy
of the cross-covariance components of the joint covariance
matrix (9)2. Then, if at any time k a robot a takes a relative
measurement with respect to another team member b, it can
acquire the local a priori estimates (x̂b−(k),P b−(k)) from
b and compute Ki, i ∈ V and Sab locally and broadcast
it to the rest of the team so every robot can update their
estimates according to (7). The intrinsic information exchange
process of this decentralized operation leads to a stringent
requirement on network connectivity and channel capacity.
The communication operation also leads to energy usage at
all networked robots, further consuming the limited on-board
resources at the side of each robot. In such a context, it is
naturally desirable to reduce the communication costs for a
slightly reduced but still acceptable localization accuracy to
achieve a globally better performance-resource trade-off.

Following a sequential processing procedure, we can see
from (7b) that the more relative measurements are processed
at each time k, the more reduction in the error covariance of

2We note here that for robots with motion model of (1) the locally stored
variables of the decentralized CL algorithm of [7] at each robot i ∈ V are
φi(k) = I2, Πi

ij(k) = P−
ij(k + 1) and Πi

ij(k + 1) = P+
ij(k + 1),

j ∈ V\{i}, for any k ∈ Z≥0.
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the robots is achieved. However, to process each relative mea-
surement there is a need for a robot-to-robot communication in
the team. To create a balanced trade-off between localization
accuracy and communication utilization, one can restrict every
robot i ∈ V to choose only qi number of landmark robots to
take relative measurements from out of all the possibilities. To
achieve best localization with this constraint, the robots should
choose their landmarks wisely such that the total uncertainty in
P+
c (k+1) is minimized. This choice can be made by solving

the following optimization problem,

(V1
B(k + 1), . . . ,VNB (k + 1)) = argmin det(P+

c (k + 1))

s.t. |ViB(k + 1)| ≤ qi, i ∈ V. (10)

The choice of the determinant of the collective covariance,
det(P+

c (k+ 1)), as the objective function is motivated by the
fact that the determinant of covariance is directly linked to the
differential entropy, which describes the volume of uncertainty
ellipse [19]. For each robot, there are at most N −1 inter-
robot relative measurements available, i.e., |ViB(k)| ≤N − 1.
To choose at most qi ∈ Z≥1 measurements for each robot
i ∈ V from all the possible ones is a classical NP-hard sensor-
selection problem [18], [19]. Also, given that P+

c (k + 1)
is the joint covariance matrix of all the robots, obtaining a
decentralized solution for the optimization problem (10) is
challenging. To arrive at a tractable decentralized solution,
one can replace (10) with the following suboptimal landmark
selection for each robot i ∈ V:

ViB(k + 1) = argmin det(P+
c,i(k + 1)) s.t.

|ViB(k + 1)| ≤ qi. (11)

where P+
c,i(k + 1) is the updated joint covariance matrix of

the network if we only use the measurements taken by robot i
from landmark robots ViB(k+ 1). Problem (11) is still an NP-
hard problem. Also, since P+

c,i(k + 1) depends on the local
covariance matrices of the other robots in the team, robot i ∈ V
needs to communicate and collaborate with the rest of the team
to solve (11). When the cost function in (11) is replaced by
equivalent form of log det(P+

c,i(k+1)) the resulted equivalent
problem becomes a sub-modular optimization problem, for
which suboptimal greedy solutions with polynomial time com-
putational complexity are explored in [19] and [17]. However,
these solutions suffer from high communication cost because
each robot needs to have access to the joint covariance matrix
P−c (k + 1) whose diagonal elements {P i−(k + 1)}i∈V are
maintained by respective robot i ∈ V .

Objective 1 (Measurement scheduling under restricted
communication): the objective in this paper is to obtain a
suboptimal solution with a polynomial time computational
complexity for (11), where each robot chooses its own qi set
of the landmark robots to take relative measurements from
locally. In developing our solution, we impose the condition
that t The only information available to each robot i ∈ V
to obtain its own suboptimal solution is robot i’s own state
estimate and its corresponding error covariance along with
a copy of robot i’s state estimate cross-covariances with
respect to other robots in the team, i.e., xi+(k), P i+(k),

and {P+
ij(k)}j∈V\{i}. That is, each robot should obtain its

suboptimal landmark selection solution by using its own local
data and without any cooperation with the other robots in
the team. �

III. A SUBOPTIMAL DECENTRALIZED MEASUREMENT
SCHEDULING

In this section, we provide a novel solution that meets
Objective 1. Our solution relies on obtaining an upper-bound
on det(P+

c ), where P+
c is the updated joint covariance matrix

due to relative measurement a→ b, that depends only on the
locally available variables at robot a.

A. Upper Bound on Determinant of joint Covariance

In what follows, we derive an upper bound of the state-
dependent objective variable det(P+

c (k + 1)) so that the
optimization problem becomes tractable. First, we note that
in the propagation stage, the incremental covariance Qi(k) in
(4) can be upper bounded by constant matrix Q̌

i
as follows

Qi(k) ≤ Q̌i
= (δt)2max(σ2

vi , (v
i
max)2σ2

φi)I2,

where vimax is the maximal linear velocity of robot i. Here,
we use the fact that the rotation matrix C(φim(k)) satisfies
C(φim(k)) ≤ I2. Then, given (3) the collective covariance
matrix should satisfy

P−c (k + 1) ≤ P+
c (k) + Q̌c

with Q̌c = diag(Q̌
1
, · · · , Q̌N

). By setting P̌
−
c (k + 1) =

P̌
+

c (k) + Q̌c and P̌
+

c (0) = P+
c (0) , we have P−c (k +

1) ≤ P̌−c (k + 1), which according to [24, Corollary 18.1.8]
guarantees that det(P−c (k + 1)) ≤ det(P̌

−
c (k + 1)).

Next, we derive an upper bound on the determinant of
updated joint covariance corresponding to the relative mea-
surement a k+1−→ b. Using standard manipulations the joint
updated covariance matrix described by (7c) and (7d), in its
information form reads as

(P+
c (k + 1))−1 = (P−c (k + 1))−1

+H>c (k + 1)(Rab(k + 1))−1Hc(k + 1),
(12)

whereHc =

[
1︷︸︸︷
02 · · ·

a︷ ︸︸ ︷
Hab,a · · ·

b︷ ︸︸ ︷
Hab,b · · ·

N︷︸︸︷
02

]
and Rab = Rzab +Rφabm

. Substituting (6) into (12) results in
[16]

(P+
c (k + 1))−1 = (P−c (k + 1))−1

+ Ȟ
>
c (k + 1)(Rc,ab(k + 1))−1Ȟc(k + 1),

(13)

where Ȟc =

[
1︷︸︸︷
02 · · ·

a︷︸︸︷
−I2 · · ·

b︷︸︸︷
I2 · · ·

N︷︸︸︷
02

]
and Rc,ab = σ2

ρaI2 − Dabdiag(
σ2
ρa

ρ̂2ab
)D>ab + σ2

θaDabD
>
ab +

σ2
φaDab12D

>
ab. Here, Dab = diag(J(x̂b−(k) − x̂a−(k)))

is the diagonal matrix with diagonal elements from
vector J(x̂b−(k) − x̂a−(k)) and ρ̂2

ab = (x̂b−(k) −
x̂a−(k))>(x̂b−(k) − x̂a−(k)). The orientation-dependent
terms are now cancelled out with Ȟc being constant. Con-
sidering the physical constraints on the measurement ranges
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of the robots, Rc,ab can be upper bounded by constant matrix
Řc,a as Rc,ab(k) ≤ Řc,a = rc,aI2 where rc,a = (σ2

ρa +
σ2
φaρ

2
max,a + σ2

θaρ
2
max,a) and ρmax,a is the maximal sensing

range for robot a (see [16, Appendix I]). Substituting the
inequality into (13), we have

P+
c (k + 1) ≤ P̌+

c (k + 1), (14)

where

P̌
+

c (k + 1) =

(
(P−c (k + 1))−1 +

1

rc,a
Ȟ
>
c Ȟc

)−1

. (15)

Then, according to [24, Corollary 18.1.8] it is guaran-
teed that det(P+

c (k + 1)) ≤ det(P̌
+

c (k + 1)). To sum
up, we construct the upper bound of covariance P̌

+

c such
that det(P+

c (k)) ≤ det(P̌
+

c (k)) always holds given that
P̌

+

c (0) = P+
c (0). Using the upper bounds established so far,

we make the following statement. In what follows, to simplify
the notation, we drop the time argument.

Theorem 1: Consider the joint updated covariance matrix
P+
c due to the relative measurement a → b. Let P̌

−
ab be the

block matrix in the ath row and bth column of P̌
−
c . Then,

det(P+
c ) ≤

det(P̌
−
c )

1 + r−1
c,atr(P̌

−
aa+P̌

−
ba(P̌

−
aa)−1P̌

−
ab−P̌

−
ab−P̌

−
ba)

,
(16)

and

tr(P̌
−
aa + P̌

−
ba(P̌

−
aa)−1P̌

−
ab − P̌

−
ab − P̌

−
ba) ≥ 0. (17)

Proof: Given that P̌
+

c = ((P̌
−
c )−1 + r−1

c,aȞ
>
c Ȟc)

−1,
using some algebraic manipulation and invoking [24, Corollary
18.1.2], we can write det(P̌

+

c ) = 1

det((P̌
−
c )−1+r−1

c,aȞ
>
c Ȟc)

=

det(P̌
−
c )

det(I2N+r−1
c,aP̌

−
c Ȟ

>
c Ȟc)

=
det(P̌

−
c )

det(I2+r−1
c,aȞcP̌

−
c Ȟ

>
c )

. Then, by

virtue of Lemma A.1 we obtain

det(P̌
+

c ) ≤ det(P̌
−
c )

1 + tr(r−1
c,aȞcP̌

−
c Ȟ

>
c )
. (18)

Since

[
P̌
−
aa P̌

−
ab

P̌
−
ba P̌

−
bb

]
≥ 0, using Lemma A.2 one

can write tr(P̌
−
aa + P̌

−
bb − P̌

−
ab − P̌

−
ba) ≥ tr(P̌

−
aa +

P̌
−
ba(P̌

−
aa)−1P̌

−
ab − P̌

−
ab − P̌

−
ba) ≥ 0. Then, using

ȞcP̌
−
c Ȟ

>
c = P̌

−
aa − P̌

−
ab − P̌

−
ba + P̌

−
bb. to expand the

denominator of the right hand side expression in (18), we
have tr(r−1

c,aȞcP̌
−
c Ȟ

>
c ) = r−1

c,atr(P̌
−
aa + P̌

−
bb − P̌

−
ab −

P̌
−
ba) ≥ r−1

c,atr(P̌
−
aa + P̌

−
ba(P̌

−
aa)−1P̌

−
ab − P̌

−
ab − P̌

−
ba) ≥

0. Therefore, it follows from (18) that det(P̌
+

c ) ≤
det(P̌

−
c )

1+r−1
c,atr(P̌

−
aa+P̌

−
ba(P̌

−
aa)−1P̌

−
ab−P̌

−
ab−P̌

−
ba)
. The proof is then

completed due to (14).

B. Scheduling Using Locally Stored Covariance and Cross-
covariance Matrices

Our measurement scheduling algorithm design to meet
Objective 1 relies on the results given by Theorem 1. We note
that in a sequential scheduling update procedure, each relative
measurement a k−→ b has separate effect on the determinant
of the joint covariance matrix. We can then make scheduling
individually for each robot for uncertainty minimization. We
note that since the denominator of right hand side in (16) is
always positive, its maximization leads to the reduction of the
upper bound on det(P+

c ). Given this observation, we propose
Algorithm 1 below as a greedy landmark selection procedure
at each robot i. We let Di(k) be the set of robots that robot
i ∈ V detects in its measurement zone at time k (e.g., by
detecting the AR tags in the image taken by its camera [22]).
Robot i uses Algorithm 1 to decide which qi number of robots
it should take relative measurement from (e.g., by processing
its image further to extract the relative pose of only those qi

selected landmark robots [22]).

Algorithm 1 Landmark selection at robot i

Input: Di(k), covariance P i−(k), cross-covariances
{P−ij(k)}j∈Di(k), constraint on the number of measurements
qi, constant rc,i
Output: the identification of the min{qi, |Di(k)|} landmark
robots for robot i ∈ V

if qi < |Di(k)| then
for j ∈ Di(k) do

J ij = r−1
c,i tr(P̌

−
ii + P̌

−
ji(P̌

−
ii)
−1P̌

−
ij − P̌

−
ij − P̌

−
ji)

end for
find the largest qi elements of the {J ij}j∈Di(k) scalar set
and output the corresponding subscripts j

else
return Di(k)

end if

To implement Algorithm 1, each robot i ∈ V uses its local
information to compute J ij = r−1

c,i tr(P̌
−
ii+P̌

−
ji(P̌

−
ii)
−1P̌

−
ij−

P̌
−
ij − P̌

−
ji), j ∈ Di(k). Then, it chooses qi largest values

of J ij , j ∈ Di(k), as its landmark robots. Of course, if
|Di(k)| < qi then robot i uses Di(k) as its landmark robots.
We note here that since the robot-wise incremental covariance
in propagation stage Qi(k) is dependent on the velocity input
and is thus known to each robot locally, we can discard Q̌

i
(k)

in scheduling. That is, when we implement Algorithm 1, we
can use P̌

−
ii(k) = P i−(k) and P̌

−
ij(k) = P−ij(k), i ∈ V

and j ∈ Di(k).
Algorithm 1 is a greedy landmark selection heuristic that

works based on minimizing an upper-bound on the total un-
certainty of the team. Even though this algorithm does not have
rigorous performance guarantees, our numerical examples in
the proceeding section shows that the performance of CL
algorithm implementing Algorithm 1 is comparable to the CL
algorithm that uses the landmark selection algorithm of [19],
which comes with a known optimality gap. This observation
along with the properties highlighted in the remarks below
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makes Algorithm 1 an appealing choice for operations with
resource constrained robots.

Remark 1 (Computational and communication cost of Algo-
rithm 1): First, we observe that implementing Algorithm 1
poses no communication overhead on the robots, i.e., to carry
out Algorithm 1 robots do not need to communicate with each
other. In contrast, in the landmark selection algorithm of [19]
each robot i ∈ V needs to know the local covariance matrix of
all the other teammates whether they are in Di or not, i.e., [19]
requires all-to-all communication for landmark selection at
each timestep. Algorithm 1 is a numerically efficient proce-
dure, as well. It only computes and ranks {J ij}j∈Di , which
are at most N−1 scalars. The complexity of computing all J ij
mainly comes from the matrix multiplication and inversion,
which is O(22.4(N − 1)) ' O(N) in total [25]. Ranking
and selecting the largest qi ones requires time complexity of
O(N logN). Therefore the total complexity of our proposed
suboptimal scheduling algorithm is O(N logN) per robot,
while the suboptimal method in [19] always has complexity of
O((N −1)qi(2N)2.4) ' O(qiN3.4) for each robot, regardless
of the size of Di, i.e., the number of the robots in the mea-
surement zone. The communication and computational costs
after the landmark selection for a CL algorithm implementing
Algorithm 1 and the one implementing the landmark selection
algorithm of [19] are the same since the scheduling does not
change the measurement model and the update steps. �

Remark 2 (No further restriction on the team beyond those
imposed by the adopted decentralized CL): We note here that
to establish the upper bound (16), we made no assumptions
about the type of the robots or the number or quality of
the relative measurements. Moreover, note that Algorithm 1
allows each robot to choose its constraint on the number of
the relative measurements it wants to pick, qi, and change
its choice based on the status of its available resources at
each time. Therefore, Algorithm 1 can be applied to teams of
heterogeneous robots moving on a flat surface. Additionally,
since the upper bound (16) has no direct dependency on
the size of the team, Algorithm 1 can be implemented in
operations that the size of the team changes over time due
to robots leaving (e.g., due to failure) or joining the operation.
In fact, the change in the team size is of importance for the
integrity of the CL algorithm rather than the landmark selec-
tion Algorithm 1. In case of the IMDCL algorithm, as stated
in [7], IMDCL is robust to permanent agent dropouts from
the network. The operation only suffers from a processing
cost until all agents become aware of the dropout. On the
other hand, a new robot can join the team and participate
in IMDCL as long as its addition is made known to all the
teammates so that they initiate and maintain a cross-covaraince
term corresponding to this new robot. �

IV. NUMERICAL SIMULATION

We demonstrate the efficacy of our scheduling algorithm by
comparing its performance to that of the method of [19] and
that of a random landmark selection in two sets of simulation
studies. In our study, the noise variances of the robots, except
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Figure 1. Logarithm of determinant of estimation covariance for the first
simulation study: the solid thick line shows the result for qi = N − 1 = 4.
In the landmark selection scenarios when qi < N − 1, the blue dashed
line shows the result for the random selection in which the landmark robots
are randomly selected every 30 seconds; the black dashed line shows the
result when the suboptimal landmark selection algorithm of [19] is used;
and finally the gray dotted line shows the result due to suboptimal landmark
selection Algorithm 1 proposed in this paper. In all these cases, the thinner
line corresponds to qi = 1 and the thicker one to qi = 3.

for σiφ, which we have selected, are taken from [26], [27,
Chapter 3] as given in the table below. The computer codes
used to conduct our simulation studies are available at [28].

linear velocity measurement noise σηi 2.253|vi,k|
angular velocity measurement noise σωi 0.587 rad/s
distance sensing noise σρi 0.147 m
bearing sensing noise σθi 0.1 rad
orientation measurement noise σiφ 0.0349 rad

A simulation study based on a real-world dataset: We
validate our proposed algorithm on the public UTIAS multi-
robot cooperative localization and mapping dataset [26], in
which a team of 5 robots move on a 2D flat surface in an
indoor environment. The UTIAS dataset consists of 9 sub-
datasets and each includes measurement data, odometry data
and groundtruth position data of all the team members. We use
the first 300 seconds from sub-dataset 7. In this simulation,
all 5 robots are allowed to take relative measurements with
respect to any team members at each timestep. Figure 1 shows
that if robots process all the relative measurements that are
potentially available the best localization accuracy is achieved.
However, as expected, when the robots are restricted to take qi

number of relative measurements the localization performance
drops. But, this is a trade-off for lower communication/com-
putation cost. As seen in Fig. 1, our proposed measurement
scheduling yields a comparable performance to that of the
suboptimal scheduling solution of [19] (for both cases of
qi = 1 and qi = 3). However, we recall that our proposed
algorithm does not require any inter-robot communication
at scheduling stage as opposed to the suboptimal solution
of [19], which requires all-to-all communication at the time
of measurement scheduling. Figure 1 shows that the random
landmark selection delivers an inferior performance, especially
in the case of qi = 1, which well explains the necessity of
solving the optimization problem (11).

Monte-Carlo simulation: Next, we demonstrate the effec-
tiveness of our proposed measurement scheduling algorithm
through a Monte-Carlo simulation study for 9 robots. This
simulation runs at δt = 0.1 seconds. In this simulation, robots
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Table I
MEASUREMENT TIME TABLE FOR THE MONTE-CARLO STUDY.

Time (second) [0 10] (10 20] (20 35] (35 40] (40 60] (60 65] (65 80] (80 95] (95 100]
Robots allowed to take measurements none 3, 5, 7, 9 2, 6, 8 1, 5, 7 3, 4, 6, 9 5, 7 3, 6, 8 1, 4, 9 4, 6

move with constant linear velocity of 0.1 m/s and rotational
velocity of 0.1 rad/s. The initial conditions are P i(0) =
diag(0.01m2, 0.01m2),P ij(0) = 02, i ∈ V, j ∈ V\{i}.
Initial estimated location x̂i(0) is generated according to the
covariance, i.e. x̂i(0) ∼ N(xi(0),P i(0)), i ∈ V . Robots start
from a 2-by-2 mesh lattice formation where distance between
each vertices is 3 meters. The true initial orientation φi(0) is
uniformly drawn from [0, 2π).

Table I shows the relative measurement scenario we im-
plement. This table specifies the robots that can take relative
measurements at time intervals during this simulation. For
this study, we assume that when a robot is allowed to take
relative measurements, it can potentially take measurement
with respect to all the other robots in the team. Figure 2 shows
the time history of the logarithm of averaged determinant from
M = 50 Monte Carlo simulations (log( 1

M

∑M
i=1 det(P+

c (k)))
while Fig. 3 shows the averaged aggregated RMSE result
( 1
M

∑M
i=1

∑N
j=1(xj(k) − x̂j+(k))2, j ∈ V). We observe the

same trend as we reported for Fig. 1 for the localization ac-
curacy of the CL when we implement Algorithm 1 in contrast
to when we implement the landmark selection method of [19]
and when we process all the available relative measurements
as well as when we adopt the random selection approach.
Also Fig. 3 shows that CL significantly outperforms dead-
reckoning (DR) only localization and the random selection,
particularly in the case of qi = 1 where the available resources
are very limited. Table II shows the average execution time
of the scheduling algorithm in [19] and Algorithm 1 for
sample cases from our Monte-Carlo simulations corresponding
to different values of qi. We also included the execution time
when number of robots are increased to N = 15. As seen,
Algorithm 1 is substantially more cost effective than algorithm
of [19] and also has better scalability with respect to qi and
N . Finally, Fig. 4 shows the landmark robots selection result
by Algorithm 1 at some selected timesteps for robots 3, 6 and
9 for one of our Monte Carlo simulation cases. As we can see,
for each robot the algorithm chooses different landmark robots
at different timesteps to yield a better localization performance
(similar trend is observed for the other robots but are not
shown here for brevity).

Table II
AVERAGE EXECUTION TIME OF MEASUREMENT SELECTION METHOD

FROM A SAMPLE CASE OF MONTE CARLO SIMULATION.

Run time per robot (ms)
CPU N qi [19] Algorithm 1

Intel CoreTM i7-9750H@2.6GHz

9
1 19.42 3.05
3 52.66 3.09
5 75.42 3.18

15
2 555.9 8.52
5 1209 8.53
8 1524 8.57
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Figure 2. Logarithm of the averaged determinant of estimation covariance
in the Monte Carlo study: the solid thick line shows the result when the
robots that are allowed to take measurement (specified in Table I) take relative
measurement from all the N − 1 = 8 landmark robots in their measurement
zone. In the landmark selection scenarios when qi < N − 1, the blue dashed
line shows the result for the random selection in which the landmark robots
are randomly selected every 5 seconds; the black dashed line shows the
result when the suboptimal landmark selection algorithm of [19] is used;
and finally the gray dotted line shows the result due to suboptimal landmark
selection Algorithm 1 proposed in this paper. In all these cases, the thinner
line corresponds to qi = 1 and the thicker one to qi = 3.
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Figure 3. Averaged aggregated RMSE result for the Monte Carlo study.

V. CONCLUSIONS

In this paper, we studied the problem of lowering the
communication and computation costs of a decentralized CL
algorithm by relative measurement scheduling. We provided a
novel method that allows each robot to choose its restricted
number of landmark robots locally without any collaboration
with other team remembers. Our propose solution does not re-
quire full-observability, and has a polynomial time complexity.
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Figure 4. Landmark selection for one of the Monte Carole simulation cases
by robot 3 (shown by ×) robot 6 (shown by o) and robot 9 (shown by +)
when they implement Algorithm 1 to select qi = 3 landmark robots. For
clarity of presentation, we have only shown the landmark selection at some
selected timesteps.
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As a result our proposed algorithm can be a practical solution
for real-time implementation for robotic teams with resource
constrained robots. Our future work includes extending our
results to landmark selection for loosely couple CL algorithms
where the cross-covariance terms are not maintained but
accounted for implicitly.
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APPENDIX

The auxiliary lemmas below are used in development of our
main result.

Lemma A.1: Let A ∈ Rn×n be a positive semi-definite
matrix. Then, det(In +A) ≥ 1 + tr(A) > 0.

Proof: Let {λi}ni=1 be the set of the eigenvalues of A.
Then, the eigenvalues of (In + A) are {1 + λi}ni=1. Thus,
det(In +A) =

∏n
i=1(1 + λi) = 1 + λ1 + λ2 + · · · + λn +

O(λ2
i ) = 1+tr(A)+O(λ2

i ). Since A is positive semi-definite,
we have λi ≥ 0, i ∈ {1, · · · , n}. Therefore, the O(λ2

i ) terms
in det(In + A) are all non-negative. Moreover, tr(A) ≥ 0.
As a result, det(In +A) ≥ 1 + tr(A) > 0.

Lemma A.2: Consider A,B,C ∈ Rn×n with A > 0n and

M =

[
A B>

B C

]
≥ 02n. Then, tr(A + C − B − B>) ≥

tr(A+BA−1B> −B −B>) ≥ 0.
Proof: Using congruent transformation with invertible

transformation matrix T =

[
In In
0n −In

]
, we obtain

M̄ = T>MT =

[
A A−B>

A−B A+C −B −B>
]
≥ 02n,

due to the matrix congruence property (see [29, Theorem
8.1.17]). Then, due to the positive semidefiniteness of M̄ , we
have A+C−B−B> ≥ 0n. Also, by Schur complement [24,
Thoerem 14.8.4] forM , we have C−BA−1B> ≥ 0n, which
guarantees that tr(C) ≥ tr(BA−1B>). Then, we can deduce
that tr(A+C−B−B>) ≥ tr(A+BA−1B>−B−B>).
Next, we show that tr(A+BA−1B> −B −B>) ≥ 0. Let

M̌ =

[
A B>

B BA−1B>

]
. Since A > 0n and BA−1B> −

BA−1B> = 0n, by Schur complement property of M̌ we
obtain M̌ ≥ 02n. Following similar congruent transformation
procedures above, we can prove A+BA−1B>−B−B> ≥
0n, which guarantees that tr(A+BA−1B>−B−B>) ≥ 0,
completing the proof.




