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DISCLAIMER 
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United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
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Abstract 

The motion of a rigid axi-symmetric deformed pulsar model yields many features 
of individual pulse structure, including drifting, nulling and mode switching that 
are qualitatively similar to features observed in real pulsars. As a corollary we 
examine the effects of a very small eccentricity for the pulsar discovered recently in 
SN1987 A. Precession appears to be a plausible explanation of a small amplitude 2 
hour frequency modulation of the millisecond pulses, or alternately, of periodic long 
term appearances and disappearances of the signal. 

PACS 97.60 Gb 

tThis work was supported by the Director, Office of Energy Research, Office of High Energy 
and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Cont1;act 
DE-AC03-76SF00098. 



Contents 

1 Introduction 1 

2 Mechanics of the Model 2 

3 Qualitative Description of the Pulse Structure 4 

,., 
4 Compatibility with Observed Frequency Damping 6 

5 Sinusoidal Frequency Modulation 6 

6 Summary 8 

... 

4.' 



'~) 

1 

Deformed Pulsar Model of Subpulse Drift, Nulling and 
Mode Switching 

Norman K. Glendenning 

July 31, 1989 

Introduction 

The well known gross characteristics of pulsar signals are that the pulse profile, 
averaged over many pulses, and the frequency are very stable, Otherwise the in­
dividual pulses generally are different one from the other [1,2]: (1) Some pulsars 
produce signals within the average profile with apparently random structure com­
pared to each other. (2) Still others produce successive pulse timings that vary 
systematically around the mean, the pulses drifting across the average profile and 
after a few pulses beginning at the other side and repeating a sjmilar sequence of 
pulses. (3) The drift can occur in either direction. ( 4)" Successive bunches of pulses 
constituting a cycle in the drift are not precisely the same in i:mmber. or structure. 
(5) In somepulsar signals there are nulls, meaning the. absence of pulses when they 
are otherwise .expected from the period. ( 6) In others the average pulse profile 
switches between several patterns. 

We propose a simple mechanical model that yields pulse systematics that are 
similar to those described above. We accept the standard view that tr pulse is 
the manifestation of beamed radiation along the magnetic axis which is fixed in 
the star and inclined at an angle with respect to the rotation axis. In addition we 
assume that the star is deformed axially and executes rigid-body motion and that 
the symmetry axis is not along thedirection of the angular momentum. However 
unappealing the assumption of rigid-pody motion may at first-seem, we demonstrate 
that themodel exhibits features that are similar to those observed in actual pulsars. 
We note that the structure introduced into pulses by the motion of a deformed 
pulsar are additional to and superimposed on any structure introduced by intrinsic 
radiation mechanisms such as discussed elsewhere[3,4]. Moreover, we certainly do 
not insist on precisely rigid-body motion. This is simply a solvable idealization 
which has many interesting features that may survive in more flexible motions 
under the stresses of gravitation, rotation, strong magnetic fields, the short-range 
tensor interaction which spatially aligns a succession of neutron-proton pairs with 
their spins, and the magnetic moments of the nucleons, which couples the preceding 
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two. 

2 Mechanics of the Model 

In a torque free environment the model pulsar has two constants of motion, the 
kinetic energy and angular momentum,]{ and L. The mechanical motion is deter­
mined fully by the two scalar constants ]{ and L, all directions being simply referred 
to the direction of L. Let the symmetry axis, S make an angle a with the instanta­
neous angular velocity vector w and an angle f3 with the vector L, respectively. In 
a body with axial symmetry (say ! 1 = ! 2 f= 13 ), the magnitude w is fixed and the 
vectors w and S lie in a plane that rotates about L with constant precession angular 
velocity n. From the Poinsot construction of mechanics, the above quantities are· 
related by [5], 

13 
11 tanf3 =tan a, nsin/3 = wsina. (1) 

There is a third rotation, the body about its own symmetry axis, with angular 
velocity 

13 
n = ( 

11 
- 1 )w cos a (2) 

For chosen ! 3 , [ 1 the unknowns are a, (3, w, n, n. The two constants of the motion 
I< and L together with the above three equations determine them. For our purpose 
it is more convenient to choose two of the above five and regard the other three and 
K and L as dependent. The two most relevant parameters of the problem are n 
and n as will become evident. Define 

n 
r=­

n 

From the first three equations we can also write, 

e 
n = --ncos/3 1+e 

(3) 

(4) 

We note that for e < 0 (prolate), the angular velocity, n about the symmetry axis 
is i::J. the opposite sense to n and w, while for e > 0 (oblate) it is in the same sense. 
Hence re > 0. Therefore without loss of generality we can take 0 < f3 < 1r /2 and 
consequently 

1 
1 + e 

0 >--> re 

For given eccentricity, e, this is a restriction on the ratio of frequencies, r! 

lri=l~l>l1:el 

2 

(5) 

(6) 
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For small eccentricities, which are likely in stars, this ratio of frequencies must be 
greater than one, indeed much greater. 

Now we int.roduce the magnetic axis, B, and let _it be fixed in the body making . 
an angle 1 with the symmetry axis. It rotates about this axis with angular velocity 
n. Define a reference system fixed in space with the z-axis defined by the constant 
direction ofL. Let the origin lie at the center of mass ofthe star. At various instants 
B, Sand the z-axis are coplanar. At one such instant when B lies below the S axis 
as measured from the z-axis, call the timet ___:_ 0. After some trigonometry we find 
that the time-dependent polar angles of B are, 

G(t). ( 
j(sin j3 +cos j3 tan 1 cos nt)2 + tan2 1 sin2 nt). 

arctan · · 
. cos j3 - sin j3 tan 1 cos nt 

(7) 

<I>(t) = n(t +to)+ arctan ( 
tan1 sin nt ) 

sin j3 +cos j3 tan 1 cos nt . 
(8) 

We explain the choice of t0 below. With respect to the space-fixed axis, the second 
of these equations shows that B precesses around the z-axis with angular velocity 
n, modulated by the derivative of the second term .. 

Define a variable r = tjT with T = 27r ;n. As a consequence of eq.4 the polar 
angles of B are completely defined in terms of r, /3,1 and r satisfying eq.5, for any 
chosen eccentricity, e. 

Knowing the direction of B-as a function of the time variable r, we can calculate 
the angle between the magnetic axis and an observer as a function of this variable. 
We have not chosen the x-axis within the constant, <I>= nt0 • Let it riow be chosen 
so that the observer lies in the x,z-plane. This defines the constant t 0 introduced 
above. Let the angle between the observer and the z-axis (direction of L) be "7· 
Then the time-dependant angle between observer and magnetic axis is 

8( r) = sin 1] sine( r) cos <I>( r) + cos 1] cos 8( r) (9) 

Ass,uming the radiation is emitted with a gaussian distribution in angle measured 
from the magnetic .axis B, the intensity of the signal seen by an observer will be 
proportional to 

.(10) 

The second term takes into account the radiation from both ends. Some authors 
believe that as well or instead of the above emission pattern, the radiation is emitted 
in a cone centered at the magnet axis, or both[6]. For the cone case we take the 
intensity proportional to 

(11) 

To have a chance of seeing the signal the observer's orientation has to approxi- . 
mat ely_ satisfy the following relation, 

f3+!+S2:1J2:f3-!-~ (12) 
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where the role of .6 is obvious, and the other parts of the limits follow from eq.7. 

3 · Qualitative Description of the Pulse Structure 

Let us describe in words the motion that is executed by the magnetic axis. For a 
star with symmetry a.Xis and rotation axis coincident and the magnetic axis inclined 
at an angle 1 with the z-axis (fixed direction of L), the magnetic axis traces out 
a cone. For the deformed star described above with symmetry axis offset from 
the angular momentum axis, it traces a surface that is bounded by two cones, at 
angles (3 ± 1 with respect to the z-axis; completing a cycle in time 21r / n. For small 
eccentricities, appropriate to stars, the period of the rotation of the body about its 
own axis is much longer than the precession of the body's symmetry axis about the 
z-axis. Consequently the surface traced by the magnetic axis will spiral between the 
above two cones, but the time to complete one cycle will be longer than the time 
for the magnetic axis to precess once around the z-axis by the ratio of frequencies 
r = njn. This surface will eventually retrace itself only if this ratio of frequencies 
is a rational number. Essentially that will never be the case for long, because of 
radiation damping. So in general the surface traced· by the magnetic axis in the 
course of time will not retrace itself (not be periodic). The radiated signal has an 
angular width about the magnetic axis. Each pulse intensity and pattern seen by an 
observer fixed in space as the star rotates with precession frequency n will depend 
on the particular cut of the intrinsic radiation pattern his line of sight makes as the 
magnet axis sweeps by with the frequency n, modulated as in eq.8. Therefore any 
sequence of pulses seen by an observer will never be repeated in intensity, structure 
and .in timing. However there will. occur approximate repetition of sequences as we 
see below, a quasi-periodicity with period 27r jn. 

To gain further insight into the signals that an observer fixed in space would see 
from such a model pulsar, recall that the motion of the magnetic axis described in 
space fixed axis by eqs.7,8, is simply the superposition of the precession of S about 
the z-axis with angular velocity n and the rotation of B about S with angular 
velocity n, both making constant angles (3 and 1 with their respective rotation 
axes. Let S define a z'-axis with x'-axis in the plane defined by the z and z'-axis 
and with the x'-axis below the xy-plane. Then the polar angle of Bin this (uniformly 
precessing) system is </>' = nt and (}' = I· As already noted, the sign of rJ, depends 
on the sign of e. Taking note that S is precessing in space say in counterclockwise 
sense, we then can say with respect to a fixed observer in space that if 0 < </>' < 1r 
then the space-fixed polar angle 1> of the magnetic axis will be advancedcompared 
to the symmetry axis, while if 1r < </>' < 21r, it will be retarded. The position of 
greatest advancement or retardation occurs at </>' = 1r /2, 37r /2. The positions when 
the magnetic axis is neither advanced or retarded is </>' = 0, 1r. For each cycle of the 
pulsar (n), the magnetic axis will rotate by only a small angle, .6</>' = 21r(njn). 
What the observer sees will depend on his polar angle (}obs = fJ in the space fixed 
ax1s. If Oobs ~ (3 ± 1 he will see a succession of pulses near the angular frequency 
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n but progressing from slightly advanced to retarded or vice versa, ie drifting in 
one sense or the other across the average pulse profile, with possible null pulses 

· between one group of drifting pulses and the next. In Fig. 1 we show a sequence 
·of individual pulses, plotted over the portion df the precession period for which the 
signal can be seen from the observer's position in space, and stacked one over the 
other. In this way we display both the sense of intensity variation and the frequency 
modulation. In contrast, the timing of the signal from a pulsar whose symmetry axis 
coincides with the rotation axis, would occur at constant frequency, if the source 
were a constant beam. Whether a sequences of drifting pulses is separated by nulls 
or by weaker pulses drifting in the opposite sense depends on the the beam width 
6, on 1, and on the observer's orientation. A sequence can also consist of pulses 
that drift from advanced to r!Ctarded positions with a frequency modulation that is 
approximately sinusoidal, interspersed with many nulls, 'as in Figs: 2 and 3. Tlie 
cycles described are generally quasi-periodic, and not exactly so unless the ratio of 
frequencies r = njn is a rational number. The sum of pulses and nulls in a cycle 
is approximately r. The parameters corresponding to the figures cah be found in 
Table 1. 

. If the observer's orientation has about the same polar angle as the symmetry 
axis, 17 ~ /3, then he will see the pulsar only when 4>' ~ 1r /2; 37r /2, if 6 < < I· As 4>' 
approaches either of these positions, the observer will see a sequence of pulses that 
occur very close in frequency (and near to the precession frequency) followed by a 
null period followed by another series of pulses that again occur near the precession 
frequency but which are displaced in timing from the first group, and correspond 
to the other position of cf>'. One group is advanced and the other retarded, as in 
Fig. 4. There follows another null period and then a sequence at timings close to 
the first group and so on. The number of nulls will be equal if 17 = /3, and otherwise 
there will be alternating number of nulls. The number of pulses seen near each of 
these positions of 4>' will depend on the beam width and on the ratio of frequencies 
njn, and will be approximately (6/27r)(njn). The average pulse profile of each 
group will be the reflection symmetric image of the other (but only approximately, 
because of the quasi-periodicity). This pattern resembles the phenomena exhibited 

Table 1: Parameters that define the pulsar characteristics corresponding to the 
Figures . 

Fig. no. e: .. .·.njn {3/1r 1/7r 1J I 7r 6/7r jeg(a)l 
1 -.05 25 0.225 0.2 0.35 0.1 0.08 
2 -.05 50 0.376 0.1 0.33 0.07 0.17 
4 -.05 50 0.376 0.15 0.33 0.07 0.17 
5 -.05 50 0.376 0.15 0.38 0.1 0.17 
6 -.05 25 0.225 0.05 0.2 0.04 0.08 
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by certain pulsars that is referred to as mode switching. This is another example 
of the quasi-periodicity. 

Under some circumstances pulses from both poles can be seen. One circumstance 
under which this can happen is when the angle between the symmetry axis and the 
magnetic axis is sufficiently large. An example of interpulse signals is shown in the 
intensity-pulse plot of Fig. 5. 

As a final example, note that if the pulse emission pattern itself is more compli­
catedthan the gaussian pattern of eq.(ll),say a cone emission as in eq.(12), then 
the individual pulses can vary not only in timing, but also in shape, as seen in Fig. 
6. 

4 Compatibility with Observed Frequency Damp-
• 1ng 

For many pulsars the period and its rate of change are measured. Periods range 
from milliseconds to seconds with most in the range 2/10 to 2 seconds, and the 
rate of change of periods lie in the range 10-18 < T < 10-12 . The damping is 
believed to be caused by magnetic dipole radiation or gravitational radiation for 
which T ex 1/T and 1/T3 respectively. The gravitational damping will occur only 
if there is a time changing quadrupole mass transport, and so will occur in our 
model. The measured damping places an upper bound on the eccentricity, or more 
precisely on e times a function of a. Gravitational radiation yields a rate of change 
of the period according to, 

(13) 

where g2( a) stands for the function of a in the first line and s stands for the unit 
second. For most of our examples, eg(a) ,...., 0.1. Hence for a nominal solar mass 
~ulsar with radius 10 km, T ~ 1.6 x 10-14(s/T)3 . This defines a curve in the 
T - T plane above which many pulsars lie. Model parameters used in the figures 
are compatible with those pulsars that lie above this curve. 

5 Sinusoidal Frequency Modulation 

Under the condition tan')'<< tan/3 we have, 

q, ~ n(t +to)+ arctan(:~:; sin nt) 

.:f. 0 { (tan1sinnt)2}-1 tan')' '*' ~ H. + 1 + . f3 n---:---/3 cos nt sm sm 
(14) 
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We see that the frequency modulation can be sinusoidal, as for a pulsar whose 
signal is modulated by orbital motion. We check the constraints imposed on such 
an hypothesis for the pulsar discovered in the remnant of SN1987 A. It has a period 
T ~ 0.5 x 10-3 seconds, the time rate of change of this period is T < 3 x 10-14, 
and the pulsar period is modulated with an eight hour period. The modulation 
is sinusoidal and its amplitude is flrl/rl ~ 7.5 x 10-7. The measurement of the 
time rate of change of the period is one constraint. Another is the period of the 
modulation compared to the pulsar period, eq.5, and the other is the amplitude of 
the frequency modulation, given by the second term of eq.14. 

Gravitational radiation yields a rate of change of the period according to eq.13, 
and for this pulsar provides the constraint, eg( a) < 10-7. This is satisfied by 

< 10-6 ef'V . 

Identifying the long eight hour period with the rotation of the star about its own 
symmetry axis whose angular velocity we denoted by n, eq.4 provides the constraint 
e cos f3 = 10-7/6. For small e, eq.(1) tells us a ~ (3. Together the above constraints 
read, 

1 e 
6 < 10-7 < 10 (15) 

and are compatible. Thus the deformed pulsar model can account for the period 
of the pulsar and its modulation period with an eccentricity that satisfies the con­
straints imposed by the small rate of change of the pulsar period and with the ratio 
of the millisecond to the eight hour period. However referring to eq.4,14, we see 
that our model can yield, 

flrl n tan 'Y I e I 6 n ~ n sin f3 < < 1 + e < 10- (16) 

whereas the observed amplitude of the frequency modulation is of the order of 
the right side. Although the general form of the modulation is difficult to ana­
lyze analytically, it does seem unlikely that the observed eight hour modulation is 
due to precession. However in an improved analysis of the data [7], there is evi­
dence of a second periodic frequency modulation of period,-...; 2 hours and amplitude 
jflrl/rll ,-...; 1.2 X 10-8 which does satisfy the above inequality. So the two hour fre­
quency modulation could be caused by precession due to a small non-axisymmetric 
deformation that is compatible with the measured rate of change of the millisecond 
period. 

There· is however another interesting possibility. One of our examples above 
showed a long period modulation in which the signal was very weak over about half 
of the long period. Now the pulsar in SN1987 A was not found two weeks later at 
the next search. Perhaps the subsequent searches have occurred during the portions 
of the period when the magnetic axis has been rotated too far out of our line of 
sight by the small eccentricity. Identify the angular frequency with a time of the 
order of a week. This, according to eq.6 would require an eccentricity,e < 8 x 10-10

, 
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even smaller than those quoted above, relegating gravitational radiation to a very 
small role in the rate of change of the period. We tentatively propose the deformed 
pulsar model, in this case with minuscule eccentricity, as an explanation of the 
disappearance of the signal. If this explanation is correct, it should reappear and 
disappear at cyclic intervals. The duration of the appearance need not be the same 
as the duration of the disappearance. This depends on /3, /, .6., ry, e. The smaller 
the eccentricity, the longer the period of the complete cycle, according to eq.4. 

6 Summary 

. The motion of an axially deformed pulsar rotating about an axis that is not one of 
the principle axis, and which is assumed to emit beamed radiation in a cone centered 
on the magnetic axis fixed in the pulsar, produces signals that an appropriately situ-

. ated observer fixed in space would observe. Depending on the observer's orientation 
with respect to the angular momentum axis, and the parameters defining the pul­
sars motion, the observer will see drifting pulses either in an advanced or retarded 
sense, with nulls or weaker pulses connecting the groups of drifting pulses, or he may 
see a group of pulses whose periods are nearly the same followed by nulls and then 
another group at a shifted timing, but again having nearly the same periods. The 
latter pattern resembles mode switching. Under certain circumstances an observer 
would see a sequence of pulses whose frequency is approximately sinusoidally mod­
ulated, and whose intensity varies, perhaps falling below the detection threshold so 
that a sequence of visible pulses is followed by nulls. In the absence of radiation 
damping, the above cycles would be periodic only if fljn is a rational number, say 
50.45. Each cycle would consist of a total of about 50 pulses some of which may 
be nulls. Every 5045 pulses the same sequence of cycles would recur. The above 
cycles must in general be quasiperiodic, because precise periodicity can occur only 
if the ratio of precession frequencies is a rational number, and because of radiation 
damping this situation, though occasionally attained cannot be maintained. 

In our idealization we took two of the principle moments of inertia to be equal. 
Freed from this restriction, the pulse patterns would have greater complexity. We 
also assumed that the beamed radiation was constant in intensity and distributed 
around the magnetic axis with a simple pattern. In real pulsars whatever effects 
discussed here that are caused by rotation about an axis that is not the symmetry 
axis, are superimposed on the radiation which is produced in the complex and possi­
bly time-varying environment of the magnetosphere. The source itself may vary in 
intensity and frequency and its distribution about the magnetic axis may be more 
complex than assumed in our examples. 

Acknowledgements: This work was supported by the Director, Office of En­
ergy Research, Office of High Energy and Nuclear Physics, Division of Nuclear 
Physics, of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 
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separated by nulls. If the observer were positioned near TJ = f3- 'Y instead of f3 + 'Y 
he would see a drift in the opposite direction, as would be the case if the sign of the 
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