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Abstract

Machine Learning Empowered Agile Hardware Design and Design Automation

by

Nan Wu

With the ever-increasing applications comes the realization that efforts and complex-

ity for developing hardware to keep pace with such compute demands are growing at

an even faster rate. And, the problem goes further. As the target cadence of Moore’s

law is already slipping, more burden is placed on the design methodology to achieve

the “equivalent scaling”. The proliferation of everywhere machine learning (ML) re-

veals its multi-faceted role: the killer applications that pull transition to novel hardware

and compute paradigms (i.e., system for ML), and the important boosters to design

methodology that push toward automated and agile hardware development (i.e., ML for

system). Aiming to foster the virtuous cycle between ML and hardware, my research

features hardware agile development empowered by ML and studies how to infuse in-

telligence, improve agility, and eventually enable no-human-in-the-loop automation for

scalable and efficacious hardware development flow by synergistic investigation across

algorithm, architecture, and electronic design automation (EDA).

Specifically, we investigate how different ML techniques can be applied for (1) fast and

accurate design evaluation, (2) efficient and scalable design optimization, and (3) high-

quality and productive design verification. In design evaluation, we leverage the inherent

graph structures of data flow graphs and circuits and explore how domain knowledge

can be infused into graph neural network (GNN)-based models, so that we can reconcile

timeliness, accuracy, and generalization capability in high-level synthesis (HLS) and logic

synthesis performance predictions. In design optimization, we exploit deep reinforcement

viii



learning for flexible, scalable, and automated design exploration in HLS resource alloca-

tion and workload placement optimization, which is efficient in large search spaces and

can be transferred to new designs. In design verification, we utilize the message-passing

mechanism in GNN computation to imitate conventional symbolic reasoning, which is

scalable to extremely large Boolean networks with billions of nodes and makes better

use of modern computing resources. Through multiple case studies, we showcase the

possibilities and potentials of ML-driven methodologies in agile and intelligent hardware

design and design automation. Going forward, we hope to see the virtuous cycle, in

which ML-based techniques are efficiently running on the most powerful computers with

the pursuit of designing the next generation computers.
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Chapter 1

Introduction

Over the past decade, we all witness the exponentially increasing compute demand in

artificial intelligence (AI), which roughly doubles every 3.4 months [1]. By comparison,

Moore’s law [2, 3], which has been powering integrated circuit revolutions since 1960s, has

a two-year doubling period. The discrepancy in scaling trends heralds the implications

of developing systems surpassing today’s capabilities. As the target cadence of Moore’s

law is already slipping [4], more burden is placed on the design methodology to achieve

the “equivalent scaling” to continue moving to larger-scale, more complex, and hetero-

geneous designs and systems. However, the explosion of modern hardware complexity

is challenging the optimality and scalability of conventional development methodologies

and electronic design automation (EDA) tools, resulting in long time-to-market as well as

high capital and labor costs: from the time-to-market aspect, nearly 70% of application-

specific integrated circuit (ASIC) or field-programmable gate array (FPGA) projects are

completed behind schedule in 2020 [5]; from the cost aspect, the development costs of

leading-edge electronic designs are skyrocketing [6]; from the tool aspect, existing EDA

tools cannot adequately address emerging hardware development [7].

In light of these factors, it seems natural to move towards agile hardware design. The
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goal is to expedite the development cycle of next-generation electronic systems while min-

imizing labor, costs, and design complexity barriers. With a strong desire for increased

productivity, it is highly expected to embrace more intelligence in hardware development,

prompting a reassessment of the relationship between machine learning (ML) and hard-

ware systems. In addition to optimizing hardware architecture and systems to better

support different ML algorithms and applications, recent developments suggest a com-

pelling trend of harnessing ML-based techniques to revolutionize the methodology of

hardware design and design automation [8, 9]. This encompasses a twofold meaning: the

alleviation of burdens on human experts, and the creation of a virtuous cycle between

ML and hardware design.

1.1 Interplay of Machine Learning and Hardware

The proliferation of everywhere ML reveals its multi-faceted role: the killer applica-

tions that pull transitions to novel hardware and compute paradigms (i.e., system for

ML), and the important boosters to design methodology that push towards automated

and agile hardware development (i.e., ML for system).

Machine 
LearningHardware

New hardware paradigm

New design methodology

Figure 1.1: In this dynamic landscape, ML plays a dual role, both as the impetus for
pushing the boundaries of hardware design and as a powerful tool within hardware
design methodologies.

2



Introduction Chapter 1

From the system for ML perspective, the primary objective is to enable efficient

processing of diverse ML models and applications. This is typically accomplished through

either solely hardware design changes (e.g., adopting emerging technologies and exploring

architecture/system support for various dataflows [10]) or hardware-software co-design

(e.g., reducing the precision or the number of operations and operands) [11].

From the ML for system perspective, ML-based techniques gain widespread popular-

ity in predictive performance modeling and design exploration [8]. In performance pre-

diction, ML-based approaches, especially supervised learning-based methods, often take

relatively low-level abstractions of hardware systems as input features to predict various

performance metrics or criteria of interest, such as power, energy consumption, latency,

and throughput. In design optimization, ML-based methods can either be integrated

directly into the design process to facilitate efficient exploration at system, architecture,

and micro-architecture levels, or perform run-time control and management at the core,

chip, node, and data center levels for scheduling, dynamic power management, and other

run-time orchestration and hardware resource management.

1.2 Challenges and Opportunities

Challenges often come hand in hand with opportunities. By recognizing the limita-

tions of conventional design approaches and acknowledging the obstacles that may arise

in exploiting ML-based techniques for hardware evaluation, optimization, and verifica-

tion, we can fully unleash the potential of applying ML for more intelligent and agile

hardware development flows.
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1.2.1 Design Evaluation

To accelerate design iterations, it is essential to rapidly and accurately predict the

quality and behavior of hardware designs. Traditionally, hardware system performance

estimation has relied on analytical models or cycle-accurate simulators. Analytical mod-

els often provide fast yet inaccurate predictions [12]. Developing such models entails la-

borious manual endeavors to comprehend intricate hardware details, leaving them prone

to both human and modeling errors. Additionally, their portability is limited, requiring

the construction of a new analytical model from scratch for each distinct hardware de-

sign. Cycle-accurate and/or instruction set simulators, such as gem5 [13] and sniper [14],

provide accurate yet time-consuming estimations. These simulators incur expensive com-

putation costs for performance modeling, thereby restricting scalability to large-scale and

complex systems. Moreover, the lengthy simulation time tends to impede the thorough

exploration of design spaces.

Compared to conventional modeling methods, a promising alternative lies in data-

driven ML-based approaches, with the primary goal to reconcile prediction accuracy,

timeliness, and generalization capability. Notably, several challenges should be well

addressed, including the collection of sufficient data, enhancing sample efficiency, and

effectively transferring knowledge across diverse hardware designs.

1.2.2 Design Optimization

From a single processing unit to warehouse-scale computing infrastructures, from ap-

plication mapping to hardware development, optimization is a pillar stone to achieve var-

ious trade-offs among different design specifications, such as performance, energy/power

efficiency, and resource utilization. Metaheuristics-based search methods have been ex-

tensively applied in design space exploration, such as simulated annealing (SA) [15],
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generic algorithms (GA) [16], particle swarm optimization (PSO) [17], and ant colony

optimization (ACO) [18]. Despite their effectiveness, they often require initiating the

exploration process from scratch for each new design or problem, without leveraging

previous experiences or knowledge, which may result in long search time and degraded

solution quality. In contrast, ML-based methods possess the capability to accumulate

experience with each encountered instance, enabling them to gradually acquire expertise,

refine strategies, and hone the generated solutions. They also excel at extracting the un-

derlying relationship between the context and target optimization metrics, which might

be implicit to human experts, allowing for decision-making without the need for explicit

programming. To thoroughly capitalize on the aptitude of ML-based optimization, it

is imperative to investigate effective methods of incorporating domain knowledge into

ML models to accelerate the search process, enhance the generalization capability across

various designs, and interpret and comprehend the solutions provided by the developed

models.

1.2.3 Design Verification

Hardware verification has been a bottleneck in chip development, whose scalability

is not immune from large-scale designs, system-on-chip (SoC) complexity, heterogeneous

integration, the overwhelming volume of verification data, and so on. Two commonly

applied verification paradigms are formal verification and simulation-based verification.

Formal verification uses static analysis to mathematically prove or disprove the functional

correctness of a system with respect to certain formal specifications or properties [19],

whose runtime complexity and memory usage hinder its scalability to large designs [20].

Simulation-based verification exercises the designs with valid input stimulus to com-

pare whether the outputs match the oracle provided by a golden reference model [21].
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The challenge of scalability extends beyond just the increasing size of designs. Firstly,

techniques that are effective at the IP-block-level or sub-system-level verification, such

as constrained-random testing and functional coverage analysis, often struggle to scale

up to the entire SoC integration or system-level validation. Second, simulation-based

verification is producing so many data that it has become a big data problem [22], call-

ing for a new level of intelligence in verification, including but not limited to smarter

test generation, coverage collection/analysis, and debug. Reckoning on these challenges,

in formal verification, ML-based techniques can enhance the efficiency of satisfiability

(SAT) solvers, theorem proving, equivalence checking, and model checking, as well as

benefit assertion generation using natural language processing (NLP)-based approaches;

in simulation-based verification, ML-based techniques typically serve as predictive mod-

els for rapid and precise coverage predictions, automated test generation and selection,

as well as troubleshooting assistants.

1.3 Contributions and Organization

Aiming to foster the virtuous cycle between ML and hardware, my research features

agile hardware development empowered by ML and studies how to infuse intelligence,

improve agility, and eventually enable no-human-in-the-loop automation for scalable and

efficacious hardware development flow by synergistic investigation across algorithm, ar-

chitecture, and EDA. Specifically, this dissertation endeavors to demonstrate how ML-

based techniques and their effective utilization of modern computing systems benefit (1)

fast and accurate design evaluation (Chapter 3 and Chapter 4), (2) efficient and scalable

design optimization (Chapter 5 and Chapter 6), and (3) high-quality and productive

design verification (Chapter 7), which is organized as follows.

• In Chapter 2, we introduce the background of graph neural networks (GNNs) and
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reinforcement learning (RL), which are the primary tools used to improve hardware

development process in this dissertation. Additionally, we present a concise litera-

ture review of studies that apply ML-based techniques for performance evaluation,

design optimization, and hardware verification.

• Chapter 3 seeks to answer why and how GNNs can be applied for high-level syn-

thesis (HLS) performance predictions [23]. We leverage the inherent graph struc-

ture of data flow graphs, benchmark 14 state-of-the-art GNN models, and propose

a knowledge-infused hierarchical GNN model incorporating domain knowledge to

balance prediction accuracy and timeliness. To promote the interdisciplinary re-

search between GNN and HLS, we formally formulate the problem and construct

a standard and open-source benchmark suite including a variety of synthetic and

realistic applications.

• Chapter 4 innovatively employs multi-modal graph learning to provide accurate

assessments of the quality of results (QoR) after logic synthesis [24]. Our approach

combines order dependence from sequences of logic transformations (i.e., logic syn-

thesis flows) and structural properties from hardware designs using a hybrid model,

which achieves excellent generalization capability across both logic synthesis flows

and circuit designs.

• Chapter 5 proposes an end-to-end optimization framework, IronMan [25, 26], for

fine-grained, flexible, and automated optimization in HLS, with the primary goal to

provide either optimized solutions under user-specified constraints or Pareto trade-

offs between different objectives (e.g., resource types and timing). IronMan con-

sists of a code transformer serving as the interface to HLS tools to expose operator-

level optimization opportunities, a deep RL-based design space exploration engine
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for multi-objective optimization, and a GNN-based performance predictor to en-

hance knowledge transfer to new applications.

• Chapter 6 focuses on workload placement optimization on multi-chip many-core

(MCMC) systems [27]. MCMC systems offer high parallelism via decentralized

execution and can scale to very large systems with reasonable fabrication costs. As

these systems continue to scale, workload partitioning and placement significantly

impact the efficiency of on-chip and off-chip communication. In this context, we

propose a deep deterministic policy gradient (DDPG)-based workload mapping

method, applicable to systems connected in different topologies and scalable to

large systems with thousands of cores.

• Chapter 7 showcases the effective application of graph learning to bolster paral-

lelism and scalability of symbolic reasoning [28], providing wide-ranging benefits in

functional verification, logic minimization, datapath synthesis, malicious logic iden-

tification, and more. We use the message-passing mechanism in GNN computation

to emulate functional propagation and structural hashing in conventional symbolic

reasoning methods, allowing for better utilization of modern computing power to

promote verification productivity.

• Chapter 8 concludes the dissertation and discusses future research opportunities

through advanced ML algorithms, autonomous EDA, and agile hardware develop-

ment.

8



Chapter 2

Background and Related Work

In this chapter, we first introduce preliminaries of graph neural networks and reinforce-

ment learning. Then, we briefly discuss the related work employing ML-based techniques

for performance evaluation, design optimization, and hardware verification, respectively.

For more reference, there is a comprehensive survey of applying ML for computer archi-

tecture and systems [8].

2.1 Graph Neural Network

GNNs have made remarkable strides in representation learning on graph-structured

data, such as particle and high energy physics [29, 30], chemical analysis [31, 32], social

networks [33, 34], and drug-target predictions [35, 36]. The fundamental GNN model has

been recognized as a generalization of convolutions to non-Euclidean data [37], a differ-

entiable variant of belief propagation [38], and an analogy to classic graph isomorphism

tests [39]. Regardless of their origins, GNNs typically employ a neural message passing

mechanism in which vector messages are exchanged between nodes along the edges in

the graph and updated using neural networks.
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Figure 2.1: Overview of a message-passing model, which depicts how a single node
aggregates messages from its local neighborhood.

Given an input graph G = (V , E), each node v ∈ V is initialized with a representation

h(0)
v ∈ Rd, which could be either a direct encoding or a learnable embedding obtained

from node features. Then, as shown in Figure 2.1, a GNN layer updates each node

embedding by integrating the information from its graph neighborhoodN (v), yielding the

representation h(1)
v . This process can be unrolled through time steps by repeatedly using

the same update function, deriving representations h(2)
v ,h(3)

v , ...,h(K)
v . An alternative

is to stack several GNN layers, intuitively similar to unrolling through time steps, but

increases the GNN capacity by using different parameters in the update function for each

time step. This message-passing update can be formally expressed as follows:

h(k+1)
v = update(k)

(
h(k)
v ,aggregate(k)({h(k)

u , ∀u ∈ N (v)})
)

= update(k)(h(k)
v ,m

(k)
N (v)).

(2.1)

Here, update and aggregate are arbitrary differentiable functions (i.e., neural net-

works), and m
(k)
N (v) is the “message” aggregated from the neighborhood N (v) of node v.

During each iteration, the aggregate function takes in the embeddings of the nodes

within the graph neighborhood N (v) of node v and generates a message m
(k)
N (v); the

update function combines the message m
(k)
N (v) with the previous node embedding h(k)

v to
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Agent

Environment

state st

state st+1

reward rt+1 action at

Figure 2.2: A typical framing of RL.

produce the updated embedding.

2.2 Reinforcement Learning

RL has achieved great success in many real-world applications, such as AlphaGo [40],

self-driving [41], robotics [42], playing video games [43, 44], and financial trading [45, 46,

47]. These instances highlight the versatility and effectiveness of RL in solving compli-

cated decision-making tasks in a wide range of domains.

Figure 2.2 depicts a standard RL scenario [48]. An agent interacts with an environ-

ment over a number of discrete time steps. At each time step t, the agent receives a state

st from the state space S, and selects an action at from the action space A according

to its policy π, in which π is a mapping from states st to actions at. In return, the

agent receives the next state st+1 and a scalar reward rt+1 : S × A → R. This process

continues until the agent reaches a terminal state after which the process restarts. The

accumulated rewards starting from the time step t can be expressed as:

Rt+1 =
∞∑
k=0

γkrt+k+1, (2.2)

where γ ∈ (0, 1] is the discount factor. The state-action value Qπ(s, a) is represented by

Qπ(s, a) = Eπ[Rt+1|st = s, at = a], (2.3)
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which is the expected return after selecting action a at state s with policy π. Similarly,

the state value Vπ(s) is defined as

Vπ(s) = Eπ[Rt+1|st = s], (2.4)

which is the expected return starting from state s by following policy π. The goal of the

agent is to maximize the expected return for every state s.

There are two general types of RL methods: value-based and policy-based. In value-

based methods, the state-action value function Qπ(s, a) is approximated by either tabular

approaches or function approximations. At each state s, the agent always selects the

optimal action a∗t that could bring the maximal state-action value Qπ(st, a
∗
t ). One well-

known example of value-based methods is Q-learning [49]. As for policy-based methods,

they directly parameterize the policy π(a|s; θ) and update the parameters θ by performing

gradient ascent on Eπ[Rt+1]. One example is the REINFORCE algorithm [50], in which

the policy parameters θ are updated in the direction of ∇θ log πθ(st, at)Qπ(st, at).

2.3 Related Work on Machine Learning for Perfor-

mance Evaluation

ML-based techniques can be effectively employed to predict various performance met-

rics of interest for diverse hardware components, such as memory systems, network-on-

chip (NoC), GPUs, and CPUs.

In memory systems, multi-layer perceptron (MLP) [51] and gradient boosting [52] are

capable to predict higher-level features (e.g., cache miss, throughput, energy) from lower-

level features (e.g, cache configurations). Memory access patterns can be characterized

by Block2Vec [53] or GNNs [54], which generate better representations of data blocks,

12
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data flows, and control flows, enabling further optimization for prefetching and branch

prediction.

In NoCs, taking buffer/link utilization and NoC configurations as input features,

we can apply support vector regression to predict communication latency [55], MLP to

predict hotspots [56], ridge regression models to predict energy consumption [57], and

decision trees to predict the probability of timing faults [58].

In GPUs, given GPU configurations, performance counters, and kernel characteristics,

linear regression can be applied to predict execution time [59, 60]; Wu et al. [61] use

clustering and MLPs to model scaling behaviors of general-purpose GPUs (GPGPUs)

with respect to the number of compute units, engine frequency, and memory frequency;

O’Neal et al. [62] use ensemble learning to predict cross-generation GPU execution time,

achieving more than 10,000 times speedup compared to cycle-accurate GPU simulators.

In general processor performance predictions, MLPs and variants of (non-)linear re-

gression are widely utilized to forecast important metrics such as throughput [63], en-

ergy [64], power [65, 66], and latency [67, 68], based on micro-architectural configurations

and performance counters. These ML-based predictors can be seamlessly integrated to

facilitate smart power management. For instance, LEO [69] uses hierarchical Bayesian

models to predict performance and power, which is employed to identify the performance-

power Pareto frontier for run-time energy optimization; CALOREE [70] decomposes the

power management task into two abstractions: a learner responsible for performance

modeling, and an adaptive controller leveraging predictions from the learner. These

abstractions allow both the learner to use multiple ML techniques and the controller

to maintain control-theoretic formal guarantees. Recent studies give more attention on

data-driven approaches. For instance, Ithemal [12] leverages a hierarchical multi-scale

recurrent neural network (RNN) with long short term memory (LSTM) to predict the

throughput of basic blocks. Ding et al. [71] highlight the importance of incorporating
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domain knowledge into learning-based modeling, even if the overall accuracy may not be

improved. In order to handle data scarcity, they exploit a generative model to generate

synthetic training data and apply multi-phase sampling to improve prediction accuracy.

2.4 Related Work on Machine Learning for Design

Optimization

In the context of design optimization, there are various ways to exploit ML. On the

one hand, we can directly develop ML-based components, such as prefetchers and branch

predictors. On the other hand, we can incorporate ML-based techniques as part of the

design process, such as design space exploration, or use them for run-time control and

management.

For ML-based components, we launch discussions on cache replacement/prefetching

policies, memory controllers, and branch predictors. To develop better cache replacement

and prefetching policies, researchers have explored various ML techniques, such as per-

ceptron learning [72, 73, 74], RL [75, 76, 77], and LSTM [78, 79, 80], which utilize data

reuse information and spatio-temporal locality from memory access patterns as well as

program semantics to make more intelligent decisions. To devise self-optimizing memory

controllers adaptive to dynamic workloads, several studies adopt Q-learning [81, 82, 83],

where the memory controller always selects legal DRAM commands with the highest ex-

pected long-term performance benefits (i.e., Q-values). To improve dynamic branch pre-

dictors, variants of perceptron learning make use of branch histories to decide whether to

take the branches [84, 85, 86, 87] and predict the target address of an indirect branch [88].

For incorporating ML-based techniques into the design process, we review several

studies that leverage ML-based design exploration in HLS and logic synthesis. Design
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space exploration in HLS typically involves the proper assignment of directives (i.e., prag-

mas) in the high-level source code, since directives have a significant impact on the quality

of HLS designs by controlling parallelism, scheduling, and resource usage. Random for-

est [89] and Bayesian optimization [90] can be used to select suitable loop unrolling factors

or optimize the placement of directives (e.g., loop unrolling/pipelining, array partition-

ing, function inlining, and allocation), with the goal to improve execution latency and

resource utilization. In logic synthesis, LSOracle [91] employs an MLP to automatically

decide which optimizer should be applied to different parts of circuits; the selection of

logic transformations can be optimized by a policy gradient-based method [92].

For ML-based run-time power management, the joint optimization of power gating

and dynamic voltage and frequency scaling (DVFS) can be performed by several super-

vised ML techniques, such as MLP [93], gradient boosting, and k-nearest neighbors [94].

Distributed and multi-level Q-learning approaches can also be applied to select target

power modes [95] or conduct DVFS [96, 97]. JouleGuard [98] is a run-time control

system coordinating approximate computing applications with system resources under

energy budgets. It uses a multi-arm bandit approach to identifying the most energy-

efficient system configuration, upon which application configurations are determined to

maximize compute accuracy within energy budgets.

2.5 Related Work on Machine Learning for Hard-

ware Verification

Simulation-based verification generally consists of three aspects: coverage measure-

ment, test/stimulus generation, and response checking [99]. Accordingly, ML-based tech-

niques usually serve as three roles: predictive models for fast and accurate coverage
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predictions, optimizers for test generation or selection, and troubleshooting assistants.

Regarding ML-based predictive models, many studies adopt them as surrogate models

to approximate the relationship between tests and coverage metrics, so as to accelerate

the verification cycle by fast and accurate coverage predictions without resorting to time-

consuming simulation processes for design under verification (DUV). Examples include

using ML-based surrogate models for fault coverage [100, 101], code coverage [102, 103],

and functional coverage analysis [104].

Regarding ML-based optimizers, it has always been challenging to find the most

stressful and comprehensive tests to stimulate DUV so that coverage closure can be

reached within time limits. In test generation, after developing surrogate models such as

using deep residual neural networks [105] and GNNs [106] to capture the relations between

test templates and the expected probabilities of hitting coverage events, a gradient-

based search can be applied to propose new tests; RL-based methods, such as policy

gradient [107], are also capable of directly generating input stimuli. In test selection,

support vector machines (SVMs) [108, 109] and MLP [110] can be used to figure out

representative and important tests from a large pool of generated tests and filter out

redundant ones.

Regarding troubleshooting assistants, given the large amount of test data, cluster-

ing and classification algorithms have showcased their capabilities to automate different

steps in debug, such as bug detection with version control systems (VCS) [111], root

cause recognition with failure information [112], simulation trace analysis [113], and bug

localization with VCS [114] or bug signatures [115].

16



Chapter 3

Hierarchical Graph Neural Network

for High-Level Synthesis

Performance Prediction

Fast and accurate circuit quality evaluation from early design stages is crucial for agile

hardware development. In this chapter, we focus on why and how GNNs can be applied

for HLS performance predictions, with the primary goal to reconcile prediction accuracy,

timeliness, and generalization capability.

HLS is a prevailing technology to develop ASIC and FPGA designs, which expe-

dites the design flow by automatic transformation from behavioral descriptions in high-

level languages (C/C++, etc.) to functionally equivalent RTL designs with different

resource/performance trade-offs. Despite the great success achieved by HLS, one of

the major challenges is the difficulty in predicting the quality of the generated RTL

designs. While invoking the entire synthesis and implementation flow through tradi-

tional EDA tools can provide accurate performance evaluation, it is usually extremely

time-consuming. Even though HLS tools provide performance estimations, they are far
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from accurate [116, 117]. Thus, many efforts strive for accurate performance predictions

without invoking the time-consuming implementation process. Classic approaches use

analytical models [118, 119, 120], which typically work well for highly regular dataflows

such as perfect loops and arrays. Existing ML-based approaches rely on intensive feature

extraction and empirical feature engineering from HLS reports or intermediate results of

a partially executed implementation process [121, 122, 123], which still requires the core

synthesis process that may take minutes to hours as well as high domain expertise.

Motivated by such limitations and the strong desire for agile hardware development,

we aim to approach HLS performance predictions at the earliest design stage with the

least feature engineering, i.e., right after front-end compilation. Since the compiled pro-

grams are often represented as intermediate representation (IR) graphs, we exploit the

representation power of GNNs on these graphical data to rapidly and accurately predict

post-implementation performance metrics. Our contribution is summarized as follows.

• Benchmarking. We build a standard benchmark suite with 40k C programs, in-

cluding synthetic programs and three sets of real-world HLS benchmarks. Each

program is compiled to derive the IR graph, synthesized by HLS tools, and imple-

mented on an FPGA device to obtain post place-and-route performance metrics as

the ground truth.

• Modeling. We formally formulate the HLS performance prediction problem on IR

graphs and profile 14 state-of-the-art GNN models. To investigate the trade-offs

between prediction accuracy and timeliness (i.e., early or late stages in HLS), we

propose two approaches directly using GNNs: (1) off-the-shelf approach at the ear-

liest stage with the least domain-specific information; (2) knowledge-rich approach

at a later stage with HLS auxiliary information to improve prediction accuracy.

• Advancing. We further propose a knowledge-infused approach using a novel hier-
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archical GNN, which decouples the complicated prediction tasks into two simpler

ones: node-level classification to infuse domain knowledge and graph-level regres-

sion to estimate overall resource usage and timing. This approach reaps timely

predictions as well as ample domain knowledge, largely improving prediction accu-

racy with almost zero overhead at inference time.

We extensively evaluate our proposed predictors on both synthetic and unseen real-

world programs, which outperform HLS tools by up to 40× in terms of resource usage

and timing predictions. The benchmark and explored GNN models are publicly available

at https://github.com/lydiawunan/HLS-Perf-Prediction-with-GNNs.

This chapter is organized as follows: Chapter 3.1 discusses the performance prediction

strategies used in existing ML-based methods and highlights the strengths of our three

proposed prediction strategies; Chapter 3.2 introduces the developed benchmark suite;

Chapter 3.3 presents the details of the three proposed approaches; Chapter 3.4 includes

the evaluation and discussions on the off-the-shelf, knowledge-rich, and knowledge-infused

approaches; Chapter 3.5 concludes this chapter.

3.1 Performance Prediction Strategies

For HLS performance predictions, there are two fundamental questions to answer:

when and how.

3.1.1 When to Predict

Circuit quality can be predicted at different stages of the design flow, such as be-

fore or after HLS, or during implementation. HLS tools take in behavioral descriptions

in high-level languages, convert them to RTL, and produce a synthesis report, which
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Figure 3.1: The overall performance prediction flow. (a) Design flow starting from
behavioral programs to hardware circuits. (b) An example program written in C. (c)
The IR graph extracted after front-end compilation. (d) The working flow of GNNs,
predicting actual resource usage and timing merely based on raw IR graphs.

provides an early estimation of the final performance, as shown in Figure 3.1. How-

ever, even after minutes or hours of synthesis, these estimations provided in synthesis

reports can be largely inaccurate [116, 117]. Among the existing ML-based predictors

for latency, throughput, power, and resource utilization, there are three major sources

for feature extraction: HLS directives [124, 125, 126], IRs after HLS front-end compila-

tion [127, 128, 117], and HLS reports [116, 121, 122, 129]. In general, an early and timely

prediction benefits agile development, but little domain-specific knowledge is exposed at

this stage, which probably hurts prediction accuracy. Thus, there awaits a comprehensive

comparison among prediction strategies at different HLS stages in terms of prediction

accuracy and timeliness.
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3.1.2 How to Predict

Existing ML-based prediction approaches attempt linear regression, MLP, SVM, ran-

dom forest, and ensemble models [116, 121, 122, 123, 124, 125, 126, 127, 128, 129].

Although promising, these models require heavy feature engineering to provide sufficient

features as model inputs. For instance, Dai et al. [116] leverage 87 features from HLS

reports; Pyramid [121] and XPPE [122] require up to 183 features; HLSPredict [123]

relies on 75 features. These features can only be obtained by actually running HLS or

CPU/FPGA sub-trace generation. Another concern with these methods is their limited

generalization capability. For instance, Koeplinger et al. [127] adopt pre-characterized

area models to prepare inputs to their MLP-based predictor; several studies take the

directives in HLS scripts as input features, but they are design-specific [124, 125]. These

indicate that a new model must be trained when encountering a new design. Given that

existing ML-based methods require either re-running HLS or re-training a new model

to handle every new design, it is highly expected to have more advanced methods with

strong generalization capabilities across designs for HLS performance predictions.

3.1.3 Our Prediction Strategy

Our goal is to assist agile hardware development by making the performance predic-

tion as early as possible and as accurate as possible. Specifically, we focus on predicting

the implemented, i.e., post place-and-route, design performance metrics on FPGA de-

vices, including resource utilization and critical path (CP) timing, without invoking HLS

or implementation processes.

To address existing limitations (i.e., late prediction and weak generalizability), we

propose three early prediction approaches that leverage varying amounts of domain-

specific knowledge, as illustrated in Figure 3.2. To make it timely, we perform predictions
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Figure 3.2: Three proposed approaches: (a) off-the-shelf approach at the earliest stage
for prediction; (b) knowledge-infused approach, also at the earliest stage but with
self-inferred domain-specific information; (c) knowledge-rich approach after partial
execution of HLS to obtain auxiliary information.

based on the IR graph of a program, i.e., data flow graph (DFG) and control data flow

graph (CDFG), which can be quickly extracted after the front-end compilation [130]

within seconds. To make it generalizable, we propose to apply GNNs on DFGs/CDFGs,

exploiting the inductiveness of GNNs to make accurate predictions for completely unseen

designs without retraining. Specifically, the three approaches are:

• Off-the-shelf approach. The first approach directly predicts post-implementation

performance metrics at the earliest stage by taking IR graphs (DFG/CDFG) as

inputs to GNN models, as depicted in Figure 3.2 (a). This approach extracts

features immediately after HLS front-end compilation, resulting in the fastest pre-

diction, but with compromised accuracy due to the ignorance of hardware-specific

information.

• Knowledge-rich approach. As shown in Figure 3.2 (c), the second approach draws

support from auxiliary domain information distilled from intermediate HLS results

(i.e., partial execution of HLS but no implementation): the resource usage associ-

ated with each node. Armed with rich domain knowledge, this approach emphasizes

more on prediction accuracy, especially for resource estimation, yet compromises
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timeliness and efficiency since HLS tools do take some time to generate intermediate

results.

• Knowledge-infused approach. As shown in Figure 3.2 (b), the third approach is a

hierarchical GNN-based prediction strategy that reaps the advantages of the previ-

ous two approaches: not only does it make the earliest prediction but also benefits

from domain knowledge with almost zero overhead during inference. The knowledge

infusion is achieved by decoupling the complicated prediction task into two steps:

the first step is a node-level classification for resource types, in which the domain

knowledge is infused during training and can be self-inferred during inference; the

second step is graph-level regression that estimates the numerical resource usage

and timing on top of the node-level inference.

3.2 Benchmarking

To facilitate interdisciplinary research in GNN and HLS, we build a standard bench-

mark suite to promote rapid circuit performance prediction, which includes plenty of syn-

thesizable programs together with actual (i.e., post-implementation) performance metrics

on FPGA devices.

3.2.1 Benchmark Format

We outline the benchmark format in terms of the following components: input graphs,

prediction tasks and labels, and node and edge features.
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Input

An IR is a data structure used by compilers to represent the source code of a program,

which serves as a high-level abstraction of the program’s semantics, enabling further

processing such as optimization and translation [130, 131]. In HLS, DFGs and CDFGs

are the most common types of IR graphs, which can be quickly extracted after the front-

end compilation Therefore, we utilize the IR graph of a program as the input to our

GNN-based predictor. Specifically, DFGs are the graphs translated from basic blocks, a

straight-line code sequence with no branches in except to the entry and no branches out

except at the exit [132]; CDFGs are the graphs translated from programs with loops,

jumps, and branches. The main difference between DFGs and CDFGs is that DFGs

do not include any loops, while CDFGs include additional nodes and edges/loops to

represent control dependencies.

Prediction Task and Label

We provide two types of tasks, a node-level classification task, and a graph-level

regression task, where the former is easier than the later.

• For the node-level classification task, each node in IR graphs is assigned a label in-

dicating the resource type(s) that the node will use in its final implementation. We

consider three resource categories: DSP, LUT, and FF. A node can be implemented

by zero, one, or multiple types of resource. For example, a sdiv node may use

both DSP and LUT; a partselect node only uses FF; a control-related node may

use nothing, e.g., br that indicates a branch entry. We organize the resource type

prediction as three binary classification tasks.

• For the graph-level regression task, each IR graph is labeled with corresponding

post-implementation performance metrics. We consider four metrics for regression:
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Table 3.1: Prediction tasks of resource usage and timing on FPGAs.

Resource and Timing Description

DSP:
Digital Signal Processor

A small processor able to quickly perform
mathematical operation on streaming digital signals.

FF:
Flip-Flop

A small memory component able to store a bit,
typically used as a fast register to store data.

LUT:
Look-Up Table

A set of logic gates hard-wired on FPGAs, storing
predefined truth tables and performing logic functions.

CP:
Critical Path Timing

The maximum signal delay of a path from an input
to an output, usually in the unit of nanoseconds.

DSP, FF, LUT, and CP. As summarized in Table 3.1, the first three are integer numbers

indicating the number of resources used in final implementation; the last one is CP

timing slack in fractional number, determining the maximum working frequency of

an FPGA device.

Node and Edge Features

The three proposed approaches use different sets of node features, as listed in Ta-

ble 3.2. After HLS front-end compilation, there are seven node features immediately

available for the off-the-shelf approach, such as node category, bitwidth, and opcode. For

the knowledge-infused and the knowledge-rich approaches, we additionally include the

resource type and the number of used resources in node features, respectively. Notably,

for the knowledge-infused approach, the auxiliary node features (i.e., resource type) are

only provided during training, while during inference they are inferred by our node-level

GNN. Each edge has two features, the edge type represented in integers, and a binary

value indicating whether this edge is a back edge.
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Table 3.2: Node features and example values.

Feature Description Values

Off-the-shelf approach with minimum domain information

Node type General node type
operation nodes, blocks,

ports, misc
Bitwidth Bitwidth of the node 0∼256, misc

Opcode type
Opcode categories
based on LLVM

binary unary, bitwise,
memory, etc.

Opcode Opcode of the node load, add, xor, icmp, etc.

Is start of path
Whether the node is

the starting node of a path
0, 1, misc

Cluster group Cluster number of the node -1∼256, misc

Knowledge-infused and knowledge-rich approach
DSP DSP used for this node? binary/integer values, misc
LUT LUT used for this node? binary/integer values, misc
FF FF used for this node? binary/integer values, misc

3.2.2 Benchmark Generation

We construct the synthesizable benchmark suite including synthetic C programs as

well as real-world HLS applications. The synthetic programs fall into two categories,

basic blocks that derive DFGs, and programs with control loops and branches that de-

rive CDFGs. All of the synthetic programs are generated by the C program generator

ldrgen [133], a variant of Frama-C [134]. For graph-level tasks, there are 19,120 and

18,570 C programs in the DFG and CDFG datasets, respectively. The node-level dataset

contains more than 660k nodes derived from DFGs and CDFGs. In addition, there are

three sets of real-world HLS applications: MachSuite [135], CHStone [136], and Poly-

Bench/C [137], consisting 16, 10, and 30 different applications, respectively. The real-

world applications are only used for generalization evaluation of GNN models and we do

not include them during training. More statistics of the benchmark suite is analyzed in

Program-to-Circuit [138].
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3.3 Modeling and Advancing with GNNs

We provide more details of the three proposed GNN-based approaches with various

trade-offs between timeliness and accuracy. GNNs operate by propagating information

along the edges of a given graph, allowing each node to receive and update its own em-

bedding based on its neighboring nodes. By stacking multiple GNN layers, each node can

receive information from multi-hop neighbors and locally characterize the corresponding

receptive field for node-level tasks. Graph pooling is then used to summarize global

information and perform graph-level prediction tasks.

3.3.1 Modeling: Off-the-Shelf Approach with State-of-the-Art

GNN Models

In the off-the-shelf approach, we screen several state-of-the-art GNN models, aiming

to identify (1) which properties of existing GNN models would help with resource/timing

prediction and (2) how domain-specific insights can be combined with these properties to

improve prediction accuracy. 14 different GNN models are selected from four categories

based on how topological and relational information in graphs are exploited. We briefly

introduce them as follows.

Graph Convolutional Network (GCN) and variants

• GCN [139] is inspired by the first order graph Laplacian methods, which essentially

performs aggregation and transformation on node representations without learning

trainable filters.

• GCN can be equipped with a virtual node [32]; this virtual node serves as a global

scratch space that each node reads from and writes to in every step of message
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passing.

• SGC [140] is a simplified version of GCN, which reduces computation complexity

through successively removing nonlinearities and collapsing weight matrices be-

tween consecutive layers, corresponding to a fixed low-pass filter followed by a

linear classifier.

• GraphSage [39] can be recognized as a variant of GCN, which samples a fixed

number of neighbor nodes to keep the computational footprint consistent.

• The convolution operation using auto-regressive moving average filters (ARMA) [141]

can offer a larger variety of frequency responses and can account for higher-order

neighborhoods compared to polynomial filters with the same number of parameters.

• PAN [142] considers path integral information in the convolution operation, which

is a generalization of GCN that assigns trainable weights to each path depending

on its length.

Graph Isomorphism Network (GIN) and variants

• GIN [143] is provably as powerful as Weisfeiler-Lehman graph isomorphism test,

due to the use of sum aggregators over a countable input feature space.

• GIN can also be equipped with a virtual node [32].

• Principle neighborhood aggregation (PNA) [144] emphasizes the necessity to use

complementary aggregators, which allows each node to better understand the graph

structure and retain neighborhood information, especially under a continuous input

feature space. The sum aggregator is generalized as a combination of a mean

aggregation and degree-scalers, enabling the network to amplify or attenuate signals

based on the degree of each node.
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Employment of Multi-Relational Information

• Graph attention networks (GATs) [145] apply attention mechanisms to implicitly

assign different importances to nodes in the same neighborhood.

• Gated graph neural networks (GGNNs) [146] have trainable edge-dependent weights

with gated recurrent units.

• Rather than unrolling layer-wise computation through time steps as GAT and

GGNN, relational GCN (RGCN) [147] utilizes edge-dependent weights with non-

linear activations, which is specifically designed to characterize multi-relational data

and contextual information.

Inspired from Vision Tasks

• Inspired by the advances in pixel-wise prediction tasks brought by encoder-decoder

architectures such as the U-Net, graph U-Net [148] develops an encoder-decoder

structure on graph, which can encode and decode high-level features while main-

taining local spatial information.

• Inspired by the feature-wise linear modulation (FiLM) in the visual question an-

swering domain, GNN-FiLM [149] makes use of hypernetworks in learning on

graphs, combining learned message-passing functions with dynamically computed

element-wise affine transformations.

To fairly evaluate these models, we use the same GNN structure (e.g., same embedding

size, same layer count) but with different types of GNN layers. The goal is to directly

predict actual resource/timing based on IR graphs without invoking HLS. This off-the-

shelf approach makes the earliest predictions since HLS front-end compilation is the

very first step of an EDA design flow. While with the best timeliness, the accuracy is
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compromised due to the ignorance of hardware-specific information. For example, the

GNN model does not have the information of what resources will be used to implement a

certain node (e.g., LUT or DSP?), making it hard to accurately predict the total resource

utilization of entire IR graphs.

3.3.2 Modeling: Knowledge-Rich Approach with Selected GNN

Models

To incorporate more hardware-specific information revealed during the synthesis flow,

we devise the knowledge-rich approach, which takes both IR graphs and auxiliary infor-

mation from intermediate HLS results as inputs, as shown in Figure 3.2(c). The auxiliary

information from HLS tools indicates both the resource type(s) and the number of each

type of resource used in the final implementation for every node in IR graphs. As each

node is marked with pre-characterized resource estimations, the GNN model can pay

more attention to resource interference/sharing among nodes, achieving much better

prediction accuracy.

Equipped with rich domain knowledge, this approach emphasizes more on prediction

accuracy, especially for resource estimation, yet compromises timeliness and efficiency,

since HLS tools generally consume minutes to hours to generate intermediate results.

Evaluation of this approach is conducted using the top-performing GNN models identified

from the screening in the off-the-shelf approach.

3.3.3 Advancing: Knowledge-Infused Approach with Hierarchi-

cal GNN Models

To strike a balance between timeliness and accuracy, we propose the knowledge-

infused approach with hierarchical GNN models. As depicted in Figure 3.2(b), the re-
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source/timing prediction is disentangled into two tasks: a node-level classification task

that annotates resource types associated with each node, and a graph-level regression task

that predicts actual resource/timing with the annotated graphs. We use two separate

GNN models for these two tasks, and adopt hierarchical training and inference.

• Hierarchical training. First, the node-level classification GNN takes IR graphs

as inputs, and the domain knowledge is infused by providing labels to each node

that denote resource types used in final implementation based on HLS intermedi-

ate results. Second, the graph-level regression GNN then takes both IR graphs and

ground-truth resource types as inputs, aiming to convey the infused domain knowl-

edge from node-level to graph-level tasks and to improve final prediction accuracy.

• Hierarchical inference. During inference, the only inputs required for the two

trained GNNs are the IR graphs. First, the node-level GNN model infers resource

types for each node. Second, combining the node-level inference results with original

IR graphs, the graph-level regression GNN grasps self-inferred domain knowledge

to perform final predictions.

Taking advantages of knowledge infusion during training, this approach demonstrates

a great balance between timeliness and accuracy: predicting resource/timing from the

earliest stage and simultaneously adopting adequate domain information to improve pre-

diction accuracy.

3.4 Experiment

3.4.1 Experimental Setup

All GNN models are implemented with Pytorch Geometric [150]. The ground-truth

(actual) resource usage (LUT/DSP/FF) and CP timing are synthesized by Vitis HLS [151]
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and implemented by Vivado [152]. DFG and CDFG datasets are randomly split into

80% train, 10% validation and 10% test; real-world benchmarks are only used for gen-

eralization evaluation. Each GNN model is empirically set as five layers with a hidden-

dimension size of 300. For graph-level regression, sum or mean pooling is used to derive

graph representations, followed by a feed-forward network with the structure 300-600-

300-1. Models are trained using Adam optimizer for 100 epochs. Learning rates, dropout

and other hyper-parameters are tuned on the validation set. Each model is trained with

five runs using different random number seeds and we report the average of three with

least validation error.

3.4.2 Modeling: SOTA GNN Analysis

We launch discussions of the off-the-shelf approach from three aspects: (1) how differ-

ent graph structures influence prediction accuracy; (2) which properties of existing GNN

models would help improve accuracy; (3) what domain-specific insights can be derived

to facilitate future graph representation learning on fast and generalizable evaluation in

EDA tasks.

Different Graphs: DFG vs. CDFG

. Table 3.3 exhibits the mean absolute percentage error (MAPE) of predictions on

DFGs and CDFGs from synthetic programs. The MAPE on CDFGs is larger than that

on DFGs, which attributes to two major reasons. First, DFGs do not have loops but CD-

FGs typically include a considerable number of loops [138]. Since message-passing-based

GNN models have limited expressiveness and are not better than the 1-Weisfeiler-Lehman

isomorphism test [153], they are not excelled to handle graphs with many loops. Second,

control signals introduce additional nodes/edges that represent control states and de-
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Table 3.3: MAPE of graph-level regression with different GNN models on DFG and
CDFG datasets. The two top-performing models are marked in bold.

DFG CDFG
DSP LUT FF CP DSP LUT FF CP

GCN 16.31% 16.49% 21.27% 6.12% 25.30% 28.64% 38.34% 8.79%
GCN-V 15.72% 15.93% 21.64% 6.36% 17.31% 33.93% 39.94% 8.13%

SGC 42.12% 23.93% 30.61% 7.92% 44.01% 60.87% 53.50% 10.32%
SAGE 15.18% 14.01% 17.11% 6.12% 17.01% 28.09% 39.11% 8.25%
ARMA 19.12% 13.46% 16.87% 6.50% 18.47% 25.21% 32.15% 8.42%
PAN 15.24% 14.13% 17.23% 6.38% 16.88% 32.65% 44.36% 8.54%
GIN 15.52% 16.10% 22.08% 6.58% 15.47% 28.48% 38.82% 8.76%

GIN-V 15.04% 16.17% 23.09% 6.40% 17.94% 29.40% 48.64% 8.59%
PNA 12.65% 11.64% 14.41% 6.26% 14.71% 22.86% 26.47% 8.87%
GAT 26.22% 22.64% 27.74% 8.30% 28.66% 46.19% 54.73% 10.32%

GGNN 15.40% 13.64% 16.94% 6.47% 16.28% 28.05% 31.88% 8.50%
RGCN 13.27% 13.03% 15.09% 6.14% 15.03% 26.33% 25.52% 8.72%
UNet 18.40% 14.90% 19.17% 6.61% 18.92% 32.83% 53.06% 9.02%
FiLM 20.05% 12.50% 16.94% 6.27% 17.42% 26.97% 27.35% 8.67%

pendency, which are seemingly unrelated to resource usage but can easily confuse GNN

models during resource prediction; meanwhile, control signals are usually accompanied

with more complex memory operations [154], such as store and alloca, further compli-

cating the allocation of FF and LUT.

GNN Model Analysis

. PNA and RGCN generally show superior performance, implying two takeaways.

First, the relational information (i.e., edge information) is important in IR graphs, since

it represents data or control dependency, or a mix of both, which is a critical basis in logic

synthesis and impacts resource allocation. Second, equipped with multiple aggregators,

PNA is more powerful to characterize different neighborhood information, thus providing

better prediction accuracy.
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Domain-Specific Insights

. Among three types of resource, DSPs are mainly used for computation; FFs often

relate to memory operations and small arrays; LUTs may appear in computation, memory

or control nodes. The key to making precise DSP prediction is to distinguish major

computation nodes that are most likely to use DSPs. For instance, a multiplication

node with a large bitwidth tends to use DSPs, while divisions and bitwise operations

prefer LUTs. Similarly, effective extraction of memory-related nodes would greatly benefit

FF predictions. Since LUTs are involved in the entire graph (as computation units and

glue logic to circuit components), graph-level understanding is important. To briefly

summarize, it is helpful to carefully characterize neighborhood information from each

node’s predecessors, successors, itself, and their relations, such that the sophisticated

mapping rules from heterogeneous nodes to resource usage can be clearly understood

and quantitatively learned.

Compared with resource predictions, CP timing predictions show relatively lower

MAPE and better consistency between DFGs and CDFGs. A probable reason is that CP

timing is local information and thus is insensitive to graph sizes as long as the critical

path segment can be recognized.

3.4.3 Advancing: Comparison of Three Approaches

We first discuss the results of the knowledge-infused approach, and then comprehen-

sively compare the three proposed approaches with commercial HLS tools.

Evaluation on Knowledge-Infused Approach

Essentially, using GNNs to predict actual resource/timing from IR graphs is to ap-

proximate the set of sophisticated heuristics and mapping rules used by HLS schedul-
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Table 3.4: Prediction accuracy of node-level resource classification with four different
GNN models on DFGs, CDFGs and real-case applications.

DFG CDFG Real Case
DSP LUT FF DSP LUT FF DSP LUT FF

GCN 93.79% 84.84% 88.66% 83.00% 77.01% 64.74% 79.70% 81.83% 86.82%
SAGE 93.06% 87.32% 92.09% 85.65% 78.41% 60.40% 87.39% 86.44% 55.88%
GIN 93.80% 84.93% 91.57% 79.24% 73.05% 65.78% 74.70% 75.53% 72.24%

RGCN 93.91% 87.13% 91.52% 85.80% 78.46% 68.92% 90.82% 88.83% 91.55%

Table 3.5: MAPE of the three proposed approaches with RGCN/PNA on DFG and
CDFG datasets. The default notation means the off-the-shelf approach; -I means the
knowledge-infused approach; -R means the knowledge-rich approach.

DFG CDFG
DSP LUT FF CP DSP LUT FF CP

RGCN 13.27% 13.03% 15.09% 6.14% 15.03% 26.33% 25.52% 8.72%
RGCN-I 10.60% 10.25% 12.47% 5.70% 12.65% 20.55% 19.01% 6.78%
RGCN-R 8.86% 8.58% 10.18% 4.91% 10.98% 14.06% 16.65% 5.46%

PNA 12.65% 11.64% 14.41% 6.26% 14.71% 22.86% 26.47% 8.87%
PNA-I 8.26% 5.10% 7.58% 5.51% 10.39% 14.12% 16.42% 6.54%
PNA-R 7.06% 4.02% 5.78% 5.39% 8.95% 10.27% 11.22% 5.81%

ing/binding and logic/physical synthesis during the design flow. The evaluation of the

off-the-shelf approach in Table 3.3 indicates that plug-in application of GNNs cannot

well approximate such underlying rules. Thus, in addition to infusing domain knowl-

edge during training, another motivation of the hierarchical structure in the knowledge

infused approach is to divide and conquer. The complicated performance prediction is

decoupled as two simpler tasks that are solved separately. For node-level classification,

Table 3.4 shows prediction accuracy of classifying resource types, where high accuracy

is achieved for most of the cases since local neighborhood characterization is enough

for node-level resource type classification. For graph-level regression, Table 3.5 displays

MAPE of predictions on synthetic programs, showing an accuracy boost compared with

the off-the-shelf approach.
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With the hierarchical training, both the node-level and the graph-level GNN models

in Figure 3.2(b) are approximating simplified design heuristics. Specifically, the node-

level classification aims to understand the preference of resource types on different nodes;

the graph-level regression focuses on globally estimating resource sharing and interfer-

ence among nodes. With the hierarchical inference, the domain knowledge infused during

training can be self-inferred when encountering unseen designs, leading to improved pre-

diction accuracy from the earliest design stage.

Reconciling Prediction Accuracy, Timeliness, and Generalization Capability

The three approaches explore different trade-offs between timeliness and accuracy.

Intuitively, the more domain information is leveraged, the more accurate predictions are

provided, whereas the longer time would be taken for feature collection. The off-the-

shelf approach makes predictions from the earliest stage simply with IR graphs, at the

cost of accuracy loss due to the ignorance of domain knowledge. The knowledge-rich

approach provides the best prediction accuracy, but has to wait for HLS tools providing

intermediate results, sacrificing timeliness. The knowledge-infused approach shows a

balance: infusing adequate domain knowledge during training, and making predictions

from the earliest stage during inference.

Generelization capability is a key indicator of whether an ML- or GNN-based ap-

proach can be widely applied for certain EDA tasks. Table 3.6 shows the MAPE of the

three proposed approaches and Vitis HLS on real-world applications. Compared with

Vitis HLS, our approaches significantly improve the prediction accuracy, especially for

LUT/FF usage and CP timing. Specifically, PNA-based knowledge-infused approach out-

performs HLS by 1.2× to 40.6×, and PNA-based knowledge-rich approach outperforms

HLS by 1.7× to 51.4×.

Such results empirically demonstrate (1) the generalization capability not only from
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Table 3.6: Testing MAPE of the three proposed approaches with RGCN/PNA on
real-case applications.

HLS RGCN RGCN-I RGCN-R PNA PNA-I PNA-R

DSP 26.07% 45.61% 40.89% 32.90% 40.06% 21.95% 15.20%
LUT 871.56% 66.23% 30.91% 24.08% 56.34% 21.45% 16.96%
FF 322.86% 101.20% 38.75% 27.72% 47.65% 20.10% 17.42%
CP 32.09% 8.13% 5.35% 5.83% 8.68% 4.80% 3.97%

seen to unseen designs but also from synthetic to realistic applications, and (2) accuracy

and timeliness conspicuously surpassing HLS tools.

3.5 Conclusion

In this chapter, we discuss three approaches for early circuit performance prediction

using GNNs: (1) the off-the-shelf approach, which makes the earliest prediction with least

domain-specific information, showing on-par performance with HLS; (2) the knowledge-

rich approach, which makes late prediction after HLS with auxiliary information, showing

significantly better performance than HLS; (3) the knowledge-infused approach, which

makes the earliest prediction in a two-step hierarchical manner with self-inferred knowl-

edge, still significantly outperforming HLS. We also construct a standard benchmark suite

to facilitate future research. This chapter not only demonstrates the great potential of

applying GNNs for HLS performance predictions, but also advances the GNN design by

proposing innovative architectures.
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Chapter 4

Multi-modal Graph Learning for

Logic Synthesis QoR Prediction

In this chapter, we investigate the potential of multi-modal graph representation learning

to predict the quality of results (QoR) after logic synthesis. Our approach takes advantage

of both the structural information from circuit designs and the temporal (i.e. relative

ordering) information from logic synthesis flows, achieving high prediction accuracy and

better generalization capability.

Industrial investigations [155] have highlighted two fundamental requirements for

production-ready ML in EDA: (1) ML-based performance estimations should achieve

a minimum of 2σ accuracy (∼95%); (2) the developed ML model should possess strong

generalization capability, allowing it to directly apply to new designs without re-training.

To this end, we target logic synthesis and propose a novel approach for highly accu-

rate QoR estimations with great generalization capability, as shown in Figure 4.1. We

emphasize the importance of utilizing the spatio-temporal information to forecast

QoR (i.e., delay/area). Specifically, the structural characteristics inside hardware de-

signs are distilled and represented by GNNs; the temporal knowledge (i.e., the relative
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(a) Design flow from RTL designs 
to implementations.
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(b) Hybrid GNN for fast and 
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Figure 4.1: The design flow and the proposed approach to predicting QoR after ap-
plying logic synthesis flows on hardware designs. (a) The focus of this chapter is to
accelerate the evaluation phase in logic optimization. (b) The proposed model exploits
spatial information from circuit designs and temporal knowledge from logic synthesis
flows, generalizable to new designs without re-training.

ordering of logic transformations) in logic synthesis flows can be imposed on hardware

designs by combining either a virtually added supernode or a sequence processing model

with conventional GNN models. We summarize our contributions as follows.

• Modeling. We propose two generalizable GNN-based approaches to predicting

QoR of logic synthesis flows by incorporating the crucial spatio-temporal informa-

tion from both hardware designs and synthesis flows. To capture the impact of

synthesis flows on circuits, the first approach utilizes a supernode on GNN, and

the second approach combines LSTM and GNN in a hybrid manner. In particular,

the second approach represents the graphs and synthesis flows separately, reducing

training complexity and memory overhead; it also better represents the problem

nature, where circuits (represented by graphs) and synthesis flows (represented by

sequence) are two separate concepts.

• Evaluation. Evaluations on designs seen and unseen during training show the
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superiority of our approach. On the seen designs, i.e., the transductive scenario,

the MAPE achieved by the hybrid GNN is less than 1.2%, 7× lower than existing

studies. On the unseen designs, i.e., the inductive scenario, the MAPE is still below

3.2%, 14× lower than existing studies.

• Dataset. We provide an open-source dataset consisting of 3.3 million data points

collected from eleven different circuit designs, with the goal to facilitate multi-

modal or dynamic graph representation learning for EDA tasks. Our dataset and

ML models are publicly available at https://github.com/lydiawunan/LOSTIN.

This chapter is organized as follows: Chapter 4.1 provides the motivation, related

work in logic optimization, and preliminaries of supernode and LSTM; Chapter 4.2 de-

tails the problem formulation and the proposed hybrid GNN models that exploit spatio-

temporal information; Chapter 4.3 evaluates the proposed models in comparison to ex-

isting ML-based methods; Chapter 4.4 concludes this chapter.

4.1 Motivation, Related Work, and Preliminaries

We begin by presenting our motivations, followed by a summary of related work that

employs ML-based methods for logic optimization. Finally, we provide a brief introduc-

tion to supernode and LSTM.

4.1.1 Motivation

Logic synthesis is a process of transforming RTL designs into optimized logic-gate-

level representations. A logic synthesis flow refers to a sequence of logic optimizations,

and a well-designed flow can significantly reduce design area and latency. In spite of
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decades of research, there remain unresolved challenges and requirements for efficient

logic optimization, as follows.

• The design space of possible logic synthesis flows is extremely large [156, 157], which

reemphasizes the importance of fast and accurate QoR prediction for sufficient

design space exploration.

• There is no one-for-all solution. Commercial EDA tools usually provide reference

design flows [158] developed by experts based on heuristics or prior knowledge, but

such flows do not uniformly perform well. As shown in Figure 4.2(a), first, for a

specific circuit design, different flows have drastically varied optimization effects;

second, the same set of flows have different performance across different designs.

These observations suggest the importance of design-specific synthesis flows.

• The transformation order in synthesis flows should be well captured. Figure 4.2(b)

compares the impact of different flow lengths, where the distribution of area or

delay is not conspicuously improved with longer flows. This indicates that it is the

underlying temporal information, i.e., the relative ordering of logic transforma-

tions, inside synthesis flows that majorly determines final QoR.

• Existing approaches lack generalization capability across different designs. Prior

studies utilize convolution neural network (CNN) [156] or LSTM [157] to predict

QoR for a certain design. These methods target fixed-length flows and have limited

generalization capability to unseen designs due to the absence of design-specific

information as model inputs. Aiming at a practical use of ML-based performance

modeling, the generalization across different designs and flow lengths is a necessity.

Reckoning on the aforementioned issues, we propose an innovative solution by em-

ploying multi-modal graph learning to leverage the spatio-temporal information from
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Figure 4.2: Area and delay results of 300,000 random logic synthesis flows applied on
circuit designs max and sin, respectively. The number of count no less than 1,000 is
represented by the same color.

hardware designs and logic synthesis flows, enabling accurate and generalizable QoR

predictions.

4.1.2 Related Work

In logic optimization, the sequence to apply logic transformations, i.e., the logic syn-

thesis flow, is often determined heuristically. For example, commercial EDA tools provide

reference synthesis flows [158]; an academia open-source logic synthesis tool ABC [159]

offers synthesis flows resyn, resyn2 and resyn2rs.

Recently, ML-assisted logic optimization has attracted increasing research interests,

aiming to reduce exploration time and improve performance. For example, LSOracle [91]

employs MLP to automatically decide which one of the two optimizers should be ap-

plied on different parts of circuits. The logic optimization can also be formulated as

an RL problem, implemented with a GNN-based agent [92, 160] or a non-graph based

agent [161]. The optimization objective is to minimize area [92, 160, 161] or delay [92].

In terms of forecasting logic synthesis flow performance, a convolution neural network

(CNN) [156] can be used to identify whether a synthesis flow is an angel-flow or a devil-

flow; LSTM [157] can be applied to predict delay and area after applying a synthesis

flow.

From a broader view, GNNs are expected to make better use of graph structured data
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in many EDA problems [162]. Instead of conventional graph representation learning that

maps circuit designs from static graphs to labels (e.g., resource/timing/power) [8, 163],

the target task in this work should consider both circuit designs (i.e., static graphs)

and synthesis flows (i.e., transformations to be applied on the graphs) to provide high-

accuracy predictions of delay and area, which can be recognized as a multi-modal or

dynamic graph representation learning.

4.1.3 Preliminaries

We briefly describe the two techniques that will be used to capture the temporal

information inside logic synthesis flows.

Supernode in GNNs

The introduction of a supernode aims to address the difficulty in propagating infor-

mation across remote parts of graphs [32, 164]. The supernode is a newly added virtual

node that connects all the nodes in the original graph to promote global information

propagation by reducing the maximum distance between any two nodes to two hops.

Many GNN models can be equipped with such a supernode, which serves as a global

scratch space that every other node reads from and writes to in every step of message

passing with some preference.

LSTM

LSTM [165] is a type of RNNs capable of learning the order dependence and long-

term dependence in sequence processing problems. For each unit in a sequence, the same

computations are performed and the current output states are dependant on the previous

(hidden) states. Theoretically, LSTM can process sequential inputs such as sentences in
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arbitrary length. A common LSTM unit consists of a cell, an input gate, an output gate,

and a forget gate, among which the cell is responsible to remember values over arbitrary

time intervals and the rest three gates regulate the information fed into and out of the

cell. Given its sequential information processing capability, an LSTM-based model is a

proper candidate to represent logic synthesis flows.

4.2 Proposed Hybrid GNN Models

We propose a novel ML approach that is fast, accurate, and generalizable for estimat-

ing QoR of logic synthesis flows by leveraging spatio-temporal information. Two models

are explored: (1) a GNN for spatial information learning, armed with a supernode to

encode temporal information (Chapter 4.2.2); (2) a hybrid model, composed of a GNN

for spatial learning and an LSTM for temporal learning (Chapter 4.2.3).

4.2.1 Problem Formulation

In logic synthesis, hardware designs are converted to logic networks, which are typ-

ically graph abstractions of logic circuit implementations in the gate level. Logic op-

timization aims to manipulate and transform logic networks to reduce the amount of

required hardware or the critical path delay by sequences of logic transformations, which

are referred to as logic synthesis flows.

Prediction Task

We leverage ABC [159], an open-source logic synthesis framework well-adopted in

academia, to generate synthesis flows. Notably, any other logic synthesis tool can be

used in place of ABC as long as sufficient training data are available. The inputs to the

proposed predictors are initial hardware designs described in RTL and the logic synthesis
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module example (i1, i2, i3, i4, o1, o2);
input i1, i2, i3, i4;
output o1, o2;
wire n1, n2, n3;

assign n1 = ~i1 & i2;
assign n2 = i2 | i3;
assign n3 = ~i3 & i4;
assign o1 = i1 | n1;
assign o2 = n2 & n3;

endmodule

o2
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i2

i3

i4

i1

i2

i3

i4

o2

o1

AND

AND

AND
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OR

NOT
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(a) From RTL designs to directed graphs.

Example flow
b; rw; rwz; b; rwz; b;

GNN

GNN
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Information
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Information

Example design

h1 h2 h3 h4 h5

rwb rwz b rwz b
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pooling

Temporal Information
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Example design

(b) Embed the synthesis flow into a supernode. (c) Embed the synthesis flow by an LSTM-based model.

QoR

Figure 4.3: The overview of our proposed GNN architectures. (a) Logic synthesis
takes in register-transfer-level (RTL) descriptions and converts to gate-level netlists,
from which we build directed graphs. (b) The proposed GNN with supernode. (c)
The proposed hybrid GNN with LSTM.

flows to be applied. The QoR metrics to be predicted are the logic area (denoted as

area) and the critical path delay (denoted as delay), and the ground truth is collected

from ABC after technology mapping. This prediction task can be extended to other

flow performance estimation problems, such as the resource utilization in HLS [23] and

negative slacks in placement and routing (i.e., physical synthesis) [166, 167].

Graph Representation for Circuits

As logic optimization targets gate-level transformations, we represent circuit designs

as directed graphs, where each node is a primary logic gate and each edge shows logic

dependency. A Verilog parser is built to translate RTL designs into gate-level netlists.

To guarantee universal representations of any combinational logic functions, AND, OR, and

NOT gates are included in the translated graphs. Multiple-output or more-than-two-input

gates are automatically split and parsed into the three types of gates aforementioned.

Thus, each node has two attributes: (1) node type in input/intermediate/output, and

(2) operation type in AND/OR/NOT. Such a parser enables the circuit representations to be
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independent of logic optimizers targeting different logic representations [91] (e.g., And-

Inverter Graphs (AIGs) [159] and Majority-Inverter Graphs (MIGs) [168]), fostering the

portability across different logic synthesis tools. The process of transforming an RTL

design into a directed graph is exemplified in Figure 4.3(a).

Flow Representation

Within the ABC framework, we consider logic synthesis flows composed of 7 types of

logic transformations from S = {balance (b), resubstitution (rs), resubstitution -z (rsz),

rewrite (rw), rewrite -z (rwz), refactor (rf), refactor -z (rfz)}. To integrate the inherent

temporal information from synthesis flows with circuit designs, a synthesis flow can be

represented as either (1) a vector to construct a supernode that directly propagates tem-

poral knowledge to circuit designs (Chapter 4.2.2) or (2) a sequence embedding generated

by an LSTM model (Chapter 4.2.3).

Efficiency of Separate Representations for Circuits and Sequences

One straightforward way is to merge a circuit design with one particular synthesis

flow to generate a single graph (where the flow becomes node attributes), and directly

apply vanilla GNN models to produce unified representations. However, this approach

has two major issues. First, by plugging the flow into node attributes, all the nodes will

share similar node representations, resulting in over-redundant input features. Second,

it is nearly impossible to build a graph dataset for graph-level regression, in which each

graph is large-scale and each node has many node attributes. Current graph representa-

tion learning pays attention to either graph-level tasks on relatively small graphs [153] or

node/link-level tasks on large graphs [33]. Generating datasets that involve a large num-

ber of large graphs along with copious node attributes can cause out-of-memory issues,

impractical for implementation and vulnerable to scalability. In our preliminary experi-
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ments, such a unified representation would generate a dataset over 80 gigabytes, which is

challenging for efficient training. Thus, we propose to represent the circuit designs and

synthesis flows separately. During training, the graph representation does not need to be

repeatedly loaded for different synthesis flows, which significantly reduces the memory

overhead for storage and training as well as the training time by orders of magnitude.

4.2.2 GNN with Supernode

Inspired by the idea that introducing a supernode to graphs can collect and redis-

tribute global information with some preference [32, 164], we propose to leverage a su-

pernode to represent synthesis flows. Since the supernode is virtually connected to all

nodes in the original graph, the temporal information is directly injected into the circuit

graph, as shown in Figure 4.3(b).

Supernode to Embed Synthesis Flows

Synthesis flows are converted to fixed-length input vectors with the dimension of

25, since the maximum length of currently considered synthesis flows is 25. Each logic

transformation in a flow is represented as an integer from 1 to 7, and zero padding is

applied for flows shorter than 25. In Figure 4.3(b), the initial input vector of the example

flow is encoded as [1, 6, 7, 1, 7, 1, 0, ...]. A single fully-connected layer then converts the

1× 25 vector into 1× 8 as the supernode embedding.

Spatial Representation of Circuit Structures

To study the impact of synthesis flows on a circuit design, we connect the supernode to

all other nodes in the original graph. The two node attributes are converted to learnable

node embeddings as 1×8 vectors. The modified graphs are passed through GNN models
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for graph representation learning. By exposing the temporal information encoded in the

supernode and distributing it to the entire graph, this model is expected to process both

spatial and temporal features simultaneously, i.e., learn the effects of synthesis flows on

different circuit structures.

4.2.3 Hybrid GNN with Spatio-Temporal Information

While a supernode is capable to collect global information and distribute temporal

knowledge to every other node in graphs, we notice three concerns that may influence

prediction performance. First, synthesis flows are represented by fixed-length vectors,

which are then passed through an MLP to comply with the embedding dimension of other

nodes. This setting is insensitive to sequence dependence, i.e., the transformation order in

synthesis flows, whereas the impact of later transformations heavily depends on previous

ones. Second, as the message-passing process proceeds, the original temporal information

inside the supernode is gradually faded in other nodes. Third, by adding the supernode

that connects all the nodes in the original graph, the graph size increases with newly

added edges, which may cause scalability issue in implementation when encountering

extremely large graphs.

To address the first concern, a more natural way is to leverage a sequence processing

model to distill the temporal information, and the specific model employed in this work is

LSTM, which excels at handling order dependence and variable-length flows. To resolve

the second and the third concerns, we separately generate a sequence embedding (i.e., a

synthesis flow representation) and a graph embedding (i.e., a circuit representation) in

the feature extraction stage, and these two embeddings are concatenated for downstream

predictions. The approach of learning two separate embeddings and then concatenating

them is intuitively consistent with the actual logic synthesis procedure, as it mirrors the
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process of applying the synthesis flow to the circuit.

Figure 4.3(c) illustrates the structure of the second hybrid GNN model with LSTM.

The directed graph translated from a circuit design is passed through a GNN model,

followed by a linear layer to generate a graph-level representation (i.e., a 1× 32 vector).

The synthesis flow is processed by a two-layer LSTM to derive a flow representation (i.e.,

a 1 × 64 vector). These two vectors are concatenated to form a 1 × 96 vector. Finally,

a feed-forward MLP with the structure of 96-100-100-1 is adopted for delay and area

predictions.

4.3 Experiment

We first describe the dataset generation and the setup for our experiments, and then

present our evaluations with discussions on the results.

4.3.1 Dataset Generation

As shown in Table 4.1, we select eleven circuit designs from the EPFL benchmark [169],

a benchmark suite designed as a comparative standard for logic optimization and syn-

thesis. The logic synthesis flows are generated by the logic synthesis tool ABC [159]. To

demonstrate the flexibility of handling variable-length synthesis flows, we create synthesis

flows consisted of 10, 15, 20, and 25 logic transformations; for each different length, there

are 50,000, 50,000, 100,000, and 100,000 different flows, respectively, totally making up

300,000 flows. Each synthesis flow consists of logic transformations from S = {b, rs,

rsz, rw, rwz, rf, rfz}. All the 300,000 flows are applied to eleven different designs with

ASAP 7nm low-voltage technologies [170], which are 3.3 million data points in total. The

ground truth (i.e., label) is collected from ABC after technology mapping.
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Table 4.1: Graph size of different circuit designs.

Number of Nodes Number of Edges

adder 2926 3690
arbiter 24258 35841

bar 6935 10136
div 143375 200494
log2 68881 100909
max 6752 9105

multiplier 59404 86338
sin 11486 16878
sqrt 57296 81786

square 42042 60460
voter 35105 47862

4.3.2 Experimental Setup

Baseline

The proposed hybrid GNN models are compared against two existing ML-based ap-

proaches: a CNN-based model [156], and an LSTM-based model [157]. We exactly follow

the model structures mentioned in the prior studies, with minor modifications to fit our

prediction task.

• In the CNN baseline, each transformation is represented as a one-hot vector; syn-

thesis flows (with the maximum length of 25) are represented as 7 × 25 matrices

with zero padding for shorter flows. We honor the original CNN structure [156], in

which there are two convolutional layers followed by a max-pooing and two fully

connected (FC) layers. Since the CNN-based model was designed for binary classi-

fication, we replace the final classifier by a single neuron for numeric predictions in

our task. Note that the CNN-based model can only be trained in a design-specific

manner, i.e., one model for one design.

• In the LSTM baseline [157], we replace the one-hot embeddings of transformations
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with learnable embeddings. To make the model design-agnostic, we add design

names as the prefix to synthesis flows to construct new sequences, and intentionally

train one model for all designs to study its generalizability. This model consists of

two LSTM layers with a hidden size of 128, followed by an MLP of 128-30-30-1 to

predict delay and area.

Implementation and Training

All the aforementioned neural network models are implemented with Pytorch [171]

and Pytorch Geometric [150]. Experiments were performed on a Linux host with a 64-

core Intel Xeon Gold 5218 CPU (2.30 GHz) and Nvidia RTX 2080Ti GPUs.

Training, validation, and testing sets are split by 20:5:75. We highlight two training

and evaluation strategies. First, in contrast to many ML tasks that use a large proportion

of the entire dataset for training, we intentionally train the proposed models with a

small portion and conduct evaluations on the rest data points. Second, we evaluate both

transductive and inductive scenarios. If a design is encountered during training but

with new flows during testing, it is considered a transductive scenario. On the other hand,

if a design is completely unseen during training and only used for testing, it is referred to

as an inductive scenario. The goal is to emphasize the generalizability of our proposed

models, which is important for many EDA tasks that are possibly suffering from data

scarcity. Among eleven circuit designs, six of them (adder, arbiter, bar, div, log2,

and max) are used for both training and testing, and the remaining five (multiplier,

sin, sqrt, square, and voter) are merely evaluated in testing to demonstrate

generalization, i.e., inductive capability. Training details are summarized as follows.

• For each design, we train a design-specific CNN for 20 epochs with the RMSprop

optimizer (learning rate 0.05).
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• LSTM is trained for 100 epochs with the Adam optimizer (initial learning rate 2e-3,

weight decay 2e-6).

• For the GNN with supernode (denoted as GNN-S), a ten-layer GIN model is trained

for 20 epochs with the Adam optimizer (learning rate 1e-3); node and edge embed-

ding dimensions are 8 and 2, respectively.

• For the hybrid GNN-LSTM model (denoted as GNN-H), a ten-layer GIN is com-

bined with a two-layer LSTM (whose hidden size is 64), trained for 20 epochs

with the Adam optimizer (initial learning rate 2e-3, weight decay 2e-6). The node

embedding dimension is 32.

4.3.3 Evaluation

Transductive Scenario

Table 4.2 shows the MAPE of QoR predictions on the designs that are seen dur-

ing training but with unseen synthesis flows. We have the following observations. (1)

Since the CNN baseline is design-specific, it slightly outperforms the LSTM-based model,

which is a unified model across all designs. (2) The hybrid GNN model, GNN-H, signif-

icantly outperforms the LSTM-based model, with 7× and 15× lower MAPE than those

of area and delay predictions, respectively. (3) The GNN with supernode, GNN-S, shows

comparable performance with the LSTM-based model.

Inductive Scenario

Table 4.3 shows the MAPE of QoR predictions on unseen designs. (1) The CNN-based

model only works for design-specific synthesis flows and thus there is no generalization

to unseen designs. (2) The LSTM-based model suffers from a large accuracy degradation
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Table 4.2: Comparison with CNN and LSTM in the transductive scenario. GNN-S
is the proposed GNN with supernode; GNN-H is the proposed hybrid GNN.

Area (MAPE) Delay (MAPE)
CNN LSTM GNN-S GNN-H CNN LSTM GNN-S GNN-H

adder 7.00% 8.72% 7.65% 0.87% 1.76% 16.22% 1.79% 0.76%
arbiter 2.98% 13.66% 8.16% 1.56% 0.23% 18.96% 15.37% 1.86%

bar 8.46% 5.22% 22.72% 1.61% 0.74% 14.98% 22.59% 2.06%
div 12.71% 7.75% 13.16% 0.88% 7.72% 14.31% 9.29% 0.16%
log2 8.04% 9.05% 4.19% 0.55% 3.87% 11.85% 12.74% 0.53%
max 7.28% 6.18% 8.35% 1.48% 5.50% 17.37% 20.60% 0.68%

MEAN 7.75% 8.43% 10.70% 1.16% 3.30% 15.62% 13.73% 1.00%

Table 4.3: Comparison with LSTM in the inductive scenario.

Area (MAPE) Delay (MAPE)
LSTM GNN-S GNN-H LSTM GNN-S GNN-H

multiplier 57.82% 9.39% 2.45% 38.21% 17.89% 1.75%
sin 66.09% 64.48% 2.34% 45.94% 54.44% 2.32%
sqrt 29.03% 39.25% 4.83% 38.03% 15.75% 2.09%

square 38.59% 13.96% 2.86% 47.52% 31.34% 2.41%
voter 27.38% 76.49% 3.08% 42.19% 46.54% 0.96%

MEAN 43.78% 40.71% 3.11% 42.38% 33.20% 1.91%

for unseen designs, indicating limited generalization capability. (3) The GNN-S slightly

outperforms the LSTM-based model by 3% and 9% in area and delay predictions, respec-

tively (further discussed in Chapter 4.3.4). (4) The GNN-H maintains its high prediction

accuracy by slightly increasing the MAPE from 1% to 3%, demonstrating extraordinary

generalization capability.

Sensitivity Analysis

We study the design choices of GNN-H in terms of GNN types and the number

of layers. Figure 4.4, 4.5, 4.6, and 4.7 compare the MAPE of QoR predictions with

respect to both GIN and GCN models with different number of layers. Generally, GIN
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Figure 4.4: Transductive MAPE on area predictions made by GNN-H. Results are
compared in terms of GIN and GCN with different number of layers.

Figure 4.5: Inductive MAPE on area predictions made by GNN-H. Results are com-
pared in terms of GIN and GCN with different number of layers.

models receive an accuracy boost after stacking ten layers, whereas GCN models show

similar prediction accuracy among different choices of layers. (1) Regarding the GNN

type comparison, GCN suffers from the over-smoothing problem [172]. Mathematically,

GCN [139] is an approximate of 2IN − L, where L is the normalized graph Laplacian

operator and IN is the identity matrix. Since the graph Laplacian operator/filter is a

high-pass filter, GCN naturally becomes a low-pass filter, indicating that stacking many

layers does not help to better capture graph structures. (2) Regarding the number of

GNN layers, a deep GNN setting with carefully selected GNN types possesses better
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Figure 4.6: Transductive MAPE on delay predictions made by GNN-H. Results are
compared in terms of GIN and GCN with different number of layers.

Figure 4.7: Inductive MAPE on delay predictions made by GNN-H. Results are com-
pared in terms of GIN and GCN with different number of layers.

representation power, since stacking more layers enlarges the receptive field to better

characterize input graphs, especially beneficial for large graphs.

4.3.4 Discussion and Insight

GNN-S v.s. GNN-H

In GNN-S, even though a synthesis flow is encoded as a supernode, there are several

limitations that influence temporal information characterization. First, every synthesis

55



Multi-modal Graph Learning for Logic Synthesis QoR Prediction Chapter 4

flow is directly represented as a fixed-length vector to generate a supernode embedding,

which is insensitive to sequence dependence, i.e., the order of logic transformations. Sec-

ond, the original temporal information injected to the supernode is gradually diluted,

since the supernode embedding also evolves during the message passing. We compared

different communication mechanisms between the supernode and other nodes, i.e., bidi-

rectional or unidirectional, where the prediction accuracy is slightly improved with the

unidirectional communication. This demonstrates that the slower the dilution rate is, the

more temporal knowledge can be reserved during learning. Third, simply adding a su-

pernode into original graphs may not be an efficient approach to fusing information from

different modalities (i.e., graph-structured data and sequence-structured data). By con-

trast, GNN-H leverages a more direct scheme that combines the strengths of both GNN

and LSTM to extract spatio-temporal information in a decoupled manner: the LSTM

directly characterizes temporal information from synthesis flows, and the GNN focuses on

representing spatial structures of circuit designs. Rather than GNN-S that mixes spatial

and temporal information at the very first step, separately learned graph and sequence

embeddings have better expressiveness for each input modality, thus providing a better

foundation for downstream tasks.

Scalability Regarding Graph Abstraction Level

Table 4.1 shows the gate-level graph size of different circuit designs. The bright side

is both GNN-S and GNN-H can handle large graphs. The dark side is the graph size

will explode for larger circuit designs, which may cause scalability issues in practical

implementation. GNN-S may exhibit some scalability concerns due to the considerable

number of virtual edges added to the original graphs, i.e., |V | virtual edges will be

additionally added for a graph original with |V | nodes. Two potential directions to further

improve scalability are (1) extracting graphs from higher level of circuit abstractions to
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provide graphs of appropriate sizes that can be easily handled by both GNN-S and GNN-

H, or (2) hierarchically clustering nodes in gate-level graphs [173] to ensure reasonable

compute costs for each stage.

Multi-Modality Graph Representation Learning

Graph representation learning has evolved from single-modal to multi-modal [174],

with several attempts of exploiting multiple modalities (visual, acoustic, textual) in videos

for personalized recommendation [175] and multi-modality biomarkers for accurate diag-

nosis of Alzheimer’s disease [176]. By contrast, there is a stagnation in the EDA domain:

prior studies that adopt GNNs for fast evaluation focus on mapping static circuit graphs

to metrics of interest [163, 8]. Thus, the most significant innovation of this work stems

from two aspects. First, we consider input information from multiple modalities, i.e., cir-

cuit designs in graph format and synthesis flows in sequence format, since the final QoR

of circuit designs is dependent on both circuit structures and synthesis flows. Our inves-

tigation with GNN-S and GNN-H shows that efficient approaches to extracting features

and fusing information from different modalities can conspicuously improve representa-

tion power. Second, we build a large dataset to provide initial efforts on facilitating

multi-modality graph learning for circuit designs. The multi-modal graph representation

learning, which integrates the knowledge from other learning schemes with the conven-

tional graph representation learning, is expected to provide more versatility for EDA

tasks.

Generalization to Other Transformations

Even though the main focus of this work is the generalization across different circuit

designs, which is in fact a more practical case as synthesis tools usually hold a fixed set

of transformations awaiting to be applied on different circuit designs [158, 177, 178], we
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briefly shed light on the possibility of generalizing to additional transformations. First,

one of the preprocessing steps for LSTM-based models, i.e., the tokenization of logic

transformations, includes a special token <unk> designed for unknown transformations

met in testing. Second, some out-of-vocabulary techniques in natural language processing

(NLP) [179] can be adopted to improve the generalization capability to new transforma-

tions. Taking a step back, if the introduction of new transformations prompts significant

modifications to the temporal models, either transfer learning tailored for NLP [180] or

complete re-training can be potential solutions. These training efforts can be recognized

as software updates, just as version updates in synthesis tools.

4.4 Conclusion

We propose a novel approach that aims to fulfill the two fundamental requirements

of production-ready ML in EDA: high prediction accuracy and generalization capability.

Our approach provides accurate and generalizable QoR estimations of logic synthesis

flows by jointly considering the spatial information from circuit structures and the tem-

poral information from synthesis flows. Two hybrid GNN-based models are developed

accordingly: the first model uses a GNN to characterize circuit designs and includes a

supernode to encode temporal information, while the second model comprises a GNN for

spatial learning and an LSTM for temporal learning. Our evaluation results show that

the testing MAPE on designs seen during training (i.e., transductive) and unseen during

training (i.e., inductive) are no more than 1.2% and 3.1%, respectively. This demon-

strates great generalization capability across designs, without the need for re-training.
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Chapter 5

Reinforcement Learning for

Fine-Grained Resource Allocation in

High-Level Synthesis

In this chapter, we explore the potential of deep RL for fine-grained, flexible, and auto-

mated design space exploration in HLS, with the primary goal to provide either optimized

solutions under user-specified constraints or Pareto trade-offs between different objectives

(e.g., resource types and timing).

HLS streamlines the hardware design process by converting abstract behavioral de-

scriptions into functionally equivalent RTL designs with varying resource and perfor-

mance trade-offs. In addition to widely used commercial HLS tools for FPGA [151,

181] and ASIC [182], recent efforts have focused on improving HLS-based design qual-

ity through techniques such as loop transformation and memory allocation [183, 184],

fast performance and/or resource prediction [118, 121], and design space exploration

(DSE) [185]. Even though HLS tools have made significant progress, we observe several

unresolved challenges as follows.
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Challenge 1: Concealed Optimization Opportunities

The high-level abstraction of HLS programming styles, such as loops and function

calls, conceals further optimization opportunities. While guidelines of HLS code opti-

mization towards different design objectives are well investigated [186], they often focus

on coarse-grained optimization in the loop/array/function-level and manual efforts for

fine-grained exploration (such as in the operator-level) are still required.

Challenge 2: Inflexible Design Exploration among Different Objectives

With the increasing variety of workloads and the diverse performance, resource, and

power targets, HLS designs typically require extensive DSE to satisfy design specifica-

tions. Existing DSE approaches in HLS usually sacrifice design latency for less resource or

vise versa [185], leaving the flexible trade-offs among other objectives unexplored. Among

several common academic HLS tools (e.g., LegUp [187], Dwarv [188], and Bambu [189]),

only Bambu can generate trade-off implementations between latency and resource, but

it still cannot balance between different types of resources; for commercial HLS tools,

Vivado HLS [181] and Vitis HLS [151] do not provide Pareto solutions automatically, and

Intel HLS [190] can only balance area-performance for memory systems. One unplumbed

yet promising design exploration knob is to trade one type of resource for another (e.g.,

LUT and DSP in FPGA) while maintaining the latency unchanged, which currently

can only be accomplished through laborious manual efforts (detailed examples in Chap-

ter 5.1).

IronMan: RL + GNN for Fine-Grained, Flexible, and Automated DSE

To address these challenges, we propose an end-to-end framework, namely IronMan.

The primary goal is to enable a fine-grained, flexible, and automated DSE to provide
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either optimized solutions under user-specified constraints or Pareto trade-offs among

different objectives (such as resource types and timing), which has not been achieved

by existing HLS tools or DSE engines. IronMan consists of three components that

seamlessly cooperate with each other, as illustrated in Figure 5.1. We briefly introduce

these components and summarize our contributions as follows.

• GPP: we propose a highly accurate GNN-based Performance Predictor for HLS

designs. Notably, GPP predicts the post-implementation metrics rather than the

synthesized results by HLS tools.

• RLMD: we propose a deep RL-based Multi-objective DSE engine for optimal re-

source allocation strategies under user-specified constraints, which can also provide

Pareto solutions between different objectives. In particular, RLMD is equipped

with two different RL methods, offering the flexibility to choose a more proper

optimization scheme for different cases.

• CT: we propose a Code Transformer, which reveals concealed optimization oppor-

tunities to achieve higher parallelism and shorter latency and allows for flexible and

fine-grained DSE.

• IronMan: while each proposed component can independently contribute to the

HLS community (performance prediction, DSE, and code transformation), we inte-

grate them into a framework, IronMan, and demonstrate the end-to-end benefits

on benchmarks from real-world applications.

• Experimental results show that, (1) GPP achieves high accuracy in predicting post-

implementation performance, reducing the errors of HLS tools by 10.9× in resource

utilization and 5.7× in critical path (CP) timing; (2) compared to meta-heuristic-

based techniques, IronMan generates superior solutions reducing resource utiliza-

61



Reinforcement Learning for Fine-Grained Resource Allocation in High-Level Synthesis Chapter 5

GPP: GNN-based 
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Figure 5.1: The proposed IronMan is a learning-based framework composed of CT,
GPP, and RLMD. During training, IronMan takes HLS C/C++ code and IRs as
inputs and the actual RTL performance (e.g., resource and timing) as the ground
truth to train GPP and RLMD. During inference, the well-trained GPP provides
graph embeddings and performance predictions to RLMD; the trained RLMD either
finds optimized directives that satisfy user-specified design constraints such as avail-
able resources, or generates Pareto-solutions with various trade-offs between different
resource types.

tion by 16.0% ∼ 29.5% and CP timing by 7.9% ∼ 16.5%; (3) under user-specified

constraints, IronMan can find satisfactory solutions for over 96% of the cases,

more than twice the number of cases handled by meta-heuristic-based techniques

and with a significant speedup.

IronMan demonstrates the great potential of applying RL together with GNN in

HLS, especially for the hard-to-solve problems such as timing estimation and optimiza-

tion. IronMan is available at https://github.com/lydiawunan/IronMan.
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This chapter is organized as follows: Chapter 5.1 summarizes the related work and

explains the motivations; Chapter 5.2 introduces the overall framework of IronMan;

Chapter 5.3 provides details of GPP and RLMD; Chapter 5.4 presents experimental

results and discussions, followed by conclusions in Chapter 5.5.

5.1 Related Work and Motivation

Recently, there are surging research interests in applying ML-based techniques to

improve HLS tools [8], covering two major aspects: fast and accurate performance pre-

diction [23, 116, 117, 118, 121, 191], and efficient design exploration [185, 186, 192, 193,

194, 195]. The related work and motivation of exploiting GNNs for HLS performance

predictions are detailed in Chapter 3.1. Here, we pay more attention to DSE in HLS.

5.1.1 Existing Approaches

Traditional DSE in HLS usually uses meta-heuristics, such as genetic algorithms

(GA) [196, 197], simulated annealing (SA) [198], particle swarm optimization (PSO) [199],

and ant colony optimization (ACO) [192]. In terms of ML-based DSE, several studies

employ active learning to search Pareto solutions [124, 125, 200] or Bayesian optimization

to explore design trade-offs [90, 201]. Some research efforts enhance meta-heuristics by

incorporating ML algorithms. For example, Mahapatra et al. [194] use decision trees

to improve the performance of SA; Wang and Schäfer [193] use ML to help decide the

hyper-parameters of the meta-heuristics.
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5.1.2 Why RLMD?

In spite of the success of existing DSE approaches, there are several limitations. First,

classic meta-heuristics require explorations from scratch for every new design and do not

benefit from previous experiences, which may result in long searching time and degraded

solution quality. Second, many DSE approaches (either meta-heuristic-based or ML-

based) need to invoke the synthesis and implementation process to validate the newly

generated solutions during optimization, which could be time-consuming. Third, not all

DSE approaches are suitable for large design spaces. For example, Bayesian optimization

is effective only when the parameter space is small [162].

To overcome these limitations, we propose RLMD that adopts deep RL to learn opti-

mal resource allocation strategies for three major reasons. First, the resource allocation

problem in HLS is often formulated as a sequential decision-making problem, naturally

falling into the realm of RL. Second, the relationship between resource allocation de-

cisions and actual resource usage is not explicit, and the impact of one decision may

not be immediately visible. RLMD can handle this delayed reward scenario by proac-

tively exploring design knobs and learning policies through interactions with hardware

performance metrics and user-specified constraints. Third, with the help of GPP, RLMD

can make better use of past experiences, and once well-trained, it can run inference in

seconds without invoking HLS tools or the implementation process, presenting excellent

scalability even in exponentially increasing design spaces.

5.1.3 Why CT?

The high level abstractions in HLS can conceal fine-grained optimization opportuni-

ties or design trade-offs. Current DSE approaches mainly focus on the coarse-grained

loop/array/function-level [186], rather than the fine-grained operator-level, which hinders
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Table 5.1: Different approaches to meeting the DSP constraint (e.g., ≤ 3) in a multi-
plication-accumulation function, leading to various clock cycles (latency), LUT usage,
and CP timing. IronMan explores CT + resource approaches.

Orig. Code: for (int i=0; i<8; i++) sum += a[i]∗b[i];

Method Cycles DSP LUTs CP (ns)
1 Original 17 1 75 4.07
2 unroll (factor=8, complete) 2 8 100 5.04
3 unroll (factor=4) 4 4 87 4.83
4 unroll (factor=3) 8 3 109 7.44
5 unroll + allocation (limit=3) ∗ 4 6 168 8.76
6 Code Transform (CT) 2 8 100 5.04
7 CT + allocation (limit=2) 5 3 196 9.91
8 CT + allocation (limit=3) 4 6 168 8.54
9 . CT + resource (5 Mul LUT) 2 2 1742 4.24
10 . CT + resource (4 Mul LUT) 2 2 1741 4.01
11 . CT + resource (3 Mul LUT) 2 3 1461 3.98

∗ HLS pragmas do not always behave as expected.

advanced optimization techniques for operator-level resource binding. Table 5.1 demon-

strates a motivating example of fine-grained DSE. To explore the trade-offs between the

DSP usage and the number of clock cycles (i.e., latency), the typical ways are to use

unroll pragmas or manual loop-tiling, as in line 2-4. However, when the loop boundary

(e.g., 8) is not divisible by the DSP constraint (e.g., 3), it results in a partial unrolling

as line 4, introducing a undesired latency increment (from 4 to 8) and worsening the CP

timing (from 5 ns to 7.4 ns). The nested loops further complicate this problem and make

it much harder to balance between latency and resource (imagine a 5-layer nested loop

with a DSP constraint of 17).

Motivated by the necessity of more flexible and fine-grained DSE, we propose CT,

which breaks up the high-level abstractions by exposing operations in behavioral descrip-

tions, fuses them into DFGs, and re-generates synthesizable C/C++ code with pragmas.

CT enables the easy use of directives, such as allocation and resource pragmas, to con-

duct finer-grained DSE for resource and performance (Table 5.1 lines 7-11). Notably,

IronMan explores the CT + resource approaches (lines 9-11) and achieves the best
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Figure 5.2: Pareto solutions between DSPs and LUTs on an FPGA. The default HLS
solution is not on the Pareto frontier. It is non-trivial to obtain Pareto solutions in a
large design space.

latency (i.e., 2) within the DSP constraint (i.e., ≤ 3) without manual efforts.

5.1.4 Why IronMan?

Figure 5.2 elucidates the Pareto solutions between LUTs and DSPs, achieved by

specifying certain multiplications computed by LUTs instead of DSPs. Apparently, the

HLS default solution is not on the Pareto frontier, and finding Pareto solutions often

requires exploring a large design space. Integrating GPP, RLMD, and CT, we propose

the framework IronMan, either for optimized resource allocation under user-specified

constraints or Pareto solutions between different resources. Our innovations stem from

three aspects: (1) the fine-grained DSE enabled by CT that are not supported by any

of the existing DSE approaches; (2) the efficient and scalable DSE for Pareto solutions,

especially in extremely large design spaces; and (3) accurate performance predictions for

both regular and irregular logics from early circuit design stages.
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5.2 Overall Framework

Figure 5.1 shows the overall framework of IronMan, composed of three components:

CT, GPP, and RLMD.

• CT is the interface between GPP/RLMD and HLS tools, which extracts DFGs after

HLS front-end compilation to release more optimization opportunities and then

re-generates synthesizable C/C++ code based on the optimized DFGs. Notably,

CT respects pragmas set by users during the code transformation, and conducts

complete loop unrolling and array partitioning only when there is no user-specified

pragma. If the resource utilization achieved by RLMD is beyond the FPGA board

availability, CT issues a warning, suggesting either relax the constraint or adjust

the pragmas.

• GPP is a GNN-based performance predictor, which estimates post-implementation

resource usage and timing of DFGs. GNNs [39, 139, 202] are adopted for three

reasons: (1) DFGs are graphs, which are naturally suitable for GNNs to learn the

underlying information from graph structures; (2) DFGs vary in topologies and

sizes, and to generalize predictions to new or unseen graphs, it is necessary to

use inductive GNNs [39] to learn fixed-size graph embeddings ; (3) IronMan runs

inference of trained GNN models during execution, which is orders of magnitude

faster than running HLS tools.

• RLMD is an RL-based DSE engine. It takes the raw DFG, its graph embedding,

and user-specified constraints as inputs, to optimize resource allocation strategies.

RL is adopted for two main reasons: (1) the design space grows exponentially with

the size of DFGs, different graph topologies, and various data precisions; an RL

agent can explore design space proactively and learn from past experiences, and
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a well-pretrained agent can generalize to new problems with minimal fine-tuning

(FT) efforts; (2) by carefully defining reward functions, RL agents can achieve

multi-objective optimization automatically, getting rid of manual efforts to craft

useful heuristics. Since an informative and well-crafted state representation will

significantly benefit the learning process in RL problems, we integrate GPP with

RLMD, where the graph embeddings are naturally suitable for state representations

in this problem. Consequently, the graph embeddings enable RLMD to better

generalize across different DFG topologies, and GPP largely accelerates the training

process of RLMD by quick evaluation of solutions generated by RLMD.

The inputs to IronMan are HLS C/C++ code and user-specified constraints. The

outputs are re-generated code with optimized HLS directives, either meeting user-specified

constraints (e.g., resource constraints) or providing Pareto solutions between different op-

timization objectives. The entire flow has three major steps.

• Step 1. CT takes in the C/C++ code written by designers and extracts the

corresponding DFG after HLS front-end compilation to release more optimization

opportunities.

• Step 2. The extracted DFG is fed into GPP and RLMD to find optimized resource

allocation solutions by assigning multiplications to DSPs or LUTs.

• Step 3. After RLMD completes the assignment of resource pragmas, the optimized

DFG is converted back to functionally equivalent C/C++ code with properly as-

signed pragmas by CT. An example of the regenerated C++ code is shown in

Figure 5.3(a).

As a case study of IronMan, the specific problem solved is to find a resource alloca-

tion solution that strictly meets the DSP constraint, or to find Pareto solutions between

68



Reinforcement Learning for Fine-Grained Resource Allocation in High-Level Synthesis Chapter 5

× ××

i1
<12>

×

i2
<10>

i3
<16>

i4
<11>

i5
<12>

i6
<8>

i7
<16>

i8
<9>

m1
<12>

m2
<16>

m3
<8>

m4
<12>

m5
<12>

m6
<10>

o1
<16>

×

×

×

i1
<12>

×

i2
<10>

i3
<16>

i4
<11>

i5
<12>

i6
<8>

i7
<16>

i8
<9>

m1
<12>

m2
<16>

m3
<8>

m4
<12>

m5
<12>

m6
<10>

o1
<16>Operations using DSPs

Operations using LUTs

#pragma HLS resource 
variable=m3 core=Mul_LUT

#pragma HLS resource 
variable=m4 core=Mul_LUT

× ××

i1
<12>

×

i2
<10>

i3
<16>

i4
<11>

i5
<12>

i6
<8>

i7
<16>

i8
<9>

m1
<12>

m2
<16> m3

<8>
m4
<12>

m5
<12>

m6
<10>

o1
<16>

• DSP: 2
• Latency: 4

(c) HLS solution with constraints

(d) IronMan-Pro solution

#pragma HLS 
allocation 
instance=mul
limit=2
operation

• DSP: 4
• Latency: 3

• DSP: 2
• Latency: 3

(b) HLS default solution

#4: [0, 0, 1, 0, 0, 1, 0, 1, 1, 1]
#6: [0, 1, 0, 0, 0, 1, 0, 0, 1, 0]

Examples of 10-dimension node 
feature vector:

10th: w/wo pragma
5th ~9th: Bit-width ( 2~32)
1st ~ 4th: Input / node type (+, ×) / output

+

+

+

+
+

+ +
+ +

+

for (int i=0; i<4; i++)  sum += a[i] * b[i];

TYPE1 m1 = i1 * i2;    TYPE2 m2 = i3 * i4;
TYPE3 m3 = i5 * i6;    TYPE4 m4 = i7 * i8;
TYPE5 m5 = m1 + m2;    TYPE6 m6 = m3 + m4;
TYPE7 m7 = m5 + m6;
#pragma HLS resource variable = m3 core = Mul_LUT
#pragma HLS resource variable = m4 core = Mul_LUT

Original Code:

Transformed Code with resource pragma

* The TYPE can be varied data precisions (bit-width), which further expands 
the design space (e.g., from INT2 to INT32).

(a) Code Transformation (CT)

Figure 5.3: Example of IronMan solution. (a) Original HLS code and transformed
code with resource pragma, indicating the importance of CT for IronMan solutions;
(b) HLS default solution with four DSPs and a latency of 3, note that each intermedi-
ate operator may have various bit-width, e.g., 〈12〉 means a 12-bit data precision; (c)
HLS solution with naive constraints, using two DSPs while increasing latency from 3
to 4; (d) IronMan solution, with two DSPs and an unchanged latency of 3.
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DSPs and LUTs (or CP timing) on FPGAs, without sacrificing the computation la-

tency. For simplicity, the DFGs only have additions and multiplications, where RLMD

decides whether to assign the directive #pramga HLS resource core=Mul LUT to each

multiplication operation, to minimize LUTs within DSP constraints. The user-specified

constraints is the number of DSPs that can be used in a design. For FPGA designs,

mapping multiplications on LUTs is a common practice [203]. From the resource aspect,

DSPs are often scarce resources, whereas LUT resources are usually more abundant.

From the execution efficiency aspect, DSPs could be slower than LUTs. For example,

the delay of a multiplier mapped on DSP blocks is around 4-5 ns, while the delay of a

LUT-based implementation is around 0.7 ns [204, 205].

Figure 5.3 exemplifies a solution provided by IronMan given the constraint of using

two DSPs. Figure 5.3(b) is the default HLS solution with four DSPs and a latency of

3; Figure 5.3(c) is a naive solution using #pragma HLS allocation instance=mul limit=2

to enforce two DSPs, resulting in an increased latency from 3 to 4; Figure 5.3(d) shows

the solution of IronMan with two DSPs and an unchanged latency of 3, using #pragma

HLS resource variable=〈var〉 core=Mul LUT.

5.3 Proposed GPP and RLMD

Since GPP provides inputs and performance predictions for RLMD, we first introduce

the structure of GPP, and then discuss the detailed formulation of RLMD.

5.3.1 GPP: GNN-based Performance Predictor

The key role of a GNN is to extract adequate information about node types, graph

topology, and connectivity within a large DFG, and to encode the information into low-

dimensional vector representations that can be used for either downstream tasks or high-
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accuracy performance prediction.

Node Feature Vector

In a DFG, each node is encoded into a 10-dimension node feature vector, as the

example shown in Figure 5.3(d). The 1st-4th dimension use one-hot representations

to encode the node types, including input nodes, intermediate nodes/operations (i.e.,

additions and multiplications), and output nodes. The 5th-9th dimension encode the

data precision of a node, which in this work ranges from INT2 to INT32. We use a binary

representation to encode the precision minus one, so the bit-width can be expressed in

5 bits. The 10th dimension indicates whether an HLS directive #pramga HLS resource

is applied to this node. Note that such an encoding scheme can be easily extended to

support more types of nodes/operations or pragmas.

Graph Embedding

We employ the GCN [139] to predict the performance of synthesized circuits. For-

mally, the layer-wise propagation of each graph convolutional layer can be formulated as

follows:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)), (5.1)

where Ã = A+ IN is the sum of the adjacency matrix A of the DFG G and the identity

matrix IN . The addition of the identity matrix means adding a self-loop on each node,

so that the updated node embedding will include the impact from both the neighbors

and itself. D̃ is a diagonal matrix to normalize the adjusted adjacency matrix Ã, where

D̃ii =
∑

j Ãij. W
(l) is a layer-specific trainable weight matrix, and all the nodes within

the lth layer share the same weights W (l). σ(·) is the activation function. H(l) ∈ Rn×d is

the matrix of activations from the lth layer, which stacks the hidden vectors of each node,
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Figure 5.4: Example of employing two graph convolutional layers to generate graph
representations.

assuming that there are n nodes in total with feature dimension d. H(0) is the matrix

stacking all the input node feature vectors.

In our proposed structure of GPP, the inputs to the first graph convolutional layer are

adjacency matrices and node feature matrices of DFGs. In each graph convolutional layer,

the node embedding is updated by aggregating feature vectors from its neighbors and

multiplying with the corresponding weight matrix. One node can receive information

from multi-hop neighborhoods by stacking multiple layers. Figure 5.4 illustrates an

example structure that employs two graph convolutional layers to process DFGs. After

multiple layers, the learned node embeddings are summarized by a mean pooling to create

a graph representation.

This graph representation vector is then passed to a feed-forward network with three

FC layers and leaky ReLU (α = 0.1) activations to generate a graph embedding. The

last layer is the output of the GNN, including a single unit with the ReLU activation to

provide prediction results of resource usage and timing. In order to separately predict

LUT/DSP utilization and CP timing, we use three GNN models of the same structure,
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Figure 5.5: The structure of GPP and RLMD. GPP encodes information of DFG
adjacency matrices and node features, to make predictions of LUT/DSP/CP. Con-
catenating the graph embeddings provided by GPP with the metadata of the input
DFG, RLMD then outputs a binary probability distribution π(at|st) of whether to
use LUTs for multiplication computation on the current node. For the actor-critic
method, RLMD also outputs a scalar as the state-value function.

as illustrated in the left part of Figure 5.5.

Integration with RLMD

To integrate with RLMD, we concatenate the three graph embedding vectors, which

focus on different characteristics of DFGs, with metadata of the input DFG, to create

an input vector for RLMD. The DFG metadata include the size of the DFG (i.e., the

number of input/intermediate/output nodes and the number of edges) and the number

of multiplications in this DFG. Given predictions of LUT/DSP/CP, solutions generated

by RLMD can be quickly evaluated, providing feedback to further improve the policy of

RLMD.
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5.3.2 RLMD: Reinforcement Learning based Multi-objective

Design Space Exploration

We describe the problem formulation, the employed RL algorithms, and the training

and fine-tuning procedures of RLMD.

RL Formulation

The resource allocation problem in HLS, as a typical RL [48] problem, can be formu-

lated as a Markov Decision Process (MDP), with four key components.

• States: the set of possible states. In this problem, a state can be every possible

partially assigned DFG.

• Actions: the set of eligible actions under a state. In this problem, given the current

state and the currently considered node of the DFG, the available action is whether

to assign a certain directive to this node.

• State transition: given a state and an action, the probability distribution of next

states.

• Reward: the immediate reward of taking an action in a state. In this problem, the

reward is 0 for all intermediate actions, with an exception for the last action where

the reward is the evaluation of the fully assigned DFG subject to user-specified

constraints.

Specifically, the state at time step t is defined as st, which is a concatenation of

features including the ID of current node to assign a directive, metadata of the DFG,

the DSP constraint (either user-specified or automatically generated for Pareto solution

exploration), and a 192 × 1 graph embedding vector that describes the current status

74



Reinforcement Learning for Fine-Grained Resource Allocation in High-Level Synthesis Chapter 5

of the DFG. The action at is a valid assignment of a directive to the t-th node, i.e.,

whether to use LUTs for multiplication computation on this node. We define the reward

rt as a negative weighted sum of predicted LUTs, CP timing, and the difference between

predicted and target DSPs, as follows:

rt =


−αLUTp − β|DSPt −DSPp| − λCPp, t = T

0, 0 < t < T

. (5.2)

where α, β and λ are hyper-parameters; DSPt is the target number of DSPs; DSPp,

LUTp, and CPp are the predicted values by GPP; T is the total number of time steps.

At the initial state s0, all the multiplication nodes in a DFG are unassigned. At

each time step t, the RL agent observes the current state st, takes an action at, receives

a reward rt+1, and arrives at a new state st+1. The nodes are assigned with directives

sequentially based on their node IDs. Given T multiplication nodes in total, the final

state sT corresponds to a DFG completely assigned with proper directives. The goal is

to maximize the expected rewards received. The entire process of resource allocation in

RLMD is shown in Figure 5.6.

RLMD Training

RLMD is equipped with two different RL methods, providing the flexibility to choose

a more proper optimization scheme for different cases. The entire training procedure is

summarized in Algorithm 1.

Actor-critic (AC) method. We adopt the actor-critic method with Monte-Carlo

learning [48]: the actor aims to learn an optimal policy πθ(at|st) parameterized by θ,

which is a probability distribution of valid actions under the current state; the critic

approximates the state-value function V (st) = Eπ[
∑T−t−1

k=0 γkrt+k+1|st] by parameters w,
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Figure 5.6: Overview of the resource allocation process in RLMD. Given a DFG,
RLMD sequentially decides whether to assign resource pragmas for every multiplica-
tion. After the DFG is completely assigned with resource allocation pragmas, GPP
quickly evaluates this solution, and the reward is computed accordingly to improve
the resource allocation strategy.

which is an estimate of accumulated rewards starting from state st to sT following policy

π, measuring the goodness of this state. The γ ∈ (0, 1] is the discount factor. By Monte-

Carlo learning, the parameters are updated only after one complete episode (i.e., one

complete assignment process of a DFG), leading to following updates:

δi = γT−i−1rT − Vw(si), (5.3)

∆w ∝
T−1∑
i=0

δi∇wVw(si), (5.4)

∆θ ∝
T−1∑
i=0

δi∇θ log πθ(ai|si), (5.5)

where T is the total time steps in one episode. Through repeated episodes (i.e., sequences

of states, actions, and rewards), the actor learns optimized policy that will maximize

cumulative rewards.
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Algorithm 1: AC/PG for resource allocation optimization.

1: Generate tuples in the form of [DFGindex, DSPt] and duplicate each tuple for
m times;

2: Put all tuples together and shuffle the order;
3: (a) For AC : initialize the actor πθ(a|s) and the critic Vw(s) with weights θ

and w;
(b) For PG: initialize the policy network πθ(a|s);

4: Initialize the episode counter i← 0;
5: while i < episodemax do
6: t← 0;
7: Get the DFGindex and DSPt;
8: Initialize state s0 based on DFGindex with all the multiplication nodes

unassigned of directives;
9: while t < T do

10: Compute and store πθ(at|st) and Vw(st);
11: Take action at based on πθ(at|st) with ε-greedy algorithm;
12: Receive the reward rt+1 as defined in Equation (5.2);
13: Get st+1 from the updated DFG;
14: t← t+ 1;
15: end while
16: (a) For AC : update θ and w according to Equations (5.3)-(5.5);

(b) For PG: update θ according to Equations (5.6)-(5.7);
17: i← i+ 1;
18: end while

Policy-gradient (PG) method. Instead of the setting with an “actor” and a

“critic” as in AC, the purely policy-based methods only have one actor network, i.e.,

the policy network. As aforementioned, in AC-based methods, the critic networks are

trained to approximate the underlying value functions of states, which provide guidance

to train the policy networks. One thing worth noting is that when the effective rewards

are too sparse and irregular, the critic network may not learn well and thus impose

adverse impacts on the learning of the policy networks [206].

Taking this into consideration, we also explore a policy-gradient method, REIN-

FORCE [207], in an attempt to expand the choices available in the toolbox of Iron-

Man. In this case, we only need to learn an optimal policy πθ(at|st) parameterized by

θ. Similarly, the parameters in the policy network are updated after the completion of
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one episode, as follows.

Gi = γT−i−1rT , (5.6)

∆θ ∝
T−1∑
i=0

Gi∇θ log πθ(ai|si), (5.7)

where Gi is the discounted reward at time step i, and T is the total time steps in one

episode.

Generalization across DFGs. Our ultimate goal is to enable RLMD to generate

higher-quality results and transfer knowledge across various DFGs as it gains experience

from exploring resource allocation strategies on more and more DFGs. Thus, we formally

formulate the overall optimization objective function as

J (θ, w,G) =
1

K

∑
g∈G

Eg,p∼πθ [Rg,p], (5.8)

where J (θ, w,G) measures the expected cumulative rewards over all training DFGs. The

DFG dataset G has K different DFGs, each of which is denoted as g. Rg,p is the episode

reward (i.e., rT in Equation (5.2)) under the resource allocation solution p on the DFG

g. To get better exploration during training, we apply ε-greedy algorithm for action

selections [48].

RLMD Fine-tuning

Given a new DFG, the simplest way is to directly apply the pre-trained RLMD for

inference, which can generate a solution within a second. When higher quality solutions

are expected, the pre-trained RLMD can be further fine-tuned on a particular DFG. The

fine-tuning step provides the flexibility to balance between a quick solution using the

pre-trained RLMD (which has learned rich knowledge of resource allocation strategies on
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other DFGs) and a longer yet better one for a particular DFG.

5.3.3 Multi-Objective Optimization

To enable flexible and multi-objective optimization, we define the multi-objective

optimization function as follows:

U(LUT,CP|DSPtarget) = µ
LUT

q
+ (1− µ)CP, (5.9)

where µ indicates the relative attention paid on different metrics, and q is a constant to

balance the numerical scales of LUT usage and the CP timing. The goal is to minimize U ,

i.e., to minimize the LUT usage and CP timing simultaneously, given the DSP constraint.

The larger µ is, the more importance is given on the LUT usage during optimization,

and vice versa.

As defined in Equation (5.2), the reward function is a negative weighted sum of

multiple metrics, which automatically enables multi-objective optimization. By adjusting

the weights (i.e., hyper-parameters) of different metrics of interest, RLMD can figure

out various trade-offs while complying with user-specified constraints. To relate the

optimization objective function with the reward function, we let α = µ
q

and λ = 1−µ. If

more metrics of interest or another form of multi-objective optimization function would

be desired, the reward function can be crafted accordingly.

5.4 Experiment

We present the experiment setup and evaluation of GPP, RLMD, as well as the end-

to-end framework IronMan.
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5.4.1 Experiment Setup

For GPP and RLMD training, we build a dataset containing both synthetic and real-

world DFGs. For synthetic DFGs, we randomly generate 47 different topologies, each

of which has 100 to 200 operations (i.e., intermediate nodes) of either multiplication or

addition. On top of each distinct topology, we further generate 100 sets of directives,

which specify a subset of multiplications to be implemented by LUTs rather than DSPs.

This makes up 4,700 (i.e. 47 × 100) different synthetic DFGs. For real-world DFGs, we

consider eight applications from MachSuite [135], CHStone [136] and PolyBench/C [137]:

gemm, kernel 2mm, kernel durbin (small, large), spmv, stencil3d (small, large), and ker-

nel adi. Similarly, we randomly generate 100 sets of directives per application, making up

800 different DFGs for real cases. The ground-truth (actual) resource usage (LUT/DSP)

and CP timing are synthesized by Vitis HLS [151] and implemented by Vivado‘[152]

targeting Xilinx Ultra96 part xc7z020clg484. The target frequency is 100 MHz.

Training Process

To demonstrate the generalization capability of IronMan across different DFGs

and applications, GPP and RLMD are trained on part of DFGs from the dataset and

evaluated on rest of them. The training set consists of 42 different topologies and 4

real-case applications (kernel durbin and stencil3d), involving 4,600 DFGs in total.

GPP is trained via regression to minimize the mean-squared logarithmic errors for

DSPs and CP timing, and the mean absolute errors for LUTs, respectively. In terms of

hyper-parameter selection, GPP is trained over 200 epochs with a batch size of 32; the

Adam optimizer is applied with an initial learning rate of 0.01 decaying exponentially.

After GPP is well-trained, it is integrated with RLMD to help with RLMD training.

To train RLMD, we provide tuples in the form of [DFGindex,DSPtarget] to the RL agent,
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and the optimization goal is to maximize the average cumulative rewards on all the

tuples, so that the agent can learn resource allocation strategies under different DSP

constraints and across different DFGs. There are 1,125 different tuples in total, and

each tuple appears eight times during the training process, amounting to 9,000 episodes.

Once RLMD is trained, it can be directly applied on new DFGs and generate solutions

by inference in seconds. To make the trained RLMD specialize for a new DFG, we

conduct fine-tuning with additional 500 episodes of training, after which better solutions

will be generated at the cost of longer runtime. The parameters in RLMD are learned

by the Adam optimizer with the learning rate of 0.008. We empirically set the discount

rate γ = 0.95, and the exploration rate ε = 0.08 decaying exponentially. In the reward

function, we have β = 5 and q = 500; three different scenarios to trade-off between LUT

usage and CP timing are considered, where µ is set as 0.1, 0.5, or 0.9.

As for the implementation of IronMan, GPP is implemented with StellarGraph and

RLMD is implemented in TensorFlow 2. Experiments are performed on a Linux host

with a 64-core Intel Xeon Gold 5218 CPU (2.30 GHz) and Nvidia RTX 2080Ti GPUs.

5.4.2 Evaluation

IronMan is compared with meta-heuristic-based approaches, which are widely ap-

plicable to many HLS DSE problems [185]. Meta-heuristics based DSE techniques are

often nature-inspired, several representatives include SA [15], GA [208], PSO [199], and

ACO [18]. Specifically, SA is a pseudo-random optimization approach; GA is an evolu-

tionary approach [209]; PSO and ACO make use of swarm intelligence [210].

To demonstrate the capability of IronMan, in the evaluation of GPP, we compare

with the commercial tool Vitis HLS [151] and the ML-based circuit performance predictor

Pyramid [121]; in the evaluation of RLMD, whose toolbox includes AC and PG with or
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without fine-tuning, we compare against SA, GA, PSO, and ACO.

GPP Evaluation

Since stacking many GCN layers may bring the concern of over-smoothing [211], we

explore the structure of GPP regarding different numbers of GCN layers adopted for

feature extraction. As shown in Figure 5.7, the structure that employs two GCN layers

generally outperforms others, which is considered as the final structure of GPP.

Figure 5.7: Comparison of applying different numbers of GCN layers, where the pre-
diction accuracy of LUT and CP timing is measured by MAPEs and that of DSP is
measured by RMSEs.

GPP is evaluated on both synthetic and real-case DFGs. Figure 5.8 compares GPP

predictions with HLS synthesis reports regarding LUT, DSP, and CP timing. For LUT

utilization, the mean absolute percentage errors (MAPEs) of GPP on synthetic and

real-case DFGs are 7.4% and 9.2%, respectively, whereas the MAPEs of Vitis HLS are

122.4% and 92.2%, respectively. For DSP utilization, the prediction accuracy is measured

by root-mean-square error (RMSE) since MAPE is not applicable when the ground truth

appears to be zero. GPP achieves 5.6 and 2.1 in RMSE for synthetic and real-case DFGs,

while Vitis HLS reaches 26.9 and 19.7, respectively. For CP timing, the MAPEs of GPP

are 4.2% and 4.6% on synthetic and real-case DFGs, whereas the MAPEs of Vitis HLS

are 7.7% and 42.1%. On average, GPP reduces the prediction error of Vitis HLS by
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Figure 5.8: GPP predictions on resource utilization (LUTs and DSPs), and CP timing.

10.9× in resource utilization and 5.7× in timing.

Pyramid [121] is also an ML-based framework for resource and timing prediction.

The major difference between GPP and Pyramid is the features required for predictions.

Pyramid needs 72 features from HLS reports as inputs, which enforces the running of

HLS to get VHDL designs, possibly consuming hours for large designs; whereas GPP

can make high-accuracy predictions simply from raw DFGs (within a second). Pyramid

considers four ML models and an ensemble of these four, none of which includes graphical

structures. The reported results show that the averaged prediction error of a single ML

model is 17.8% for resource and 17.3% for timing, with the ensemble reaching 5.5% for

resource and 4.1% for timing.

RLMD and IronMan Evaluation

We evaluate IronMan in terms of both Pareto solutions and the solutions found

under user-specified constraints. All the generated solutions are synthesized by Vitis

HLS [151] and implemented by Vivado [152], indicating that the reported resource usage

(LUT/DSP) and CP timing are post-implementation.

Pareto solutions. Regarding the Pareto solutions between LUTs or CP timing and

DSPs, Figure 5.9 and Figure 5.10 compare RLMD with GA, SA, PSO, and ACO with

respect to synthetic cases and real-case applications, respectively. Obviously, RLMD,

either with AC or PG method, outperforms GA, SA, PSO, and ACO by a large margin.

In terms of multi-objective optimization, given DSP usage constraints, the solutions found
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Figure 5.9: Pareto solutions found by RLMD, SA, GA, and PSO on five synthetic
cases, with unchanged latency (i.e., the number of clock cycles of the synthesized
design). The toolbox of RLMD involves AC, PG, either with or without a fine-tuning
step. Different settings of µ indicate that different importance is assigned to LUT
utilization and CP timing during the optimization.
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Figure 5.10: Pareto solutions found by RLMD, SA, GA, PSO and ACO on four real–
case benchmarks, gemm, kernel 2mm, spmv, and kernel adi, with unchanged latency
(i.e., the number of clock cycles of the synthesized design). The toolbox of RLMD
involves AC, PG, either with or without a fine-tuning step. Different settings of µ in-
dicate that different importance is assigned to LUT utilization and CP timing during
the optimization.
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Figure 5.11: Statistics of reduction in LUT utilization and CP timing given the same
number of DSPs, comparing RLMD with SA, GA, and PSO on five synthetic cases.
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Figure 5.12: Statistics of reduction in LUT utilization and CP timing given the same
number of DSPs, comparing RLMD with SA, GA, PSO, and ACO on four real-case
benchmarks: gemm, kernel 2mm, spmv, and kernel adi.

with µ = 0.9 often consume fewer LUTs but larger (worse) CP timing, compared with

those found with µ = 0.1. This indicates that RLMD can properly balance between LUT

usage and CP timing when different importance is assigned to different metrics, whereas

the heuristic-based methods cannot explicitly leverage the trade-offs among multiple

objectives.

For synthetic cases, Figure 5.11 depicts the statistics of solutions presented in Fig-

ure 5.9. When applying AC, given the same number of DSPs, solutions found by RLMD

outperform those found by SA, GA, and PSO, attaining a decrease of 16.8%, 16.0% and

18.5% in terms of LUT utilization, as well as a decrease of 9.1%, 8.0% and 7.6% in

terms of CP timing. In general, a slightly better set of solutions can be found by RLMD

when employing PG, which consumes 4.0% fewer LUTs and 0.8% shorter CP timing,

86



Reinforcement Learning for Fine-Grained Resource Allocation in High-Level Synthesis Chapter 5

compared with applying AC. After fine-tuning (FT), both AC and PG achieve addi-

tional reduction in LUT utilization and CP timing. For brevity, the fine-tuned solutions

are contrasted against those found by AC. The LUT utilization is further decreased by

11.2% and 14.5% when using AC with FT and PG with FT, respectively. For CP timing,

additional reduction of 2.0% and 3.2% are obtained by AC with FT and PG with FT,

respectively.

Similarly, Figure 5.12 displays the statistics of the solutions of real-case applications

from Figure 5.10. Given the same number of DSPs, RLMD that applies AC can find

solutions surpassing SA, GA, PSO, and ACO, with a decrease of 23.1%, 25.0%, 24.6%

and 16.2% in terms of LUT utilization, and with a decrease of 9.7%, 10.7%, 14.8%

and 9.3% in terms of CP timing; RLMD that applies PG demonstrates better solutions

compared with applying AC, which manages to use 6.2% fewer LUTs and 1.9% shorter

CP timing. More significant improvement is displayed after performing FT for both

AC and PG. The LUT utilization is further decreased by 15.6% and 21.0% when using

AC with FT and PG with FT, respectively. As for CP timing, additional reductions of

4.8% and 6.4% are obtained by AC with FT and PG with FT, respectively. We also

measure the quality of different approaches by using the average distance from reference

set (ADRS) [212], as shown in Table 5.2.

These promising results show great potentials of applying RL for DSE in HLS.

Through trials and interactions with GPP and user-specified constraints, RLMD is able to

gradually understand which directive should be assigned to which node, and proactively

learn proper resource allocation strategies by balanced exploration and exploitation. By

contrast, one underlying assumption in GA is that the offspring of two strong individuals

among a population is often stronger, which is not the case in DSE for HLS problems,

thus reducing its effectiveness. Likewise, PSO is also a population-based stochastic op-

timization technique, and the key difference between PSO and GA is that PSO does
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Table 5.2: ADRS of Pareto solutions found by RLMD, SA, GA, PSO, and ACO on 4
real-case benchmarks. The toolbox of RLMD involves AC, PG, either with or without
a fine-tuning step.

LUT

Design SA GA PSO ACO AC AC-FT PG PG-FT

gemm 0.429 0.441 0.351 0.23 0.153 0.039 0.121 0.001
kernel 2mm 0.613 0.608 0.36 0.235 0.147 0.067 0.086 0

spmv 0.718 0.709 0.251 0.151 0.104 0.018 0.075 0.001
kernel adi 1.406 1.418 0.794 0.473 0.112 0.038 0.086 0.001

Mean 0.792 0.794 0.439 0.272 0.129 0.041 0.092 0.001

CP

Design SA GA PSO ACO AC AC-FT PG PG-FT

gemm 0.223 0.237 0.209 0.132 0.05 0.012 0.039 0
kernel 2mm 0.13 0.123 0.108 0.101 0.063 0.022 0.048 0

spmv 0.169 0.173 0.162 0.12 0.074 0.018 0.054 0
kernel adi 0.155 0.166 0.109 0.128 0.048 0.012 0.026 0.001

Mean 0.169 0.175 0.147 0.120 0.059 0.016 0.042 0.000

not have evolution operators such as crossover and mutation. Several major weaknesses

of PSO include the proneness to getting trapped in local optimum especially in high-

dimension design spaces, and the relatively low convergence rate during the iterative

process. SA is a probabilistic technique aiming to approximate the global optima, which

ignores past experiences and searches solutions to some extent hinging on randomness,

thus not always reliable.

With respect to the comparison between AC and PG, PG generally provides better

solutions, especially in the large cases such as the four real-case applications evaluated in

this work. The reason is that the larger size the application has, the more difficult it is for

the critic network in AC to accurately approximate state-value functions, which induces

negative effects on the policy learning process. Notably, since the solutions generated by

PG do not always dominate those by AC, we include both of them into the toolbox of

IronMan, aiming to make RLMD a more powerful DSE engine.
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Figure 5.13: Matching rate of discrete DSP constraints, compared among SA, GA,
PSO, ACO, IronMan (which applies AC or PG), and IronMan with FT. Here,
three settings of µ are considered, and under each setting there are 323 discrete DSP
constraints on the same four real-case applications, gemm, kernel 2mm, spmv, and
kernel adi. The average matching rate of each technique is the arithmetic mean on
total 969 constraints.

Solutions under user-specified constraints. To further showcase that IronMan

is capable to perfectly satisfy constraints without sacrificing latency, we specify different

DSP constraints in a discrete manner. Among three different settings of µ and four real-

case applications per setting, which totally makes up 969 DSP constraints, IronMan

meets at least 92.1% of the cases and can further improve to 97.1% by FT; whereas SA,

GA, PSO, and ACO only meet the constraints for 43.3%, 43.7%, 22.9% and 73.3% of the

cases, respectively. Specifically, for the solutions that exceed DSP constraints, SA, GA,

PSO, and ACO consume 1.42×, 1.55×, 1.48×, and 1.35× of target DSPs, respectively;

on the other hand, RLMD and RLMD with FT consume significantly fewer DSPs, even

when the constraints are not satisfied, which are 1.29× and 1.18× of target DSPs when

applying AC, and 1.31× and 1.13× of target DSPs when applying PG.

Execution Time

Table 5.3 shows the execution time of SA, GA, PSO, ACO, and IronMan (with

and without FT) on real-case applications. It is noteworthy that neither HLS nor im-
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Table 5.3: Execution time of SA, GA, PSO, ACO, and RLMD on for real-case bench-
marks. Note that the running time of AC and PG during inference is similar, and the
arithmetic mean is reported. The RLMD-FT further includes 500 episodes of training
for FT.

Execution time (s) SA GA PSO ACO RLMD RLMD w/ FT

gemm 3758 5402 4074 5518 37 6048
kernel 2mm 3393 4117 3593 4552 27 5202

spmv 4292 6386 4264 5477 24 4641
kernel adi 4229 4494 4017 5335 20 4424

plementation runtime is included in the reported execution time, since with the help of

GPP, all the mentioned approaches do not need to invoke the entire design flow during

the optimization process. HLS and implementation process are only invoked once after

these approaches generate their solutions. In this sense, it is fair to only compare the

execution time of each approach itself.

During inference, i.e., being applied on real applications, IronMan only takes a

few seconds for prediction and solution generation. Vitis HLS takes tens of minutes

to synthesize the C/C++ code, and takes up to hours to get the exact resource usage

after implementation. The SA, GA, PSO, and ACO also take hours in average, because

they struggle to exactly or closely meet the DSP constraints, and cannot transfer prior

knowledge across different DFGs or DSP constraints. The FT for RL agent can balance

between a quick solution using the pre-trained model (denoted as RLMD in Table 5.3)

and a longer yet better one for a particular DFG (denoted as RLMD w/ FT in Table 5.3),

which is optional and the number of episodes is adjustable based on users’ requirements.

5.5 Conclusion

IronMan is an end-to-end framework, aiming to help HLS tools generate higher-

quality solutions under user-specified constraints, or to perform more flexible DSE to
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provide Pareto solutions that are not currently supported by HLS tools. IronMan

is equipped with a GNN-based performance predictor GPP, an RL-based DSE engine

RLMD, and a code transformer. Independently, GPP achieves high prediction accuracy,

reducing prediction errors by 5.7× in timing predictions and 10.9× in resource usage

predictions, compared with HLS tools; RLMD outperforms GA, SA, PSO, and ACO

by 16.0% ∼ 29.5% in terms of LUT utilization, and by 7.6% ∼ 16.5% in terms of CP

timing. Integrally, IronMan finds solutions that are within user-specified constraints

over 96% of the cases, more than twice the number of cases handled by meta-heuristic-

based techniques and with a significant speedup. These results demonstrate the great

potential of applying GNN and RL for HLS optimization.
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Chapter 6

Deterministic Policy Gradient for

Workload Placement Optimization

In this chapter, we exploit deep deterministic policy gradient (DDPG) to optimize work-

load placement on multi-chip many-core systems, which is scalable to large systems

with thousands of cores and can handle different connection topologies without requiring

topology-specific knowledge.

With the rapid evolution of ML workloads, specialized architectures and accelerators

have emerged, ranging from those optimized for CNNs (e.g., ShiDianNao [213], Eye-

riss [214], and SCNN [215]) to those designed for general-purpose DNN acceleration (e.g.,

DaDianNao [216], Cambricon-x [217], EIE [218], TPU [219], and DNPU [220]). Existing

DNN systems often diversify in performance, accuracy, and power requirements, which is

prohibitively costly to build a dedicated accelerator/architecture for each target. There-

fore, multi-chip many-core (MCMC) neural network systems, which assemble a number

of cores into one chip and further interconnect these chips, are attracting increasing at-

tention. These MCMC systems, from conventional technology such as SpiNNaker [221],

TrueNorth [222], Loihi [223], Tianjic [224, 225], Simba [226], to emerging technology such
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Figure 6.1: NN mapping: (a) the original NN; (b) the NN partitioned into logic cores;
(c) logic cores placed onto physical cores.

as PUMA [227] with memristors, provide high parallelism benefited from decentralized

execution, and can be scaled to very large systems with reasonable fabrication costs.

Usually, there are two major steps to map an application or a neural network (NN)

model to a many-core system. In the first step, the computational graph is parti-

tioned into small groups that are compatible to the computation capability of each

core [224, 226, 228], in which we refer these small groups as logic cores, since some

of them are logically connected with demand of communication and they are not yet

placed on physical chips (see Figure 6.1(a) and Figure 6.1(b)). Then in the second

step, these logic cores are placed onto physical cores – such process is defined as the

core placement (see Figure 6.1(c)). As MCMC systems scale up, communication costs

would be a concern, and workload partitioning and placement heavily impact the effi-

ciency of on-chip and off-chip communication [222, 226, 229, 230]. Targeting the first

step, several studies improve workload partitioning to reduce the required communi-

cation between logic cores. For example, Urgeses et al. [229] present a partitioning

methodology to optimize network traffic for spiking neural networks on neuromorphic

many-core platforms; HyPar [231] searches a partition that minimizes the total commu-

nication of DNNs on an accelerator array. Targeting the second step, heuristic-based

methods are employed to map applications onto 2D-mesh network-on-chip (NoC) archi-

tectures [232, 233, 234, 235, 236, 237, 238].
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However, there are two principal issues still unresolved in the core placement step.

First, these previous approaches all target general-purpose many-core systems within a

single chip, whereas in decentralized MCMC systems, the communication-related prob-

lem is caused by not only the demand for communication among different cores but also

the non-uniform and hierarchical on/off-chip communication capability. Second, the scal-

ability is a concern with these heuristic-based methods, since they are typically designed

to handle systems with tens of cores and have limited DSE capabilities. Finding an op-

timal core placement is an NP-hard [239] problem and the search space of this problem

grows factorially with the system size.

To this end, we propose an RL-based method to optimize workload placement on

MCMC systems. This method performs a series of trials (i.e. placements) to understand

which logic core should be placed on which physical core so that the overall latency can

be optimized. The specific algorithm leveraged is DDPG [240], since the deterministic

policy gradient can be estimated much more efficiently than the usual stochastic policy

gradient, leading to a faster training process. We summarize our contributions as follows:

• Problem formulation. We consider DNN inference in MCMC systems and im-

plement a hierarchical pipeline (i.e., a block-by-block streaming pipeline for intra-

frame dataflow and a stage-based pipeline for inter-frame dataflow). Given the

weight-stationary dataflow on the spatial MCMC architecture, we formulate the

core placement optimization problem.

• Core placement optimization. We propose an RL-based method that utilizes

DDPG to automatically optimize core placement, which is capable to handle sys-

tems with thousands of cores. The employment of deterministic policy gradient

enables more efficient training, particularly in large action spaces. The proposed

RL agent adopts CNNs to extract spatial features of different placements.
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• Evaluation. We evaluate our proposed method on multiple workloads: AlexNet [241],

VGG16 [242], and ResNet50 [243]. On the geometric average, it achieves 50.5%,

38.4%, 18.6% reduction in the overall latency and improves the throughput by

1.99×, 1.61×, 1.22×, compared with sequential placement, random search, and

simulated annealing, respectively.

• Release of domain expertise. Our proposed method can automatically optimize

core placements by leveraging the communication properties of different system

configurations, without requiring any domain-specific knowledge.

This chapter is organized as follows: Chapter 6.1 introduces the background of DNN

workloads, MCMC architecture, and related work; Chapter 6.2 describes the problem for-

mulation and the proposed DDPG-based core placement optimization approach; Chap-

ter 6.3 presents experiment setup, baselines, and analysis of experimental results; Chap-

ter 6.4 concludes this chapter.

6.1 Background and Related Work

We provide a brief introduction to the background of DNN workloads, the MCMC

architecture, and related work.

6.1.1 DNN Workload

There are multiple variants of DNNs, including MLP, CNN, RNN, and so on. As

illustrated in Figure 6.2, a convolutional (CONV) layer can be considered as a seven-

dimensional nested loop on input activations (IA), weights (W), and output activations

(OA), with the batch size B, the height H and the width T of OA, the number of output

channels K, the number of input channels C, the height R and the width S of the weight
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Figure 6.2: The seven-dimensional nested loop of convolutional layers, on input acti-
vations (IA), weights (W), and output activations (OA).

kernel. Similar formulations can also be applied to FC layers, which are widely used in

MLPs and are essential components in DNNs.

6.1.2 Multi-Chip Many-Core Architecture

MCMC architectures, which are broadly employed to build up neuromorphic systems,

arise with the era of cognitive computing that demands systems capable of processing

massive amounts of multi-sensory data. Among the issues to be solved with top priority

in these systems, real-time operation, low-power consumption, and scalability are those

attracting the most attention, and thus parallel architectures working in a decentralized

way are developed. There are several notable examples. SpiNNaker [221], which can

model up to one billion neurons and one trillion synapses, integrates 18 ARM cores per

chip and is able to scale to a system with 65536 chips. The TrueNorth chip [222] from IBM

organizes 4096 neurosynaptic cores by 2D mesh, containing one million digital neurons

and 256 million synapses; multiple TrueNorth chips can be further interconnected to build

complex TrueNorth systems. Loihi [223] from Intel also utilizes the 2D mesh topology

to comprise 128 neuromorphic cores and three embedded x86 processor cores on a single

chip, and off-chip communication interfaces are used to connect other chips.

As the variety of DNN workloads increases and the performance, energy, and power

targets diversify in different workloads, the concerns previously discussed in neuromor-
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Figure 6.3: Illustration of a typical multi-chip many-core neural network architecture:
(a) the multi-chip system, (b) the many-core chip, and (c) one single core.

phic systems also appear in the design of deep learning accelerators, and it is prohibitively

costly to design a dedicated accelerator for each target of each workload. One potential

resolution is to employ the multi-chip-module-based (MCM-based) integration. For ex-

ample, Simba [226] is a scalable deep learning inference accelerator with an MCM-based

architecture. In Simba, it is noticed that the disparity in latency and bandwidth between

on-chip and on-package (off-chip) communication leads to significant latency variability

across chiplets. To mitigate the inter-chiplet communication overheads, Simba optimizes

workload partitioning and data placement by using a random search algorithm to select

good mappings and placements.

In terms of the integration of both neuromorphic primitives (e.g. spiking neural

networks) and DNNs, there is the Tianjic chip [224, 225], a MCMC architecture providing

a hybrid platform towards artificial general intelligence. The Tianjic chip, consisting of

156 functional cores, shows significant improvement in both throughput (1.6× to 102×)

and power efficiency (12× to 104×) compared with the GPU.

In Figure 6.3, we take Tianjic as an example to illustrate the typical MCMC architec-

ture. Usually, multiple chips (e.g. 4×4 in Figure 6.3(a)) can be interconnected through

off-chip links such as low-voltage differential signaling (LVDS) [244], SerDes [245], and

ground-referenced signaling (GRS) [246, 247]. As shown in Figure 6.3(b), each chip in-
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cludes an array of functional cores arranged by a 2D mesh NoC, an on-chip router for

off-chip communication and essential chip peripherals. Figure 6.3(c) details the micro-

architecture of each core, which leverages parallel multiplier-and-accumulator (MAC)

units for efficient and flexible computation and contains peripheral processing circuits,

such as an input buffer, a weight buffer, an activation buffer, a transformation unit,

a core controller and a router. The input buffer provides input activations for MACs,

where the ping-pong buffer scheme is used to decouple writes by the router and reads by

MACs. The MACs conduct most of the computation, multiplying the input activations

read from the input buffer with the weights stored in the distributed weight buffer to

implement vector-matrix multiplications (VMMs). The activation buffer is used to buffer

either intermediate activations or results that do not need to go through the transforma-

tion unit. The transformation unit is responsible for adding bias, non-linear activation

functions, possible pooling operations, and generating output activations, and it finally

sends the results to the router. The core controller manages the overall timing sequence

and whether to enable these MACs or the transformation unit.

The MCMC architecture is essentially a spatial architecture, since there is no off-

chip DRAM and all weights must be stored on chip, which is different from common

deep learning accelerators. As such, it often uses a weight-stationary dataflow: weights

remain in the weight buffer of each core and are reused across iterations, while new input

activations are injected at each time phase.

6.1.3 Related Work

We review previous studies from two major categories: (1) mapping computation

onto many-core systems, and (2) applying deep RL to optimize system latency.
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Mapping Computation onto Many-Core Architecture

A series of investigations in mapping applications onto 2D mesh NoC architectures has

been conducted by applying various heuristic-based techniques. They mainly target mini-

mizing communication energy consumption [232, 233, 234], reducing the total traffic loads

and the average network hop count [235], or optimizing network latency [236, 237, 238].

There are four major differences between our work and the previous studies. First, these

previous approaches all focus on general-purpose many-core architectures in a single chip.

In contrast, we give attention to decentralized MCMC systems for NN workloads, where

the communication related issue is caused by not only the demand for communication

among different cores but also the non-uniform and hierarchical on/off-chip communi-

cation capability. Second, scalability is another challenge with these heuristic-based

methods, since they mainly handle systems with tens of cores and the computation com-

plexity grows drastically [232] as systems scale up. In contrast, our RL-based approach is

capable to deal with systems with thousands of cores. Furthermore, previous work relies

on topology-specific knowledge of 2D mesh NoCs, such as geometric features and com-

munication characteristics, while our proposed method can work in a topology-agnostic

manner.

Device Placement Optimization with RL

In recent years, there is a surge in demand on computational resources in terms of

training and inference of NNs with bigger models and larger batch sizes. One prevalent

solution is to employ a heterogeneous distributed system with a mixture of different hard-

wares, with one instance of using the combination of CPUs and GPUs. In this scenario,

the device placement refers to the process of mapping the computational graph of NNs

onto hardware devices. Although computation partitioning and placement decisions are
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usually made by human experts, there are still several concerns: first, expertise in both

NNs and hardware architectures is required; second, these decisions are often based on

simple heuristics and intuitions, which do not scale well or cannot produce optimal re-

sults, especially for complicated networks. To this end, Mirhoseini et al. [248] propose an

RL-based method for device placement optimization, which uses a sequence-to-sequence

RNN model as the parameterized policy to generate placements. This work manually

groups operations and then places these groups onto devices, and later they develop a

hierarchical end-to-end model by making the manual grouping process automatic [249].

In both of their work, network parameters are trained by policy gradients via the RE-

INFORCE [50] algorithm. Spotlight [250] employs the proximal policy optimization

(PPO) [251] to achieve better training speed and uses the softmax distributions to repre-

sent the policy. They further propose Post [252], which integrates PPO with cross-entropy

minimization to acquire theoretically guaranteed optimal efficiency. Placeto [253] uses

graph embeddings to encode the structure of computational graphs and exhibits good

generalizability to unseen NNs, but having high computation costs.

6.2 Approach

We present a detailed problem formulation and describe our proposed DDPG-based

approach for core placement optimization in MCMC systems.

6.2.1 Formulation of Core Placement Optimization

For simplicity and clarity, we consider the spatial mapping with a weight-stationary

dataflow for DNN inference.
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Mapping Neural Networks to Logic Cores

Taking advantages of model parallelism, there have been several different DNN tiling

techniques [215, 216, 219, 254] proposed to partition weights in the spatial mapping,

based on which we partition DNN weights uniformly along the input channel C and

the output channel K. Figure 6.4 illustrates the uniform partitioning of CONV and FC

layers. In the decentralized many-core system, outputs of VMM cores will be delivered to

other cores for cross-core partial-sum reduction, referred to as vector-vector-accumulation

(VVA), if handling with large NNs. We decouple the execution of VMM and VVA to

different cores in order to ease the timing implementation.

Figure 6.4: The uniform partitioning of CONV or FC layer, where the red tensors
on the top represent weights (W), the green tensors in the middle represent input
activations (IA), and the orange tensors at the bottom represent the output activations
(OA).
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Figure 6.5: The breakdown of parameters (denoted with -p) and logic cores (denoted
with -c) for CONV and FC layers in different models, with the number of logic cores
marked for each model.

We further optimize the uniform partitioning by two steps: first, we balance the

computation required on each core, to avoid over-busy or idle cores; second, we consider

the trade-off between the exploitation of computation parallelism and the communica-

tion/synchronization costs. Figure 6.5 shows the breakdown of logic cores for different

models. Since CONV layers are often bound by computation while FC layers are of-

ten bound by memory, more logic cores are assigned for CONV layers to balance the

computation.

Core Placement

Consider a set of logically connected cores consisting of Z logic cores {C1, C2, ..., CZ},

and a set of D available physical cores {V1, V2, ..., VD} connected in a specific topology

(where Z ≤ D). A placement P={p1, p2, ..., pZ} is an assignment of a logic core Ci to a

physical core pi, where pi ∈ {V1, V2, ..., VD} and ∀i 6= j, there is pi 6= pj.

In each single frame, it is possible to implement a streaming pipeline across multiple

CONV layers to take advantage of inter-layer parallelism because each convolution opera-

tion only needs part of input activations. In contrast, for FC layers one output activation

cannot be generated until all input activations are ready, indicating that there only ex-
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Figure 6.6: Example of the block-by-block streaming pipeline execution and its cor-
responding timing configurations.

ists intra-layer parallelism. Based on this execution difference, we consider a hierarchical

pipeline execution.

For the inter-frame execution, a stage-based pipeline is used to decouple the com-

putation of CONV and FC layers, leveraging better parallelism. Accordingly, we place

the logic cores for CONV and FC layers in different regions of the MCMC system, and

optimize their core placement processes separately by masking unused regions.

Then in the intra-frame execution, instead of the row-by-row streaming pipeline [255]

in which logic cores have more and more idle time as layer propagates, we employ the

block-by-block streaming pipeline for CONV layers to make better utilization of resources.

As depicted in Figure 6.6, we showcase a block-by-block streaming pipeline and its cor-

responding timing configurations by an example of the MNIST dataset [256], where each

input frame is divided into four blocks. In this example, there is a three-stage stream-

ing pipeline, with one time phase for one pipeline stage; in order to guarantee system

functionality, the time phase, which contains both the computation latency as well as
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the communication latency, should be long enough to cover the pipeline stage that con-

sumes the maximum latency. Similar analogy is used in FC layers, where the pipelined

execution is applied layer by layer.

Assume there is an F -stage streaming pipeline for intra-frame execution, we use

T (k|P) to denote the latency of the k-th pipeline stage for a given placement P . By

minimizing the maximum latency among all stages, the overall latency and throughput

can be optimized. Therefore, the optimization goal is:

P* = argmin
P
{L(P)} (6.1)

where L(P) = max
k
{T (k|P)} for k = 1, 2, ...,F .

6.2.2 Core Placement with Deep Deterministic Policy Gradient

Figure 6.7 presents the overview of the RL-based core placement optimization. The

agent attempts to learn an optimal core placement to minimize the overall latency, and

the environment gives feedback to the agent by different rewards to encourage or punish

the agent according to its behaviors. Through interactions with the environment, the

agent is able to learn and figure out the optimal policy.

We build the core placement problem as a Markov decision process. At the beginning

of each trial, no assignment has been generated and all physical cores are available. At

each time step t, with the observation of currently available physical cores and unplaced

logic cores, which is referred to as the state st in the state space S, placement of a couple

of logic cores will be generated, which is referred to as the action at in the action space

A. With this action at, corresponding physical cores are occupied by these assigned logic

cores, and the state st is updated to the state st+1. The placement of logic cores is gen-

erated sequentially according to the index and the reward is provided at each time step.
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Figure 6.7: Overview of the RL-based core placement optimization.

It is notable that from our simulation results, different placement orders have little influ-

ence on learning performance, as the agent can adjust its behaviors during interactions

with the environment, mitigating the effects caused by different orders. When all logic

cores have been placed onto physical cores, the overall performance of this placement is

measured by the maximum latency among all pipeline stages, i.e., L(P), which is then

used to derive the final reward of this placement. These rewards, together with informa-

tion from states, actions, and state-action values, are combined to train the agent and

update following placements.

Representations of Core Placement Optimization

The mathematical representations of state, action, and reward of core placement

optimization are detailed as follows.

• Representation of Core Placements (i.e., the states). Among most MCMC archi-

tectures, 2D mesh topology is the mainstream for both intra-chip and inter-chip

interconnect. We mainly consider the communication characteristics when optimiz-

ing core placement, and thus we prefer the matrix representation of the placement,

which is simpler and more intuitive. The state st is represented by a 2D matrix

to encode the current placement status, including the information required by the

105



Deterministic Policy Gradient for Workload Placement Optimization Chapter 6

agent to make decisions, as shown in the upper part of Figure 6.8. In this illustra-

tion, a 3× 3 chip array with 2× 2 cores per chip is represented by a 6× 6 matrix,

where the available physical cores are denoted by zero and occupied physical cores

are denoted by the indexes of their assigned logic cores. In general, the state of

the current placement on an MCMC system composed of a rowchip × colchip chip

array with rowcore × colcore cores per chip can be denoted as a (rowchip × rowcore)-

by-(colchip × colcore) matrix.

• Representation of Assigning Placements (i.e., the actions). Given that the current

core placement is uncompleted, the action is defined as assigning a placement of

z unplaced logic cores, which is encoded as [x1, y1, x2, y2, ..., xz, yz], with (xi, yi)

representing the physical coordinate on which a logic core will be placed.

• Representation of the Reward Function. We empirically find that defining the

reward at the time step with a completed placement as rt =
√
B−

√
L(P), where B

is the latency of the best placement found by the random search, makes the learning

process more robust. With this definition, placements that result in better latency

are encouraged by positive rewards, while placements that result in worse latency

are penalized by negative rewards. For those time steps at which one placement is

not completed, the reward is defined as rt = 0.

Deterministic Policy Gradient.

Policy gradients have been broadly applied under different RL scenarios, where the

basic idea is to directly parameterize the policy via a probability distribution πθ(s, a) =

P(a|s; θ) that stochastically takes the action a given the state s according to the param-
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eters θ. If we define the discounted state distribution [207] by

ρπ(s′) :=

∫
S

∞∑
t=1

γt−1P(st = s′|s0 = s, π)P(s0 = s)ds, (6.2)

then the expected return can be expressed as

J (πθ) = Es∼ρπ ,a∼πθ

[
∞∑
k=0

γkrk+1

]

=

∫
S
ρπ(s)

∫
A
πθ(s, a)Qπ(s, a)dads,

(6.3)

where Qπ(s, a) is defined in Equation (2.3) and the discount factor γ ∈ (0, 1].

In order to maximize the expected return of a stochastic policy, the corresponding

stochastic policy gradient algorithm should update the parameters θ by performing gra-

dient ascent on the expected return, i.e., adjusting the parameters θ in the direction of

∇θJ (πθ), where

∇θJ (πθ) = ∇θ

∫
S
ρπ(s)

∫
A
πθ(s, a)Qπ(s, a)dads

=

∫
S
ρπ(s)

∫
A
πθ(s, a)

∇θπθ(s, a)

πθ(s, a)
Qπ(s, a)dads

= Es∼ρπ ,a∼πθ [∇θlogπθ(s, a)Qπ(s, a)] .

(6.4)

In our work, instead of the stochastic policy, we give attention to the deterministic

policy [240]. We propose to train a deterministic policy µθ(s) : S → A, which is a deter-

ministic mapping from the current placement status st to the action at – the placement

assignment of unplaced logic cores. With the deterministic policy, the core placement
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process can be optimized by maximizing

J (µθ) = Es∼ρµ

[
∞∑
k=0

γkrk+1

]

=

∫
S
ρµ(s)Qµ(s, µθ)ds.

(6.5)

Then the deterministic policy gradient is derived as

∇θJ (µθ) = ∇θ

∫
S
ρµ(s)Qµ(s, µθ)ds

=

∫
S
ρµ(s)∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

= Es∼ρµ
[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
.

(6.6)

From the practical perspective, the cardinal reason for applying deterministic policy

gradient rather than stochastic policy gradient is that the stochastic policy gradient

should be estimated by the integration over both the state space and the action space, as

shown in Equation (6.4); while the deterministic policy gradient only needs to integrate

the state space as in Equation (6.6), indicating that it can be estimated more efficiently

and leads to a faster learning process, especially for a large action space, which is our

case.

From a practical perspective, the main reason for applying deterministic policy gradi-

ent rather than stochastic policy gradient is that the stochastic policy gradient needs to

be estimated by the integration over both the state space and the action space, as shown

in Equation (6.4). By contrast, the deterministic policy gradient only needs to integrate

over the state space, as in Equation (6.6), which can be estimated more efficiently and

leads to a faster learning process, especially for a large action space, which is the case in

our study.

We employ the off-policy deterministic actor-critic (OPDAC) [240], which consists of
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Figure 6.8: DNN structure of the RL-based agent: the actor, and the critic.

two components: the critic and the actor. The critic estimates the action-value function

Qw(s, a) ≈ Qµ(s, a) by adjusting parameters w based on Q-learning, and the actor learns

the deterministic policy µθ(s) by ascending the gradient of the action-value function.

To improve the sample efficiency of the learning process, we apply the experience

replay taking advantages of past experiences, which is implemented by a replay buffer

storing tuples (st, at, rt+1, st+1) from history trajectories. To sufficiently explore the large

search space, we add Ornstein-Uhlenbeck noise [257] to the action space, which is multi-

plied by a fading factor as the training process proceeds.

DNN Structure of the RL-based Agent

The structure of the RL-based agent is depicted in Figure 6.8, where both the actor

and the critic have similar network structures. The input to these DNNs is the current
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state of the placement being predicted, which includes physical cores either currently

available or already assigned with logic cores. Then the actor outputs the action in

vector, and the critic generates the state-action value in scalar. Since the state-action

value is a function of both the current state and the action being taken, the output of the

actor is merged to the critic after its first FC layer. We employ CONV layers followed

with max-pooling layers to extract spatial features of various placements, because there

are some similarities between the core placement analysis and image analysis, on which

CONV layers usually perform well. The local response normalization is applied after each

pooling layer, and the batch normalization is applied after each FC layer. The activation

function is ReLU for all layers, except for the output of the actor, which uses tanh to

bound actions to the size of MCMC systems. Since the outputs of the actor network

are in continuous values, we apply the floor function to derive placement locations, i.e.,

finding the closest integers that are no larger than the outputs. If there is a contradiction

between the currently being placed core and an already placed core, the current core will

be placed on the position that has the minimum Manhattan distance to its originally

intentional position. If there are multiple available candidates, we choose the first one

found.

The network parameters are learned by Adam optimizer based on the estimation of

Equation (6.6), which is computed by sampling a minibatch of size Kmb from the replay

buffer, leading to the updates of parameters as follows:

δi = ri+1 + γQw(si+1, µθ(si+1))−Qw(si, ai), (6.7)

wt+1 = wt + αw ·
1

Kmb

tKmb∑
i=t1

δi∇wQw(si, ai), (6.8)
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Algorithm 2: DDPG for core placement optimization.

1 Initialize parameters θ for the actor and w for the critic;
2 Initialize the episode counter i← 0;
3 Initialize the best core placement Pbest ← Pbaseline;
4 while i < episodemax do
5 t← 0 ; // The time step counter.

6 Initialize state st ← an empty placement;
7 while t < stepmax do
8 Perform action at based on policy µθ(st);
9 Get updated placement st+1;

10 if all logic cores have been placed then

11 Receive the reward rt =
√
B −

√
L(st+1);

12 Add (st, at, rt+1, st+1) into replay buffer;
13 if L(st+1) < L(Pbest) then
14 Pbest ← st+1;
15 end
16 Clear state st+1 ← an empty placement;

17 else
18 Receive the reward rt = 0;
19 Add (st, at, rt+1, st+1) into replay buffer;

20 end
21 Update θ and w according to Equations (6.7)-(6.9);
22 t← t+ 1;

23 end
24 i← i+ 1;

25 end
26 return Pbest;

θt+1 = θt + αθ ·
1

Kmb

tKmb∑
i=t1

∇θµθ(si)∇aQw(si, ai)|a=µθ(s), (6.9)

where αw and αθ are learning rates of the critic and the actor, respectively, and i ∈

{t1, ..., tKmb}.

The entire procedure of core placement optimization with deep deterministic policy

gradient is summarized in Algorithm 2.
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6.3 Experiment

We present the experiment setup, baselines, and the analysis of the results.

6.3.1 Experiment Setup

We build an in-house simulator for the typical MCMC architecture illustrated in Fig-

ure 6.3. The overall system consists of a 4 × 4 chip array with 16 × 16 cores per chip,

with the off-chip interconnect assumed as GRS [246, 247]. Generally, the routing is based

on the minimal path, with X-Y routing for both NoC and off-chip communication. Al-

though all chips are functional in the MCMC system, different workloads may occupy

different number of chips/cores, since in these spatially weight-stationary mappings, the

number of cores consumed is kind of proportional to the model size. Configuration

parameters are summarized in Table 6.1, which are collected from existing MCMC ar-

chitectures [224, 225, 226, 246, 247]. As for hyperparameters in our RL-based approach,

the learning rates of the actor and the critic are set as αθ = 0.0002 and αw = 0.001, with

the discount factor γ = 0.98. In each epoch, the actor predicts 30 placements and the

size of minibatch is K = 64.

We consider DNN workloads of AlexNet [241], VGG16 [242] and ResNet50 [243], and

evaluate the latency when the batch size is one and the throughput when the batch size

is much larger. The overall latency is derived according to the latency of each time phase

that is measured by summing up the computation latency (i.e. the cycles required for

computation) and the communication latency. As described in Chapter 6.2.1, we place

the logic cores for CONV and FC layers in different regions of the MCMC system, and

optimize their core placement processes separately.
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Table 6.1: Simulation configuration parameters.

System
Number of Chips 4× 4

Off-chip Interconnect GRS
Off-chip Interconnect Bandwidth 100GB/s/chip

Chip

Number of Cores 16× 16
Technology UMC 28-nm HLP

NoC Interconnect Bandwidth 64GB/s/core
Core Frequency 400MHz

Core

Weight Buffer Size 64KB
Input+Activation Buffer Size 64KB

Number of MACs 128
MAC Width 8b

Input/Weight Precision 8b
Partial-sum Precision 32b

6.3.2 Baselines

Our RL-based approach (denoted by DDPG) is evaluated with the following place-

ment methods.

• Sequential placement (denoted by BS): logic cores are placed sequentially along

with the indexes of physical cores (first chip index, then core index).

• Random search (denoted by RS): one million placements are sampled randomly,

and the best placement found during the random search is selected.

• Simulated annealing [15] (denoted by SA): SA is commonly applied for design ex-

ploration, with the procedure detailed in Algorithm 3. The cooldown factor is set

as 0.99; the initial temperature T0 and the ending temperature Tend are chosen

according to the application such that around one million placements would be

searched; and the neighborhood function N (Pcurrent) indicates that the placement

of 1% of logic cores in Pcurrent will be randomly changed.
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Algorithm 3: Simulated annealing for core placement optimization

1 Randomly generate initial core placement Pcurrent ← P0;
2 Initialize the best core placement Pbest ← P0;
3 Initialize temperature T ← T0;
4 while T > Tend do
5 iter ← 0;
6 while iter < iterationmax do
7 Select a placement Pnew ∈ N (Pcurrent);

/* A neighbor placement to current placement. */

8 if L(Pnew) < L(Pcurrent) then
9 Pcurrent ← Pnew;

10 if L(Pnew) < L(Pbest) then
11 Pbest ← Pnew;
12 end

13 else
14 ∆ = L(Pnew)− L(Pcurrent);
15 Accept Pcurrent ← Pnew with probability P = e−∆/T ;

16 end
17 iter ← iter + 1;

18 end
19 T ← α× T ;

/* 0 < α < 1, the cooldown factor. */

20 end
21 return Pbest;

6.3.3 Analysis of Core Placements Optimized by DDPG

Figure 6.9 compares the latency and the throughput of different core placement meth-

ods for AlexNet, VGG16, and ResNet50 workloads. DDPG achieves significant improve-

ments among all considered workloads, especially for VGG16 that has the largest model

size, where DDPG reduces the overall latency by 67.4%, 51.7%, 23.2%, and improves the

throughput by 3.06×, 2.07×, 1.30×, compared with BS, RS, and SA, respectively. Gen-

erally, there is usually a larger optimization space for large models, because they are often

mapped onto more logic cores, resulting in a larger search space, just as aforementioned

that the search space of core placement optimization grows factorially with the system

size. In addition, more conspicuous improvements are shown in FC layers than those in
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Figure 6.9: Latency and throughput of different placement methods, both of which
are normalized to BS (i.e., sequential placement).

CONV layers, since the inter-layer connections are denser in FC layers; one exception

comes from the FC layers in ResNet50, whose small layer size leads to a relatively small

search and optimization space. Furthermore, the communication demand usually relates

to the size of feature maps, the number of input and output channels, and whether

there exist bypass connections in the networks, indicating that the more complex the

network structure is, the higher the communication demand is often required, and thus

the more essential it is to conduct the core placement optimization. DDPG demonstrates

stronger improvements in VGG16 and ResNet50, since they have more complex network

structures compared to AlexNet. Considering all the workloads, on the geometric aver-
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Figure 6.10: Hop distributions of BS and DDPG-based core placement optimization.

age, 50.5%, 38.4%, 18.6% reductions in the overall latency are achieved by DDPG, with

the throughput improvement of 1.99×, 1.61×, 1.22×, compared with BS, RS, and SA,

respectively.

Notably, in scenarios with extremely large search spaces, DDPG substantially out-

performs SA. In SA, new placements at each time are randomly picked from the neigh-

borhood of the current placement, and whether or not to accept a new placement is

dependent solely on the latency or the objective function, ignoring past experiences and

introducing unreliability to the search process. In contrast, DDPG proactively explores

the search space. By learning from different rewards received during the exploration,

DDPG extracts useful spatial features from various placements, to avoid defective place-

ments and further encourage trials to approach the optimum. Through the leverage of

experience replay, past experiences can be consolidated into the training process, thus

stabilizing the overall learning and search process.

To show more insights of core placements found by DDPG, Figure 6.10 depicts the hop

distributions before and after DDPG-based core placement optimization. The averaged

hop distances in the CONV and FC layers are reduced by 2.5× and 4.5× for AlexNet,

4.6× and 4.3× for VGG16, and 2.9× and 2.8× for ResNet50, respectively. The geometric

average reduction in hop distance is 3.5×. This indicates that long data paths are

significantly shrunken and cores that are logically connected are tended to be placed

in nearby regions, reducing the long travel time of data as well as removing potential
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Figure 6.11: The distribution of the total number of packets transferred through each
core per time phase, and the total number of packets delivered by each off-chip link
per time phase, for core placements of VGG16-CONV: (a) placed by BS, (b) optimized
by DDPG, (c) with doubled off-chip bandwidth optimized by DDPG, and (d) with
fewer cores per chip optimized by DDPG.

congestions. Additionally, with the reduced hop distances, the active communication

power consumption can also be implicitly reduced.

Figure 6.11(a) and (b) show the communication traffic of placements optimized by

BS and DDPG. For BS, there are multiple extremely busy cores for on-chip communi-

cation and several off-chip links with heavy communication workloads; whereas after the

optimization by DDPG, both on-chip and off-chip communication are balanced: unnec-

essary off-chip communication is minimized and moved to on-chip communication that

usually consumes lower costs, and the traffic of busy cores is spread to relatively idle

cores. DDPG ensures that the off-chip traffic is low enough to avoid congestion delay,

thus improving the latency.

6.3.4 Strong Learning Capability of DDPG

Our proposed DDPG-based core placement optimization exhibits strong learning ca-

pabilities in efficiently utilizing various communication configurations and can be applied

to other topologies such as 2D torus, HNoC [258] and dragonfly [259], in a topology-

agnostic manner.
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Efficient Utilization of Communication Configurations

To investigate the sensitivity of DDPG-based core placement optimization to the off-

chip communication bandwidth, we adjust the off-chip bandwidth to 1.5× and 2.0× its

original configuration, and apply core placement optimization under each configuration.

It is undoubted that an increase in bandwidth should result in a reduction of latency,

even if the original placement is not modified to account for these changed communica-

tion properties. In order to demonstrate the influence coming from the increased off-chip

communication bandwidth, we fix placements that are optimized under the original con-

figuration and only make changes in the off-chip communication bandwidth; as shown in

Figure 6.12, there achieves less than 10% reduction in latency. Then in Figure 6.13, we

compare the optimized placements found by DDPG and SA under each new configura-

tion, to figure out their abilities to make use of different communication configurations.

Obviously, more improvements are achieved by DDPG than those of SA: for CONV layers

in VGG16, SA decreases the latency by 10% and 19%, while DDPG reduces the latency

by 18% and 31%, with 1.5× and 2.0× off-chip bandwidth, respectively; for FC layers

in AlexNet, SA decreases the latency by 4% and 8%, while DDPG reduces the latency

by 12% and 17%, with 1.5× and 2.0× off-chip bandwidth, respectively. In both cases,

DDPG demonstrates superior capabilities in identifying and leveraging the communica-

tion properties of the system, resulting in much beeter placements under the respective

configurations Figure 6.11(c) shows the traffic of the placement optimized by DDPG with

doubled off-chip bandwidth, where DDPG leverages the improved off-chip communica-

tion capability by subtly increasing the off-chip communication workloads and slightly

alleviating the on-chip communication, compared to Figure 6.11(b).

We also make attempts to another case, where the number of cores per chip is de-

creased from 16 × 16 to 8 × 8 and so the number of chips is quadrupled. In this case,
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Figure 6.12: Latency and throughput of the placements optimized under the original
(vanilla) configuration, with changing off-chip communication bandwidth.

Figure 6.13: Latency and throughput optimized by DDPG and SA under each different
off-chip communication bandwidth.

resources are sacrificed for performance, i.e., adding more communication resources to

release the average communication burden on each off-chip link. It is worth noting that

directly reducing the number of cores per chip in the absence of modifying the previ-

ously optimized placements may cause unpredictable effects. As shown in Figure 6.14,

some placements may see performance gains, while others may experience performance

degradation, which is mainly due to the possible disruption of spatial locality in commu-

nication. After core placement optimization under the new configuration, SA attains 22%

and 4% reduction in latency, while DDPG reaches 39% and 24% reduction in latency, for

CONV layers in VGG16 and FC layers in AlexNet, respectively, which is illustrated in

Figure 6.15. DDPG optimizes core placement via trials and interactions with the environ-

ment to better understand and further leverage communication characteristics brought

from different hierarchical structures; it can also make better utilization of the spatial

locality in communication patterns of different workloads, where logic cores obtaining
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Figure 6.14: Latency and throughput of the placements optimized under the original
(vanilla) configuration, with changing the number of cores per chip.

Figure 6.15: Latency and throughput optimized by DDPG and SA under each different
number of cores per chip.

more connectivity are grouped more tightly. As displayed in Figure 6.11(d) that exhibits

the communication traffic of the placement optimized by DDPG with 8 × 8 cores per

chip, the off-chip communication is apparently reduced and balanced, with lightweight

on-chip communication; central chips and cores are relatively busier, since packets from

other cores may transit through them.

Working in a Topology-Agnostic Manner

In addition to the 2D mesh, DDPG has great versatility to deal with other topologies,

such as 2D torus, HNoC [258], and dragonfly [259]. We demonstrate this by building

several small MCMC systems, since these topologies may have scalability issues: for 2D

torus and HNoC, we use a 3 × 3 chip array with 2 × 2 cores per chip; for dragonfly, we

use six chips with five cores per chip. All other configurations are set the same as those

shown in Table 6.1, except for the weight buffer size and the input/activation buffer size,
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(a)

(b)

Figure 6.16: Latency of different placement methods for different topologies: (a)
illustration of different topologies, and (b) latency normalized to BS.

both of which are selected as 16KB. A synthetic MLP with 600-467-124-103 structure is

taken as the workload.

Figure 6.16 displays the latency of different core placement methods for different

topologies. Even though SA already attains good performances, it is surpassed by DDPG:

on the geometric average, DDPG achieves 19%, 12%, and 8% reduction in latency, com-

pared with BS, RS, and SA, respectively. Through the leverage of CONV layers, DDPG

is able to figure out spatial features aroused from different topologies, which is essen-

tial and beneficial for an optimized placement; through the leverage of past experiences,

DDPG has a better understanding of both the system and the placement being predicted.

6.4 Conclusion

Workload partitioning and placement significantly impact communication efficiency,

especially in decentralized systems. As MCMC systems scale, two major challenges arise

in workload placement optimization: how to handle the non-uniform and hierarchical

nature of on/off-chip communication capabilities, and how to ensure scalability to very
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large MCMC systems Therefore, we propose an RL-based method that utilizes DDPG to

automatically optimize workload placement, which is capable to handle MCMC systems

with thousands of cores. We evaluate our proposed method on AlexNet, VGG16, and

ResNet50, where on average DDPG reduces the overall latency by 50.5%, 38.4%, and

18.6%, and improves the throughput by 1.99×, 1.61×, 1.22×, compared with BS, RS,

and SA, respectively. Our proposed method can automatically optimize core placements

by leveraging the communication properties of different system configurations, without

requiring any domain-specific knowledge.
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Chapter 7

Graph Learning based Symbolic

Reasoning for Large-Scale Boolean

Networks

In this chapter, we leverage the message-passing mechanism in GNN computation to

imitate conventional symbolic reasoning methods, enhancing their efficiency and scala-

bility in large-scale Boolean networks (BNs) by making better use of modern computing

power. Such reasoning process offers significant benefits in functional verification, logic

minimization, datapath synthesis, malicious logic identification, and more.

Reasoning high-level abstractions (e.g., functional blocks) from bit-blasted BNs (e.g.,

unstructured gate-level netlists) has demonstrated its wide applications in improving

functional verification efficiency [260, 261] and identifying malicious logics such as detect-

ing hardware trojan and intellectual property infringement usage [262, 263]. In the era of

globalization and democratization of integrated circuit (IC) development and fabrication,

such reasoning is expected to bring broader impacts on hardware security, which is at

the heart of modern computing systems: more than 40 percent of FPGA/ASIC projects
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are working under safety-critical development process standards or guidelines [264].

Due to the optimization conducted by RTL synthesis tools, reasoning high-level ab-

stractions such as functional blocks from unstructured or flattened netlists is extremely

challenging, since hierarchy and module information is lost during multi-level logic min-

imization and technology mapping, which is also complicated by functional blocks over-

lapping and gate sharing. The problem goes further due to the explosion in runtime

for large-scale BNs. Conventional reasoning approaches leverage structural analysis and

functional propagation. Structural approaches either adopt shape hashing based on cir-

cuit topology to find structurally similar wires to form word-level abstractions [265], or

rely on reference libraries to map sub-circuits with reference circuits [266]. Functional

approaches focus on identifying functionally equivalent gates and wires by cut enumera-

tion [267, 268]. The combination of structural and functional analysis [265, 267, 269] is

more prevalent for efficient word-level abstraction and propagation. Despite the achieved

success, the performance of these conventional approaches is restricted by limited scal-

ability and inefficient utilization of modern computing power: (1) structural

hashing is very time/memory-consuming for large BNs with billions of nodes; (2) func-

tional propagations by symbolic evaluation are solver-ready but extremely expensive,

in particular for bit-blasted non-linear arithmetic BNs; (3) all these algorithms do not

effectively utilize modern computing power due to the difficulty of parallelism.

Motivated by the limitations of conventional approaches and the potentials of GNNs

applied on circuit designs, we propose a graph learning-based symbolic reasoning frame-

work to reverse engineer functional blocks from gate-level netlists, namely Gamora,

which has high reasoning accuracy, strong scalability to BNs with billions of nodes,

and generalization capability from simple to complex designs. Gamora employs a

multi-task GNN to guarantee reasoning accuracy while simultaneously handling struc-

tural and functional information from BNs. Once well trained, Gamora becomes adept
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Figure 7.1: The inputs to Gamora are flattened gate-level netlists, with each node
as an AND gate and dashed edges as inverters. By encoding Boolean functional
information as node features, Gamora can simultaneously handle functional and
structural aggregation, analogous to functional propagation and structural hashing in
conventional reasoning but with strong scalability.

at generalizing to large-scale and complex BNs, leveraging the accelerated inference and

parallel processing offered by modern computing systems. We summarize our contribu-

tions as follows.

• Novel multi-task GNN for structure and function fusion. The message

passing mechanisms in GNNs enable simultaneous Boolean functional and struc-

tural aggregation, corresponding to the symbolic propagation and structural hashing

in conventional reasoning methods, as shown in Figure 7.1. The multi-task setting

allows knowledge sharing across different reasoning sub-tasks to guarantee high

reasoning accuracy.

• Billion-node scalability and parallelism. We develop domain-specific tech-

niques to compress node features, significantly reducing compute costs. The ex-

ploitation of graph learning draws better support from modern computing systems,

such as GPU deployment, for scalability to large BNs and parallel execution.

• Generalization capability. Unlike many ML-based approaches that are trained

with complex designs and infer on simpler ones, Gamora can easily generalize from

125



Graph Learning based Symbolic Reasoning for Large-Scale Boolean Networks Chapter 7

simple to complex BNs and handle the reasoning complexity introduced by more

advanced designs (such as Booth-encoded multipliers) and technology mapping.

• Evaluation. Regarding reasoning performance, Gamora reaches almost 100%

and over 97% reasoning accuracy for carry-save array (CSA) and Booth multipliers,

respectively; after technology mapping, the reasoning accuracy is still over 92%.

Regarding runtime and scalability, Gamora can perform reasoning for large BNs

with tens of millions of nodes/edges within one second, with a speedup of up to six

orders of magnitude compared to the logic synthesis tool ABC [159].

• Gamora is available at https://github.com/Yu-Utah/Gamora.

This chapter is organized as follows: Chapter 7.1 covers the basics of BNs, AIGs, and

word-level abstraction, as well as our motivations; Chapter 7.2 presents how multi-task

GNNs is applied in our proposed Gamora to imitate conventional symbolic reasoning;

Chapter 7.3 details experiment setup and evaluation on Gamora in terms of reasoning

accuracy, influence from design complexity, and runtime analysis; Chapter 7.4 concludes

this chapter.

7.1 Preliminary and Motivation

7.1.1 Boolean Networks and And-Inverter Graphs

BNs are well-studied discrete mathematical models with broad applications in chem-

istry, biology, circuit design, formal verification, and more. A BN consists of a discrete

set of binary variables, each of which is assigned a Boolean function taking inputs from

a subset of these variables. The explosive growth in the scale of BNs has brought up

increasing attention to analyzing their static and dynamic behaviors. For the purposes
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(a) AIG of XOR (b) XOR3: 3-input XOR (c) AIG of a full adder
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Figure 7.2: Netlists of XOR and a full adder. (a) AIG of XOR3 function. (b) XOR3
function: OUT9 = XOR3(IN1, IN2, IN3). (c) Full adder with a sum function (i.e.,
XOR3) and a carry-out function (i.e., MAJ3).

of synthesis and verification, a concise and uniform representation of BNs, consisting of

inverters and two-input AND-gates, known as AIGs, has found successful use in diverse

EDA tasks, since AIGs enable rewriting, simulation, technology mapping, placement,

and verification to share the same data structure [270]. In an AIG, each node has at

most two incoming edges; a node without incoming edges is a primary input (PI); pri-

mary outputs (POs) are denoted by special output nodes; each internal node represents

a two-input AND function. Based on De Morgan’s laws, any combinational BN can be

converted into an AIG [159] in a fast and scalable manner.

In AIGs, cut enumeration can be used to detect Boolean functions. A feasible cut of

node n is a set of nodes in the transitive fan-in cone of n, whose truth value assignments

completely determine the value of n. A cut is K-feasible if there are no more than K

inputs. Figure 7.2 depicts an example of reasoning XOR functions and full adders from

AIGs. In Figure 7.2(a), the AIG has a 3-feasible cut of node 9 and a 2-feasible cut of

node 6; after truth table computation, the functions of node 6 and node 9 are IN1⊕IN2

and IN1⊕IN2⊕IN3, respectively. Thus, as shown in Figure 7.2(b), node 6 is an XOR2

function, and node 9 is an XOR3 function. Figure 7.2(c) shows a full adder bitslice, with

the sum as an XOR function and the carry-out as a majority (MAJ) function. By pairing

an XOR3 with a MAJ3 with identical inputs, a full adder bitslice can be extracted, which
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is then aggregated for word-level abstraction.

7.1.2 Word-Level Abstraction

Word-level abstraction significantly reduces the complexity of large-scale BNs by

grouping wires into meaningful words and keeping useful information related to control

logic, which is widely applied in reasoning functional units from gate-level netlists [265,

267, 269]. Conventional word identification uses structural shape hashing and functional

bitslice aggregation. Structural shape hashing assigns each edge in the BN a shape,

which is defined as the directed graph constructed by the backward reachable nodes from

this edge within certain depth/steps. Functional bitslice aggregation adopts functional

matching to group functionally equivalent nodes and edges by cut enumeration. Typ-

ically, structural hashing and functional aggregation are iteratively propagated across

neighborhood nodes using symbolic evaluation [265, 267, 269]. However, for large-scale

BNs, structural hashing is memory-consuming; functional bitslice aggregation is not ef-

ficient due to the requirement of bit-blasting; the computation of symbolic evaluation

is also expensive. Motivated by the limited scalability and the difficulty of paral-

lelism, we propose to exploit graph learning and GPU acceleration for highly

scalable reasoning.

7.1.3 GNNs for Circuit Reverse Engineering

Since BNs and circuit netlists are naturally represented as graphs, GNNs can be lever-

aged to classify sub-circuit functionality from gate-level netlists [271], predict the func-

tionality of approximate circuits [272], analyze impacts of circuit rewriting on functional

operator detection [273], and predict boundaries of arithmetic blocks [274]. Promising

as they are, these approaches focus on graphs with tens of thousands of nodes, and con-
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duct training on complex designs and inference on relatively simpler ones, in which the

generalization capability from simple to complex designs is not well examined.

GNNs operate by propagating information along the edges of a given graph. The

propagation along edges extracts structural information from graphs, corresponding to

structural shape hashing in conventional reasoning; after encoding Boolean functionality

into node features, neighborhood aggregation is analogous to functional aggregation in

conventional reasoning. Thus, the inherent message-passing mechanism in GNNs en-

ables simultaneously handling structural and functional information. Motivated by the

analogy between GNN computation and conventional reasoning, we propose a

multi-task GNN for high-performance reasoning to imitate exact reasoning algo-

rithms, with strong generalization capability from simple to complex designs.

7.2 Proposed Approach

7.2.1 Overview

Figure 7.3(a) shows the overview of Gamora. The inputs are flattened gate-level

netlists in AIG format, without any micro-architectural or RTL information. These AIGs

are generated by the logic synthesis tool ABC [159]. The goal is to exploit a multi-task

GNN to reason high-level abstractions by performing node-level classification on AIGs,

after which functional blocks (e.g., adders) can be extracted based on the annotated

AIGs.

Case Study on Multipliers

Integer multipliers are indispensable to computationally intensive applications, such

as signal processing and cryptography applications. Recent years also witness the strong
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Figure 7.3: Overview of Gamora. (a) Gamora takes in flattened netlists in AIG
format and performs multi-task node classification to reason the Boolean function of
each node, after which the adder trees within multiplier netlists can be automatically
extracted to improve the efficiency of word-level abstraction. (b) AIG of a 3-bit CSA
multiplier after synthesis. (c) Annotated AIG with the Boolean function of each node,
using the ground truth provided by ABC. (d) Adder tree extracted based on the exact
reasoning, including three FAs and three HAs. (e) Adder tree extracted based on the
reasoning performed by Gamora.

demand for large integer multipliers in homomorphic encryption [275]. In general, formal

verification for multipliers is challenging, especially for structurally complex designs such

as Booth-encoded multipliers [260, 261, 276]. Symbolic computer algebra (SCA) has been

successfully employed to verify a variety of integer multipliers [260, 261, 269, 277, 278],

which relies heavily on detecting full adders (FAs) and half adders (HAs) in multiplier

netlists. The state-of-the-art implementation in ABC framework [269] develops a fast

algebraic rewriting approach to extracting adder trees from flattened multiplier netlists by

detecting pairs of XOR and MAJ functions, which can handle large bitwidth multipliers

(up to 2048-bit) but with extremely long runtime. Thus, targeting integer multipliers,

we leverage GNNs to identify XOR and MAJ functions to extract adders from flattened

netlists, which improves the efficiency of word-level abstraction from BNs and has strong
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scalability enabled by GPU acceleration.

7.2.2 Multi-Task Learning for Boolean Reasoning

Boolean reasoning requires gathering structural and functional information from neigh-

bor nodes, a process that can be imitated by the message-passing mechanism in GNNs.

The task of reasoning high-level abstractions from flattened netlists, i.e., pinpointing

adders from AIGs, involves a two-step procedure [265, 267, 269]: (1) detecting XOR/MAJ

functions to construct adders, and then (2) identifying their boundaries. Therefore, we

propose to apply multi-task learning (MTL) for Boolean reasoning to approach its na-

ture, and the knowledge sharing across sub-tasks provides higher reasoning precision.

Here details (1) how structural and functional information are fused in node embed-

dings, (2) how the two-step reasoning is formulated as a multi-task node classification,

and (3) the post-processing after performing reasoning on each node in AIGs.

Fusing Structural and Functional Information

We leverage the message propagation and neighborhood aggregation in GNNs to

generate the node embeddings of AIGs that simultaneously fuse structural and functional

information. First, the structural information is distilled by passing node embeddings

along edges that connect them. Second, the Boolean functional information can be

encoded in node features. For each node, there are three node features represented

in binary values denoting node types and Boolean functionality. The first node feature

indicates whether this node is a PI/PO or intermediate node (i.e., AND gate). The second

and the third node features indicate whether each input edge is inverted or not, such that

AIGs can be represented as homogeneous graphs without additional edge features. These

compressed node features not only encapsulate Boolean functionality of each node but
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also enable high compute and memory efficiency. Figure 7.3(b) shows the AIG of a 3-bit

CSA multiplier, in which the structural information is presented in the AIG topology

and the functional information is encoded in node features. For example, node 1 is a PI

with the feature vector [0, 0, 0]; node 7 is an internal node without negation on inputs,

so the feature vector is [1, 0, 0]; node 17 has two inputs inverted, with the feature vector

[1, 1, 1].

With the emphasis on generalization from simple to complex designs, the specific

model employed is GraphSAGE [39]. Given a GraphSAGE model with K layers, the

node embeddings propagated between different layers are computed as follows:

hkN (v) ← aggregatek({hk−1
u , ∀u ∈ N (v)});

hkv ← σ(Wk · concat(hk−1
v , hkN (v))).

(7.1)

Here, N (v) is the immediate neighborhood of node v; aggregatek and Wk are the ag-

gregation function and the weight matrix for layer k, respectively, where ∀k ∈ {1, ..., K}.

After stacking K layers, the structural and functional information within K-hop search

depth is fused in the embedding of each node.

Multi-Task Classification

We identify the Boolean function of each node by a multi-task node classification to

approach the nature of the problem: there are two steps involved in reasoning functional

blocks from unstructured AIGs. The first step detects XOR and MAJ functions from

AIGs, which will be used to construct adders. Since each XOR/MAJ function consists of

multiple nodes in AIGs, only the root nodes of these functions are labeled as XOR/MAJ

with other nodes marked as plain nodes. In addition to the exact XOR/MAJ functions,

negation-permutation-negation equivalent functions are also labeled as XOR/MAJ. The
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second step aims to automatically identify the boundaries of HAs and FAs, and thus

we label roots (i.e. the sum and the carry-out functions) and leaves of each adder.

Figure 7.3(c) shows a multi-label annotated AIG of a 3-bit multiplier, using the ground

truth provided by ABC. Notably, one node can have multiple labels. For example, node

20 is labeled with XOR and the root of an adder; node 17 is labeled with XOR.

The MTL not only follows the intuition of this two-step reasoning but also exploits

divide and conquer, since it is extremely hard for GNNs to reach high prediction accu-

racy with a single-task multi-label node classification. The employment of MTL enables

knowledge sharing across sub-tasks and improves sample efficiency during training, which

guarantees high reasoning performance. Specifically, the two-step reasoning is decoupled

into three simpler classification tasks using generated node embeddings: Task 1 classifies

the roots and leaves of adders; Task 2 and Task 3 detect XOR and MAJ nodes, respec-

tively. We use hard parameter sharing for MTL and the overall loss function L is shown

as follows:

L = α · `(ŷ1, y1) + β · `(ŷ2, y2) + γ · `(ŷ3, y3), (7.2)

in which ` is the negative log-likelihood between predictions (i.e., ŷ1, ŷ2, and ŷ3) and the

ground truth (i.e., y1, y2, and y3), and α, β, and γ are hyper-parameters to adjust the

importance of each task. In our implementation, α = 0.8 and β = γ = 1.

Adder Tree Extraction from Multi-Labeled Graphs

After performing the multi-task node classification, we can recognize XOR, MAJ,

and root nodes of adders. The XOR and MAJ pairs with identical inputs are matched

to construct adders. The conversion from Figure 7.3(c) to 7.3(d) depicts the adder tree

extraction. In Figure 7.3(c), the AIG has a set of XOR nodes X = {12, 17, 20, 24, 29,

33, 36, 41, 44} and a set of MAJ nodes M = {10, 22, 25, 27, 37, 45}. After removing the
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nodes that are not marked as adder roots, X = {12, 20, 24, 29, 36, 44}. Given X and

M, node 12 is XOR3(8, 9, 0) and node 10 is MAJ3(8, 9, 0), a three-input XOR/MAJ

function with node 8, node 9, and the constant zero as the inputs; node 20 is XOR3(10,

13, 14) and node 15 is MAJ3(10, 13, 14); this matching process continues until all six

pairs of XOR and MAJ are generated, which are three FAs and three HAs, as shown in

Figure 7.3(d).

Notably, Gamora adopts graph learning to mimic the exact reasoning. In Fig-

ure 7.3(e), one HA cannot be automatically extracted due to the misprediction of node

10. Our evaluation indicates only several nodes near the least significant bit are always

mispredicted because of their shallow neighborhood structure, which has a subtle impact

on the efficiency of algebraic rewriting. By fusing structural and functional information

into node embeddings and using MTL to approach the reasoning nature, Gamora is

expected to reach as close as possible to the exact reasoning precision.

7.3 Experiment

7.3.1 Experiment Setup

The AIG-based CSA and Booth multipliers are generated by the logic synthesis tool

ABC [159], with the ground truth provided by the adder tree extraction command [269].

We consider two technology libraries: (1) the reduced standard-cell library mcnc.genlib

(with gate input size <=3) from SIS distribution [279], and (2) ASAP 7nm technolo-

gies [170]. The GNN-based framework is implemented in Pytorch Geometric [150]. Two

GraphSAGE models are developed for simple and complex design netlists: (1) a shallow

4-layer model with the hidden channel of 32 (for CSA multipliers w/ and w/o simple

technology mapping), and (2) a deep 8-layer model with the hidden channel of 80 (for
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Booth multipliers and after complex technology mapping). The generated node embed-

dings are passed to a shared linear layer with size of 32 and the ReLU activation function,

followed by another linear transformation with softmax for each sub-task to perform node

classification. Experiments are performed on a Linux host with AMD EPYC 7742 64-

core CPUs and one NVIDIA A100 SXM 40GB GPU. In general, Gamora is trained

on small bitwidth multipliers (typically less than 32-bit) and evaluated on large bitwidth

multipliers (up to 2048-bit).

7.3.2 Evaluation on Reasoning Performance

We evaluate the reasoning performance from three aspects: (1) how functional and

structural information influences reasoning precision; (2) how design complexity affects

model selection and training; (3) how technology mapping complicates the reasoning

process and what domain insights can be derived to facilitate more accurate symbolic

reasoning on complex BNs.

Reasoning Precision Analysis

Figure 7.4 illustrates how the reasoning performance on CSA multipliers is affected by

different bitwidth multipliers for training, single/multi-task setting, and the employment

of functional information. First, the larger bitwidth multiplier is adopted for training,

the higher reasoning precision can be achieved, which typically converges after training

with 8-bit multipliers. The main reason is for CSA multipliers, an 8-bit multiplier is able

to provide a sufficient variety of structural properties, which can be learned and well gen-

eralized to larger multipliers by Gamora. Second, the multi-task setting conspicuously

outperforms the single-task counterpart, indicating that the knowledge sharing across

multiple tasks greatly benefits the prediction accuracy of every single task. Third, there
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Figure 7.4: Sensitivity analysis on CSA multipliers with respect to (1) the bitwidth of
multipliers for training (ranging from 2-bit to 10-bit), (2) single/multi-task, and (3)
whether employing functional information.

is always a boost of accuracy when employing functional information for prediction, since

identifying the role of each node relies on not only the surrounding structure but also the

function of itself and its neighbors. The synergy of structural and functional informa-

tion in Gamora is analogous to the combination of structural hashing and functional

propagation in conventional symbolic reasoning.

With the multi-task setting and simultaneously fusing structural and functional at-

tributes, Gamora achieves almost 100% prediction accuracy in symbolic reasoning for

CSA multipliers. It is noted that several nodes near the least significant bit are always

mispredicted due to their shallow neighborhood structure, as shown in Figure 7.3(e).

This means the HA at the least significant bit cannot be automatically extracted, but

can be easily corrected during post-processing.

The Impact of Design Complexity

We analyze the impact from design complexity by evaluating the reasoning perfor-

mance on radix-4 Booth-encoded multipliers, as shown in Figure 7.5. From the model

selection aspect, as Booth multipliers generally have more complex structures, deeper

models are necessary to characterize neighborhood structures and provide informative
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Figure 7.5: Evaluation on Booth multipliers with shallow and deep models.

node embeddings, ensuring high prediction accuracy. From the training aspect, larger

multipliers (i.e., up to 24-bit Booth multiplier) are required for training such that ade-

quate variety and representativeness of structural and functional characteristics are ex-

posed to and well captured by Gamora.

The Impact of Technology Mapping

It is a known challenge that technology mapping can increase the complexity of formal

reasoning on BNs [265, 267, 280]. Thus, we evaluate the performance of Gamora with

respect to different technology mapping options. The multipliers are mapped using the

ABC standard-cell mapper (i.e., using the command map). Figure 7.6 depicts the reason-

ing performance on CSA and Booth multipliers after simple technology mapping [279]

and ASAP 7nm technology mapping [170]. Specifically, the ASAP 7nm library contains

161 standard-cell gates, including multi-output cells such as the full adder cell, which

significantly increases the complexity and irregularity of post-mapping netlists.

In the simple technology mapping case, the models trained before technology map-

ping demonstrate good generalization capability, still reaching over 99% and 92% predic-
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Figure 7.6: Evaluation on CSA and Booth multipliers, with simple and complex
technology mapping.

tion accuracy for CSA and Booth multipliers, respectively; with retraining, comparable

reasoning performance to those on original multipliers is achieved with similar sizes of

training multipliers. The scenario is fairly different in the case of ASAP 7nm technology

mapping, which employs a relatively complex technology library: first, the generaliza-

tion capability is limited before and after technology mapping; second, the prediction

accuracy slightly drops even with retraining; third, it is necessary to use large training

multipliers to guarantee performance.

These observations imply several takeaways. First, the more complex technology

library is applied, the more difficult it is for learning-based symbolic reasoning, since

more complexity is involved both in AIG structures and the functionality of each node.

This also implicates attributes related to the technology library should be included in

node and edge features. Second, the capability to cope with intricate AIG netlists comes

at the expense of more comprehensive training data. One underlying assumption of

many supervised ML tasks is the training and testing data should be independent and

identically distributed, which is governed by a fundamental principle called empirical

risk minimization that provides theoretical performance bounds [281]. Thus, increasing

the size of training data can envelop more knowledge of interested statistical properties,

ensuring better generalization to testing data.
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7.3.3 Runtime and Scalability Analysis

In addition to the high reasoning performance, we demonstrate the superiority of

Gamora by analyzing its runtime and scalability.

Runtime Complexity Analysis

Basically, the runtime only relates to the scale of AIGs, i.e., the number of nodes |V |

and the number of edges |E|. Figure 7.7 compares the runtime of Gamora against ABC

on CSA multipliers: for large designs such as a 2048-bit CSA multiplier with around 34

million nodes and 67 million edges, Gamora attains a speedup of up to six orders of

magnitude. This shows not only the great efficiency in symbolic reasoning enabled by

graph learning but also the scalability to extremely large designs.
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Figure 7.8: Average runtime and GPU memory consumption with batched reasoning,
with the batch size denoted as bs. We currently focus on single-GPU implementation.

Batched Reasoning with Single GPU

Figure 7.8 shows further acceleration allowed by batched reasoning. Currently, we

focus on single GPU implementation, which limits the batch size by the GPU memory,

and leave multi-GPU implementation as our future work to support larger batch process-

ing. Even with a single GPU, there already reveal promising results and positive trends

benefiting from parallel execution and GPU acceleration.

7.4 Conclusion

Reasoning high-level abstractions from bit-blasted BNs has benefited functional ver-

ification, logic minimization, datapath synthesis, malicious logic identification, etc. In

this chapter, we propose a novel symbolic reasoning framework, Gamora, which exploits

GNNs to imitate structural hashing and functional aggregation in conventional reason-

ing approaches. Evaluation shows that (1) with the proposed multi-task GNN model,

Gamora offers high reasoning performance that reaches almost 100% and over 97%

accuracy for CSA and Booth-encoded multipliers, which is still over 92% in finding func-
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tional modules after complex technology mapping; (2) with GPU acceleration on graph

learning, Gamora has strong scalability to BNs with over 33 million nodes, with up to

six orders of magnitude speedups compared to the state-of-the-art implementation

in the ABC framework; (3) Gamora also demonstrates great generalization capa-

bility from simple to complex designs, such as from small to large bitwidth multipliers,

and from before to after technology mapping. Gamora reveals the great potential of

applying GNNs and GPU acceleration to speed up symbolic reasoning.

141



Chapter 8

Conclusion

8.1 Summary of Past and Current Contributions

The explosion of modern hardware complexity is challenging the optimality and scal-

ability of conventional hardware development methodologies and EDA tools, resulting in

long time-to-market as well as high capital and labor costs. Given the avidity toward pro-

ductivity boost, it is highly expected to embrace more intelligence. Aiming to foster the

virtuous cycle between ML and hardware, this dissertation focuses on ML-empowered

agile hardware development and investigates how to integrate intelligence into scal-

able and effective hardware development flows through synergistic research across algo-

rithms, architectures, and EDA. Specifically, the contributions can be briefly summarized

as follows.

• Fast and accurate design evaluation. Targeting HLS and logic synthesis, we

leverage the inherent graph structures of DFGs and circuits and explore how domain

knowledge can be integrated into different GNN models, so that we can reconcile

timeliness, accuracy, and generalization capability.
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– In Chapter 3, we answer why and how GNNs can be applied for HLS perfor-

mance predictions [23]. We formally formulate HLS performance predictions

using GNN, profile 14 state-of-the-art GNN models, and propose a knowledge-

infused hierarchical GNN model incorporating domain knowledge to balance

prediction accuracy and timeliness.

– In Chapter 4, we innovatively employ multi-modal graph learning that simulta-

neously handles spatio-temporal information from hardware designs and logic

synthesis flows to provide accurate and generalizable assessments of QoRs after

logic synthesis [24].

• Efficient and scalable design optimization. We exploit the power of deep

RL for faster, better, and more flexible optimization that can make the impossible

possible and impel hardware design and EDA forward into the future.

– In Chapter 5, we propose an end-to-end optimization framework, IronMan [25,

26], for fine-grained, flexible, and automated DSE in HLS. The primary goal is

to provide either optimized solutions under user-specified constraints or Pareto

trade-offs between different objectives (e.g., resource types and timing), which

has not been achieved by existing HLS tools or DSE engines.

– In Chapter 6, we design a DDPG-based method for workload placement op-

timization on MCMC systems [27], which takes into account the non-uniform

and hierarchical on/off-chip communication capabilities. This method is scal-

able to large systems with thousands of cores and can handle different con-

nection topologies without requiring topology-specific knowledge.

• High-quality and productive design verification. We use learning-based ap-

proaches to imitate conventional mechanisms so that modern computing power can
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be more effectively utilized to promote verification productivity.

– In Chapter 7, we showcase the effectiveness of using the message-passing

mechanism in GNN computation to emulate functional propagation and struc-

tural hashing in conventional symbolic reasoning methods [28], which achieves

strong scalability to BNs with over 33 million nodes with up to six orders of

magnitude speedups compared to the state-of-the-art implementation in the

ABC framework.

8.2 Future Research

Going forward, we envision three enablers that should be jointly investigated to pro-

pel no-human-in-the-loop design automation: advanced algorithms, autonomous design

methodology, and agile hardware development.

8.2.1 Advanced Algorithms: Specialized, Hierarchical, Explain-

able

Despite many victories of AI algorithms, the production-ready ML applications for

hardware development await more endeavors to make algorithms specialized for target

hardware problems. We will elaborate on several challenges that need to be addressed.

• Handling Imperfect Data. In hardware design or EDA tasks, the collected data are

often imperfect for ML models, in terms of data scarcity, implicit labeling, and in-

evitable noise. In the case of data scarcity, generative models can generate synthetic

data [282] that are artificial but realistic, which can be further incorporated with

out-of-distribution methods [283] to improve generalization capability from syn-

thetic to real data. In the case of lacking perfect labels, potential solutions are hy-
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brid supervision techniques, such as self-supervised learning [284], semi-supervised

learning [285], or combining supervised with unsupervised techniques [286]. In the

case of noisy data, different data cleaning approaches [287, 288] are beneficial to

improve model capability.

• Multi-Level Abstraction for Performance Modeling. Hardware development often

adopts a bottom-up or top-down procedure, implying the importance of hierarchical

structures for system-level characterization. Thus, advanced algorithms should

leverage information from different levels of systems in synergy, including but not

limited to multi-level abstraction and multi-modal representation, so that they can

have better expressiveness on system behaviors.

• Multi-Granularity Optimization. EDA essentially is highly constrained multi-objective

optimization. Many hardware system optimizations involve the participation of

multiple components. These all speak to the necessity of multi-granularity opti-

mization. Potential cures include hierarchical RL [289] that has flexible objective

specifications and capabilities to learn goal-directed behaviors in complex environ-

ments with sparse feedback, and multi-agent RL [290] with fully cooperative, fully

competitive, or mixed agents to facilitate versatile system optimization. Another

thrust to improve optimization efficiency is to bridge continuous and discrete opti-

mization, and our initial effort [291] using reparameterization tricks has shown its

effectiveness in combinatorial optimization.

• Explainable ML. Interpretation and explanation regarding model behaviors are im-

portant to expose potential problems during training, encode expert knowledge

into models, and ensure the fidelity of predictions. Thus, explainable ML tech-

niques [292, 293] are expected to provide more confidence, reliability, and security

for the decisions made in hardware design and verification.
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8.2.2 Autonomous Hardware Design Methodology: Holistic,

Heterogeneous, Scalable.

The scaling up and out of hardware systems feed into a much higher complexity of de-

sign automation, implying a rigid demand for a holistic and scalable design methodology

that is capable to handle heterogeneity.

• Holistic and Scalable Design and Optimization. Next-generation EDA tools should

target holistic design and provide system-wise compilation, synthesis, and optimiza-

tion, which requires the development of a hierarchical and unified IR to represent

heterogeneous hardware features and behaviors. MLIR [294] has demonstrated

promise in compilation for heterogeneous hardware and facilitating optimizers at

different levels of abstraction and across application domains and hardware targets.

For instance, CIRCT [295], which applies MLIR [294] and LLVM [296] development

methodology to the domain of hardware design tools, aims to build a reusable and

consistent infrastructure and enable new higher-level abstractions for hardware de-

sign. By developing a reusable and extensible IR, future EDA tools can achieve

scalability across various application scales, seamlessly integrate digital and analog

circuits, and effectively combine traditional and emerging technologies.

• Targeting System Heterogeneity. Design and development of computer architec-

tures often build upon earlier-generation architectures of similar purpose but in-

corporate next-generation hardware components that were unavailable in previous

generations. In addition to the heterogeneity of components from different genera-

tions, modern hardware platforms typically involve heterogeneous processing units,

such as CPU, GPU, FPGA, and ASIC. This heterogeneity is further compounded

by increasingly complex workloads, such as multi-modal ML [297]. Thus, we antic-
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ipate an intelligent design methodology capable of managing heterogeneity arising

from hardware, workloads, and their mapping [298, 299, 300].

8.2.3 Agile Hardware Development: Portable, Reusable, Ex-

tensible.

Even though hardware specialization is essential in satisfying diverse design speci-

fications (e.g., performance, robustness, power efficiency, environmental impact), non-

recurring engineering (NRE) cost [301], development time [5, 264], and reconfigurabil-

ity [302] remain challenging. Thus, the desired development flow should strike a balance

between exploitation and exploration, i.e., integrating a generic step that promotes porta-

bility with an objective-specific step that guarantees performance. In addition, modular

hardware blocks with well-defined interfaces will amortize NRE cost by higher reuse and

can be easily extended to different workloads. One promising solution is chiplet-based

hardware designs. A chiplet [303, 304] is a miniature IC with well-defined function-

ality and can be integrated with other chiplets using through silicon vias (TSVs) or

interposers [305, 306]. Multiple chiplets can be combined using a mix-and-match ap-

proach, similar to assembling LEGO blocks, which significantly reduces the system-level

design complexity. This also provides several advantages over a traditional system-on-

chip (SoC): for example, IP blocks can be reused and assembled into many different

hardware systems using existing and emerging integration technologies [307]; this mod-

ular approach also allows heterogeneous fabrication with different processes, materials,

and technology nodes [305].
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[63] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz, Efficiently
exploring architectural design spaces via predictive modeling, ACM SIGOPS
Operating Systems Review 40 (2006), no. 5 195–206.

[64] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra, Using predictivemodeling for
cross-program design space exploration in multicore systems, in Proceedings of the
International Conference on Parallel Architecture and Compilation Techniques,
pp. 327–338, IEEE, 2007.

[65] B. C. Lee and D. M. Brooks, Illustrative design space studies with
microarchitectural regression models, in Proceedings of the International
Symposium on High Performance Computer Architecture, pp. 340–351, IEEE,
2007.

[66] B. C. Lee, J. Collins, H. Wang, and D. Brooks, Cpr: Composable performance
regression for scalable multiprocessor models, in Proceedings of the International
Symposium on Microarchitecture, pp. 270–281, IEEE, 2008.

[67] K. Sangaiah, M. Hempstead, and B. Taskin, Uncore rpd: Rapid design space
exploration of the uncore via regression modeling, in Proceedings of the
International Conference on Computer-Aided Design, pp. 365–372, IEEE, 2015.

153



[68] D. Lo, T. Song, and G. E. Suh, Prediction-guided performance-energy trade-off for
interactive applications, in Proceedings of the International Symposium on
Microarchitecture, pp. 508–520, ACM, 2015.

[69] N. Mishra, H. Zhang, J. D. Lafferty, and H. Hoffmann, A probabilistic graphical
model-based approach for minimizing energy under performance constraints, ACM
SIGARCH Computer Architecture News 43 (2015), no. 1 267–281.

[70] N. Mishra, C. Imes, J. D. Lafferty, and H. Hoffmann, Caloree: Learning control
for predictable latency and low energy, in Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 184–198, 2018.

[71] Y. Ding, N. Mishra, and H. Hoffmann, Generative and multi-phase learning for
computer systems optimization, in Proceedings of the International Symposium on
Computer Architecture, pp. 39–52, ACM, 2019.
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[169] L. Amarú, P.-E. Gaillardon, and G. De Micheli, The epfl combinational benchmark
suite, in Proceedings of the International Workshop on Logic & Synthesis, 2015.

[170] X. Xu, N. Shah, A. Evans, S. Sinha, B. Cline, and G. Yeric, Standard cell library
design and optimization methodology for asap7 pdk, in Proceedings of the
International Conference on Computer-Aided Design, pp. 999–1004, IEEE, 2017.

[171] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et. al., Pytorch: An imperative style,
high-performance deep learning library, pp. 8026–8037, 2019.

162



[172] M. Liu, H. Gao, and S. Ji, Towards deeper graph neural networks, in Proceedings
of the International Conference on Knowledge Discovery & Data Mining,
pp. 338–348, 2020.

[173] M. H. Bateni, S. Behnezhad, M. Derakhshan, M. T. Hajiaghayi, R. Kiveris,
S. Lattanzi, and V. Mirrokni, Affinity clustering: hierarchical clustering at scale,
in Proceedings of the International Conference on Neural Information Processing
Systems, pp. 6867–6877, 2017.

[174] A. Holzinger, B. Malle, A. Saranti, and B. Pfeifer, Towards multi-modal
causability with graph neural networks enabling information fusion for explainable
ai, Information Fusion 71 (2021) 28–37.

[175] Y. Wei, X. Wang, L. Nie, X. He, R. Hong, and T.-S. Chua, Mmgcn: Multi-modal
graph convolution network for personalized recommendation of micro-video, in
Proceedings of the International Conference on Multimedia, pp. 1437–1445, 2019.

[176] T. Tong, K. Gray, Q. Gao, L. Chen, D. Rueckert, A. D. N. Initiative, et. al.,
Multi-modal classification of alzheimer’s disease using nonlinear graph fusion,
Pattern recognition 63 (2017) 171–181.

[177] Design compiler, Accessed: 2022. https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/dc-ultra.html.

[178] Genus synthesis solution, Accessed: 2022.
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/

synthesis/genus-synthesis-solution.html.

[179] Z. Hu, T. Chen, K.-W. Chang, and Y. Sun, Few-shot representation learning for
out-of-vocabulary words, in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

[180] S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf, Transfer learning in
natural language processing, in Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics: Tutorials,
pp. 15–18, 2019.

[181] Xilinx Vivado High-Level Synthesis. https://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html.

[182] Cadance Stratus High-Level Synthesis.
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/

synthesis/stratus-high-level-synthesis.html.

[183] J. Cong, P. Zhang, and Y. Zou, Optimizing memory hierarchy allocation with loop
transformations for high-level synthesis, in Proceedings of the Design Automation
Conference, pp. 1233–1238, 2012.

163

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html


[184] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong, Improving high level
synthesis optimization opportunity through polyhedral transformations, in
Proceedings of the International Symposium on Field Programmable Gate Arrays,
pp. 9–18, 2013.

[185] B. C. Schafer and Z. Wang, High-level synthesis design space exploration: Past,
present, and future, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 39 (2019), no. 10 2628–2639.

[186] J. d. F. Licht, M. Besta, S. Meierhans, and T. Hoefler, Transformations of
high-level synthesis codes for high-performance computing, IEEE Transactions on
Parallel and Distributed Systems 32 (2020), no. 5 1014–1029.

[187] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, Legup: high-level synthesis for fpga-based
processor/accelerator systems, in Proceedings of the International Symposium on
Field Programmable Gate Arrays, pp. 33–36, 2011.

[188] R. Nane, V.-M. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels, Dwarv
2.0: A cosy-based c-to-vhdl hardware compiler, in Proceedings of the International
Conference on Field Programmable Logic and Applications, pp. 619–622, IEEE,
2012.

[189] C. Pilato and F. Ferrandi, Bambu: A modular framework for the high level
synthesis of memory-intensive applications, in Proceedings of the International
Conference on Field programmable Logic and Applications, pp. 1–4, IEEE, 2013.

[190] Intel High Level Synthesis Compiler Pro Edition.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/

literature/hb/hls/mnl-hls-reference.pdf.

[191] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, Lin-analyzer: A high-level
performance analysis tool for fpga-based accelerators, in Proceedings of the Design
Automation Conference, pp. 1–6, IEEE, 2016.

[192] D. Liu and B. C. Schafer, Efficient and reliable high-level synthesis design space
explorer for fpgas, in Proceedings of the International Conference on Field
Programmable Logic and Applications, pp. 1–8, IEEE, 2016.

[193] Z. Wang and B. C. Schafer, Machine learning to set meta-heuristic specific
parameters for high-level synthesis design space exploration, in Proceedings of the
Design Automation Conference, pp. 1–6, IEEE, 2020.

[194] A. Mahapatra and B. C. Schafer, Machine-learning based simulated annealer
method for high level synthesis design space exploration, in Proceedings of the
Electronic System Level Synthesis Conference, pp. 1–6, IEEE, 2014.

164

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/mnl-hls-reference.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/mnl-hls-reference.pdf


[195] R. G. Kim, J. R. Doppa, and P. P. Pande, Machine learning for design space
exploration and optimization of manycore systems, in Proceedings of the
International Conference on Computer-Aided Design, pp. 1–6, IEEE, 2018.

[196] D. H. Ram, M. Bhuvaneswari, and S. Logesh, A novel evolutionary technique for
multi-objective power, area and delay optimization in high level synthesis of
datapaths, in Proceedings of the IEEE Computer Society Annual Symposium on
VLSI, pp. 290–295, 2011.

[197] B. C. Schafer, Parallel high-level synthesis design space exploration for behavioral
ips of exact latencies, ACM Transactions on Design Automation of Electronic
Systems 22 (2017), no. 4 1–20.

[198] B. C. Schafer, T. Takenaka, and K. Wakabayashi, Adaptive simulated annealer for
high level synthesis design space exploration, in Proceedings of the International
Symposium on VLSI Design, Automation and Test, pp. 106–109, IEEE, 2009.

[199] Y. Zhang, S. Wang, and G. Ji, A comprehensive survey on particle swarm
optimization algorithm and its applications, Mathematical Problems in
Engineering 2015 (2015).

[200] M. Zuluaga, A. Krause, G. Sergent, and M. Püschel, Active learning for
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