
UNIVERSITY OF CALIFORNIA SAN DIEGO

Policy Regularization in Model-Free Building Control
via Comprehensive Approaches

from Offline to Online Reinforcement Learning

A dissertation submitted in partial satisfaction of the

requirements for the degree
Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Hsin-Yu Liu

Committee in charge:

Professor Rajesh K. Gupta, Chair
Professor Sicun Gao
Professor Pat Pannuto
Professor Yuanyuan Shi

2024

Copyright

Hsin-Yu Liu, 2024

All rights reserved.

The dissertation of Hsin-Yu Liu is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2024

iii

DEDICATION

Dedicated to my new family for being with me through these difficult

days. And thank you to my previous family for giving me the strength to

face it all.

iv

EPIGRAPH

Wer ein Warum zu leben hat, erträgt fast jedes Wie.

—Friedrich Nietzsche

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgements . xiii

Vita . xvii

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Reinforcement Learning . 2
1.2 Building Control . 3
1.3 Organization . 4

Chapter 2 Safe HVAC Control via Batch Reinforcement Learning 6
2.1 Introduction . 6
2.2 Background and related work 9

2.2.1 Model Predictive Control 9
2.2.2 Reinforcement Learning in Building Control 10

2.3 Design of our framework . 14
2.3.1 BRL-based Control Framework Setup 14
2.3.2 Thermal Comfort Prediction 17
2.3.3 Batch Reinforcement Learning for Control 18

2.4 Evaluation . 21
2.4.1 Data Collection and Pre-processing 21
2.4.2 Thermal Comfort Prediction 23
2.4.3 Importance of Airflow Control 24
2.4.4 Preliminary Experiments 25
2.4.5 Baseline Methods . 26
2.4.6 Results and Analysis . 30
2.4.7 Sensitivity Analysis . 35
2.4.8 Generalization Experiments 39

2.5 Conclusion and Future Works 40

vi

Chapter 3 Open-source Building HVAC Control Dataset for Batch Reinforcement
Learning . 43
3.1 Introduction . 43
3.2 Related Work . 44

3.2.1 Building batch reinforcement learning 44
3.2.2 Batch reinforcement learning datasets 45

3.3 Approach and Results . 45
3.3.1 Real building buffers . 45
3.3.2 Simulated buffers . 48

3.4 Conclusion and Future Works 51

Chapter 4 Incorporating Existing Policies with Reinforcement Learning 55
4.1 Introduction . 55
4.2 Related Work . 58
4.3 Terminologies and Problem Formulation 61
4.4 Rule-based incorporated control regularization 63
4.5 Experiments . 67

4.5.1 Offline approach . 69
4.5.2 Online approach . 79

4.6 Conclusion and Future Works 81

Chapter 5 Adaptive Policy Regularization for Offline-to-Online Reinforcement
Learning in HVAC Control . 83
5.1 Introduction . 83
5.2 Related Work . 86

5.2.1 Building RL control . 86
5.2.2 Offline RL . 87
5.2.3 Offline-to-Online RL . 88

5.3 Problem Formulation . 91
5.3.1 Reinforcement Learning 91
5.3.2 Offline RL training . 91

5.4 Methodology . 92
5.4.1 Offline-to-Online RL Training via Weighted Increased Sim-

ple Moving Average Q-value 92
5.4.2 Adapting to Distribution Drift 99
5.4.3 Bootsrapped Ensemble Learning 100

5.5 Benchmark Experiments . 102
5.5.1 Experiment Setups . 102
5.5.2 Experiments . 104
5.5.3 Data Efficiency Experiment 108
5.5.4 Ablation Experiment . 112
5.5.5 Sensitivity Experiments 112
5.5.6 Adaptability Experiment 116

vii

5.6 Discussion and Conclusion . 118

Chapter 6 Future Work and Conclusion . 119
6.1 Future Work . 119
6.2 Conclusion . 121

Appendix A Safe HVAC Control via Batch Reinforcement Learning 123
A.1 Munchausen Regularizaion . 123

A.1.1 Motivation . 123
A.1.2 Methodology . 124
A.1.3 Experimental Setup and Result 127
A.1.4 Conclusion and Discussion 130
A.1.5 Experiments Details . 131
A.1.6 Experiment with safe minimum airflow 133

Appendix B Incorporating existing policies with Reinforcement Learning 140
B.1 Experiment details . 140
B.2 Environments, Learning curves, detailed scores, and additional

experiments . 141
B.3 Model parameters . 155

Appendix C Adaptive Policy Regularization for Offline-to-Online Reinforcement
Learning in HVAC Control . 161
C.1 RL Setup of Data Center Environment 161

Bibliography . 163

viii

LIST OF FIGURES

Figure 1.1: The agent-environment interaction in a Markov decision process. . . . 3

Figure 2.1: Overview of our batch reinforcement learning model selects actions that
co-optimize thermal comfort for occupants and energy consumption of
HVAC system. 15

Figure 2.2: Performance comparison of regression models for predicting thermal
comfort based on PMV . 17

Figure 2.3: Importance of feature to thermal comfort via mutual information re-
gression analysis. The features are clothing level (Clo), metabolic rate
(Met) indoor air temperature (Air temp.), mean radiant temperature
(MRT), relative humidity (RH), and air velocity (Air velo.). 25

Figure 2.4: Performance comparison with VAE simulators 27
Figure 2.5: Reward comparison of various algorithms 31
Figure 2.6: Outside Air Temperature (OAT) Comparison 33
Figure 2.7: Energy consumption and thermal comfort comparisons among different

control methods . 34
Figure 2.8: Thermal comfort achieved by our BCM model during evaluation 35
Figure 2.9: Effect of perturbation to selected actions 36
Figure 2.10: Effect of buffer data size . 37
Figure 2.11: Same Season vs. Entire Year . 37
Figure 2.12: Out-of-batch (OOB) vs In-batch . 38
Figure 2.13: Room Batch vs Floor Batch . 39

Figure 3.1: Flow of buffer generation and BRL training 48
Figure 3.2: Episode reward comparison in real building 49
Figure 3.3: Optimization objectives analysis in real building 50
Figure 3.4: Learning curves of BRL models that learn from expert buffers. Solid

line shows the averaged value across three random seeds per algorithm,
and the half-transparent region indicates the range with one standard
deviation. 53

Figure 4.1: The flow of RUBICON: We incorporate the RBC policy and selectively
update the actor with the policy (between RBC and behavioral) that
has a higher estimated mean Q-value. It is a unified method for both
online and offline approaches. 57

Figure 4.2: Our proposed method, RUBICON, incorporates RBC into RL to im-
prove stability in building HVAC control. It could be applied to both
online and offline approaches. 64

ix

Figure 4.3: Learning curves of RUBICON and the baseline method TD3+BC with
medium buffers. All learning curves are plotted with solid lines indi-
cating averaged values and the half-transparent region is one standard
deviation. 73

Figure 4.4: Learning curves of BRL models transferred from other weather types . 75
Figure 4.5: Learning curves of RUBICON learns from RBC buffers 76
Figure 4.6: Learning curves comparing RUBICON and TD3+BC to TD3+BC learns

from a mixture of 50% amount of transitions from the random buffer
and 50% amount of transitions from the RBC buffer in stochastic envi-
ronments . 76

Figure 4.7: Reward distribution in action spaces of hot-continuous environment
learns from medium buffer, from left to right: RUBICON (1.842/1.978/-
0.577), TD3+BC (1.534/1.332/-0.668), and buffer (0.908/0.915/-0.799);
tuples are the values of (action1 range/action2 range/reward mean). . 79

Figure 4.8: Learning curves comparing online RUBICON and TD3 80

Figure 5.1: Flow chart of offline-to-online RL: (1.) The offline model learns from
the existing dataset. (2.) After pre-training, the agent interacts with
the environment online. (3.) The generated transitions are saved in
the replay buffer(s) for further learning. (4.) The offline-to-online fine-
tuning improves the agent’s performance continuously. 86

Figure 5.2: The averaged Q-value of the batches sampled from the RBC buffer
during the training, the agent failed to improve its policy, thus the
mean Q-value converges. 93

Figure 5.3: The averaged Q-value of the batches sampled from the random buffer
during the training, the agent learns better policies, the mean Q-value
is increased over time. 94

Figure 5.4: Learning curves of O2O models learn from RBC buffers 106
Figure 5.5: Compare the optimization objectives by algorithms, WISMAQś opti-

mization objectives are normalized as 1, and the data shown is the
summation of all six tasks across 3 different initialization conditions. . 107

Figure 5.6: Offline training with varied max sizes of buffer. 109
Figure 5.7: Online training with varied max sizes of buffer. 110
Figure 5.8: RBC (Rule-Based Control) deployment. 111
Figure 5.9: Ablation experiment. 113
Figure 5.10: Sensitivity experiment on hyperparameter K, the number of ensemble

models. 114
Figure 5.11: Sensitivity experiment on hyperparameter ξ, the weight of the WIS-

MAQ loss term in actor training. 115
Figure 5.12: Scalability experiment with data center environment. 117

Figure A.1: Aggregate Metrics . 129
Figure A.2: Score distribution with linear/non-linear scaling 129

x

Figure A.3: Probabilities of improvement . 130
Figure A.4: Learning curves of Hopper-v3 . 130
Figure A.5: Learning curves of HalfCheetah-v3 . 130
Figure A.6: Learning curves of Walker2d-v3 . 131
Figure A.7: An example of historical thermal comfort trends in top-5 similar OAT

weeks . 134
Figure A.8: States in BCM evaluation week . 135
Figure A.9: Reward comparison (considering safe airflow) 136
Figure A.10: Energy, thermal comfort, and airflow comparison 136

Figure B.1: Learning curves of BRL models learn from expert buffers. 144
Figure B.2: Learning curves of BRL models learn from medium buffers. 145
Figure B.3: Learning curves of BRL models learn from random buffers 146
Figure B.4: Learning curves of behavioral model training, behavioral models are

trained with 500K time steps before generating buffers. 147
Figure B.5: Learning curves of CQL, CQL+RUBICON, and RUBICON learn from

random buffers . 148
Figure B.6: Learning curves of CQL, CQL+RUBICON, and RUBICON learn from

medium buffers . 149
Figure B.7: Learning curves of RUBICON learns from worsened RBC compared

with TD3+BC and RUBICON . 150
Figure B.8: Learning curves of online RUBICON hyperparameter optimization . . 151

xi

LIST OF TABLES

Table 3.1: Average normalized score over the final 5 evaluations and 3 random seeds. 54

Table 4.1: BRL methods benchmark . 72
Table 4.2: Data reduction experiment . 78
Table 4.3: Online RUBICON and TD3 comparison 80

Table 5.1: Comparison between RL approaches . 84
Table 5.2: Scores comparison between WISMAQ and other state-of-the-art method. 106
Table 5.3: Scores comparison of the scalability experiment. 116

Table A.1: Evaluated Algorithm Variants . 125
Table A.2: Hyperparameter Settings of evaluated methods 133

Table B.1: Hyperparameter experiment. 152
Table B.2: Transfer experiment . 152
Table B.3: RUBICON learns from buffers generated by RBC compared with RBC

buffer performance . 153
Table B.4: CQL+RUBICON learns from random buffer compared with CQL and

RUBICON . 153
Table B.5: Scores of CQL+RUBICON learns from medium buffer compared with

CQL and RUBICON . 154
Table B.6: Scores of TD3+BC learns from a mixture of random buffer and RBC

buffer compared with RUBICON learns from random buffer 154
Table B.7: Comparison between RUBICON, TD3+BC, and worsened RBCs 155
Table B.8: Non-selective experiment . 156
Table B.9: TD3, TD3+BC, and RUBICON hyperparameters 157
Table B.10: SAC/CQL hyperparameters . 158
Table B.11: DDPG hyperparameters . 159
Table B.12: BCQ/BC hyperparameters . 160

xii

ACKNOWLEDGEMENTS

I wish to express my profound gratitude to Professor Rajesh Gupta for his steadfast

support and unwavering trust throughout my academic journey. His gracious acceptance

of me as a transferred student, coupled with the invaluable freedom he bestowed upon me

to explore my research interests, has played a pivotal role in my academic development.

Professor Gupta’s provision of resources and opportunities for collaboration has not only

facilitated the advancement of my research but also enabled its recognition and promotion

within the academic domain. Under his exemplary leadership, I have found a nurturing

environment to learn, grow, and thrive, for which I am deeply thankful.

I would like to express my special gratitude to Dr. Bharathan Balaji for his significant

contributions to my doctoral research. He displays remarkable dedication in addition to

his extraordinary academic achievements. He would review every submission, scrutinizing

every word and providing suggestions of great insight with unwavering commitment. From

his mentorship, I learned how to deeply analyze research questions. He was not only my

mentor but also my friend, offering considerable personal support throughout my journey.

It was a privilege to work with him and I am honored to work with such a researcher in

my career.

My sincere appreciation to Dr. Dezhi Hong for building up my knowledge in the

building domain, the techniques for the design of experiments, and a detail-oriented work

style. This leads me to the domain of building research.

I extend my heartfelt gratitude to Professor Sicun Gao, whose course on ’Search and

xiii

Optimization’ not only ignited my passion for Reinforcement Learning but also steered my

academic journey toward Batch Reinforcement Learning, laying the groundwork for my

Ph.D. research.

Thanks to my Ph.D. committee members: Professor Sicun Gao, Pat Pannuto, and

Yuanyuan Shi. They provided me with valuable input and feedback on my research work

throughout my Ph.D. study.

To all my labmates and alumni: Xiaohan Fu for the support of BuildingDepot APIs,

Brick server, and all the data of our on-campus buildings. Xiyuan Zhang, Ranak Roy

Chowdhury, Shuheng Li, and Jiayun Zhang for all the smiles and memories, I have learned

a lot from your research. Also, Dr. Jason Beomkyu Koh and Dr. Dhiman Sengupta for

their guidance. Dr. Jeng-Hau Lin for all the advice.

To my cherished new family, whose unconditional love and support have been the quiet

yet formidable pillars through the countless hours of this Ph.D. journey: To my beloved

wife, Szu-Chieh Chen (Sylvia), whose patience and strength have been the sanctuary of

my aspirations. You have been my steadfast companion, nurturing our home with warmth

and understanding, even when academic pursuits demanded my presence elsewhere. To

my daughter, Tsai-Fei Liu (Phoenix), whose laughter and wonder have been a constant

reminder of the joy and curiosity that underpin the pursuit of knowledge. Your innocence

and vitality have been the light that guided me through moments of doubt and weariness.

And to our loyal companion, Bella, a golden female Pomeranian mixed with Chihuahua,

whose silent companionship and comforting presence offered solace during the long nights

of study and writing.

xiv

To my Father, Han-Sheng Liu (Hans), who has always served as a moral compass for

me; to my Mother, Jen-Tai Tang (Tracy), who sadly did not have the chance to witness

the culmination of my Ph.D. journey; to my sister, Hsin-Chieh Liu (Marcy), and to my

brother, Hsin-Kai Liu (Kevin), who were integral to my childhood—growing up alongside

me, creating cherished memories, and imparting valuable knowledge.

Together, you have all sacrificed in innumerable ways, often without recognition. It is

to you I owe the fruition of my dreams and the completion of this chapter. This journey

has been as much yours as it has been mine, and it is with a heart full of love and gratitude

that I dedicate this work to you. May this dissertation stand as a testament to the power

of love and sacrifice, and may it honor the silent yet profound contributions you have

made.

Chapter 2, in part, is a reprint of the material that appears in the proceeding of

ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS 2022). By

authors Hsin-Yu Liu, Bharathan Balaji, Sicun Gao, Rajesh Gupta, and Dezhi Hong with

the title - ”Safe HVAC control via batch reinforcement learning”. The dissertation author

is the primary investigator and author of this paper.

Chapter 3, in part, is a reprint of the material that appears in the proceeding of

the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities,

and Transportation (BuildSys’ 2022). Bu authors Hsin-Yu Liu, Xiaohan Fu, Bharathan

Balaji, Rajesh Gupta, and Dezhi Hong with the title - “B2RL: an open-source dataset for

building batch reinforcement learning.” The dissertation author is the primary investigator

and author of this paper.

xv

Chapter 4, in part, is a reprint of the material that appears in the proceeding of

the 14th ACM International Conference on Future Energy Systems (e-Energy 2023). By

authors Hsin-Yu Liu, Bharathan Balaji, Rajesh Gupta, and Dezhi Hong with the title

- “Rule-based Policy Regularization for Reinforcement Learning-based Building Control”

The dissertation author is the primary investigator and author of this paper.

Chapter 5, in part, is a reprint of the material that will be submitted in the future

by the authors Hsin-Yu Liu, Bharathan Balaji, Rajesh Gupta, and Dezhi Hong. with a

tentative title: “Policy Regular- ization for Offline-to-Online Reinforcement Learning in

HVAC Control”. The dissertation author is the primary investigator and author of this

paper.

Appendix A.1, in part, is a reprint of the material that appears in the Offline Reinforce-

ment Learning Workshop at Neural Information Processing Systems (NeurIPS Offline-RL

Work- shop 2021), vol. 2021, 2021. By author Hsin-Yu Liu, Bharathan Balaji, Rajesh

Gupta, and Dezhi Hong with the title - “Offline reinforcement learning with Munchausen

regularization.” The dissertation author is the primary investigator and author of this

paper.

xvi

VITA

2001-2005 Bachelor of Science in Physics, National Central University, Taiwan

2006-2008 Master of Science in Optoelectronics, National Taiwan University,
Taiwan

2018-2024 Doctor of Philosophy in Electrical Engineering (Computer Engineer-
ing), University of California San Diego

PUBLICATIONS

Hsin-Yu Liu, Bharathan Balaji, Rajesh Gupta, and Dezhi Hong. “Policy Regularization
for Offline-to-Online Reinforcement Learning in HVAC Control”, (Future submission).

Hsin-Yu Liu, Bharathan Balaji, Rajesh Gupta, and Dezhi Hong. “Rule-based Policy Reg-
ularization for Reinforcement Learning-based Building Control”, 14th ACM International
Conference on Future Energy Systems (e-Energy 2023), pp. 242-265. 2023.

Hsin-Yu Liu, Xiaohan Fu, Bharathan Balaji, Rajesh Gupta, and Dezhi Hong. “B2RL:
an open-source dataset for building batch reinforcement learning.”, 9th ACM Interna-
tional Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation
(BuildSys’ 2022), pp. 462-465. 2022.

Hsin-Yu Liu, Bharathan Balaji, Sicun Gao, Rajesh Gupta, and Dezhi Hong. “Safe HVAC
control via batch reinforcement learning.”, ACM/IEEE 13th International Conference on
Cyber-Physical Systems (ICCPS 2022), pp. 181-192. IEEE, 2022.

Hsin-Yu Liu, Bharathan Balaji, Rajesh Gupta, and Dezhi Hong. “Offline reinforcement
learning with Munchausen regularization.”, Offline Reinforcement Learning Workshop at
Neural Information Processing Systems (NeurIPS Offline-RL Workshop 2021), vol. 2021,
2021.

xvii

ABSTRACT OF THE DISSERTATION

Policy Regularization in Model-Free Building Control
via Comprehensive Approaches

from Offline to Online Reinforcement Learning

by

Hsin-Yu Liu

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California San Diego, 2024

Professor Rajesh K. Gupta, Chair

Reinforcement Learning (RL) has been extensively explored in building control, pri-

marily because the problems in this field can be effectively formulated as Markov Decision

Process (MDP) problems. Traditional approaches predominantly treat these challenges

as online RL problems, assuming that accurate simulators or environmental models are

already established and fine-tuned. However, creating and calibrating these models is not

only time-intensive and resource-heavy but also starting from a randomly initialized policy

xviii

could pose safety concerns.

Consequently, to address real-world issues, data-driven strategies are more practical

alternatives for learning agents. This is particularly relevant in contemporary building

management systems, where control and actuation data are systematically archived. Such

data can serve as a valuable foundation for prior knowledge and be stored as experience

replays, enabling agents to learn and adapt more effectively. Typically, a default building

control policy is crafted by domain experts leveraging their best-known practices. This

expert policy can serve as the expert demonstration, providing a behavioral guide that

informs and enhances the early performance of a learning agent, thereby minimizing op-

portunity costs.

Nevertheless, the policy learning by offline methods is limited due to the static dataset

the agent learns from. No further exploration in the state-action spaces is possible. Thus,

it is crucial to study the offline-to-online methods to improve the pre-trained offline models

with online interaction. The major challenge of offline-to-online methods is to overcome

the extrapolation errors in value estimation encountered during the distribution drift from

the static experience replay to the environments to be evaluated.

In this dissertation, we introduce studies encompassing a suite of data-driven ap-

proaches in building control, beginning with offline/batch reinforcement learning. Where

we adapt the Kullback-Leibler divergence to penalize the policy updates that deviate far

from their previous selves. Also, we build and make available the first open-source build-

ing control dataset for batch reinforcement learning benchmark. A standardized dataset

is crucial for batch reinforcement learning, Then, we explore a unified policy regulariza-

xix

tion method that integrates existing policies within both online and offline frameworks. It

provides robustness and stability to reinforcement learning. Finally, we extend our explo-

ration into offline-to-online reinforcement learning and address the challenge of adapting

the distribution drift with adaptive policy regularization to automatically tune the agent

learning. Collectively, this dissertation studies the policy regularization in model-free

building control with comprehensive approaches from offline to online reinforcement learn-

ing. With important conditions that will guide the design and operation of cyber-coupled

systems driven by sensory data.

xx

Chapter 1

Introduction

Buildings account for 30% of energy use worldwide, and approximately half of it is

ascribed to HVAC systems [115]. Control systems are critical to managing these. Rein-

forcement Learning (RL) has improved upon traditional control methods in increasing the

energy efficiency of HVAC systems. Most earlier works in the area are on RL learning in

an online paradigm [87, 126, 24, 38, 139, 146]. These online methods require configur-

ing complex thermal simulators to train the RL models by interacting with the learning

agent with the simulator during the training and evaluation before real-world deployment.

Simulators such as EnergyPlus [18] and TRNSYS [53] are used to simulate the thermal

states of a building. Designing and calibrating such models for a large building is time-

consuming and requires expertise. Furthermore, it is inefficient to transfer these models to

other buildings due to the differences in geometry, weather, materials, thermal dynamics

of the HVAC systems, and so forth. The alternative way is to use historical data-driven

thermal models. Even though it can take more than ten thousand time steps to reach the

1

performance of the rule-based control (RBC) policy [24].

In real-world scenarios, most large buildings are controlled via building management

systems (BMS), where thermal data can be stored in a database. With advances in sensing

technologies and machine learning, data-driven models have been more popular in recent

research. Batch reinforcement learning (BRL) or offline reinforcement learning, a data-

driven approach that learns from static datasets generated with unknown behavioral policy,

has not been explored widely in the building control community. BRL models are capable

of learning a better policy than the behavioral policy without accurate environment models

or simulation environments as oracles.

Nevertheless, due to the limited exploration, when the agent further explores the un-

charted state-action spaces, it might lead to inaccurate value estimation due to the lack

of support.

1.1 Reinforcement Learning

Reinforcement Learning problems can be formulated as a Markov Decision Process

(MDP), a sequential decision-making problem that aims to maximize the discounted accu-

mulative rewards. The MDP consists of a tuple: M = (S,A, p, r, γ), where S is the state

space, A is the action space, p is the transition dynamics. The next state St+1 ∼ p(·|St, At),

is decided by the current state and the action selected by a policy π(a|s), π : S → A either

in a stochastic or a deterministic fashion. The reward function R : S × A → R, r ∈ R is

mapped as a scalar, and the discount factor γ ∈ [0, 1). The agent’s goal is to optimize the

2

policy to maximize the discounted accumulated return Eπ[
∑∞

t=0 γ
trt] [109].

Agent

Environment

Action
𝐴!

𝑆!"#

𝑅!"#

Reward
𝑅!

State
𝑆!

Figure 1.1: The agent-environment interaction in a Markov decision process.

1.2 Building Control

Building control systems represent a critical juncture in the evolution of urban in-

frastructure, embodying the confluence of technological advancement and sustainable de-

velopment. In the era of smart cities and green buildings, the optimization of heating,

ventilation, and air conditioning (HVAC) systems transcends operational efficiency, it also

embodies a commitment to environmental stewardship, energy conservation, and the pro-

motion of health and well-being within indoor spaces. The significance of these systems

is underscored by their substantial energy footprint; HVAC systems account for approx-

imately 40% of energy consumption in commercial buildings [83], making them prime

targets for efficiency improvements.

Recent years have witnessed a paradigm shift in building control strategies, propelled

3

by the integration of Internet of Things (IoT) technologies and the advent of sophisticated

Machine Learning algorithms. This fusion of digital and physical domains offers unprece-

dented opportunities to enhance building automation systems, enabling them to learn from

and adapt to changing environmental conditions and occupant behaviors in real-time [147].

The potential of such intelligent systems to reduce energy consumption while improving

occupant comfort and health is immense, marking a significant step forward in the quest

for more sustainable and livable urban environments.

1.3 Organization

This dissertation is organized as follows: In Chapter 2, we present our work for de-

ploying the BRL agents in the real-world building HVAC control systems for the first time

in the domain. The details of the algorithm development are described in Appendix A.1,

where the algorithms are tested with the OpenAI [13] MuJoCo robotic control tasks.

Chapter 3, encloses the first open-source BRL dataset for building HVAC control -

B2RL, which includes one dataset extracted from the real-world sensing and actuation data

in the University of California - San Diego Computer Science and Engineering building.

And another one generated with a simulated environment with various weather conditions.

In Chapter 4, a practical method for incorporating existing policies with RL. For many

control and automation systems, there are existing policies whether they are model-based,

rule-based, or any other optimization methods. Most of them are more stable than deep-

RL methods. We take advantage of both the existing policy for its robustness and stability

4

and deep-RL for its scalability and learnability.

Chapter 5 transitions our focus from an offline to an online approach, aiming at the

continuous improvement of the agent. This is achieved through the automatic fine-tuning

of policy regularization, demonstrating the potential for further enhancements.

In Chapter 6, the dissertation concludes with a comprehensive discussion of the out-

comes of our research, reflections on the broader implications, and suggestions for future

directions in this field.

5

Chapter 2

Safe HVAC Control via Batch

Reinforcement Learning

2.1 Introduction

Buildings account for 28% of the global carbon emissions [115], and HVAC (heating,

ventilation, and air conditioning) systems account for the majority of building energy

consumption1. Modern data-driven algorithms have the potential to improve the energy

efficiency of traditional HVAC control algorithms. Here we focus on HVAC control in office

buildings.

An office building is typically divided into multiple thermal zones, each of which can

be controlled locally with a variable air volume unit. The control policy is based on sensor

measurements (temperature, humidity, CO2, airflow, etc) in the thermal zone. Rule-based

1https://www.eia.gov/energyexplained/use-of-energy/commercial-buildings.php

6

control (RBC) method is widely used to control the actuators [94], typically in con-

junction with proportional-integral-derivative (PID) controllers [63, 25]. Such controls are

interpretable but rely on experience and rules of thumb. It becomes challenging to develop

and maintain a fine-grained RBC policy for dynamic environments. RBC is also a reactive

algorithm as it changes the control settings based on the current measurements. We can

improve the control performance if we can forecast the thermal environment characteris-

tics.

We can predict thermal characteristics based on weather conditions, expected usage,

and thermal insulation properties. In model-based approaches, thermal states of the build-

ing are simulated with simplified linear models for quick updates, and methods such as

model predictive control (MPC) [10, 132, 5, 74, 85, 73] and fuzzy control [102, 15] are

used to improve upon RBC policies. However, based on heating/cooling physics, we know

that thermal evolution is non-linear with respect to indoor/outdoor conditions and de-

pends on conditions such as orientation with respect to the sun, use of blinds, and wall

insulation properties. Therefore, we can devise more accurate models to improve control

performance further. Simulators such as EnergyPlus [18] and TRNSYS [53] have been de-

signed to capture the thermal properties of a building. However, designing and calibrating

such models for a large building requires significant time and expertise. With advances

in sensing technologies and machine learning, data-driven models have become popular in

recent research.

Reinforcement learning (RL) methods learn via direct interaction with the environment

and thus have been studied extensively [40, 126, 136]. They are categorized into model-

7

based RL (MBRL) [23, 81] and model-free RL (MFRL) [146, 17, 38] algorithms. MBRL

requires the use of a simulator such as EnergyPlus [18], TRNSYS [53]. Without the

pre-training offline, their nature to take exploratory control actions can cause occupant

discomfort. MBRL relies on a thermal model learned from historical data, converges

faster than MFRL methods. However, even with MBRL, the initial policy is worse than

the existing control policy, and it can take weeks/months to improve and converge [24]. By

contrast, batch RL can learn directly from historical data. Previous studies have shown

that BRL methods can improve on existing policies [30] by exploiting the behavioral

policy to identify actions that maximize the reward over an episode with TD-error update

(Q-learning) while ensuring that the chosen actions do not deviate too far from the existing

policy so the value estimation is more accurate. Typically, there is a hyperparameter to

decide the learning trade-off between Q-learning or behavior cloning. Therefore, batch RL

is a more efficient method for deployment when historical data is available. We are the

first to explore the BRL deployment on real building HVAC control.

We design a BRL-based solution that effectively learns from available historical data

without requiring the use of a simulator or explicit modeling of the HVAC system. Our

framework guarantees safe system operations by avoiding random setpoint exploration

that could damage the equipment and/or make occupants uncomfortable.

Our main contributions are summarized as follows:

• We propose and develop our framework, a simulation-free control algorithm for energy

reduction and thermal comfort co-optimization. Our framework learns from existing

historical data only, without requiring a simulator or complex modeling of the space.

8

• Our method Batch Constrained Munchausen deep Q-learning outperforms state-of-the-

art BRL methods by penalizing policies that deviate too far away from the previous

policy. It outperforms existing controls from the first day of deployment.

• We compare our framework with several state-of-the-art BRL methods. Our framework

reduces energy consumption by 16.7% compared to the default control, which is 7.2%

improvement over the state-of-the-art, while keeping thermal comfort during the entire

evaluation period.

2.2 Background and related work

Our work on simulation-free framework for real-life multi-zone, multi-floor buildings

build up following previous works.

2.2.1 Model Predictive Control

MPC methods use a model to forecast the outdoor and indoor conditions and optimize

for a sequence of control actions that maximizes the given objective. MPC has been

studied by several prior works for HVAC control. Aswani et al. [5] use learning-based

MPC to control the room temperature to optimize energy consumption. Beltran et al.

[10] use occupancy prediction models derived from occupancy data traces and minimize

energy consumption while staying within the comfort bounds of the occupants. Maasoumy

et al. [74] propose a model-based hierarchical control strategy that balances comfort and

energy consumption. They linearize their thermal dynamics model around its operating

9

point and use an LQR supervisory controller that selects the optimal setpoints for the

lower level PID controllers. Privara et al. [85] interconnect building simulation software

and traditional identification methods to avoid the statistical problems with data gathered

from the real building. Winkler et al. [132] develop a data-driven gray-box model whose

parameters are learned from building operational data. Together with weather forecast

information, this data is fed into the framework to minimize energy costs while satisfying

user comfort constraints.

Overall, the known issues of MPC are that it requires an accurate dynamic model,

makes convexity assumptions, and the computation cost of computing each control decision

is high [9]. RL solutions have been shown to overcome these limitations and outperform

MPC methods [77], and the computation cost of a control decision is low as it only requires

a neural network inference.

2.2.2 Reinforcement Learning in Building Control

Online RL Methods

Zhang et al. [144] jointly optimize visual comfort, thermal comfort, and energy con-

sumption by training for ∼12K days in a simulator. OCTOPUS [23] co-optimizes HVAC,

lighting, blinds, and window systems and needs ∼3.5K days of training. Valladares et

al. [116] co-optimize thermal comfort and indoor air quality requiring ∼3K days of train-

ing. Nagarathinam et al. [77] train a multi-agent policy by taking into account water-

side chiller control, and reducing convergence time to 2 years (∼700 days) using domain

10

knowledge-based pruning. DeepComfort [38] uses DDPG [66] to co-optimize thermal com-

fort and energy consumption with 104 hour (∼417 days) for training.

MBBC [24] compares MBRL and MFRL methods with multi-zone control and shows

that at least 104 time steps are needed to converge. Zhang et al. [139] train in an online

fashion to control airflow and temperature. They also take ∼100 days to converge. All

prior works need a simulator or a data-driven model to predict the thermal dynamics.

Zhang et al. [146] use A3C [75] on real building deployment with model pre-trained on

a simulator. HVACLearn [81] proposes an RL-based occupant-centric controller (OCC)

for thermostats using tabular Q-Learning with EnergyPlus simulator. Raman et al. [87]

implement Zap-Q [22] with ϵ-greedy exploration and compare the model with MPC meth-

ods using EnergyPlus. Lu et al. [71] compare on-policy and off-policy RL models with

simulated air-conditioned buildings with data-driven models.

Online RL methods, either model-free or model-based, rely on exploration of the state-

action space to improve the control policy. Model-free approaches are particularly data

inefficient (months to years of convergence time), and therefore, require the use of a sim-

ulation model to learn a policy that can be practically deployed. But deploying such

policies to a real building requires careful calibration of the simulation model, which is

prohibitively time-consuming and expensive. Model-based methods are comparably data-

efficient and can use a thermal dynamics model trained with historical data. However,

even these methods require weeks to months of real-world interaction for convergence.

The initial control policy performance is considerably worse than the existing rule-based

policy [24, 77], and becomes a large impediment to adoption. To setup an EnergyPlus

11

model, we need building-specific information, such as materials used to construct the

building, that require consulting blueprints. Even after modeling with such details, a sep-

arate calibration step is required to ensure the accuracy of the model. Whereas for our

reward function model, we used standard heat transfer equations and already available

sensor data from the building management system. The reward function can be reused in

a new building, whereas EnergyPlus will require redoing the work again. Without a model

to simulate airflow, we use the readings and set points from the building management

system. These are standard data points available in modern buildings, and our method

can be reused as is in other buildings.

Offline RL Methods

Offline methods have not been explored much yet in the building controls domain.

GNU-RL [17] implements behavior cloning for HVAC control. In contrast to behavior

cloning [95], where the agent simply learns to copy the behavioral policy with an ML model,

the BRL method is able to learn from the existing data with Q-update and compensate

for the lack of diversity in the buffer by perturbing the selected action with a perturbation

network. BRL maximizes the values returned by selecting policy that improves upon the

existing policy, rather than imitating it.

Previously, Ruelens et al.’s works focus on electricity cost optimization [92], demand

response [91], and energy efficiency of heat pump [93] using fitted Q-iteration (FQI [89]).

Vazques et al. [118, 119] balance comfort and energy consumption of a heat pump using

FQI. Yang et al. [135] implement Batch Q-Learning for low exergy buildings. Our approach

12

is closer to Wei et al.’s work [128], using a modified Q-learning algorithm, where they clip

and shrink the reward value to control airflow for offline training. Unlike our method, the

experiments are done in simulators, do not control zone temperature setpoint, and only

consider temperature as a proxy for thermal comfort.

Algorithms such as FQI, Batch Q-learning, and Wei et al.’s DQN heuristic are all

off-policy algorithms. Fujimoto et al. [36] show that off-policy methods exacerbate the

extrapolation error in a completely offline setting. The errors occur because the Q-network

is trained on historical data but exploratory actions yield policies which are different from

the behavioral ones. They propose Batch Constrained Q-learning (BCQ) [36] which

restricts selected actions to be close to those in the historical data and outperforms prior

approaches. BCQ uses a Variational AutoEncoder (VAE) [51] to reconstruct the predicted

actions given current states according to existing data.

BCQ is designed for complete offline, off-policy learning to penalize policies that are

far from the behavioral policies in the replay buffer. We build upon the BCQ algorithm

to further constrain new policy to be close to the previous one. We enforce this constraint

through Kullback-Leibler (KL) divergence between the learned policy and historical pol-

icy [122]. We show that our algorithm performance is more stable than BCQ in our real

building evaluation.

We use the existing dataset as the prior experience, since the rules are made by domain

experts, its behavioral policy is safe cf. random initialized online policy. In this Chapter,

we focus on the performance of the algorithm in the initial days (one week) of deployment.

13

2.3 Design of our framework

2.3.1 BRL-based Control Framework Setup

As shown in Fig. 2.1, we first obtain historical data and process them into a replay buffer

containing the transition tuples. At each time step, the BRL model will randomly sample

a mini-batch from the replay buffer and train the target networks with the transitions

sampled. Periodically (according to the eval freq in Alg. 1), we evaluate the trained agent’s

policy (the select action function in Alg. 2) on real building zones to observe the states

from our system’s readings and calculate the reward. The average rewards over time are

shown in Fig. 2.5.

We use the episodic formulation as this is the standard procedure in BRL literature

[36, 70, 58]. In our formulation, the episode ends if the predicted thermal comfort is out

of the thermal comfort range, i.e. the absolute value larger than 0.5. Therefore, the agent

is trained for an arbitrarily long episode length as long as it does not impact comfort. If

we use a fixed episode length such as 24 hours, the agent will optimize for that period.

We use a time step of 9 minutes because that is the data-writing period for our building

management system. We choose the minimum possible time step to minimize system

response time and reduce any discomfort to occupants.

We represent the agent and its environment as a Markov Decision Process (MDP)

defined by a tuple, MB = (S,S ′,A, P, R, γ), where A is the action space in the batch B,

S is the state space, S ′
is the arriving state space where ∀s′ ∈ S ′ corresponds to s ∈ S at

a certain time step t such that s = st, s
′ = st+1. P (s′|s, a) is the transition distribution,

14

F
ig
u
re

2
.1

:
O

ve
rv

ie
w

of
ou

r
b

at
ch

re
in

fo
rc

em
en

t
le

ar
n

in
g

m
o
d

el
se

le
ct

s
ac

ti
on

s
th

at
co

-o
p

ti
m

iz
e

th
er

m
al

co
m

fo
rt

fo
r

o
cc

u
p

an
ts

an
d

en
er

gy
co

n
su

m
p

ti
on

of
H

V
A

C
sy

st
em

.

15

R(s, a) is the reward function, and γ ∈ [0, 1) is the discount factor. The goal of our BRL

model is to find an optimal policy π∗(s) = argmaxa s.t.(s,a)∈BQ
π
B(s, a), which maximizes

the expected accumulative discounted rewards.

More specifically, we model the following:

• State: We use the following attributes for the RL process to evaluate the policy: indoor

air temperature, actual supply airflow, outside air temperature, and humidity. These

states include the features needed for thermal comfort estimation sTCt and those that

represent the responses of actions as RL states sRLt .

• Action: We control two important parameters, namely, zone air temperature setpoint

(aZNTt) and actual supply airflow setpoint (aSupt). Both are in continuous space and the

action spaces are normalized in the range of [−1, 1].

• Environment : Real building HVAC zones across three different floors. Every room is a

single HVAC zone, and all these rooms are used as lab space and work office.

• Reward : We monitor the thermal states of the space as well as the thermal comfort

index predicted by a regression model, and then make control decisions with the actions

selected by the BRL model. Our reward function penalizes high HVAC energy use

and discourages a large absolute value of the thermal comfort index, which indicates

discomfort to occupants. Our reward function at time step t is:

Rt = −α|TCt| − βPt, (2.1)

where α, β are the weights balancing between different objectives and could be tuned to

meet specific goals, TCt is the thermal comfort index at time t, Pt is the HVAC power

16

consumption at time t. We compute Pt attributed to a thermal zone using heat transfer

equations [6]. The DRL agent co-optimizes HVAC energy reduction and occupants’

thermal comfort.

2.3.2 Thermal Comfort Prediction

To calculate the thermal comfort level for our reward function, we adopt the widely

used predicted mean vote (PMV) [27] measure as our thermal comfort index. In this

metric, there are degrees of satisfaction, ranging from −3 (cold) to 3 (hot), where PMV

within the range from −0.5 to 0.5 is considered thermal-comfortable.

We adopt the ASHRAE RP-884 thermal comfort data set [21] and train a simple

gradient boosting decision tree model [48] to predict the thermal comfort by taking the

current thermal states given by our building system in real-time. We show the evaluation

of the effectiveness in Fig. 2.2 with such a simple GBDT-based thermal comfort index.

Figure 2.2: Performance comparison of regression models for predicting thermal comfort

based on PMV

17

2.3.3 Batch Reinforcement Learning for Control

We take a BRL-based method, namely, batch-constrained deep Q-learning (BCQ) [36]

as our foundation and make improvements on it. BCQ is a pure offline, off-policy RL

method that avoids the extrapolation errors induced by the incorrect value estimation of

out-of-distribution actions selected out of the existing dataset.

As illustrated in Fig. 2.1, for each time step t, we obtain state information from the

sensors in the building. To only calculate the reward but not update the models. BCQ

first samples a mini-batch of data (the size of the mini-batch is set as a hyperparameter)

from the entire set of historical data. Then, it trains a parametric generative model Gω,

a conditional VAE on the batch to model the distribution by transforming an underlying

latent space. The encoder Eω1(s, a) takes a distribution of state-action pairs and outputs

the mean µ and standard deviation σ of a Gaussian distribution N (µ, σ). A latent vector

z sampled from the Gaussian is passed to the decoder Dω2(s, z) which outputs an action.

The loss function of VAE consists of two parts: reconstruction loss and the KL regular-

ization term λLKL.

Lrecon =
∑

(s,a)∈B

(Dω2(s, z)− a)2, z = µ+ σ · ϵ, ϵ ∼ N (0, 1) LKL = DKL(N (µ, σ)||N (0, 1)),

LV AE = Lrecon + λLKL.

VAE here aims to produce only actions that are similar to existing actions in the batch

given the current state. The purpose of the perturbation model ξϕ(s, a,Φ) is to increase

the diversity of seen actions, it adjusts the value of the selected action a in the range of

18

[−Φ,Φ], (where Φ is the max perturbation). It could compensate for the lack of diversity

in the batch data, as a trade-off of inaccurate value estimation. By adjusting the hyper-

parameters n and Φ, it could behave similarly to behavior cloning with n = 1 and Φ = 0,

or similarly to traditional Q-learning when n→∞ and Φ→ amax − amin.

ϕ← argmax
ϕ

∑
(s,a)∈B

Qθ1(s, a+ ξϕ(s, a,Φ)), a ∼ Gω(s).

At the core of BCQ is the value estimation networks, a pair of Q-networks Qθ1(s, a) and

Qθ2(s, a). By taking a weighted minimum between the two values as a learning target y for

both networks. On the other hand, for the actor-network, at first, n actions are sampled

with respect to the generative model, and then adjusted by the target perturbation model,

before being passed to each target Q-networks for updates:

y = r + γmax
ai

[
λ min
j=1,2

Qθ
′
j
(s′, ãi) + (1− λ) max

j=1,2
Qθ

′
j
(s′, ãi)

]
, (2.2)

where r is the reward, γ is the discount factor, λ is the minimum weighting in double-Q

learning, θj=1,2 are weights of the two critic Q-networks.

We propose an improvement on the BCQ algorithm, called Batch Constrained Mun-

chausen RL (BCM), that encourages the agent to update the policy close to the previous

one using a regularization term in the Q-update. With respect to other aspects, BCM

inherits BCQ’s characteristics and acts as an intermediate state of behavior cloning and

Q-learning.

The idea of the BCM algorithm is the following: we adopt the regularization term

in Munchausen RL (M-RL) [122] which penalizes the policies which deviate far from the

19

previous policy with Kullback-Leibler (KL) divergence [121, 56]. M-RL utilizes the current

policy as one of Q-update’s learning signals. KL(π1||π2) = ⟨π1, lnπ1 − ln π2⟩. The other

term added in M-RL is the entropy term which penalizes the policies that are too far away

from the uniform distribution, where H(π) = −⟨π, lnπ⟩. In offline settings, this term does

not help improve the Q-update since we cannot accurately estimate uniform policy if we

have only static data. We do not encourage exploration as the online mode in the original

M-RL settings by adding the entropy term. Our problem is focused on conservative and

safe policies exclusively selected from the batch with a small amount of perturbation. It

helps to avoid the lack of diversity within state-action visitation in the batch distribution.

y = r + αm

[
τm lnπθ̂(at|st)

]0
l0
+ γmax

ai

[
λ min

j=1,2
Qθ′

j
(s′, ãi) + (1− λ) max

j=1,2
Qθ′

j
(s′, ãi)

]
, (2.3)

where πθ̂ = softmax(
Qθ̂

τ
), the target Q after soft clipping in double Q-learning, αm is the

M-RL scaling parameter, τm is the entropy temperature parameter, and l0 is the clipping

value minimum since the log-policy term is not bounded and can cause numerical issues

if the policy becomes too close to deterministic. We replace τ ln π(a|s) by [τ ln π(a|s)]0l0 ,

where [·]yx is the clipping function. The other added term in the original M-RL algorithm

is the entropy term which encourages policies to be close to uniform distribution. We do

not use it as it is not applicable for offline settings [122]. Once we choose the action

using BCM, we adjust the corresponding setpoints through a building operating system

(BOS) [130, 55]. The environment reflects the real response of action applied with a time

delay d, so our framework waits for d to get data st from the sensors. Also, a PMV feature

vector PMVt is fed into the regression model for thermal comfort prediction. According

20

to the prediction of regression model TCt and the RL states st, we calculate the reward

using Eq.(3.1). We repeat this process until reaching the maximum number of time steps

T . Details of the HVAC control via BCM algorithm are described in Algorithm 1.

2.4 Evaluation

2.4.1 Data Collection and Pre-processing

The data we use from all the sensors and control points are recorded every 9 minutes via

a BOS (Building Operation System). We obtain data for an entire year, from the beginning

of July 2017 to the end of June 2018 of fifteen rooms across three different floors in a

building, the details of which are in the appendix. The batch for each floor, or the buffer,

contains around 200K transitions (2F:∼260K, 3F:∼193K, 4F:∼172K), and it might differ

from one to another due to varied system maintenance duration throughout the year. Since

the rooms on the same side of a floor often share similar thermal dynamics, we thus create

batch data for each floor to ensure that the replay buffer reflects each variable air volume

(VAV)’s thermal dynamics precisely. We set each room to its maximum occupancy, which

is obtained from our campus facility information management system, and in evaluation,

we assume full occupancy the entire time for the most strict condition. We could easily

modify the problem formulation by taking occupancy into account in both our policy and

reward function. The airflow CFM (cubic feet per minute) needed is just multiplied by

the number of people in the room. However, at this moment we have no occupancy sensor

data, so we assume the most strict condition of full capacity. We standardize our actions

21

Algorithm 1: HVAC control via our framework

Input : Batch data Bf for a certain floor f , time horizon T , floor set F ,

zone/room set Z, and delayed response time d, target network update

rate τ , mini-batch size b, max perturbation to selected actions Φ,

number of sampled actions n, minimum weighting λ, evaluation

frequency eval freq, M-RL scaling factor αm ∈ [0, 1], and entropy

temperature parameter τm

Output: Reward, next state, and action selected by BCM

Initialize: HVAC Environment Env, RL agent BCM

da = dim(a), ds = dim(s);

for f ∈ F do

BCMf = BCM(ds, da, γ, τ, λ, ϕ, αm, τm);

for z ∈ Z do

0 ← t;

while train iteration < T do

BCMf .train(Bf , b, n);

if t%eval freq == 0 then

szt = Envz.getThermalState(t);

TCz
t = Envz.getPredictedTC(szt);

azt = BCMf .select action(szt);

szt+1, r
z
t = Envz.step(azt , s

z
t , d);

t += 1 ;

22

in a batch to the range of [−1, 1] as a standard procedure in the RL setup. For each

action sample ai, it is converted to zi such that zi = (ai − µ)/s, where µ is mean, s is

the standard deviation of the batch. In the replay buffer, there are several main matrices

required: action A, state S, next state S ′, reward R (calculated with our thermal comfort

prediction model, power consumption, and RL states), index I (which records the indices

as time stamps), and episode terminal status N (it labels if an episode is terminated or

not—in our setting when the predicted thermal comfort metric does not satisfy the criteria,

i.e. |PMV | > 0.5, the episode is considered as terminated). To summarize, the batch data

is a set consisting of the above-mentioned matrices, i.e. B = {A,S,S ′,R, I,N}.

2.4.2 Thermal Comfort Prediction

We compare five different regression models for predicting thermal comfort, namely

Linear Regression (LR), Support Vector Regression (SVR), Bayesian Regression (BR),

Deep Neural Network (DNN), and Gradient Boosting (GB) (Fig. 2.2). The input features

of the models are zone air temperature, humidity, mean radiant temperature (MRT), air

velocity, metabolic rate (Met), and clothing insulation (Clo). We set the clothing level

as ”typical summer indoor clothing”. Metabolic rate is set as ”typing” reflecting the

most common activities where the zones evaluated are all student lab and office spaces.

There are in total 30650 data points with complete feature information in the ASHRAE

RP-884 thermal comfort data set [21] we adopted for evaluation. All models are trained

and tested with 10-fold cross-validation. Hyperparameter optimization is conducted via

either grid search or Bayesian optimization. According to Fig. 2.2, the best model is the

23

gradient boosting tree [48] with an MSE of 1.147, which supports our choice of GB-based

model to predict thermal comfort index for the RL reward function. It is reasonable

that the gradient boosting method outperforms the deep learning counterpart on tabular

data because of selection bias and hyperparameter optimization [103] The MSE metrics

reported are averaged with 3 runs for each model.

2.4.3 Importance of Airflow Control

Few prior works quantitatively study the importance of airflow control in maintaining

occupants’ thermal comfort. Almost all research focuses on temperature and humidity

control for occupants’ thermal comfort. Here, we empirically analyze how airflow impacts

thermal comfort based on the PMV (Predicted Mean Vote) features.

We conduct analysis via mutual information-based regression. Between two random

variables (X, Y), the dependency of these two variables, which is a non-negative value, is

calculated as:

I(X;Y) =

∫
y

∫
x

p(X,Y)(x, y)log

(
p(X,Y)(x, y)

pX(x)pY (y)

)
dx dy,

where p(X, Y) is the joint probability density function of X and Y , and pX , pY are the

corresponding marginal density functions. It is equal to zero if and only if two random

variables are independent, and higher values mean higher dependency [90]. Fig. 2.3 indi-

cates that air velocity is the second most important factor after air temperature and mean

radiant temperature (MRT) (here we approximate MRT with air temperature [20]). Thus,

by controlling zone air temperature and airflow (air velocity can be converted to airflow

rate with room area), we control the two most important features affecting occupants’

24

Figure 2.3: Importance of feature to thermal comfort via mutual information regression

analysis. The features are clothing level (Clo), metabolic rate (Met) indoor air temperature

(Air temp.), mean radiant temperature (MRT), relative humidity (RH), and air velocity

(Air velo.).

thermal comfort.

2.4.4 Preliminary Experiments

We first investigate how BRL methods are compared with online RL methods, we

compare these BRL methods with the state-of-the-art online RL methods: TD3 [34] and

DDPG [66]. Our approach is to build a data-driven simulator environment with two VAEs

(Fig. 2.4). The first one is for predicting the RL and thermal comfort states. The second

one is to predict the power/energy consumption. These two VAEs function as the thermal

states simulator.

25

We evaluate with 200 episodes and the evaluation frequency is every five time steps.

We run each algorithm with three randomly initialized initial conditions in the range of our

dataset. As we see in Fig. 2.4, the solid line is the average of these three runs, and the half-

transparent regions indicate the range of these runs. The results show that the performance

ranking among these BRL methods: PQL>BEAR>BCQ>BCM>DDPG>TD3.

While BRL methods reach a stable state, online RL methods TD3 and DDPG are

still exploring new policies, and thus yield a continuously declining performance in a short

period of time. These BRL methods (details of PQL and BEAR are elaborated in 2.4.5)

learn exclusively from the batch provide stable, and safe policies. The reason why per-

formance is constant is that in the simulation environment the responses of the system

are deterministic which is different from the real building environments. (Fig. 2.5) In real

building systems, the responses are stochastic.

2.4.5 Baseline Methods

State-of-the-art BRL Methods

After BCQ was proposed, there are several studies outperforming it in the OpenAI

Gym [13] simulation environments. We implement these methods as baselines to be com-

pared with BCM.

• Batch Constrained Deep Q-Learning (BCQ) [37]: BCQ is one of the pioneering

works of offline RL, it is an actor-critic method that incorporates a Variational

AutoEncoder (VAE) to reconstruct the selected action based on the current state.

26

0 25 50 75 100 125 150 175 200
Episode

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Re
wa

rd

HVAC Simulation Env.

BCQ
BCM

TD3
BEAR

PQL
DDPG

Figure 2.4: Performance comparison with VAE simulators

The key components of BCQ include:

– Perturbed Model: It uses a perturbed version of the policy to generate diverse

and realistic action samples.

– Action Selection: Actions are selected based on a combination of value estimates

and their likelihood under the behavior policy.

– Action Conditioning: The policy is trained to output actions conditioned on

the state and a latent variable, encouraging exploration within the batch dis-

tribution.

• TD3 (Twin Delayed Deep Deterministic Policy Gradient) The TD3 (Twin Delayed

Deep Deterministic Policy Gradient) algorithm enhances the DDPG (Deep Deter-

27

ministic Policy Gradient) method to address its inherent challenges such as overes-

timation bias and training instability. TD3 introduces three main improvements to

stabilize and improve performance. First, it uses a pair of critics (twin critics) to

provide more accurate value estimates by taking the minimum value between the

two, which reduces overestimation bias. Second, it delays the policy updates in com-

parison to the critic updates, ensuring that the critics are better trained before the

policy is updated, which helps in stabilizing the training process. Third, it adds noise

to the target action during value estimation to smooth the value function and pre-

vent the policy from overfitting to specific actions. These enhancements make TD3

more robust and efficient, resulting in superior performance compared to DDPG in

various continuous action space environments.

• DDPG (Deep Deterministic Policy Gradient) The DDPG (Deep Deterministic Policy

Gradient) algorithm is an actor-critic method specifically designed for environments

with continuous action spaces. In DDPG, the actor network outputs determinis-

tic actions directly, while the critic network evaluates these actions. The actor is

trained using the deterministic policy gradient, which is derived from the critic’s Q-

values. DDPG uses experience replay to break the correlation between consecutive

experiences and stabilize training, as well as a target network to reduce the risk of

divergence by providing a stable target for the critic network. While DDPG has

shown strong performance in various tasks, it suffers from overestimation bias and

instability during training, which led to the development of more advanced methods

28

like TD3 to address these shortcomings.

• Bootstrapping Error Accumulation Reduction (BEAR) [58]: BEAR identifies boot-

strapping error as a key source of BRL instability. It is due to the bootstrapping of

actions that lie outside of the training data distribution. The algorithm mitigates

the out-of-distribution action selection by searching over the set of policies that is

akin to the behavior policy. BEAR’s ultimate goal is to search over the set of poli-

cies Π, which shares the same set of values that the random variable can take on as

the behavior policy. Its performance is outstanding with the medium-quality static

dataset (medium-quality means by training an agent with half the amount of time

steps cf. expert RL agent/human expert or when the agent is trained to yield half

the average return cf. the expert agent).

• Pessimistic Q-Learning (PQL) [70]: While BRL yields a new policy other than those

in the batch, it might visit states and actions that are outside the distribution of the

batch data. In addition, function approximation with a limited number of samples

leads to overly optimistic estimates. PQL thus uses pessimistic value estimates in the

low-data regions in the Bellman optimality equation as well as the evaluation back-

up. It can yield more adaptive and stronger guarantees when the concentrability

assumption does not hold. PQL learns from policies that satisfy a bounded density

ratio assumption akin to the on-policy policy gradient methods. The approach of

PQL to improve from BCQ’s architecture is that they add a state-VAE to predict the

arriving state given the current state-action pair, filtering state-action distribution

29

µ̃(s, a) instead of µ̃(s|a). The filtration is implemented by setting a hyperparameter b

as the 2nd percentile of the state-VAE Evidence Lower Bound (ELBO). If the ELBO

is larger than b then Q-update is executed, otherwise, it is not executed.

Comparison Methodology

We run each algorithm in a single room on each floor in the same week so that outside

air temperature (OAT) is the same. For instance, in one week we run our BCM in rooms

in the same stack on different floors, e.g. 2144, 3144, and 4144, and at the same time a

different BRL algorithm, e.g. BEAR, is running in rooms in a different adjacent stack,

say, 2146, 3146, and 4146. In each room, we run the algorithm for 1, 000 time steps,

which is about one week. To reduce performance variations, we evaluate each algorithm in

three different rooms (one room from each floor: 2F, 3F, and 4F). These rooms have the

same functionality (lab or office spaces) and are of roughly the same size and occupancy

capacity. The entire evaluation time of all the experiments is from September 28th to

October 19th, 2021.

Appendix A.1.5 lists the hyperparameters for each method.

2.4.6 Results and Analysis

Reward Comparison

Fig. 2.5 shows the evaluation results of each algorithm, where each solid line is the

average reward of all runs for the same method; semi-transparent bands represent the range

30

Figure 2.5: Reward comparison of various algorithms

of all runs for a particular algorithm. And gray dotted vertical lines indicate 00:00AM of

each day. The horizontal black dotted line is the average reward in the buffer. It shows

that BCM outperforms other methods by providing a relatively stable learning curve.

PQL constrains the Bellman update over state-action pairs that are sufficiently covered

by the conditional probability of action given state when generating the data. It adds

a state-VAE and a statistical filtration over BCQ’s architecture with pessimistic value

approximation, which might overkill near-optimal policy that is without enough visitation,

however, as time evolves, PQL gradually learns better. BEAR is only guaranteed to

outperform BCQ on medium-quality data sets collected from a partially trained policy – a

middle ground between optimal policy and random policy. However, in our case, the replay

31

buffers are closer to the data generated with expert policy. This explains the outcomes in

a reasonable way. BCQ, as an ablation version of our BCM algorithm, yields a comparable

performance as BCM but fails to keep a stable outcome due to the lack of a strong learning

signal.

The comparison between algorithms in our experiments is distinct from the results

shown in the original papers, where PQL outperforms BCQ and BEAR in two out of

the three simulated environments. By contrast, on our real building HVAC system, BCQ

provides a more stable and continuously improving performance than the other two BRL

methods. This is because all those experiments were conducted in simulation environments

where data are effectively unlimited, consequences for poor actions are non-existent, and

system dynamics are clean and often deterministic [26]. However, in real-world problems,

systems are stochastic and non-stationary. It is not guaranteed that these algorithms

would behave the same or similar to simulated cases in these settings.

Energy Consumption and Thermal Comfort Comparison

Outside Air Temperature (OAT) is a key factor affecting zone temperature; therefore,

it affects both thermal comfort and energy usage of the HVAC system. It is thus reasonable

to compare energy consumption during baseline time periods with the most similar OAT

trend to the period during which these BRL methods are evaluated. To do so, we adopt

Dynamic Time Warping (DTW) [12] to find historical weeks with similar OATs, as DTW

is a widely used method to measure the similarity of time-series data of different lengths.

In addition to considering the “shape” of historical OAT, we also consider the mean OAT

32

Figure 2.6: Outside Air Temperature (OAT) Comparison

difference between our experiment time period and historical weeks. In summary, we find

historical time periods whose OAT trend is similar and with close average weekly OAT

to our experiment week. Fig. 2.62 shows an example of historical weeks found using the

above metrics. In this figure, a tuple of (min, max) OAT is labeled on top of each week’s

OAT data.

Once we have the top-5 weeks with the most similar OAT trend to our experiment

period, we compare all methods and estimate energy consumption and thermal comfort.

In Fig. 2.7, we normalize the historical energy use to one as reference. BCM consumes

2We find the top-5 most similar weeks regarding OAT to our experiment week (last figure) for evaluating
energy consumption and thermal comfort.

33

Figure 2.7: Energy consumption and thermal comfort comparisons among different con-

trol methods

the least energy compared with other methods. A 16.7% of energy consumption reduction

is achieved, and BCQ also outperforms RBC by 9.5%. On the other hand, the occupants’

thermal comforts are shown in real average absolute values. The standard deviations

(marked as error bars) of all BRL methods are smaller than their historical counterparts.

We also examine the thermal comfort during the entire time period for every experiment

and keep track of changes and violations as time evolves. Fig. 2.8 is an example showing

that BCM maintains thermal comfort level persistently during the entire evaluation time

period.

34

Figure 2.8: Thermal comfort achieved by our BCM model during evaluation

2.4.7 Sensitivity Analysis

Perturbation to Action

In our main evaluation, we used Φ = 0.05, which is the parameter controlling the

degree of perturbation applied to selected actions. To inspect how perturbation impacts

the performance of BCM, we evaluate two different values of 0.1 and 0.2 for Φ. The result

in Fig. 2.9 indicates that for Φ = 0.1, on average, does not yield a higher reward than

Φ = 0.05. For Φ = 0.2, it cannot learn efficiently until around 700 time steps due to too

large the range of action spaces to select from. In our buffer, there is enough diversity

since it is extracted with an entire year of data. Thus, we choose Φ = 0.05 in our main

experiment.

35

0 200 400 600
Time steps

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Re
wa

rd

=0.05
=0.1
=0.2

Figure 2.9: Effect of perturbation to selected actions

Amount of Data

We randomly sample data points by a fraction of { 1
10
, 1
100
, 1
1000
} and evaluate rooms on

the same floor in the same week to observe the impact. Fig. 2.10 shows the information

loss from smaller buffer data. E.g. for the 1
1000

one, it hardly reaches the average of the

original buffer. For the 1
10

and 1
100

cases, they show comparable performances but have

difficulties being consistent.

Diversity of Batch Data

Originally, we use the thermal states of a set of rooms/zones from an entire year as

our batch data. Intuitively, a replay buffer containing data from the same season as our

evaluation period might be more suitable because of the similar seasonal weather condition.

36

0 100 200 300 400 500 600 700
Time steps

4

3

2

1

0

Re
wa

rd

Div. by 1
Div. by 10
Div. by 100
Div. by 1000

Figure 2.10: Effect of buffer data size

0 100 200 300 400 500 600 700
Time steps

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Re
wa

rd

Entire year
Same season

Figure 2.11: Same Season vs. Entire Year

37

0 100 200 300 400 500 600 700
Time steps

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Re
wa

rd

In-batch
Out-of-batch

Figure 2.12: Out-of-batch (OOB) vs In-batch

Thus, we use only the data from the same season as an ablation.

Fig. 2.11 shows that a batch of the entire year’s data produces better performance

than only using the same season. This is becoming a narrower distribution of state-action

visitation in a single season cannot update the Q-value as accurately as an entire year’s

data could. Incorrect Q-value estimation would lead to a lower return. In summary, it is

essential to ensure enough state-action visitation diversity in the batch data, in order to

estimate the value more accurately.

38

0 100 200 300 400 500 600 700
Time steps

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Re
wa

rd

Floor buffer
Room buffer

Figure 2.13: Room Batch vs Floor Batch

2.4.8 Generalization Experiments

In-batch/Out-of-batch Experiment

To examine the generalization of the BRL model, we test the learned policy on rooms

where no data exist in the batch. Fig. 2.12 shows that out-of-batch (OOB) rooms cannot

select proper actions to compensate for the OAT fluctuation during the week. The reward

curves follow the OAT trend periodically, with clear peaks and valleys. This is reasonable

since different zones might respond differently under the same VAV control action, due to

the thermal dynamics in the HVAC and distance from VAV to zones.

39

Room-specific/Floor-specific Experiment

We validate if a room-specific policy is needed. For this, we use room-specific batch

data as our expert policy and evaluate these same rooms. In Fig. 2.13 we observe that

although both floor and room models yield consistent outcomes above the average. It is

better to use a specific room buffer for a better fit of the room/zone thermal dynamics.

2.5 Conclusion and Future Works

Our simulator-free, multi-zone, BRL-based framework uses existing data as prior knowl-

edge to learn the optimal policy without setting up complex, parameterized simulators. It

saves energy compared with the default rule-based control method and maintains thermal

comfort. To the best of our knowledge, our work is the first to improve and implement

state-of-the-art BRL methods on real building HVAC control. We hope our research en-

courages domain experts to adopt BRL for real-world problems.

To further improve our control framework, we will update our building operation system

to achieve a more frequent data writing rate. This way, we could train the model for the

same number of time steps in a shorter time, hereby faster convergence of model. In

addition, we will include rooms of different functionality, e.g. conference rooms, individual

offices, and study areas, in our evaluation to create a more generalized model for HVAC

control. Also, we would expand the action spaces by including chilling system control and

economizers for more comprehensive optimization.

For methodology improvement, we plan to further investigate model-based method in

40

offline mode, which uses dynamic models to generate a model buffer, and then the model

buffer is also used to update the BRL model.

Chapter 2, in part, is a reprint of the material that appears in the proceeding of

ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS 2022). By

authors Hsin-Yu Liu, Bharathan Balaji, Sicun Gao, Rajesh Gupta, and Dezhi Hong with

the title - ”Safe HVAC control via batch reinforcement learning”. The dissertation author

is the primary investigator and author of this paper.

41

Algorithm 2: BCM training algorithm

Input : Batch data Bf for a certain floor f , target network update rate τ ,

mini-batch size N , max perturbation to selected actions Φ, number of

sampled actions n, minimum weighting λ, evaluation frequency

eval freq, M-RL scaling parameter αm, and entropy temperature

parameter τm

Output: Updated target networks

Initialize: RL agent BCM, Q networks Qθ1 , Qθ2 , VAE generative network

Gω = {Eω1 , Dω2}, perturbation network ξϕ, random parameter ω, ϕ, θ1, θ2, and

target networks Qθ
′
1
, Qθ

′
2
, ξϕ′ with θ

′
1 ← θ1, θ

′
2 ← θ2, ϕ

′ ← ϕ

for t← 0 to T do

Sample mini-batch N transitions (s, a, r, s′) from Bf ;

µ, σ = Eω1(s, a), ã = Dω2(s, z), z ∼ N (µ, σ)

ω ← argminω

Sample n actions: {ai ∼ Gω(s′)}ni=1;

Perturb each action: {ai = ai + ξϕ(s′, ai,Φ)}ni=1;

Set value target y (Eqn.2.3);

θ ← argminθ;

ϕ← argmaxϕQθ1(s, a+ ξϕ(s, a,Φ)), a ∼ Gω(s);

Update target networks: θ
′
i ← τθ + (1− τ)θ

′
i;

ϕ
′ ← τϕ+ (1− τ)ϕ

′
;

42

Chapter 3

Open-source Building HVAC Control

Dataset for Batch Reinforcement

Learning

3.1 Introduction

Reinforcement learning (RL) is widely studied in the building research area. Most

studies focus on RL learning in an online paradigm [87, 126, 24, 38, 139, 146], assuming

there is a simulation environment for RL models to interact with during training and

evaluation stages before real-world deployment. Simulators such as EnergyPlus [18] and

TRNSYS [53] are used to simulate the thermal states of a building. However, designing

and calibrating such models for a large building is time-consuming and requires expertise.

In real-world scenarios, most large buildings are controlled via building management

43

systems (BMS), where thermal data can be stored in the database. With advances in

sensing technologies and machine learning, data-driven models have been more popular

in recent research. Batch reinforcement learning, a data-driven approach that learns only

from a fixed dataset generated with unknown behavioral policy, has not been explored

widely in the building control community. BRL models are capable of learning the opti-

mal policy without accurate environment models or simulation environments as oracles. In

our study, we open-source both our dataset (https://github.com/HYDesmondLiu/B2RL)

extracted from real building as well as the data generated with Sinergym [47], a building

RL simulation environment which integrates EnegryPlus and BCVTB [131] with OpenAI

Gym [13] interface. Furthermore, we experiment with several state-of-the-art BRL meth-

ods. The experimental results could be re-used as benchmarks for algorithm comparison.

3.2 Related Work

3.2.1 Building batch reinforcement learning

Previously, several studies implement fitted Q-iteration (FQI) and batch Q-learning [118,

92, 91, 135]. However, FQI and batch Q-learning, are based on pure off-policy algorithms.

Fujimoto et al. [23] show that off-policy methods exacerbate the extrapolation error in a

pure offline setting. These errors are attributed to Q-network training on historical data

but exploratory actions yield policies that are different from the behavioral ones.

Recently, several studies related to building deep BRL research have emerged. Zhang

et al. [140] apply CQL [59] on the CityLearn [120] testbed as simulator. We have

44

https://github.com/HYDesmondLiu/B2RL

outlined in the previous Chapter that we incorporate a Kullback-Leibler term in Q-update

to penalize policies that are far from the previous one to improve from state-of-the-art

BRL algorithm and deploy in real environments without setting up simulators.

3.2.2 Batch reinforcement learning datasets

As of this writing, D4RL [31] is the only open-source BRL dataset. The authors have

generated various robotic control datasets. In our study, we open-source two building

datasets, one contains real building buffers extracted from our building database with

sensor readings, setpoints control history, and the estimated energy consumption calculated

by Zonepac [6]. Then, we process them as Markov Decision Process (MDP) tuples. The

other dataset is from a set of buffers that contain different qualities of transitions generated

by pre-trained behavioral agents with simulation environments.

3.3 Approach and Results

3.3.1 Real building buffers

Data acquisition

The real building buffer is extracted from the readings of student labs in one of the

school buildings as in the previous Chapter. The amount of data points in the buffers

ranges from 170∼260K, depending on the number of rooms involved and missing values.

We obtain data of an entire year, from the beginning of July 2017 to the end of June 2018

45

for 15 rooms across 3 floors. The RL setup in our experiments is listed as below:

• State: Indoor air temperature, actual supply airflow, outside air temperature, and hu-

midity.

• Action: Zone air temperature setpoint and actual supply airflow setpoint. Both are

in continuous space and the action spaces are normalized in the range of [−1, 1] as a

standard RL setting.

• Reward : Our reward function is a linear combination of thermal comfort and energy

consumption. The reward function at time step t is:

Rt = −α|TCt| − βPt, (3.1)

where α, β are the weights balancing different objectives and could be tuned to meet

specific goals, TCt is the thermal comfort index at time t, Pt is the HVAC power con-

sumption at time t. We compute Pt attributed to a thermal zone using heat transfer

equations [6].

BRL benchmarks

• Batch-constrained deep Q-learning (BCQ) [36]: As described in Chapter 2.

• Bootstrapping Error Accumulation Reduction (BEAR) [58]: BEAR identifies boot-

strapping error as a key source of BRL instability. The algorithm mitigates out-of-

distribution action selection by searching over the set of policies that is akin to the

behavioral policy.

46

• Pessimistic Q-Learning (PQL) [70]: PQL uses pessimistic value estimates in the low-

data regions in the Bellman optimality equation as well as the evaluation back-up.

It can yield stronger guarantees when the concentrability assumption does not hold.

PQL learns from policies that satisfy a bounded density ratio assumption similar to

on-policy policy gradient methods.

Experiment details

Each algorithm is run in one room on each floor for an entire week so that outside

air temperature (OAT) is the same. For instance, in one week we run algorithm A in

rooms in the same stack on different floors, e.g. 2144, 3144, and 4144, and at the same

time algorithm B runs on 2146, 3146, and 4146, and so forth. In each room, we train the

algorithm for 1,000 time steps, which is about one week. We evaluate each algorithm in

three different rooms (one room from each floor: 2F, 3F, and 4F). These rooms are of

roughly the same size and occupancy capacity. Each time step is 10 minute due to the

data writing rate in our BMS. More details of the experiments are described previously in

our previous study [140].

Fig. 3.2 shows the learning curves of each algorithm, where each solid lines are the av-

erage reward of all runs for the same method; semi-transparent bands represent the range

of all runs for a particular algorithm. And gray dotted vertical lines indicate 00:00AM of

each day. The horizontal black dotted line is the average reward in the buffer. Fig. 3.3

shows the analysis of the optimization objectives in the reward function, for energy con-

sumption, the default control method rule-based contorl (RBC) method is normalized to

47

1. For thermal comfort we show absolute averaged values.

As we need to calculate the thermal comfort level as required by our reward function,

we adopt the widely used predicted mean vote (PMV) [27] measure as our thermal comfort

index. In this metric, thermal comfort satisfaction ranges from −3 (cold) to 3 (hot), where

PMV within the range of −0.5 to 0.5 is considered as thermal comfortable. We adopt the

ASHRAE RP-884 thermal comfort data set [21] and train a simple gradient boosting tree

(GBT) model [48] to predict the thermal comfort by taking the current thermal states

given by our building system in real-time.

Simulator

Behavioral
agent

Behavioral
agent

Replay
buffer

Replay
buffer

BRL agent

Train behavioral
agent Generate buffers

BRL learns
from buffers

Figure 3.1: Flow of buffer generation and BRL training

3.3.2 Simulated buffers

Data acquisition

We adopt Sinergym, an open-source simulation and control framework for training RL

agents [47]. It is compatible with EnergyPlus models using Python APIs. Our approach

follows the BRL paradigm. (1) We first train behavioral RL agents for 500K timesteps

48

Figure 3.2: Episode reward comparison in real building

and select the one that gives the highest average score as the expert agent. We then run

on a 5-zone building (See Appendix B.2), which is a single-floor building divided into 5

zones, 1 interior and 4 exteriors with 3 weather types: cool, hot, and mixed in continuous

settings. We also experiment on two different kinds of response type, deterministic and

stochastic. Then we generate an expert buffer with 500K transitions as the expert buffer.

(2) A medium buffer is generated when the behavioral agent is trained ”halfway”, which

means the evaluation score reaches half of the expert agents’ final average scores. (3)

We randomly initialize the agent, which samples action from allowed action spaces with

uniform distribution to generate buffers. (See Fig. 3.1)

• State: Site outdoor air dry bulb temperature, site outdoor air relative humidity, site

wind speed, site wind direction, site diffuse solar radiation rate per area, site direct

49

Figure 3.3: Optimization objectives analysis in real building

solar radiation rate per area, zone thermostat heating setpoint temperature, zone

thermostat cooling setpoint temperature, zone air temperature, zone thermal comfort

mean radiant temperature, zone air relative humidity, zone thermal comfort clothing

value, zone thermal comfort Fanger model PPD, zone people occupant count, people

air temperature, facility total HVAC electricity demand rate, current day, current

month, and current hour.

• Action: Heating setpoint and cooling setpoint in continuous settings.

• Reward : We follow the default linear reward settings, which consider the energy

consumption and the absolute difference in temperature comfort.

50

BRL benchmarks

With various qualities of buffers, we compare several most representative benchmarks

in the BRL literature and summarize the average scores and standard deviation in the last

5 evaluations across 3 random seed runs (see Table 3.1). The scores of random policy is

normalized to 0 and expert policy is normalized to 100.

• TD3+BC: An offline version of TD3, it simply adds a behavior cloning term to

regularize actor policy towards behavioral policy [33] combined with mini-batch Q-

values and buffer states normalization for stability improvement.

• CQL: Conservative Q-learning [59], derived from SAC, learns a lower-bound esti-

mates of the value function, by regularizing the Q-values during training.

• BC: Behavior cloning, we train a VAE to reconstruct action given state. It simply

imitate the behavioral agent without reward signals.

We train each algorithm for 500K timesteps. For every 25K timesteps of training we

evaluate the models for one episode. As an example, we illustrate BRL learning curves

with expert buffers in Fig. 3.4.

3.4 Conclusion and Future Works

We open-source our building control datasets for both real buildings and simulation

environments for BRL learning. The goal is to encourage building domain experts to

explore opportunities in building-BRL research. We provide these datasets for researchers

51

to implement fast prototyping without generating buffers on their own. Recently, many

building-RL libraries are published [29, 96, 120] for the purpose of building RL training

without the need to set up thermal simulators beforehand. Our future work is to generate

more diverse buffers with various building environments and different weather types for

BRL benchmarks.

Chapter 3, in part, is a reprint of the material that appears in the proceeding of

the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities,

and Transportation (BuildSys’ 2022). Bu authors Hsin-Yu Liu, Xiaohan Fu, Bharathan

Balaji, Rajesh Gupta, and Dezhi Hong with the title - “B2RL: an open-source dataset for

building batch reinforcement learning.” The dissertation author is the primary investigator

and author of this paper.

52

0 100000 200000 300000 400000
Timestep

−150

−100

−50

0

50

100

No
rm

al
ize

d
ep

iso
de

 re
wa

rd
Eplus-5Zone-cool-continuous-stochastic-v1

Expert

TD3_BC
BCQ

CQL
BC

RBC Expert buffer

(a) Cool-continuous-stochastic

0 100000 200000 300000 400000
Timestep

−150

−100

−50

0

50

100

No
rm

al
ize

d
ep

iso
de

 re
wa

rd

Eplus-5Zone-cool-continuous-v1
Expert

TD3_BC
BCQ

CQL
BC

RBC Expert buffer

(b) Cool-continuous

0 100000 200000 300000 400000
Timestep

−150

−100

−50

0

50

100

No
rm

al
ize

d
ep

iso
de

 re
wa

rd

Eplus-5Zone-hot-continuous-stochastic-v1
Expert

TD3_BC
BCQ

CQL
BC

RBC Expert buffer

(c) Hot-continuous-stochastic

0 100000 200000 300000 400000
Timestep

−150

−100

−50

0

50

100

No
rm

al
ize

d
ep

iso
de

 re
wa

rd

Eplus-5Zone-hot-continuous-v1
Expert

TD3_BC
BCQ

CQL
BC

RBC Expert buffer

(d) Hot-continuous

0 100000 200000 300000 400000
Timestep

−150

−100

−50

0

50

100

No
rm

al
ize

d
ep

iso
de

 re
wa

rd

Eplus-5Zone-mixed-continuous-stochastic-v1
Expert

TD3_BC
BCQ

CQL
BC

RBC Expert buffer

(e) Mixed-continuous-stochastic

0 100000 200000 300000 400000
Timestep

−150

−100

−50

0

50

100

No
rm

al
ize

d
ep

iso
de

 re
wa

rd

Eplus-5Zone-mixed-continuous-v1
Expert

TD3_BC
BCQ

CQL
BC

RBC Expert buffer

(f) Mixed-continuous

Figure 3.4: Learning curves of BRL models that learn from expert buffers. Solid line

shows the averaged value across three random seeds per algorithm, and the half-transparent

region indicates the range with one standard deviation.

53

Table 3.1: Average normalized score over the final 5 evaluations and 3 random seeds.

Environment Buffer TD3+BC CQL BCQ BC

hot-deterministic Expert 99.72±0.1 100.00±0.00 -32.02±0.07 -89.2±3.95

hot-deterministic Medium -49.59±8.19 67.65±17.06 13.41±16.59 -12.55±7.27

hot-deterministic Random -45.73±15.13 -23.19±4.52 69.21±18.52 -26.74±15.91

mixed-deterministic Expert 94.67±2.04 100.00±0.00 -6.22±5.24 -95.46±6.6

mixed-deterministic Medium 36.23±4.31 37.36±19.31 64.46±0.65 -103.4±2.12

mixed-deterministic Random -13.72±22.25 -23.46±20.33 -65.30±20.40 -27.82±11.79

cool-deterministic Expert 81.11±5.24 100.00±0.00 -29.75±3.18 27.76±0

cool-deterministic Medium -49.97±0.00 55.44±6.46 70.19±17.06 10.48±22.11

cool-deterministic Random -58.40±3.21 12.99±2.28 27.77±31.39 8.62±41.97

hot-stochastic Expert 77.69±17.18 99.49±0.20 -15.35±5.92 -72.86±1.73

hot-stochastic Medium -14.85±0.00 39.93±2.64 -62.21±19.31 -10.45±12.85

hot-stochastic Random -1.82±2.68 36.65±11.95 -1.24±14.80 31.22±13.51

mixed-stochastic Expert 96.61±2.13 99.77±0.26 -108.38±2.58 -102.02±9.32

mixed-stochastic Medium 9.49±0.00 80.13±8.19 70.75±6.46 -107.41±3.41

mixed-stochastic Random 28.02±8.69 94.05±2.08 -109.47±0.17 38.66±24.64

cool-stochastic Expert 78.27±20.01 99.97±0.12 -115.86±0.41 28.15±0.35

cool-stochastic Medium 16.09±0.00 81.57±4.31 -11.55±2.64 -50.37±2.45

cool-stochastic Random -44.33±16.01 -97.35±2.09 -53.92±10.07 25.44±13.42

Sum 339.50±127.23 960.99±101.81 -295.49±175.47 -527.93±193.48

54

Chapter 4

Incorporating Existing Policies with

Reinforcement Learning

4.1 Introduction

Buildings typically implement rule-based control, which adjusts the setpoints of actu-

ators to co-optimize occupants’ thermal comfort and energy efficiency. These rule-based

control (RBC) systems codify the problem-solving know-how of human experts, akin to

behavioral cloning policy learned from expert demonstration [41]. RBC is stable, robust,

and without uncertainty, but lacks the flexibility to evolve over time.

Reinforcement learning (RL) can adapt to changes in the environment with a data-

driven approach and improves the performance of HVAC systems control [129]. In online

RL, the training of the control policy relies on a simulator that models the HVAC sys-

tem. We use established building-RL simulation environments – Sinergym [47] for our

55

experiments. However, when such a simulation model is not available, offline RL can be

used to train a policy based on historical data [141]. We focus on improving upon exist-

ing RL algorithms for HVAC control where a rule-based policy already exists, which is a

common scenario in real-world implementations. By combining the advantages of RL and

rule-based methods, we aim to develop a stable and scalable algorithm without learning

from scratch and utilize the existing knowledge in building a robust system.

In our work, we seek to answer the following research questions: How can we in-

corporate reinforcement learning models with an existing rule-based control

policy to improve models’ performance? Could this method be implemented

in both online and offline settings as a unified approach?

RL regularization methods are typically tailored to online or offline settings. For ex-

ample, online methods encourage exploration to either improve estimations of non-greedy

actions’ values or to encourage the exploration to find an optimal policy [39]. On the other

hand, offline methods favor exploitation since it is unlikely for offline models to accurately

estimate uncharted state-action values with a static dataset [37, 133].

Our method builds on TD3+BC [33], a representative offline RL algorithm. TD3+BC

makes minimal changes by adding a behavior cloning term to regularize the online TD3 [35]

policy. In TD3+BC, the only policy to learn from is the behavioral policy that generates

the buffer. Our dynamically-weighted algorithm regularizes RL policy using the better

policy between an existing RBC policy and the behavioral policy. It can be incorporated

into any existing actor-critic RL algorithms with minimal changes.

RUBICON considers RBC as a safe reference policy in which RL training can learn

56

Behavioral
policy

RBC

CriticReplay
buffer 𝓓

𝜋!"#(𝑠)

𝜋"(𝑠)

Actor

𝜋!!"# = 𝑎𝑟𝑔𝑚𝑎𝑔𝑥" 	{𝑄+#(𝑠, 𝜋$%& (𝑠)), 𝑄+#(𝑠, 𝜋%(𝑠))}

𝜋 = 𝑎𝑟𝑔𝑚𝑎𝑥"[𝜆𝑄 𝑠, 𝜋 𝑠 − 𝜉 𝜋 𝑠 − 𝜋!!"# 𝑠
'
]

(𝑠, 𝑎, 𝑠!, 𝑟)

Select actions Estimate valuesSample transitions Train actor

𝑄&$(𝑠,𝜋!"#(𝑠))

𝑄&$(𝑠, 𝜋"(𝑠))

Figure 4.1: The flow of RUBICON: We incorporate the RBC policy and selectively update

the actor with the policy (between RBC and behavioral) that has a higher estimated mean

Q-value. It is a unified method for both online and offline approaches.

and improve. The actor selectively trains on either RBC or behavioral policy, depending

on which policy yields a higher averaged Q-value in a mini-batch estimated by the critic

network. The flow of RUBICON is shown in Fig. 4.1. Our proposed approach is distinct

from prior work in the following aspects:

• We develop a unified regularization approach for both online and offline RL methods

with minimal algorithmic modification.

• Rule-based control policy is directly incorporated into the policy update step to

provide stability and robustness.

• We introduce a dynamic weighting method in actor-critic settings. The actor loss

is varied from time step to time step depending on the average Q-value estimate of

behavioral policy and RBC policy predicted from the value networks.

To our knowledge, previously RBC is only used as hard constraints or heuristics in RL

settings, and we are the first to incorporate an existing RBC policy directly into actor-critic

57

algorithms.

4.2 Related Work

Building RL control Prior research has demonstrated that building RL control pol-

icy could outperform RBC in both online and offline settings. Researchers have studied

extensively for HVAC control with online RL methods [40, 126, 136]. [145] developed

a framework for whole building HVAC (heating, ventilation, air-conditioning) control in

online settings to achieve a 16.7% heating demand reduction cf. RBC control. OCTO-

PUS holistically controls subsystems in modern buildings to get a 14.26% energy saving

cf. RBC policy [23]. [135] implemented an RL control for LowEx building systems with

a 11.47% improvement on cumulative net power output than RBC.

With offline RL, [141] applied a state-of-the-art method and demonstrated a 12 ∼ 35%

of reduction in ramping. [68] incorporated a Kullback-Leibler (KL) divergence constraint

during the training of an offline RL agent to penalize policies that are far away from the

previous updates for stability, and achieve a 16.7% of energy reduction cf. the default

RBC control.

RL + RBC The combination of RL and RBC has been explored in many studies,

where RBCs are primarily used as auxiliary constraints or guiding mechanism. [61] pro-

pose to use two modules in their control flow, one for continuous control with RL agent

and a discrete one controlled by RBC. [125] improve RL with low-level rule-based tra-

jectory modification to achieve a safe and efficient lane-change behavior. [150] incorporate

58

RBC for generating the closed-loop trajectory and reducing the exploration space for RL

pre-processing. [11] use a learning process to fine-tune the performance of a rule-based

controller. [86] first train RL proximal policy optimization (PPO) [100] agents to master

matching some of the problem rules and constraints, then RL is used to inject experiences

to guide various evolutionary/stochastic algorithms. [65] learn RBC parameters via RL

methods. These previous methods incorporate RBC in the flow as heuristics or as hard

constraints. Instead, we directly incorporate RBC policy in RL training in an algorithmic

way.

Online RL regularization We use state-of-the-art TD3 to compare the online base-

lines. It applies target policy smoothing regularization to avoid overfitting in the value

estimate with deterministic policies. TRPO [99] uses a trust region constraint based on KL-

divergence between old and new policy distributions for robust policy updates. SAC [39]

uses soft policy iteration for learning optimal maximum entropy policies. Munchausen-

RL [123] regularizes policy updates with a KL-divergence penalty similar to TRPO, and

adds a scaled entropy term to penalize policy that is far from uniform policy.

Offline RL regularization Offline RL is more conservative compared with online

methods as it depends only on the logged interactions generated by unknown policies.

It suffers from extrapolation errors induced by selecting out-of-distribution actions. Since

offline RL policies are learned entirely from a static dataset, it is unlikely for value networks

to accurately estimate values when there is no sufficient state-action visitation. Thus,

regularization methods become more prominent in offline settings. Batch-constrained deep

Q-learning (BCQ) [37], one of the pioneers of offline RL, ascribes extrapolation errors to

59

three main factors: absent data, model bias, and training mismatch. It mitigates the errors

by deploying a variational autoencoder (VAE) to reconstruct the action given a state using

the data collected by the behavioral policy. Then regularize the divergence between the

learned policy and the behavioral policy. The offline baseline method we compare to in

our study is TD3+BC. It starts from the online method TD3, and adds a behavior cloning

term in the policy update to regularize the actor to imitate the behavioral policy and

avoid selecting out-of-distribution actions. BRAC [133] studies both value penalty and

policy regularization with multiple divergence metrics (KL, maximum mean discrepancy

(MMD), and Wasserstein) to regularize the actor’s policy based on the behavioral policy.

FisherBRC [54] incorporates a gradient penalty regularizer for the state-action value

offset term and demonstrates the equivalence to Fisher divergence regularization. CQL [59]

learns a conservative, lower-bound estimate in the value network via regularizing Q-values.

Model-based method, e.g. COMBO [137] regularizes the value function on out-of-support

transitions generated via environment dynamic models’ rollouts.

Conservative RL [114] use a priori unknown safety constraint that depends on state-

action and satisfies certain regularity conditions with a Gaussian prior. [4] propose to

synthesize a reactive system called a shield to monitor the actions and correct them if

violations are caused. [108] use a pre-specified ”safety” threshold as a requirement and

express it via a Gaussian process prior.

All of these prior works use data collected by a behavioral policy and do not assume

access to any existing policy. The behavioral policy used in experiments is typically an

unknown or partially trained agent. In contrast, we assume direct access to a robust

60

behavioral policy in the form of rule-based control. While this assumption may not hold for

other applications where there might not be pre-existing policies, rule-based control policies

are routinely deployed in industrial control settings, such as building HVAC control.

We incorporate a robust reference policy derived by human experts to improve RL pol-

icy. The rule-based control policy reduces uncertainty due to its deterministic behavior.

On the opposite, the deep learning model is affected by random initialization conditions,

even if trained on the same dataset, as varied initialization conditions might lead to dif-

ferent policies. RUBICON demonstrates a substantial reduction of standard deviations

between different randomly initialized conditions across varied tasks.

4.3 Terminologies and Problem Formulation

In reinforcement learning, an agent interacts with the environment and sequentially

selects actions based on its policy at every time step. The problem can be formulated as

a Markov Decision Process (MDP) defined by a tuple (S,A,R, p, γ), with state space S,

action space A, reward function R, transition dynamics p, and discount factor γ∈[0, 1).

The goal is to maximize the expectation of the cumulative discounted rewards, denoted by

Rt=
∑∞

i=t+1 γ
ir(si, ai, si+1) [109]. The agent’s behavior is determined by a policy π : S →

A, which maps states to actions either in a deterministic approach or with a probability

distribution. The expected return following the policy from a given state s is the action-

value function Qπ(s, a) = Eπ[
∑∞

t=0 γ
tRt+1|s0 = s, a0 = a] by taking action a.

We conduct our experiments with the building RL environments [47]. The objective

61

of the agent is to maintain a comfortable thermal environment with minimal energy use.

The state consists of indoor/outdoor temperatures, time/day, occupant count, thermal

comfort, and related sensor data. The action adjusts the temperature setpoint of the

thermostat. The reward is a linear combination of occupants’ thermal comfort and energy

consumption. The environment is a single-floor building divided into 5 zones, with 1

interior and 4 exterior rooms.

The details about the RL settings in our problem are described below:

• State: Site outdoor air dry bulb temperature, site outdoor air relative humidity,

site wind speed, site wind direction, site diffuse solar radiation rate per area, site

direct solar radiation rate per area, zone thermostat heating setpoint temperature,

zone thermostat cooling setpoint temperature, zone air temperature, zone thermal

comfort mean radiant temperature, zone air relative humidity, zone thermal comfort

clothing value, zone thermal comfort Fanger model PPD (predicted percentage of

dissatisfied), zone people occupant count, people air temperature, facility total HVAC

electricity demand rate, current day, current month, and current hour.

• Action: Heating setpoint and cooling setpoint in continuous settings for the interior

zones.

• Reward: We follow the default linear reward setting, which considers the energy

consumption and the absolute difference to temperature comfort.

• Environment: A single floor building with an area of 463.6m2 divided into 5 zones,

1 interior, and 4 exteriors. The HVAC system is a packaged VAV (variable air

62

volume) (DX (direct expansion) cooling coil and gas heating coils) with fully auto-

sized input. And the simulation period of one episode is a full year. The weather

types are classified according to the U.S. Department of Energy (DOE) standard [79].

The weather type details and their representative geometric locations are listed below

based on TMY3 datasets [60]:

– Cool marine: Washington, USA. The mean annual temperature and mean

annual relative humidity are 9.3°C and 81.1% respectively.

– Hot dry: Arizona, USA with mean annual temperature of 21.7°C and a mean

annual relative humidity of 34.9%

– Mixed humid: New York, USA with a mean annual temperature of 12.6°C

and a mean annual relative humidity of 68.5%

4.4 Rule-based incorporated control regularization

Our goal is to improve an agent’s ability to learn with the assistance of human experts’

domain knowledge in both online and offline settings. In certain problems, we could config-

ure accurate simulators as oracles so we can safely learn with online RL methods or there

might be existing simulators. For example, in robotic control [112], Go [106], and video

games [76]. However, for most real-world problems, it is unlikely or it is time-consuming

and requires a domain expertise to build a functional simulator for each environment (e.g.

building thermal simulators), or it can be dangerous or risky to evaluate partially trained

policy directly in real environments(e.g. healthcare and financial trading). Offline RL al-

63

Online approachOffline approach

Static buffers
𝑠,𝑎, 𝑠! , 𝑟 ~𝒟"

Simulator
𝑇 𝑠! 𝑠, 𝑎 , 𝑟(𝑠, 𝑎)

RBC policy
𝜋#$%(𝑠)

BRL models
𝜋&ℬ 𝑠 , 𝑄(ℬ(𝑠, 𝑎)

Online-RL
models

𝜋& 𝑠 , 𝑄((𝑠,𝑎)
Real

environment

Train and
evaluate

Selectively
learn from
RBC

Deploy on environment

Dynamic buffers
𝑠, 𝑎, 𝑠! , 𝑟 ~𝒟)

Learn from buffer
transitions

Save to buffer

Learn from buffer
transitions

Deploy on environment

Selectively
learn from
RBC

Figure 4.2: Our proposed method, RUBICON, incorporates RBC into RL to improve

stability in building HVAC control. It could be applied to both online and offline ap-

proaches.

gorithms, on the other hand, rely on historical data collected by an existing but unknown

behavioral policy. The objective is to learn a policy that improves on the behavioral policy

measured by episodic rewards. In Fig. 4.2, we illustrate how RUBICON accommodates

both the online and offline training paradigms.

Our algorithm builds on existing actor-critic algorithms TD3 and TD3+BC. We only

modify the policy update with the incorporated rule-based control policy selectively and

use the critic as-is. Therefore, we focus our discussion on the policy update of the algo-

rithm. TD3 is derived from DDPG [105], it mitigates the function approximation error

with double Q-learning and delayed policy updates. TD3+BC is an offline RL algorithm

adapted from TD3, and is one of the state-of-the-art offline RL methods evaluated with

D4RL datasets [31]. TD3+BC adds a behavior cloning term to the policy update step to

penalize the policy that is far away from the behavioral policy (Eq. 4.1).

64

π = argmax
π

E(s,a)∼D
[
λQ(s, π(s))− (π(s)− a)2

]
(4.1)

λ =
α

1
N

∑
(si,ai)

|Q(si, ai)|
(4.2)

In Eq. 4.1, λ is decided by the averaged mini-batch Q-estimate and a hyperaparameter α

to adjust between RL and imitation learning (Eq. 4.2), where N is the size of the batch.

Our method, RUBICON, dynamically weighs both TD3 and

TD3+BC’s policy update steps with either RBC policy or behavioral policy in each training

iteration. In Eq. 4.3, we replace the actions a sampled from the buffers in Eq. 4.1 with

πQmax(s) and add a hyperparameter ξ to integrate TD3 and TD3+BC methods as one.

We replace the notation of sampled actions a in TD3+BC with behavioral policy πb(s) to

avoid confusion. Details of the hyperparameter settings in our work are in Appendix B.3.

π = argmax
π

Es∼D
[
λQ(s, π(s))− ξ(π(s)− πQmax(s))2

]
(4.3)

πQmax(s) = argmax
π
{Q̄(s, πb(s)), Q̄(s, πrbc(s))} (4.4)

Every time when the policy is being updated, given the states s of the sampled mini-

batch, the behavioral policy πb(s) and the RBC policy πrbc(s) select actions in a determin-

istic fashion. The state-action pairs’ Q-values are estimated by the critic, the average of

the Q-value estimations in the mini-batches are Q̄(s, πb(s)) and Q̄(s, πrbc(s)). The actor

models dynamically choose the selected actions decided by the policy with a higher average

65

Q-value to be regularized from in each policy update step, i.e. the actor loss function is

dynamically weighted. By describing it as dynamically weighted, it means that the actor

loss is changing from one iteration to another since it is automatically decided by Eq. 4.4.

In offline settings the actor loss is either regularized with the behavioral policy or the

RBC policy; in online settings, it is either regularized with the RBC policy or learning as

is without behavioral cloning term. In online settings, the behavioral policies are the older

versions of the policy used to generate the transitions in the buffer, and in offline settings,

it is an unknown policy.

The reason we choose the average as the metric to decide which set of transitions to

learn from instead of selecting each transition with higher estimated value (each batch

is a combination of πb(s) and πrbc(s)) is that if we choose by each transition we will

lose the information on which state-action visitations lead to worse values, the model will

then suffer from the imbalanced data problem. The credit-blame assignment is essential

in RL learning convergence and the experience replay can help speed up the propagation

process [67]. Furthermore, the over-estimation of Q-values would be more severe. The

algorithm of our method is given in Alg. 3. Where d is the policy update frequency, the

noise ϵ added to the policy is sampled with Gaussian N (0, σ) and clipped by c. In both

online and offline approaches, the policy update follows Eq. 4.3 and 4.4 with different

hyperparameter settings.

Our rule-based control algorithm is derived from the rule-based controller in Siner-

gym’s [47] example. For the purpose of computation efficiency and to fit the batch settings

in our algorithm, we vectorize the original RBC policy. The rules are simple and intuitive,

66

and could generalize well: First, we get the datetime information we need from the states.

Then, we get the seasonal comfort temperature zone for every transition. If the indoor air

temperature (IAT) is below the lower bound of the comfort zone, then we set both cooling

and heating setpoints a degree higher (measured in Celcius degrees). On the opposite,

if the IAT is above the upper bound of the comfort zone, then we set both the heating

and cooling setpoints a degree lower than the current setpoints. Finally, we examine if the

current datetime is in the office hours. If not, then the setpoints are set to be (18.33, 23.33)

(°C) for the purpose of energy reduction since occupants’ thermal comfort is not important

in these time periods assuming zero occupancy.

4.5 Experiments

In our experiments, we use two environment response types: deterministic and stochas-

tic. A Gaussian noise with µ=0 and σ=2.5 is added to the outside temperature from

episode to episode in the stochastic environments. We also consider three weather types:

hot, cool, and mixed. In the results of all the tables and figures, “hot-deterministic”

indicates that the task is learned and evaluated with the hot weather condition and de-

terministic environment. Similarly, we have all six combinations such as “cool-stochastic”,

etc. All scores in this paper are normalized with expert policy as 100 and random policy

as 0.

67

Algorithm 3: RUBICON
Initialize critic networks Qθ1 , Qθ2 ,actor network πϕ, with random parameters θ1, θ2, ϕ,

target networks θ′1 ← θ1, θ
′
2 ← θ2, ϕ

′ ← ϕ, RBC policy πrbc, and replay buffer or load

buffer B

for t = 1 to T do

if online then

Select action with exploration noise

a ∼ πϕ(s) + ϵ, ϵ ∼ N (0, σ)

Observe reward r and next state s′

Store transition (s, a, r, s′) in B
Sample mini-batch of N transitions (s, a, r, s′) from B

ã← πϕ′(s
′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)

y ← r + γminj=1,2Qθ′j
(s′, ã)

Update critics θj ← argminθj N
−1

∑
(y −Qθj (s, a))

2

if t mod d then

Update ϕ by policy gradient:

∇ϕJ(ϕ) = N−1
∑
∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)

Policy update follows Eq. 4.3 and 4.4

Calculate ∇ϕJ(ϕ)

Update target networks:

θ′j ← τθj + (1− τ)θ′j

ϕ′ ← τϕ+ (1− τ)ϕ′

68

Algorithm 4: Rule-based control policy
Input : Current datetime current dt, indoor air temperature IAT , zone thermostat

heating setpoint temperature ah, and zone thermostat cooling setpoint

temperature ac, obtained from the states with size N

Output: Actions selected by RBC

for i in N do

season comfort zonei = get season comfort(current dti)

if IATi >= max(season comfort zonei) then

ahi = ahi − 1

aci = aci − 1

if IATi < min(season comfort zonei) then

ahi = ahi + 1

aci = aci + 1
ai = (ahi , aci)

if current dti.weekday ≥ 5 or current dti.hour in range(22,6) then

ai = (18.33, 23.33)(°C)

4.5.1 Offline approach

Benchmarking Experiment

First, we consider the offline approach, where no simulator exists but historical data is

available. We follow the standard procedure for BRL evaluation [31]:

(1.) Train behavioral agents for 500K time steps, then compare the most representative

algorithms DDPG, TD3, and SAC (learning curves are shown in Fig. B.4). The online

methods we compare are described below:

• DDPG: Deep deterministic policy gradient is a method that combines the actor-

69

critic approach and deep Q-network (DQN) [76]. It is capable of dealing with con-

tinuous action space problems via policy gradient in a deterministic approach which

outperforms the stochastic policy methods in high-dimensional tasks.

• SAC: Soft actor-critic, an off-policy maximum entropy RL algorithm that encourages

exploration. They empirically show that SAC yields a better sample efficiency than

DDPG.

• TD3: Twin delayed deep deterministic policy gradient algorithm, it reduces overes-

timation with double Q-learning, combines with target networks to limit errors from

imprecise function approximation.

(2.) Select the best agent as our expert agent and generate buffers with it for 500K

time steps. A medium agent is trained “halfway”, which means that an agent is trained

most closely to an agent with the evaluation performance half the performance as the

expert agent. And a random agent which samples actions randomly and generates buffers.

(3.) Train BRL models for 500K time steps and evaluate the policy every 25K time

steps in all buffers mentioned above in step (2.). We show the detailed learning curves in

Appendix B.2. Normalized and averaged scores across runs are shown in Table 4.1. The

offline methods we compare with are listed below:

• TD3+BC: An offline version of TD3, it adds a behavior cloning term to regularize

policy towards behavioral policy combined with mini-batch Q-values and buffer states

normalization for stability improvement.

70

• CQL: Conservative Q-learning, derived from SAC, it learns a lower-bound estimate

of the value function by regularizing the Q-values during training.

• BCQ: Batch-constrained deep Q-learning, it implements a variational autoencoder

(VAE) [52] to reconstruct the action given the state. And adds perturbation in actor

on the policy, the degree of perturbation and size of mini-batch can be adjusted in

order to behave more like a traditional RL method or imitation learning.

• BC: Behavior cloning, we train a VAE to reconstruct action given state. It simply

imitates the behavioral agent without reward signals.

In Table 4.11, we observe that RUBICON outperforms all other benchmarks in overall

score across weather types, random seeds, and environment types. To breakdown the

reward scores into the optimization objectives, RUBICON achieves an overall 10.11% of

energy reduction and 34.44% in comfort penalty cf. to the state-of-the-art method CQL.

Other BRL methods show good performance either in specific tasks or with a specific

randomly initialized configuration; however, overall they are more unstable cf. RUBICON.

Our method provides more robust and more consistent performance across all variants and

demonstrates the ability to generalize across various weather types and response modes

of tasks. Also, as we can see in Fig. 4.3, learning from both medium buffer and RBC

policy, RUBICON improves on both their best performances. The standard deviation of

RUBICON’s scores is the least among the policies evaluated, which means our policy is the

1Average normalized score over the final 5 evaluations and 3 random seeds. Values followed by ±
correspond to the standard deviation over the last 5 evaluations across runs. Some scores with a standard
deviation of 0 is caused by the round down of normalized scores, they are negligible numbers. But not
exact zeros.

71

T
a
b
le

4
.1

:
B

R
L

m
et

h
o
d

s
b

en
ch

m
ar

k

E
n
v
ir
o
n
m
en

t
B
u
ff
er

R
U
B
IC

O
N

T
D
3
+
B
C

C
Q
L

B
C
Q

B
C

h
o
t-
d
et
er
m
in
is
ti
c

E
x
p
er
t

8
6
.1
3
±
1
7
.8
3

9
9
.7
2
±
0
.4
2

1
0
0
±
0

-3
2
.0
1
±
9
5
.4
6

-8
9
.2

±
1
4
.8
4

h
o
t-
d
et
er
m
in
is
ti
c

M
ed

iu
m

6
4
.9
1
±
1
8
.0
2

-4
9
.5
8
±
1
3
.5
2

6
7
.6
4
±
3
2
.8
3

1
3
.4

±
5
1
.2
4

-2
6
.7
4
±
2
6
.4
7

h
o
t-
d
et
er
m
in
is
ti
c

R
a
n
d
o
m

6
2
.7

±
1
4
.3
6

-4
5
.7
3
±
4
4
.8

-2
3
.1
9
±
7
6
.7
6

6
9
.2

±
3
3
.6
1

-1
2
.5
5
±
7
4
.6
3

m
ix
ed

-d
et
er
m
in
is
ti
c

E
x
p
er
t

8
1
±
2
5
.9
4

9
4
.6
6
±
7
.3
6

1
0
0
±
0

-6
.2
2
±
8
4
.2
7

-9
5
.4
6
±
1
4
.7
8

m
ix
ed

-d
et
er
m
in
is
ti
c

M
ed

iu
m

8
6
.8
4
±
1
2
.3
9

3
6
.2
3
±
5
6
.3
3

3
7
.3
6
±
8
6
.8

6
4
.4
5
±
3
7
.4

-2
7
.8
2
±
6
3
.1
6

m
ix
ed

-d
et
er
m
in
is
ti
c

R
a
n
d
o
m

6
8
.8
3
±
4
.9
3

-1
3
.7
1
±
5
7
.0
6

-2
3
.4
6
±
8
3
.6
1

-6
5
.2
9
±
4
8
.8
4

-1
0
3
.4

±
7
.4
5

co
o
l-
d
et
er
m
in
is
ti
c

E
x
p
er
t

9
8
±
2
.7
8

8
1
.1
1
±
1
6
.8
8

1
0
0
±
0

-2
9
.7
4
±
9
5
.8
9

2
7
.7
6
±
1
0
2
.1
5

co
o
l-
d
et
er
m
in
is
ti
c

M
ed

iu
m

7
2
.2

±
8
.0
7

-4
9
.9
7
±
3
6
.4

5
5
.4
4
±
4
9

7
0
.1
8
±
1
4
.4
2

8
.6
2
±
4
5
.3
2

co
o
l-
d
et
er
m
in
is
ti
c

R
a
n
d
o
m

6
6
.5

±
0

-5
8
.4

±
1
9
.2
5

1
2
.9
8
±
7
3
.0
4

2
7
.7
7
±
6
3
.6
7

1
0
.4
8
±
7
0
.7
9

h
o
t-
st
o
ch

a
st
ic

E
x
p
er
t

9
9
.0
1
±
0
.5
6

7
7
.6
9
±
3
0
.4
8

9
9
.4
9
±
0
.2
4

-1
5
.3
4
±
8
4
.5
1

-7
2
.8
6
±
3
8
.2
5

h
o
t-
st
o
ch

a
st
ic

M
ed

iu
m

5
9
.7
2
±
5
.2
9

-1
4
.8
4
±
6
6
.0
4

3
9
.9
2
±
5
6
.6
7

-6
2
.2

±
5
.2
5

3
1
.2
2
±
6
6
.2
6

h
o
t-
st
o
ch

a
st
ic

R
a
n
d
o
m

6
8
.8
3
±
2
1
.2
6

-1
.8
2
±
7
3
.3
1

3
6
.6
4
±
6
7
.6
1

-1
.2
3
±
6
8
.8
6

-1
0
.4
5
±
6
1
.9
1

m
ix
ed

-s
to
ch

a
st
ic

E
x
p
er
t

9
4
.1
6
±
8
.1
2

9
6
.6

±
2
.1
4

9
9
.7
7
±
0
.2
1

-1
0
8
.3
8
±
2
.8
3

-1
0
2
.0
2
±
9
.2
6

m
ix
ed

-s
to
ch

a
st
ic

M
ed

iu
m

8
7
.2
3
±
1
2
.3
4

9
.4
8
±
8
1
.0
6

8
0
.1
3
±
2
0
.7
8

7
0
.7
5
±
9
.9

3
8
.6
6
±
4
8
.0
2

m
ix
ed

-s
to
ch

a
st
ic

R
a
n
d
o
m

6
7
.0
3
±
6
.2
6

2
8
.0
1
±
7
2
.7
9

9
4
.0
4
±
5
.8
7

-1
0
9
.4
6
±
0
.7
7

-1
0
7
.4
1
±
4
.3
6

co
o
l-
st
o
ch

a
st
ic

E
x
p
er
t

5
3
.5
8
±
6
5
.5
3

7
8
.2
7
±
3
1
.0
8

9
9
.9
7
±
0
.3
2

-1
1
5
.8
5
±
0
.9
8

2
8
.1
5
±
1
0
1
.5
2

co
o
l-
st
o
ch

a
st
ic

M
ed

iu
m

6
8
.0
7
±
0
.4
6

1
6
.0
9
±
6
9
.4
1

8
1
.5
6
±
1
8
.0
1

-1
1
.5
5
±
5
6
.1
3

2
5
.4
4
±
3
5
.5
7

co
o
l-
st
o
ch

a
st
ic

R
a
n
d
o
m

6
7
.5
5
±
1
.1
4

-4
4
.3
3
±
3
6
.3
6

-9
7
.3
5
±
1
1
.0
7

-5
3
.9
2
±
7
8
.0
6

-5
0
.3
7
±
8
3
.9
9

S
u
m

1
3
5
2
.3
7
±
2
2
5
.3
8

3
3
9
.4
9
±
7
1
4
.7
7

9
6
0
.9
8
±
5
8
2
.8
8

-2
9
5
.4
8
±
8
3
2
.1
7

-5
2
7
.9
3
±
8
6
8
.8
1

72

F
ig
u
re

4
.3

:
L

ea
rn

in
g

cu
rv

es
of

R
U

B
IC

O
N

an
d

th
e

b
as

el
in

e
m

et
h

o
d

T
D

3+
B

C
w

it
h

m
ed

iu
m

b
u

ff
er

s.
A

ll
le

ar
n

in
g

cu
rv

es

ar
e

p
lo

tt
ed

w
it

h
so

li
d

li
n

es
in

d
ic

at
in

g
av

er
ag

ed
va

lu
es

an
d

th
e

h
al

f-
tr

an
sp

ar
en

t
re

gi
on

is
on

e
st

an
d

ar
d

d
ev

ia
ti

on
.

73

most stable one cf. others. We include the BRL learning curves with expert and random

buffers in Appendix B.2

In the following sections, we conducted several robustness and ablation experiments to

demonstrate the necessity of our enhancements.

Transfer experiment

In a real-world scenario where we might have existing building control data in one

building, but no data for a new building with different weather data distribution. Given

existing buffers and we want to use them as prior knowledge to combine with RBC policy

and transfer the model to another weather type where we have no data. We experiment

with the medium buffers in stochastic environments. The results shown in Table B.2 and

Fig. 4.4 indicate that our method is capable of transferring from one weather condition to

another with comparable performance without any hyperparameter or RBC policy change.

As the results demonstrate, due to the diversity of the mixed weather, RUBICON improves

learning in cool and hot weather. On the other hand, transfer from monotonic weather

conditions leads to worse returns.

Ablation Experiments

RBC buffer experiments To differentiate RUBICON from directly learning from RBC

buffers, we conduct the experiment of BRL models learning from the RBC buffers, i.e.

learns from a buffer generated by RBC policy. The learning curves are illustrated in

Figure 4.5. The results in Table B.3 indicate that even when learning with RBC buffers

74

Figure 4.4: Learning curves of BRL models transferred from other weather types

with RBC policy itself, RUBICON could still outperform RBC policy due to its learning

ability. However, due to the monotony of RBC policy, the improvement is limited. It

shows the importance of incorporating RBC policy and RL policy.

Mixed buffer experiments In order to evaluate if mixing the buffers (of RBC buffer

and the original buffer to learn from) is equivalent to RUBICON, we conduct experiments

by mixing 50% of transitions in RBC buffer with 50% of transition in the original buffer

to learn from. The result is shown in Figure 4.6 and Table B.6. It indicates our selective

algorithm is necessary to dynamically decide if RBC policy or the behavioral policy to

learn from instead of randomly trained on both.

75

Figure 4.5: Learning curves of RUBICON learns from RBC buffers

Figure 4.6: Learning curves comparing RUBICON and TD3+BC to TD3+BC learns

from a mixture of 50% amount of transitions from the random buffer and 50% amount of

transitions from the RBC buffer in stochastic environments

76

Robustness Experiments

Data efficiency experiment We conduct the experiments with buffers of only one

year of data (35, 040 transitions). Data efficiency is a challenge for model-free RL to yield

accurate value estimation as it is considered data inefficient generally. This experiment is

designed to observe how RUBICON adapts in a scenario where there is insufficient data.

In Table 4.2, we observe that our method still outperforms its baseline overall. Although

it dominates with random buffers and has comparable performance with expert buffers, it

does not learn well with medium buffers. The root cause is the similarity of the quality

of actions between medium buffers and RBC policy, which causes the critic to misjudge

which action to pick between them. However, RUBICON still outperforms the baseline

in other two types of buffers since the value estimation differences between (πb(s), s) and

(πrbc(s), s) are more distinguishable in these scenarios.

Policy analysis experiment Since Q-value prediction is usually overestimated, we use

immediate rewards as references to examine the quality of the inferences of Q-networks.

We pre-train a reward model Rψ(s, a) using the data in the buffer to predict reward r̂ given

state s and selected action a with 200K iterations with the buffer as our training data. At

each iteration of the policy update, we record the policy π(s) and the predicted rewards

in each batch, i.e., r̂ = Rψ(s, π(s)). We plot the distributions of reward in action spaces in

Fig. 4.7. It demonstrates that RUBICON selects the actions in a wider range cf. TD3+BC,

nonetheless, with a reward distribution of higher values. The distribution shown is with

10% of data randomly selected from the entire training for better visualization.

77

Table 4.2: Data reduction experiment

Environment Buffer RUBICON TD3+BC

hot-deterministic Expert 89.65±9.12 74.96±12.38

hot-deterministic Medium -6.92±78.43 79.37±25.5

hot-deterministic Random 90.41±5.47 -24.18±59.62

mixed-deterministic Expert 43.09±60.36 93.77±8.71

mixed-deterministic Medium 48.24±54.32 98.67±2.28

mixed-deterministic Random 82.89±10.19 72.58±6.91

cool-deterministic Expert 89.52±11.28 86.45±8.62

cool-deterministic Medium -11.56±62.82 47.61±17.66

cool-deterministic Random 35.92±43.24 42.59±72.43

hot-stochastic Expert 80.35±25.8 89.02±5.51

hot-stochastic Medium 5.3±43.33 10.79±56.47

hot-stochastic Random 62.26±18.59 26.43±52.33

mixed-stochastic Expert 78.08±25.78 85.25±12.96

mixed-stochastic Medium 66.02±17.68 72.17±16.14

mixed-stochastic Random 55.26±29.19 -86.21±25.92

cool-stochastic Expert 98.18±2.56 39.04±86.35

cool-stochastic Medium 73.16±19.56 38.68±39.93

cool-stochastic Random 69.76±5.46 -49.5±9.75

Sum . 1049.61±523.18 797.49±519.47

78

Figure 4.7: Reward distribution in action spaces of hot-continuous environment learns

from medium buffer, from left to right: RUBICON (1.842/1.978/-0.577), TD3+BC

(1.534/1.332/-0.668), and buffer (0.908/0.915/-0.799); tuples are the values of (action1

range/action2 range/reward mean).

4.5.2 Online approach

Main Experiment

In the online approach, it is assumed that an oracle exists for accurate simulations. In

real-world applications, researchers train online models in simulation environments before

deployment in real buildings. Experimental results comparing TD3 and our method can be

found in Table 4.3. In five out of six tasks, our method outperforms TD3 in averaged scores

and with a substantially smaller standard deviation across runs. The learning curves are

illustrated in Fig. 4.8. In terms of the optimization objectives, RUBICON yields a 13.16%

of energy reduction and 17.86% reduction in comfort penalty.

These results empirically show that our method strengthens the learning process not

only in the offline approach but also in the online approach.

79

Table 4.3: Online RUBICON and TD3 comparison

Environment RUBICON TD3

hot-deterministic 79.08±12.24 51.83±49.93

mixed-deterministic 72.34±0.00 23.46±41.01

cool-deterministic 66.52±0.00 66.3±41.66

hot-stochastic 83.64±8.25 71.8±21.51

mixed-stochastic 72.24±0.49 8.5±66.61

cool-stochastic 68.14±0.65 73.38±16.61

Sum 441.99±21.64 295.29±237.36

Figure 4.8: Learning curves comparing online RUBICON and TD3

80

Hyperparameter experiment

Deep-RL is sensitive to hyperparameter tuning [3], thus, we keep the original neu-

ral network architectures and hyperparameter settings for a fair comparison. Since all

the authors of these methods have optimized the hyperparameters across various tasks

and randomly initialized conditions. However, for the online settings, we introduce the

behavioral cloning term in the actor loss. We conduct hyperparameter optimization ex-

periments for the optimized settings. When the behavioral policy’s mean Q-value of the

batch is higher than RBC policy, the actor loss follows the original TD3 algorithm. On

the opposite, with RBC policy having a higher mean Q-value, the weighting λ and its

hyperparameter α (see Eq. 4.2 and Alg. 3) should be optimized since we cannot assume

the model’s behavior is similar to the offline setting. It is mentioned in the TD3+BC

paper that the value of α decides if the model learns similarly to RL (α=4) or imitation

learning (α=1) and the default value set in TD3+BC is α =2.5. We experiment on the

values {1, 2.5, 4} to observe how it affects the performance of our models in all tasks. The

result (See Table B.1) shows that when α=1 the model gives the highest scores and the

least variance. This indicates that the agent should imitate RBC policy even more than

the offline setting (α = 2.5) in order to achieve a more optimal policy.

4.6 Conclusion and Future Works

In this paper, we explored how rule-based control policies can be incorporated into

reinforcement learning as regularization to improve both of their performance. Our method

81

can be implemented on the baseline methods with minimal changes and is straightforward

and intuitive. We applied our method in building HVAC control simulation environments

in both online and offline settings, demonstrating its practical usage regardless of the

existence of a valid environment simulator. We empirically demonstrate that our method

outperforms state-of-the-art offline/batch reinforcement learning methods and improves

from its online baseline by a substantial amount in building HVAC control tasks where

rule-based control is robust and a standard in real-world settings. We expect our study,

open-sourced code bases and dataset2 would encourage both domains and RL experts to

explore more opportunities for the combination of existing policies and RL and extend

this concept to more real-world applications.

For future works, we plan to enhance the interpretability of the decision-making process

in our experiments, we aim to develop transparent and interpretable algorithms for RL

agents via Explainable RL (XRL) [107, 1, 46]. Also, using the ensemble Q-networks for a

more accurate Q-value estimation.

Chapter 4, in part, is a reprint of the material that appears in the proceeding of

the 14th ACM International Conference on Future Energy Systems (e-Energy 2023). By

authors Hsin-Yu Liu, Bharathan Balaji, Rajesh Gupta, and Dezhi Hong with the title

- “Rule-based Policy Regularization for Reinforcement Learning-based Building Control”

The dissertation author is the primary investigator and author of this paper.

2For the dataset please refer to our B2RL (https://github.com/HYDesmondLiu/B2RL) repository. And
for the codes please refer to our RUBICON (https://github.com/HYDesmondLiu/RUBICON) repository.

82

https://github.com/HYDesmondLiu/B2RL
https://github.com/HYDesmondLiu/RUBICON

Chapter 5

Adaptive Policy Regularization for

Offline-to-Online Reinforcement

Learning in HVAC Control

5.1 Introduction

In Chapter 2, we considered offline RL approaches for the scenarios where we have no

simulators of the environments, but the data of sensing and actuating. In Chapter 3, we

open-source the first dataset for building the BRL learning benchmark. In Chapter 4, we

incorporate the existing policies with RL. Now we build upon these to further improve the

pre-trained offline models via online interactions.

Real-world building HVAC systems are mainly controlled via Rule-Based Control (RBC)

policies that consist of a set of if-else rules crafted by domain experts. However, it is

83

Table 5.1: Comparison between RL approaches

RL approaches Strength Weakness Prerequisite

Online Ability to explore and earn di-

rectly from real-time interac-

tions

Learning from random policies Access to a live environment for

interaction

Offline Learn from a fixed dataset, re-

ducing risk

Large and diverse dataset of

good-quality experiences

Limited to the diversity of the

dataset

Offline-to-Online Combining the safety of offline

data with the adaptability of

online updates

Complexity in integrating of-

fline and online learning phases

Access to both historical

data/pre-trained offline models

and a live environment

unlikely for these rules to generalize and scale to different operating environments and

buildings. Reinforcement Learning, on the other hand, can adapt to the changes in the

environment. To do so, building control problems could be formulated as Markov Decision

Processes (MDP) and to be optimized with RL methods [120]. The RL agent observes the

states via sensors in the buildings, (i.e., thermostats, hygrometers), and the actions are

implemented as the control setpoints in a building management system via actuators. In

this formulation, the objective of the agent is to increase energy efficiency while ensuring

occupants’ thermal comfort [145].

Most RL methods in prior works are trained and evaluated in the online paradigm.

With the online approach, an accurate simulator is required to give feedback to the RL

agent. However, setting and calibrating these simulators requires expertise and is time-

consuming. Also, in modern commercial buildings, the building management systems

already store a significant amount of sensing and control data. These datasets capture not

only the thermal dynamics of the systems but also the control policies that embody the

84

best-known knowledge of the control defined by domain experts. Prior works have shown

that offline data-driven methods can learn a more robust policy than the behavioral RBC

policies that generated the data [68]. Nonetheless, without further online interactions, the

improvement is limited by the diversity of the state-action distribution in the historical

data.

Recently, researchers have explored the ability of offline-to-online (O2O) RL in other

domains [78, 148, 142, 138, 62]. These models are designed to adapt to the distribution

drift between the static buffers and the environments evaluated. However, most of these

methods deteriorate the performance of the pre-trained offline models. In this chapter, we

aim to answer the following research questions:

Q.1 How can we adapt to distribution drifts under offline-to-online paradigm,

without harming the capability of the pre-trained models?

Q.2 How can we further improve the pre-trained models as training evolves?

Q.3 How much historical data is required for online, offline, and offline-to-

online methods to learn a robust and stable policy?

These questions are crucial not only for O2O RL methods but also for real-world

building control problems, considering both the capability of the O2O models and data

efficiency. The objective of O2O RL is to adapt to the building environment with limited

data, and simultaneously maintain the pre-trained performance.

85

Real environment

Pre-train
offline model Agent

Dataset
Environments

Interact

Save new transitions

Fine-tune

𝑠, 𝑎, 𝑠′, 𝑟	 ~𝒟

𝜋!(𝑠"##)
𝑄!(𝑠"## , 𝑎"##)

(𝑠"$, 𝜋! 𝑠"$)

(𝑠"$, 𝜋! 𝑠"$, 𝑠"$% , 𝑟"$)

𝜋! → 𝜋#&
𝑄! → 𝑄#&

Figure 5.1: Flow chart of offline-to-online RL: (1.) The offline model learns from the

existing dataset. (2.) After pre-training, the agent interacts with the environment online.

(3.) The generated transitions are saved in the replay buffer(s) for further learning. (4.)

The offline-to-online fine-tuning improves the agent’s performance continuously.

5.2 Related Work

We build up prior work on offline-RL, O2O-RL, and building RL controls. We sum-

marize the comparison between different RL approaches in Table 5.1.

5.2.1 Building RL control

Prior research has demonstrated that building RL control policy could outperform

RBC in both online and offline settings. Zhang et. al. [145] developed a framework for

whole building HVAC (heating, ventilation, air-conditioning) control in online settings

to achieve a 16.7% heating demand reduction cf. RBC control. OCTOPUS holistically

controls subsystems in modern buildings to get a 14.26% energy saving cf. RBC policy [23].

Yang et. al. [135] implemented an RL control for LowEx building systems with a 11.47%

86

improvement on cumulative net power output than RBC.

With offline RL, Zhang et. al. [141] applied a state-of-the-art method and demonstrated

a 12 ∼ 35% of reduction in ramping. In Chapter 2, we incorporated a Kullback-Leibler

(KL) divergence constraint during the training of an offline RL agent to penalize policies

that are far away from the previous updates for stability, and achieve a 16.7% of energy

reduction cf. the default RBC control. To our knowledge, there is no O2O-RL study in the

building control domain. We are the first to study O2O-RL via building HVAC control.

5.2.2 Offline RL

In real-world settings, we often have access to data generated with an existing ‘behav-

ioral’ policy (RBC policy in our work) when there are no established simulators of the

environment. These logged interactions are saved as experience replay or replay buffers.

Offline RL learns exclusively from existing static datasets without interacting with an

environment. Due to the lack of accurate value estimation of out-of-distribution (OOD)

state-action pairs, these methods learn a more conservative policy or a pessimistic lower

bound of the value estimation.

BCQ [37] mitigates the extrapolation errors induced by OOD actions via a varia-

tional autoencoder. BEAR [57] uses ensemble Q-functions to reduce the accumulation of

bootstrapping errors. BRAC [133] regularizes the learned policy towards the behavioral

policy with a KL divergence constraint between the distributions over actions. CQL [59]

learns a lower bound of the true Q-function with SAC [39]-style entropy regularization.

TD3+BC [33], derived from TD3 [35], uses a behavioral cloning regularization for pol-

87

icy learning. UWAC [134] down-weights the OOD state-action pairs’ contribution to the

training.

5.2.3 Offline-to-Online RL

Offline-to-online (O2O) RL follows the assumption of offline RL where there is no access

to the simulator of the system. However, we could further improve the model with online

interactions since the pure offline method cannot yield accurate value estimation of the

OOD state-action values. Hence, the goal is to enhance the capability of the model with

online training without learning from scratch as in the traditional online setting.

RL with Offline Data

Previous studies focus on online RL boosted with offline data. One branch in this

research area is RL with Expert Demonstrations (RLED) with the assumption that a

pre-trained offline model may not be necessary. APID (Approximate Policy Iteration

with Demonstrations.) [49] leverages few and/or sub-optimal demonstration data used as

suggestions to guide the optimization performed by approximate policy iteration. DQfD

(Deep Q-learning from Demonstration) [44] leverages demonstration data to accelerate

the online learning process. Piot et al. [84] proposes a method to minimize the optimal

Bellman residual guided by constraints defined by the expert demonstrations. Recently,

RLPD (Reinforcement Learning with Prior Data) [7] extends standard off-policy RL and

achieves state-of-the-art online performance on a number of tasks using offline data not

limited to expert prior knowledge [8]. This branch of research differs from our study in

88

that we focus on fine-tuning the pre-trained offline models and not training the models

from scratch with offline data to accelerate the learning.

Online fine-tuning with offline pre-training

Another branch, which is similar to our proposed method, assumes we fine-tune offline

models in online settings to adapt to distribution drift and optimize the exploration-

exploitation trad-offs. AWAC [78] trains an advantage-weighted actor-critic with an im-

plicit policy constraint to avoid with a balanced replay between offline and online buffers,

a pessimistic Q-ensemble [62], and a density ratio estimator to improve sample efficiency

and prevent over-optimism. PEX [142] freezes the pre-trained offline model, expands the

policy set with the fine-tuning model, and constructs a categorial distribution for selecting

the final action. APL [149] obtains near-on-policy data and chooses an optimistic update

strategy. On the other hand, it uses a pessimistic update strategy for sampled offline data.

REDQ [148] uses randomized ensemble Q-functions to increase sample efficiency and adap-

tive hyperparameter tuning to adjust the degree of behavioral policy regularization with a

normalized target episode reward. ACA [138] introduces a reconstruction of Q-functions

for online fine-tuning as an alignment step so it is tamed to be consistent. TD3-C [72]

considers conservative policy optimization as the approach for stabilizing finetuning when

the offline dataset lacks diversity.

Unfortunately, the aforementioned offline-to-online methods need at least one of the

following requirements that makes them resource-consuming [138, 148, 62, 78, 72] and

most of them fail to maintain the pre-trained performance:

89

R.1 Introducing additional models other than existing ones and/or maintaining multiple

buffers.

R.2 Require information on absolute scores of expert and random agents that may not

be accessible.

R.3 Many suffer policy collapse at the very beginning of the transition from offline mode

to online mode.

To summarize, the key contributions of our work are:

• Our method requires no extra models, only a single replay buffer and works without

the identifying the offline transitions and the online transitions (to tackle R.1).

• Develop an automatic fine-tuning offline-to-online RL algorithm that could maintain

the pre-trained model’s ability and continue to learn to reach an optimal policy (to

tackle R.2 and R.3).

• The add-on methods - Combined Experience Replay (CER [143]) and Bootstrapped

Ensemble [80] help adapt the distribution drift with extreme low cost of O(1) time

complexity.

The details of our method will be elaborated in Sec.5.4.

90

5.3 Problem Formulation

5.3.1 Reinforcement Learning

Reinforcement Learning problems are formulated as a Markov Decision Process (MDP),

a sequential decision-making problem that aims to maximize the discounted accumulative

rewards. The MDP consists of a tuple: M = (S,A, p, r, γ), where S is the state space,

A is the action space, P is the transition dynamics. The next state st+1 ∼ p(·|st, at), is

decided by the current state and the action selected by a policy π(a|s), π : S → A either

in a stochastic or a deterministic fashion. The reward function R : S × A → R, r ∈ R is

mapped as a scalar, and the discount factor γ ∈ [0, 1). The agent’s goal is to optimize the

policy to maximize the discounted accumulated return Eπ[
∑∞

t=0 γ
trt] [109].

5.3.2 Offline RL training

In offline training, the replay buffer D is generated by an unknown behavioral policy

(or a combination of multiple policies): πβ(s). Then the offline model aims to learn the

optimal policy without interacting with the environment within the confined state-action

visitations. Thus, when the trained offline RL policy is deployed in the real environment,

any OOD actions may lead to inaccurate value estimation due to extrapolation errors.

Our offline training follows TD3+BC, an offline version of TD3 [35] with minimal

modification from its online alternative. The learned policy is regularized with a behavior

91

cloning term to penalize policies that deviate from the behavioral policy:

π = argmax
π

E(s,a)∼D[λQ̄(s, π(s))− (π(s)− πβ(s))2] (5.1)

λ =
α

1
N

∑
(si,ai)

|Q(si, ai)|

Where N is the size of the minibatch, Q̄ is the average Q-value in the sampled batch

given s and π(s), πβ(s) denotes the behavioral policy given s, and α is a hyperparameter

to balance between the online exploration and the exploitation of the behavioral policy.

5.4 Methodology

5.4.1 Offline-to-Online RL Training via Weighted Increased Sim-

ple Moving Average Q-value

Observation and Insight

Our method WISMAQ (Weighted Increased Simple Moving Average of Q-value) is in-

spired by the preliminary experiments we performed with the B2RL [69] RBC buffers with

pre-trained TD3+BC (pure offline) then converted to TD3 (pure online) during offline-to-

online fine-tuning.

Specifically, we add up all the averaged Q-values of the sampled batches at each

timestep i for Q̄Bi
, the mean of the average Q-value sampled from the batches. Then,

when an episode ends at time te we store the episodic average Q̄e = 1
te

∑te
i=1 Q̄Bi

. Finally,

92

0 2500 5000 7500 10000 12500 15000 17500 20000
Timestep

30

25

20

15

10

5

0

Qm
ea

n

RBC
hot-stochastic

Qmean_avg
Qmean_sma_avg

Figure 5.2: The averaged Q-value of the batches sampled from the RBC buffer during

the training, the agent failed to improve its policy, thus the mean Q-value converges.

93

0 1000 2000 3000 4000 5000 6000 7000
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Qm
ea

n

1e8
Random

hot-stochastic
Qmean_avg
Qmean_sma_avg

Figure 5.3: The averaged Q-value of the batches sampled from the random buffer during

the training, the agent learns better policies, the mean Q-value is increased over time.

94

we plot the average episodic mean Q-values over time in Fig. 5.2 (where the solid blue

curves are the average values and the shaded regions are the min/max range), as the red

curve demonstrates the Q-SMA (Simple Moving Average of mean Q-value sampled from

the batches).

As we can see in Fig. 5.2, the averaged Q-value of the sampled batch is noisy due to

the random sampling from the buffers. However, the Q-SMA is more stable cf. the raw

average Q-value. In this example, the agent fails to learn a better policy, thus, the Q-value

converges as training continues. On the opposite, in Fig. 5.3, the agent continues to learn

better policies as training goes on. Thus, the average Q-value increases as the improved

policy has generated transitions with higher Q-values to be stored in the replay buffer.

The agent learns a better policy will generate the transitions that are with higher

values. And it could be validated by the estimations from the critics, i.e., higher Q-values.

According to Eq. 5.1 it indicates the policy leads to a higher average Q-value with the

sampled states and actions selected by the policy. We observe that the average Q-value

increases as training proceeds for buffers with lower behavioral policy performance. For

the expert task, the model is unable to learn a better policy to yield a higher estimated

Q-value during the training, i.e., the value estimation converges [104].

Our method WISMAQ is simple and straightforward – it aims to learn a policy that

yields an increasing simple moving average (SMA) Q-value in the sampled batch compared

to a previous reference SMA. We use SMA instead of the vanilla average since the average

Q-value in the batch is noisy due to random sampling and inherited uncertainty within

the models. The regular average does not reflect the actual trend of mean Q-value. The

95

timestep difference between the current SMA and the reference SMA is a hyperparameter

to be optimized; it depends on how rapidly the value estimation varies. If we simply use

greedy Q-value increments, it would lead to abrupt performance collapse when Q-value

estimation is uncertain and encounters unseen environment state-action distributions.

Averaged Q-value in Replay Buffers

Based on the observation in the previous subsection, we observe that when the agent

could not learn a better policy the average Q-value in the replay buffer is lowered as

training continues. However, if the agent can learn a better policy, the average Q-value in

the replay buffer would increase as training continues. It could be proved by the following:

With policy improvement, the value of any state s correspondingly improves based on

the standard policy improvement theorem.

Lemma 1: Policy Improvement Theorem

Proof [104] :

Given a policy π

vπ(s) = E[Rt+1 + γRt+2 + ...|St = s]

π′ = greedy(vπ). Consider a deterministic policy a = π(s), improve it by acting greedily

with respect to vπ

π′(s) = argmax
a∈A

qπ(s, a)

it improves the value from any state s over one step:

qπ(s, π′(s)) = max
a∈A

qπ(s, a) ≥ qπ(s, π(s)) = vπ(s)

96

Hence, the value of any state s is improved, i.e., vπ′(s) ≥ vπ(s)

vπ(s) ≤ qπ(s, π′(s)) = Eπ′ [Rt+1 + γvπ(St+1)|St = s]

≤ Eπ′ [Rt+1 + γqπ(St+1, π
′(St+1))|St = s]

≤ Eπ′ [Rt+1 + γRt+2 + γ2qπ(St+2, π
′(St+2))|St = s]

≤ Eπ′ [Rt+1 + γRt+2 + ...|St = s] = vπ′(s)

We now prove that an improved policy yields a higher average Q-value in the replay

buffer.

Lemma 2: An improved policy will yield a higher average Q-value in the replay buffer

as we store the newly generated transitions into it.

Proof : The Q-value update rule for the tabular Q-learning algorithm [127] is:

Qt+1(s, a)← Qt(s, a) + α[r + γmax
a′

Qt(s
′, a′)−Qt(s, a)]

Assuming the old policy is πt and the newly improved policy is πt+1, then the Q-value of

the new policy can be expressed as:

Qπ
t+1(s, a) = E[r + γmax

a′
Qπ
t+1(s

′, a′)|s, a, πt+1]

=
∑
s′

P (s′|s, a, πt+1)[r + γmax
a′

Qπ
t+1(s

′, a′)]

where P (s′|s, a, πt+1) is the transition probability. By the definition of the Q-value and the

assumption that a new policy is better than the old one, we have: Qπ
t+1(s, a) ≥ Qπ

t (s, a).

97

∀s ∈ S and ∀a ∈ A. Taking the average of both sides over all state-action pairs, we have:

1

|S||A|
∑
s∈S

∑
a∈A

E[r + γmax
a′

Qπ
t+1(s

′, a′)|s, a, πt+1] ≥

1

|S||A|
∑
s∈S

∑
a∈A

Qπ
t (s, a)

Since the left-hand side is the average Q-value of the new policy over all the state-action

pairs and the right-hand side is the average Q-value of the old policy over all state-action

pairs, this inequality shows that the new policy yields transitions with a higher averaged

Q-value than the averaged Q-value of the transitions generated by the old policy. End of

proof.

WISMAQ Implementation

As we can observe in Fig. 5.2, the trace of the episodic average Q-value is noisy while

the Q-SMA is more stable. Thus, we introduce the simple moving average of the average

Q-values to yield a more statistically meaningful metric for the model. To apply our

method on TD3+BC, we modify the policy update from Eq. 5.1 with the added loss term

LWISMAQ:

LWISMAQ = ReLU

(
Q̄t
SMA − ψ ∗ Q̄t−d

SMA

Q̄t
SMA + Q̄t−d

SMA

)
(5.2)

where t is the current timestep, ψ is a hyperparameter to weight the reference Q-SMA,

and d is the difference between the current timestep and the reference timestep. ReLU

is the rectified linear unit activation function that automatically tunes this term based

on the difference of the Q-SMA between the reference timestep and the current timestep.

i.e., when Q̄t
SMA is larger than ψ ∗ Q̄t−d

SMA, this term is activated. On the opposite, when

98

Q̄t
SMA is smaller than ψ ∗ Q̄t−d

SMA, this term is deactivated. The model learns the same as

the offline models (see Eq.5.1).

And the SMA (Simple Moving Average) for the timestep t:

Q̄t
SMA =

Q̄t + Q̄t+1 + ...+ Q̄t+w

w
(5.3)

where w is the window size we use for calculating the SMA. Thus, the policy update

follows:

π = argmax
π

E(s,a)∼D[λQ̄(s, π(s))− (π(s)− πβ(s))2+ξLWISMAQ] (5.4)

And ξ is a hyper-parameter for the coefficient of LWISMAQ. With the ReLU activation

function, the added loss term is bounded, i.e. LWISMAQ∈[0, 1]. And thus makes it auto-

tuned without any heuristics.

To summarize, WISMAQ optimizes the policy by identifying if the current SMA of

the averaged Q-value is higher than a previous reference SMA. If so, the WISMAQ loss

term is activated, it encourages the policy to explore. Otherwise, when the WISMAQ

loss term is lower than the reference value, we keep the actor loss as is since it means

the Q-value is converging, i.e., leave it learning as the original offline model, which is

conservatively trained with online transitions.

5.4.2 Adapting to Distribution Drift

Another critical challenge in O2O transition is the distribution drift as building and

environmental conditions change. Previously, several methods were proposed to accelerate

RL learning by utilizing replay buffers [143, 98, 28]. We found some of them are suitable to

99

deal with the distribution drift in the O2O setting. The first one we adopt is the combined

experience replay (CER) [143], it adds the latest transition to the sampled batch in every

training step and speed up the learning. Intuitively, it forces the model to learn from the

latest state-action distribution of the environment combined with the previous ones.

The other technique we applied is to remove the oldest transition in the buffer faster by

setting a smaller number of transitions stored in the replay buffer since it is implemented

in queues [28]. When a policy is learning and improving, the transitions generated by the

old policies might harm the convergence of the model due to its inferior performance cf.

the current policy. Especially in off-policy settings, we learn from the behavioral policy

via replay buffer. Observations from our experiments (in the next section) indicate that

the performance of the models consistently improves with the reduced age of the oldest

policy [28]. The CER technique could be implemented with minimal changes with only

O(1) time complexity. Further setting a smaller buffer size requires no modification of the

algorithm itself, which is efficient and reasonable in O2O training. We detail the steps of

our method in Algorithm 5.

5.4.3 Bootsrapped Ensemble Learning

Due to the need for exploring uncharted state-action spaces, almost all previous O2O

studies take advantage of certain kinds of ensemble learning. We use K bootstrapping

ensemble double-Q networks via different combinations of the randomly sampled batches

in each iteration of critic training, then we randomly select a value network at each policy

training iteration. This is inspired by the bootstrapped DQN for deep exploration [80].

100

Algorithm 5: WISMAQ offline-to-online fine-tuning

Load pre-trained offline model as K ensemble double-Q networks {Qi,θ1 , Qi,θ2}Ki=1,

the actor-network πϕ, with random parameters {θi,1, θi,2}Ki=1, ϕ, target networks

{θ′i,1 ← θi,1, θ
′
i,2 ← θi,2}Ki=1, ϕ

′ ← ϕ, policy update frequency f , horizon T , replay

buffer B

for t = 0 to T do

Select actions with exploration noise

a ∼ πϕ(s) + ϵ, ϵ ∼ N (0, σ)

Observe reward r and next state s′

Store transition t = (s, a, r, s′)

Delete the oldest one in B for i = 1 to K do

Sample N transitions (s, a, r, s′) from B in which t ⊆ B (CER)

ã← πϕ′(s
′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)

y ← r + γminj=1,2Qθ′i,j
(s′, ã)

Update critics

θi,j ← argminθi,j N
−1

∑
(y −Qθi,j(s, a))2

if t mod f then

Update ϕ by policy gradient:

Policy update follows Eq. 5.2, 5.3, and 5.4(Bootstrapped Ensemble-Q and

WISMAQ)

Calculate ∇ϕJ(ϕ)

Update target networks:

for i = 1 to K do

θ′i,j ← τθi,j + (1− τ)θ′i,j

ϕ′ ← τϕ+ (1− τ)ϕ′

101

The authors claim that randomized value functions offer a promising approach to efficient

exploration with generalization. Our experiment results agree with the statement with

fewer variances across different runs and could learn faster than other methods.

5.5 Benchmark Experiments

5.5.1 Experiment Setups

We conducted our experiments with the building RL simulation environments [47].

The objective of the agent is to maintain a comfortable thermal environment with minimal

energy use. The state consists of indoor/outdoor temperatures, time/day, occupant count,

thermal comfort, and related sensor data. The action adjusts the temperature setpoint of

the thermostat. The reward is a linear combination of occupants’ thermal comfort and

energy consumption. The environment is a single-floor building divided into 5 zones, with

one interior and four exterior rooms.

The details about the RL settings in our problem are described below:

• State: Site outdoor air dry bulb temperature, site outdoor air relative humidity,

site wind speed, site wind direction, site diffuse solar radiation rate per area, site

direct solar radiation rate per area, zone thermostat heating setpoint temperature,

zone thermostat cooling setpoint temperature, zone air temperature, zone thermal

comfort mean radiant temperature, zone air relative humidity, zone thermal comfort

clothing value, zone thermal comfort Fanger model PPD (predicted percentage of

102

dissatisfied), zone people occupant count, people air temperature, facility total HVAC

electricity demand rate, current day, current month, and current hour.

• Action: Heating setpoint and cooling setpoint in continuous settings for the interior

zones.

• Reward: We follow the default linear reward setting, which considers the energy

consumption and the absolute difference to temperature comfort.

The reward function is described below:

rt = −ωλPPt − (1− ω)λT (|Tt − Tup|+ |Tt − Tlow|) (5.5)

where Pt represents power consumption; Tt is the current indoor temperature; Tup

and Tlow are the imposed comfort range limits (penalty is 0 if Tt is within the range);

ω is the weight assigned to power consumption. Finally, λP and λT are scaling

constants for energy consumption and comfort, respectively.

• Environment: A single floor building with an area of 463.6m2 divided into 5 zones,

1 interior, and 4 exteriors. The HVAC system is a packaged VAV (variable air

volume) (DX (direct expansion) cooling coil and gas heating coils) with fully auto-

sized input. And the simulation period of one episode is a full year. The weather

types are classified according to the U.S. Department of Energy (DOE) standard [79].

The weather type details and their representative geometric locations are listed below

based on TMY3 datasets [60]:

103

– Cool marine: Washington, USA. The mean annual temperature and mean

annual relative humidity are 9.3°C and 81.1% respectively.

– Hot dry: Arizona, USA with mean annual temperature of 21.7°C and a mean

annual relative humidity of 34.9%

– Mixed humid: New York, USA with a mean annual temperature of 12.6°C

and a mean annual relative humidity of 68.5%

5.5.2 Experiments

We create a set of RBC buffers for the three different weather conditions. Considering

two practical scenarios where we have a well-trained RL agent and an RBC policy written

by human experts. This is the general case for most large commercial building sectors.

The generation flow of the buffers is described in detail below:

(1.) Generate buffers for 250K time steps via Rule-Based Control policy:

• RBC: We follow the SinerGym [47]’s example of RBC policy and vectorize it for

better computation efficiency (see Alg. 6).

(2.) Every method is trained offline first for 50, 000 timesteps with the RBC buffers.

(3.) Train the state-of-the-art methods along with WISMAQ as the flow in Fig. 5.1

to compare the learning curves. We trained the models with 35, 000 timesteps which is

approximately one year in real-time. And the evaluation frequency is each 2, 500 timesteps.

Each algorithm is run with three random initialization setups (3 random seeds).

We list below the methods compared:

104

Algorithm 6: Rule-based control policy

Input : Current datetime current dt, indoor air temperature IAT , zone

thermostat heating setpoint temperature ah, and zone thermostat

cooling setpoint temperature ac, obtained from the states with size N

Output: Actions selected by RBC

for i in N do

season comfort zonei = get season comfort(current dti)

if IATi >= max(season comfort zonei) then

ahi = ahi − 1

aci = aci − 1

if IATi < min(season comfort zonei) then

ahi = ahi + 1

aci = aci + 1
ai = (ahi , aci)

if current dti.weekday ≥ 5 or current dti.hour in range(22,6) then

ai = (18.33, 23.33)(°C)

• AWAC [78]: Advantage Weighted Actor Critic (AWAC), it enables rapid learning

of skills with a combination of prior demonstration data and online experience. The

implicitly constrained actor-critic algorithm is able to both train offline and continue

to improve with more experience.

• REDQ [148]: It combines the randomized ensemble Q-functions to improve sample

efficiency along with a proportional-derivative (PD) controller to tune the hyperpa-

rameter of the weight of the behavioral cloning term α in Eq. 5.1 with a target score

and current episodic return.

105

• TD3+BC-FT: From TD3+BC [33] to TD3 [35], we directly convert the offline

TD3+BC to TD3 by removing the behavior cloning term shown in Eq. 5.1 at the

beginning of the offline-to-online training, i.e., by setting α = 0 in the fine-tuning

stage.

Figure 5.4: Learning curves of O2O models learn from RBC buffers

Table 5.2: Scores comparison between WISMAQ and other state-of-the-art method.

Task/Algo. AWAC WISMAQ REDQ TD3+BC-FT

RBC-hot 75.9±21.5 99.7±0.1 74.7±3.4 26.9±69.3

RBC-mixed 42.7±42.2 100.2±0.2 91.6±13.7 5.3±73.7

RBC-cool 94.6±2.5 98.6±0.1 58.3±20.6 72.6±22.1

Sum 213.2±66.2 298.5±0.4 224.6±37.7 104.8±165.1

In terms of optimization goals of energy consumption and thermal penalty. We nor-

malize WISMAQś metrics as ones and compare other state-of-the-art methods in Fig. 5.5.

As the figure 5.5 demonstrates, our method achieves a substantial improvement in comfort

penalty (purple bars). Meanwhile, it maintains a comparable energy consumption among

106

WISMAQ REDQ TD3+BC-FT AWAC
0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
er

gy

1.00

2.89

0.92 0.96

Energy

0

1

2

3

4

5

Co
m

fo
rt

Pe
na

lty

1.00

5.27

2.44

1.68

Energy and Comfort Penalty by Algorithm
Comfort Penalty

Figure 5.5: Compare the optimization objectives by algorithms, WISMAQś optimization

objectives are normalized as 1, and the data shown is the summation of all six tasks across

3 different initialization conditions.

107

the state-of-the-art methods.

Together from Fig. 5.4 and Table 5.21, we can see that WISMAQ can maintain the

pre-trained models’ capacity. It answers the Q.1 in Sec.5.1 And further improve them

as training continues (corresponds to Q.2). Overall, WISMAQ has a 32.9% improvement

from the next best state-of-the-art method AWAC. Also, WISMAQ shows a substantially

more stable output with only 0.4% total standard deviation in scores of the last 5 evaluation

episodes across six tasks. While other methods fail to output stable performance across

different environment resets in the late training stages, WISMAQ could still learn policies

with higher scores across different random seeds.

5.5.3 Data Efficiency Experiment

To answer the research question Q.3 in Sec.5.1, we executed a series of data efficiency

experiments to observe how the amount of data affects the training. We train with three

different buffer sizes containing one year of data, four months, and one week:

• Offline WISMAQ: Pure offline training, RBC buffers are downsampled to the

varied sizes as mentioned.

• Online WISMAQ: Pure online training, buffers initialized with zero transitions.

• RBC: Deploy RBC policy and evaluate.

1scores are normalized as the expert policy is 100 and the random policy is 0. The format is avg.±std.
between 3 random initialization conditions of the final 5 evaluations. The highest score in a particular
task is highlighted with bold font.

108

Figure 5.6: Offline training with varied max sizes of buffer.

109

Fig. 5.6 demonstrates that with pure offline WISMAQ training, we simulate the scenar-

ios of different amounts of accessible data:{1 week, 4 months, and 1 year}. It is intuitive

that with the smaller size of buffers, the agent would learn faster since as training con-

tinues, the better policies generate a higher quality of experience replay [28]. However, it

comes with a less stable policy and could lead to catastrophic forgetting (1 week) for this.

With too much data the model would learn from the old distribution which might damage

the performance (1 year). Finding the optimized size of the buffer is also a crucial factor

in off-policy learning.

Figure 5.7: Online training with varied max sizes of buffer.

In Fig. 5.7 pure online WISMAQ are not able to learn a better policy with varied sizes

110

Figure 5.8: RBC (Rule-Based Control) deployment.

111

of the buffer (all three learning curves overlapped). Compared with our main experiments

where agents were pre-trained with offline data they have a better knowledge of entire

state-action spaces and their corresponding values. It indicates WISMAQ requires prior

knowledge of the environment for a more promising outcome.

Fig. 5.8 is treated as a reference level to show that even with constant RBC policy, we

cannot guarantee the RBC policy’s performance with varied environment initializations.

5.5.4 Ablation Experiment

To demonstrate the capability of our add-on methods, we conducted a series of abla-

tion experiments to validate their necessity (Fig. 5.9). We run WISMAQ ”no cer”, and

”no WISMAQ” on the same task - cool weather with RBC buffers, the result indicates

that without WISMAQ the model learns similarly to an offline model. Without CER, the

model could adapt to the latest distribution drsift and finally fail to improve itself in the

long run. Combining these methods altogether will boost the entire learning ability than

separately.

5.5.5 Sensitivity Experiments

Deep Reinforcement Learning methods are known for their sensitivity to hyperparam-

eter settings [3]. Thus, we have conducted a series of experiments to demonstrate how the

hyperparameter settings affect the models’ performances.

To experiment on the number of bootstrapping ensemble models, Fig. 5.10 indicates

the higher number of ensemble models yield an overall faster convergence of the policy. We

112

Figure 5.9: Ablation experiment.

113

Figure 5.10: Sensitivity experiment on hyperparameter K, the number of ensemble mod-

els.

114

Figure 5.11: Sensitivity experiment on hyperparameter ξ, the weight of the WISMAQ

loss term in actor training.

115

should consider the trade-off between computation resources and the convergence speed

to decide the number of ensemble model K.

For the hyperparameter ξ which weights the WISMAQ loss term in policy training,

Fig. 5.11 shows with smaller weight ξ = 1, the model is unable to learn a better policy be-

cause the behavioral cloning term dominates. While a higher ξ value leads to a more greedy

fashion during policy learning, it might suffer from the inaccuracy of the value estimation.

Thus, it is recommended to optimize this hyperparameter for each environment.

5.5.6 Adaptability Experiment

Furthermore, we want to examine the portability of our model when deployed to dif-

ferent environment settings. We conducted experiments with another environment - A

datacenter. This environment contains 29 state space dimensions and 4 action space di-

mensions (for details please see Appendix.C.1). As the experimental result demonstrates,

WISMAQ can learn a policy that is similar to expert policy while other methods could

not adapt to the distribution drift as training goes on.

Table 5.3: Scores comparison of the scalability experiment.

Datacenter AWAC WISMAQ REDQ TD3+BC FT

RBC-hot -39.5±2.0 100.0±0.0 13.7±37.9 -78.0±3.7

116

0 5000 10000 15000 20000 25000 30000
Timestep

150

100

50

0

50

100

150

200

No
rm

al
ize

d
ep

iso
de

 re
wa

rd

RBC
hot-stochastic

Datacenter
AWAC
WISMAQ

REDQ
TD3+BC_FT

Buffer

Figure 5.12: Scalability experiment with

data center environment.

117

5.6 Discussion and Conclusion

WISMAQ enables us to regularize the agent’s policy in offline-to-online RL for use

in HVAC control. It automatically tunes the actor loss that is designed to increase the

average Q-value of the sampled batches in the experience replay. The use of a Simple

Moving Average of the mean Q-value is key to our algorithm and could reflect the actual

trend of the policy learning and its corresponding value estimation. Our experiments in

the simulation environments indicate that WISMAQ not only maintains the pre-trained

model capacity but also further learns a better policy as training goes on with RBC buffers.

The limitation of our method is as seen in higher dimensions of the state-action spaces.

The effect of the curse of dimensionality increases which might lead to less accurate value

estimation. Thus, the actual trend of the mean Q-value would be inherited with higher

uncertainty. However, this issue could be mitigated by learning a lower bound of the value

estimation or the help of ensemble Q-network for a more accurate prediction.

Our study encourages domain experts to explore the possibility of offline-to-online

reinforcement learning applied in energy systems. Since a significant amount of data has

been stored and should be utilized efficiently with data-driven methods.

Chapter 5, in part, is a reprint of the material that will be submitted in the future

by the authors Hsin-Yu Liu, Bharathan Balaji, Rajesh Gupta, and Dezhi Hong. with a

tentative title: “Policy Regular- ization for Offline-to-Online Reinforcement Learning in

HVAC Control”. The dissertation author is the primary investigator and author of this

paper.

118

Chapter 6

Future Work and Conclusion

6.1 Future Work

The exploration of Offline Reinforcement Learning (Offline RL) and its transition to

Offline-to-Online RL paradigms opens up a new era in building control systems, signifi-

cantly enhancing their efficiency and adaptability. While these advancements have set a

robust foundation, the evolving landscape of smart buildings and the increasing emphasis

on sustainability and occupant comfort beckon further innovation. This chapter outlines

potential future directions in leveraging Reinforcement Learning to address the emerging

challenges and opportunities in building control systems.

Adaptive and Generalizable RL Frameworks We need RL frameworks that exhibit

high levels of adaptability and generalization across diverse building architectures and

environmental conditions. This entails creating algorithms that can efficiently transfer

119

learned policies from one building to another, reducing the need for extensive retraining.

Techniques such as meta-learning and transfer learning could play pivotal roles in achieving

this goal, enabling RL agents to apply knowledge gained in one context to novel situations.

Integration of Multi-Agent Systems As buildings evolve into more complex systems

of cyber-coupled subsystems, the implementation of multi-agent RL (MARL) systems of-

fers a promising avenue for managing the interactions between various subsystems, such

as HVAC, lighting, and security. MARL can facilitate cooperative strategies that optimize

overall energy consumption and occupant comfort more effectively than isolated agents.

Future work will need to address the challenges of coordination and communication be-

tween agents to ensure cohesive operation.

Exploiting Deep Generative Models The incorporation of deep generative models

within RL frameworks can enhance the prediction and simulation capabilities essential for

effective building control. By generating realistic scenarios of environmental conditions

and occupant behavior, these models can provide RL agents with rich, synthetic datasets

for training, improving their decision-making under uncertainty. Investigating the synergy

between generative models and RL could unlock new potential for predictive building

management.

Human-in-the-Loop RL Approaches Integrating human feedback directly into the

RL loop represents a significant frontier. Human-in-the-loop approaches can ensure that

the RL policies not only optimize energy efficiency but also align with human comfort

120

and preferences. We need mechanisms for efficiently incorporating subjective feedback

and adapting RL policies accordingly, potentially through preference-based or inverse RL

techniques.

Addressing Safety and Reliability As RL-based control systems become more preva-

lent, ensuring their safety and reliability, especially in critical systems like HVAC, is

paramount. Future work should focus on developing safe RL algorithms that incorpo-

rate risk assessment and management directly into their learning processes. This includes

exploring safe exploration strategies and robust policy evaluation methods that can guar-

antee the safety of actions before their deployment in the real world.

Leveraging Edge Computing The integration of edge computing with RL can signifi-

cantly enhance the responsiveness and efficiency of building control systems by processing

data closer to the source. This approach minimizes latency and reliance on cloud ser-

vices, enabling real-time adjustments to building controls. Investigating RL algorithms

optimized for edge devices, considering their computational constraints, will be crucial for

advancing smart building technologies.

6.2 Conclusion

This dissertation covers studies of policy regularization in model-free building control

via Offline, Online, and Offline-to-Online RL. Provides robustness and stability while

maintaining scalability and learnability during the agent training.

121

The journey from Offline RL to its integration into online environments has marked a

significant advancement in building control strategies. However, the continuous evolution

of smart building technologies and the growing demand for sustainable, comfortable, and

energy-efficient living spaces present new challenges and opportunities for RL research. By

addressing these future directions, we can further harness the power of RL to revolutionize

building control systems, making them more adaptive, efficient, and aligned with human

needs.

This exploration not only contributes to the field of building automation but also sets

a precedent for applying advanced RL techniques in other domains where efficiency and

adaptability are paramount.

122

Appendix A

Safe HVAC Control via Batch

Reinforcement Learning

A.1 Munchausen Regularizaion

A.1.1 Motivation

Current batch/offline RL methods are mainly focused on utilizing statistical methods

or using regularization methods to mitigate the effect of distribution drift. Pessimistic

Q-Learning (PQL [70]) adds a state Variational Auto Encoder (VAE [51]) and uses a

filtration function to avoid Q-update when state-action visitation is not frequent enough

in the batch. Bootstrapping Error Accumulation Reduction (BEAR [58]) uses the sampled

version of Maximum Mean Discrepancy (MMD) between the unknown behaviour policy

and the actor as constraint to avoid actions that lie outside of the training data distribution.

123

Batch Constrained Q-learning (BCQ [36]) also minimizes the distance of selected action

to the data in the batch and leads to states where familiar data could be observed. While

effective, however, none of them considers another source of learning—the current policy.

Model-free batch RL is challenging because it is in the deadly triad of off-policy learn-

ing, function approximation, and bootstrapping [110]. The key insight of our work is that

we improve offline methods in the off-policy Q-update itself. While other works focus on

the extrapolation errors, bootstrapping errors, and function approximations.

A.1.2 Methodology

We add a scaled log-policy term in the Q-update step in the Batch RL Q-network ar-

chitecture inspired by Munchausen-RL [124]. State-of-the-art batch RL algorithms, such

as PQL and BEAR, are based on BCQ’s architecture, and BCQ uses double-clipped Q-

learning architecture. We follow a similar methodology and modify the Q-update step

from:

r + γmax
ai

[
λ min
j=1,2

Qθ
′
j
(s

′
, ai) + (1− λ) max

j=1,2
Qθ

′
j
(s

′
, ai)

]
to

r + αmτm ln(softmax(
Q

θ
′

τm
)) + γmax

ai

[
λ min
j=1,2

Qθ
′
j
(s

′
, ai) + (1− λ) max

j=1,2
Qθ

′
j
(s

′
, ai)

]

with the Munchausen term highlighted in red, where αm and τ are hyperparameters1.

Algorithm 7 gives the full description. Additionally, we also adapt Prioritized Experience

1M-RL regularization consists of two parts: the first part is the one we add on BRL architectures by
using Kullback-Leiber divergence to penalize policies that are far from the previous policy, and the other is
using an entropy term to penalize policies that deviate far from uniform distribution [121]. Our evaluation
shows that penalizing only the first term yields the best outcome.

124

Replay (PER [97]) with BCQ. We compute the rank-based probability P (j) based on

priority pαj , importance-sampling weight ωj, and TD-error δj. For each mini batch k for

j = 1 to k:

P (j) = pαj /
∑

i p
α
i

ωj = (N · P (j))−β/maxi ωi

δj = Rj + γjQtarget(Sj, argmaxaQ(Sj, a))−Q(Sj−1, Aj−1)

Where N is the size of the replay period. We update the transition priority pj ← |δj|. α

and β are the exponent hyperparameters. Finally, we update the critic network with:

θi ← argminθiN
−1

∑
ω(y −Qθi)

2

We evaluate against the state-of-the-art BRL methods: BCQ, PQL, and BEAR, and

compare their modified versions with Munchausen and PER variants. 2

Table A.1: Evaluated Algorithm Variants

Name Description

BCM BCQ with Munchausen-RL

PML PQL with Munchausen-RL

BCQ PER BCQ with PER

2We also implement PQL PER, however due to the heuristic in PQL that avoids Q-update when
visiting low-data region, the results are not improving, so we omit it in the comparison.

125

Algorithm 7: BCM algorithm

Input : Batch B, horizon T , target network update rate τ , mini-batch size N ,

max perturbation Φ, number of sampled actions n, minimum weighting

λ, M-RL hyperparameters αm and temperature parameter scaling the

entropy τm

Initialize Q-networks Qθ1 , Qθ2 , perturbation network ξϕ, and VAE

Gω = {Eω1 , Dω2}, with random parameters θ1, θ2, ϕ, ω, and target networks

Qθ
′
1
, Qθ

′
2
, ξϕ′ with θ

′
1 ← θ1, θ

′
2 ← θ2, ϕ

′ ← ϕ

for t← 1 to T do

Sample mini-batch of N transitions (s, a, r, s
′
) from B

µ, σ = Eω1(s, a), ã = Dω2(s, z), z ∼ N (µ, σ)

ω ← argminω
∑

(a− ã)2 +DKL(N (µ, σ)||N (0, 1))

Sample n actions: {ai ∼ Gω(s
′
)}ni=1

Perturb each action: {ai = ai + ξϕ(s
′
, ai,Φ)}ni=1

Set value target:

y = r+αmτm ln (softmax(
Q

θ
′

τm
))+γmax

ai

[
λ min
j=1,2

Q
θ
′
j
(s

′
, ai) + (1− λ) max

j=1,2
Q
θ
′
j
(s

′
, ai)

]
θ ← argminθ

∑
(y −Qθ(s, a))

2

ϕ← argminϕ
∑

Qθ1(s, a+ ξϕ(s, a,Φ)), a ∼ Gω(s)

Update target networks: θ
′
i ← τθ + (1− τ)θ

′
i

ϕ
′ ← τϕ+ (1− τ)ϕ

′

126

A.1.3 Experimental Setup and Result

Experimental Setup

We evaluate our methods on MuJoCo [113] environments similar to prior works but

use the latest version: Hopper-v3, HalfCheetah-v3, and Walker2d-v3. We use Deep De-

terministic Policy Gradient (DDPG [66]) to generate buffers after training for one million

time steps with a N (0, 0.1) Gaussian noise to select random actions. Then the agent is

used to generate buffers across five random seeds also with a N (0, 0.1) Gaussian noise to

emulate stochastic processes.

All of our experiments are conducted with Intel Xeon Gold 6230 CPUs (2.10GHz) and

NVidia Quadro RTX 8000 GPUs with Ubuntu 18.04 OS. All results shown are trained and

evaluated with five buffers with different random seeds.

Metrics and Results

We report the mean and median scrores across our experiments. Following Agarwal et

al. [2], we also report inter-quantile mean (IQM), optimality gap, performance profile and

probability of improvement to account for inherent uncertainty in deep RL training.

Aggregate Metrics In Fig.A.1, aggregate metrics are with 95% of confidence interval

(CI) and stratified sampling using percentile bootstrapping 50K times. IQM discards

the bottom and the top 25% of the scores, then calculates the mean. Optimality gap is

the amount by which the algorithm fails to meet a minimum score of γ = 1.0, typically

we set the aim as the normalized human/expert score. We can see that PML has a

127

smaller optimality gap and higher median, IQM, and mean compared with the second-

best algorithm, PQL.

Performance Profile Performance profile is commonly used in benchmarking optimiza-

tion software. However, it does not consider uncertainty estimation. A revised version of

performance profile is called run-score distribution. It shows the fraction of runs above a

certain normalized score. It is an unbiased estimator of the underlying distribution and

more robust than average-score distribution. In Fig. A.2 we observe that PML outper-

forms other methods almost under any condition. On the other hand, the addition of

Munchausen regularization and PER are helpful for improving BCQ. The results shown

here are bootstrapped with 2K times.

Probability of Improvement Probability of improvement is a metric which indicates

how likely one method outperforms the other on a randomly selected task. This metric does

not account for the size of improvement. As we can see in Fig. A.3, PML is most likely to

dominate among the methods we have evaluated.The results shown here are bootstrapped

with 200 times.

Learning Curves Fig. A.4, A.5, and A.6 illustrate the learning curves of all the algo-

rithms evaluated with training time steps as the x-axis and the average episode rewards on

the y-axis. Each solid line shows the average between runs, and half-transparent regions

indicate the range. The results again verify the robustness of the add-on of Munchausen

128

regularization.3

Figure A.1: Aggregate Metrics

Figure A.2: Score distribution with linear/non-linear scaling

3All results are based on five runs, except for BEAR, some runs were aborted due to MuJoCo simulator
feedbacks system state for large numbers or inf./NaN.

129

Figure A.3: Probabilities of improvement

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

500

1000

1500

2000

2500

3000

3500

Re
wa

rd

Hopper-v3

BEAR PQL PML BCQ BCM BCQ_PER

Figure A.4: Learning curves of Hopper-

v3

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

2000

4000

6000

8000

Re
wa

rd

HalfCheetah-v3

BEAR PQL PML BCQ BCM BCQ_PER

Figure A.5: Learning curves of

HalfCheetah-v3

A.1.4 Conclusion and Discussion

In this work, we show that Munchausen regularization is effective in improving BRL

methods. It penalizes policies that are far from the previous ones. It can serve as a

130

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1000

2000

3000

4000

Re
wa

rd

Walker2d-v3

BEAR PQL PML BCQ BCM BCQ_PER

Figure A.6: Learning curves of Walker2d-v3

strong learning signal to enhance the performance of models. Moreover, prioritized re-

play with weighted importance sampling could also improve BRL methods with consistent

Q-update. Due to the massive amount of resources required in continuous spaces DRL

algorithm evaluation, usually DRL studies conduct a handful of runs (3 ∼ 10). We use

aggregate statistical metrics that consider the uncertainty to provide a more robust com-

parison. These results are encouraging to us to discover more opportunities to boost BRL

performances with regularization approaches. We expect to implement more benchmarks

and further improvements as our future work.

A.1.5 Experiments Details

Parameters

For researchers to better reproduce our results, we provide the hyperparameters used in

our experiments. For most of the models, we follow their default settings unless otherwise

131

recommended. We do not fine-tune the hyperparameters of the BRL algorithms and use

the reported values in the literature [36, 70, 58], and we keep the architecture of actor-critic

networks for a fair comparison. Modifying the architecture or any detail of implementation

might lead to a large difference in performances. [42] In PQL, we scale the maximum state

VAE training steps according to the ratio of PQL’s MuJoCo buffer size to our building

buffer size. For all the network architectures we follow the original setups. The details of

the hyperparameters are listed in Table A.2.

Data Monitored

In the evaluation processes, we monitored all the states as time series to observe if there

is any abnormality. Also, to inspect how BRL methods optimize the target objectives.

As shown in Fig. A.7, it is an example of how the thermal comforts of historical weeks

vary under rule-based control. Apparent periodic patterns are observed which follow the

OAT trends during the week. It indicates that RBC cannot compensate the OAT variations

as BRL method (Fig. 2.8).

In Fig. A.8, it shows the time series of the states observed during BRL evaluation.

Our BRL method BCM keep zone air temperature setpoint (ZNT StPt) in a narrow

range stably, thus, keep the zone air temperature readings (ZNT) in a reasonable range to

maintain thermal comforts while no constraints are applied, which is different from online

RL methods where the range of actions are constrained by human experts as hard rules.

132

Table A.2: Hyperparameter Settings of evaluated methods

BCM BCQ BEAR PQL

γ 0.99 0.99 0.99 0.99

N 100 100 100 100

τ 0.005 0.005 0.005 0.005

λ 0.75 0.75 0.75 0.75

Φ 0.05 0.05 – 0.1

αm 0.9 – – –

τm 0.03 – – –

clip value min. -1 – – –

backup – – – Q-max

QL noise – – – 0.15

b percentile – – – 2

max state VAE trainstep – – – 2e4

Policy update version – – 0 –

MMD matching # samples – – 5 –

MMD sigma – – 20 –

Kernel type – – Laplacian –

Lagrange threshold – – 10 –

Distance type – – MMD –

γ: discount factor, N : mini-batch size, τ : target network update rate, λ: minimum weighting between two Q-networks,

Φ: max perturbation on action, αm: Munchausen scaling term, τm: entropy temperature, clip value min.: minimum

clipping value on Munchausen term

A.1.6 Experiment with safe minimum airflow

Motivation

Indoor environment and indoor gatherings present a disease spreading risk as virus-

laden aerosol lingers in indoor air for hours at high concentrations [64] rather than being

133

Figure A.7: An example of historical thermal comfort trends in top-5 similar OAT weeks

quickly dispersed and destroyed through UV (sun)light outdoors. Accumulated exposure

to viral load over time is an important risk determinant for an individual to be infected [19].

In the context of the current pandemic caused by the spreading of the SARS-CoV-2 virus

that causes COVID-19 disease, many efforts are underway to control its spread for the

public healthcare system to maintain its capacity and reduce fatalities. We believe that

a well-designed operation of the HVAC system can be a critical means to reduce the

likelihood of spreading events by appropriately directing airflows. HVAC societies such as

ASHRAE and REHVA have recommended high rates of air circulation and an increased

fraction of fresh air. This is typically measured by air changes per hour, or ACH, in a

given enclosed space or the entire building. ACH is computed by the air volume added

134

Figure A.8: States in BCM evaluation week

to or removed from space in an hour divided by the total volume of the space [111]. For

air impurities removed by fresh air, unit ACH is then a time constant that represents the

rate of dilution in infectious particles caused by the introduction of fresh-air [19]. ACH is

increased primarily by increasing the ratio of fresh air and the speed of airflow supplied

to a given space. Typically, commercial buildings are designed to achieve ACH levels of

3-5 whereas more sensitive areas in hospital settings could be as high as 12 ACH [16].

Achieving a substantially high ACH level in a typical office building is challenging due

to the cooling capacity of the equipment [32], and thus in our study, we seek to fulfill a

minimum safe airflow requirement.

135

0 100 200 300 400 500 600 700 800
Timestep

7

6

5

4

3

2

1

Re
wa

rd

BCQ
BEAR
PQL
Mean batch reward

Figure A.9: Reward comparison (considering safe airflow)

Figure A.10: Energy, thermal comfort, and airflow comparison

Safe Airflow Level Guidelines

Various guidelines have been issued by ASHRAE4, CDC5, and the European union

REHVA6 on building operation to lower the risk of getting infected by the respiratory

4https://tinyurl.com/yy8f5faq
136

https://tinyurl.com/yy8f5faq

disease of the occupants through the air during the COVID-19 pandemic. These guidelines

provide detailed recommendations regarding multiple aspects of building operation and

share much in common, including, but not limited to, use of high-rating minimum efficiency

reporting value (MERV) filters and/or UV-C lighting to treat the return air, 24/7 HVAC

operation, no use of recirculated air (i.e. use 100% outside air), increased air change (ACH)

rate during occupancy.

While comprehensive, these recommendations are difficult to implement altogether, if

not completely impossible. The effects of these measures and their implications on the

building systems with respect to energy consumption and occupants’ thermal comfort still

largely remain unclear to practitioners and residents. In our work, we maintain a safe

airflow level in the zones we evaluate by requiring a minimum of 21.19 CFM per person

(10L/s per person) [88] airflow in a space, which satisfies ASHRAE’s, REHVA’s, and

CDC’s requirements.

Experiment Results

In Fig. A.9, we compare several state-of-the-art BRL methods as we did in our main

experiments. The minimum safe airflow is calculated with the people occupied in the

room, where we assume full occupancy.

The state, action, environment setups are all the same as our main experiments. Except

for the reward function at time step t is calculated with the following equation:

5https://tinyurl.com/y9lczbwp
6https://tinyurl.com/yy8nzlmj

137

https://tinyurl.com/y9lczbwp
https://tinyurl.com/yy8nzlmj

Rt = −αReLU(|TCt| − TCc)− βsSupt − δReLU(Asafemin − sSupt), (A.1)

In Eq.(A.1), α, β, δ are the weights balancing between different objectives and could

be tuned to meet specific goals, TCt is the thermal comfort index at time t, TCc is the

requirement on thermal comfort, 0.5, and sSupt is the supply airflow at the time t, and we

assume each room is fully occupied, leading to a constant Asafemin for each room based on the

ACH requirement and number of people at full occupancy. The ReLU (Rectified Linear

Unit) activation function is used here to penalize any thermal comfort index that is out of

the comfortable range and any airflow value that is lower than minimum safe airflow.

The results are run with two stacks of rooms per algorithm. And each stack of runs

lasts approximately a week. The experiment result motivates us to improve from BCQ,

since it outperforms the others in the real HVAC environments. The buffer is the same as

our main experiments with an entire year of records. And the evaluation time period is

from June 1st to June 14th, 2021.

To further analyze the improvements of the target objectives, respectively. Fig. A.10

shows the comparison of energy consumption, thermal comfort, and airflow readings. In

this figure, RBC value of each category is normalized as one. We could observe that in

summer OAT weeks, BRL methods could save more energy compared with the results of

our main experiments where evaluation is done in the Fall. BCQ is with a 24 percent of

energy reduction cf. RBC due to a more efficient policy control with a more stable airflow

and thermal comfort, as the error bars shown in the figure.

138

Appendix A.1, in part, is a reprint of the material that appears in the Offline Reinforce-

ment Learning Workshop at Neural Information Processing Systems (NeurIPS Offline-RL

Work- shop 2021), vol. 2021, 2021. By author Hsin-Yu Liu, Bharathan Balaji, Rajesh

Gupta, and Dezhi Hong with the title - “Offline reinforcement learning with Munchausen

regularization.” The dissertation author is the primary investigator and author of this

paper.

139

Appendix B

Incorporating existing policies with

Reinforcement Learning

B.1 Experiment details

• Software

– Python: 3.9.12

– Pytorch: 1.12.1+cu113 [82]

– Sinergym: 1.9.5 [47]

– Gym: 0.21.0 [14]

– Numpy: 1.23.1 [117]

– CUDA: 11.2

• Hardware

140

– CPU: Intel Xeon Gold 6230 (2.10 GHz)

– GPU: NVidia RTX A6000

• Average training/evaluation time for RUBICON: 4 hours 45 minutes 18 sec-

onds

• Benchmark implementations

– DDPG: We adopt the DDPG implementation in TD3 author-provided imple-

mentation

– TD3: Author-provided implementation

– SAC: We adopt CleanRL [45] implementation due to software version conflict

with author-provided repository

– TD3+BC: Author-provided implementation

– CQL: We adopt d3rlpy [101] implementation due to software version conflict

with the author-provided repository

– BCQ: Author-provided implementation

B.2 Environments, Learning curves, detailed scores,

and additional experiments

• Sinergym Environments A single-story building divided into 5 zones (1 indoor

and 4 outdoor). Its surface area is 463.6m2, and it is equipped with a VAV package

141

https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://github.com/vwxyzjn/cleanrl
https://github.com/sfujim/TD3_BC
https://github.com/takuseno/d3rlpy
https://github.com/sfujim/BCQ

(DX cooling coil and gas heating coils) with fully auto-sized input as the HVAC

system to be controlled.

• BRL learning We illustrate the learning curves of BRL methods learn from different

quality of buffers for better visualization of comparison in Fig. B.1, B.2 and B.3

• Behavioral agents The behavioral agents’ learning curves are demonstrated in

Fig. B.4

• CQL+RUBICON Since CQL demonstrates better performance compared to other

methods except for RUBICON (see Table 4.1), we conduct experiments combining

CQL and our RUBICON method to learn from random and medium buffers since the

performance of CQL-expert is already extremely well. The results in Figure B.5, B.6

and Table B.4, B.5 indicate that RUBICON also improves CQL. However, it does

not consistently improve CQL’s performance from task to task, which is not as

we observe from TD3+BC to RUBICON learn from random/medium buffers (see

Figure B.3, 4.3). Also, the improvement is limited and does not even reach the RBC

policy performance, thus we did not continue exploring the possibility of combining

CQL with RUBICON.

• Learn from worsened RBC policies We run another ablation experiment to

observe how the quality of RBC policy affects the performance compared with RU-

BICON and baseline TD3+BC. We design two worsened RBC policies: The first

one is a biased RBC where we modify the change in setpoints (ahi and aci) from 1

to 5 in Algo. 6, we name this method ”RBC CB” in Figure B.7. The other is to

142

replace RBC with random policy, it is named as ”RBC Random”. From the results

in Table B.7 we could find that even with constantly worsened RBC policy it still

improves from baseline, However, it is still too aggressive for the models to learn a

robust policy. And with random policy as a worsened RBC it is almost equivalent

as no reference policy, the performance is similar to our baseline TD3+BC.

• Non-selective experiments In this experiment, we remove the dynamically weighted

regularization. Instead, we regularize the behavioral policy and RBC policy simul-

taneously in every iteration of training (see Eq. B.1). The experimental results are

shown in Table B.8. We observe that regularizing both policies at the same time

deteriorates the model performance cf. RUBICON. Since in each iteration, one of

RBC policy πrbc(s) and behavioral policy πb(s) yields a better action selection com-

pared to the other. It emphasizes the necessity of dynamic weighting in the policy

update steps.

π = argmax
π

E(s,a)∼D
[
λQ(s, π(s))− (π(s)− a)2 − (π(s)− πrbc(s))

2
]

(B.1)

All learning curves are normalized with random policy as 0 and expert policy as 100,

averaged with 3 random seeds and the scores shown in tables are the average and standard

deviation last 5 evaluations.

143

Figure B.1: Learning curves of BRL models learn from expert buffers.

144

Figure B.2: Learning curves of BRL models learn from medium buffers.

145

Figure B.3: Learning curves of BRL models learn from random buffers

146

Figure B.4: Learning curves of behavioral model training, behavioral models are trained

with 500K time steps before generating buffers.

147

Figure B.5: Learning curves of CQL, CQL+RUBICON, and RUBICON learn from ran-

dom buffers

148

Figure B.6: Learning curves of CQL, CQL+RUBICON, and RUBICON learn from

medium buffers

149

Figure B.7: Learning curves of RUBICON learns from worsened RBC compared with

TD3+BC and RUBICON

150

Figure B.8: Learning curves of online RUBICON hyperparameter optimization

151

Table B.1: Hyperparameter experiment.

Environment α = 1 α = 2.5 α = 4

hot-deterministic 79.08±12.24 70.76±20.28 23.83±68.3

mixed-deterministic 72.34±0.00 71.92±0.52 72.26±0.05

cool-deterministic 66.52±0.00 53.28±23.81 68.16±4.69

hot-stochastic 83.64±8.25 73.92±20.24 65.13±28.08

mixed-stochastic 72.24±0.49 72.24±0.49 72.24±0.49

cool-stochastic 68.14±0.65 45.46±28.4 12.38±77.7

Sum 441.99±21.64 387.58±93.74 347.08±130.01

Table B.2: Transfer experiment

Environment Trans. from RUBICON Trans. RUBICON

hot-stochastic cool-stochastic 71.42±3.1 59.72±5.29

mixed-stochastic cool-stochastic 84.93±16.92 87.23±12.34

cool-stochastic hot-stochastic 54.07±0.85 68.07±0.46

mixed-stochastic hot-stochastic 81.02±20.09 87.23±12.34

cool-stochastic mixed-stochastic 72.39±0.68 68.07±0.46

hot-stochastic mixed-stochastic 75.26±3.3 59.72±5.29

Sum 439.09±44.94 430.04±36.18

152

Table B.3: RUBICON learns from buffers generated by RBC compared with RBC buffer

performance

Environment RUBICON RBC

hot-deterministic 67.92±22.51 57.9

mixed-deterministic 73.68±1.96 50.12

cool-deterministic 72.28±6.53 59.15

hot-stochastic 53.83±0.8 57.92

mixed-stochastic 72.46±0.68 50.22

cool-stochastic 53.35±20.36 58.48

Sum 393.53±52.85 333.79

Table B.4: CQL+RUBICON learns from random buffer compared with CQL and RUBI-

CON

Environment RUBICON CQL RUBICON CQL

hot-deterministic 62.7±14.36 48.37±10.12 -23.19±76.76

mixed-deterministic 68.83±4.93 -2±85.18 -23.46±83.61

cool-deterministic 66.5±0 88.98±13.24 12.98±73.04

hot-stochastic 68.83±21.26 -47.04±45.48 36.64±67.61

mixed-stochastic 67.03±6.26 38.08±49.17 94.04±5.87

cool-stochastic 67.55±1.14 -73.76±20.51 -97.35±11.07

Sum 401.47±47.98 52.64±223.72 -0.32±317.97

153

Table B.5: Scores of CQL+RUBICON learns from medium buffer compared with CQL

and RUBICON

Environment RUBICON CQL RUBICON CQL

hot-deterministic 64.91±18.02 43.03±55.26 67.64±32.83

mixed-deterministic 86.84±12.39 73.4±37.59 37.36±86.8

cool-deterministic 72.2±8.07 85.24±17.33 55.44±49

hot-stochastic 59.72±5.29 9.39±58.72 39.92±56.67

mixed-stochastic 87.23±12.34 90.14±9.37 80.13±20.78

cool-stochastic 68.07±0.46 91.05±11.39 81.56±18.01

Sum 438.98±56.59 392.26±189.69 362.07±264.11

Table B.6: Scores of TD3+BC learns from a mixture of random buffer and RBC buffer

compared with RUBICON learns from random buffer

Environment TD3+BC Mixed RUBICON TD3+BC

hot-deterministic 0.02±59.76 62.7±14.36 -45.73±44.8

mixed-deterministic 70.66±15.45 68.83±4.93 -13.71±57.06

cool-deterministic 59.01±40.92 66.5±0 -58.4±19.25

hot-stochastic 57.93±5.6 68.83±21.26 -1.82±73.31

mixed-stochastic 74.08±8.7 67.03±6.26 28.01±72.79

cool-stochastic 71.67±35.04 67.55±1.14 -44.33±36.36

Sum 333.4±165.5 401.47±47.98 -135.98±303.60

154

Table B.7: Comparison between RUBICON, TD3+BC, and worsened RBCs

Environment RUBICON TD3+BC RBC CB RBC Random

hot-deterministic 62.7±14.36 -45.73±44.8 34.06±27.13 -47.72±25.11

mixed-deterministic 68.83±4.93 -13.71±57.06 -33.89±38.47 36.39±72.08

cool-deterministic 66.5±0 -58.4±19.25 70.64±5.85 -48.84±25.93

hot-stochastic 68.83±21.26 -1.82±73.31 33.81±36.94 -67.7±5.66

mixed-stochastic 67.03±6.26 28.01±72.79 71.22±2.64 -4.07±52.46

cool-stochastic 67.55±1.14 -44.33±36.36 65.84±3.06 -5.9±74.12

Sum 401.47±47.98 -135.98±303.60 241.69±114.12 -137.85±255.38

B.3 Model parameters

We list the hyperparameters used in this paper for reproducibility. Unless mentioned

otherwise, we keep the original hyperparameters setups as the implementations listed

in Appendix B.1 since DRL methods are sensitive to hyperparameter tuning [43] (see

Table B.9, B.10, B.11, and B.12).

155

Table B.8: Non-selective experiment

Environment Buffer RUBICON RUBICON w/o DW

hot-deterministic Expert 86.13±17.83 -19.8±63.89

hot-deterministic Medium 64.91±18.02 47.26±12.89

hot-deterministic Random 62.7±14.36 -19.8±63.89

mixed-deterministic Expert 81±25.94 -75.6±29.46

mixed-deterministic Medium 86.84±12.39 42.99±48.04

mixed-deterministic Random 68.83±4.93 -75.6±29.46

cool-deterministic Expert 98±2.78 41.3±20.53

cool-deterministic Medium 72.2±8.07 36.54±67.84

cool-deterministic Random 66.5±0 41.3±20.53

hot-stochastic Expert 99.01±0.56 57.68±22.3

hot-stochastic Medium 59.72±5.29 29.26±45.5

hot-stochastic Random 68.83±21.26 57.68±22.3

mixed-stochastic Expert 94.16±8.12 40.57±44.91

mixed-stochastic Medium 87.23±12.34 55.6±33.53

mixed-stochastic Random 67.03±6.26 40.57±44.91

cool-stochastic Expert 53.58±65.53 -68.84±27.46

cool-stochastic Medium 68.07±0.46 8.01±61.1

cool-stochastic Random 67.55±1.14 -68.84±27.46

Sum 1352.37±225.38 170.3±686.1

156

Table B.9: TD3, TD3+BC, and RUBICON hyperparameters

Hyperparameter Value

Optimizer Adam [50]

Critic learning rate 3e−4

Actor learning rate 3e−4

Mini-batch size 256

Discount factor 0.99

Algorithm hyperparameters Target update rate 5e−3

Policy noise 0.2

Policy noise clipping (-0.5, 0.5)

Policy update frequency 2

TD3+BC α 2.5

RUBICON online α 1

RUBICON offline α 2.5

RUBICON online ξ 0 if Q̄(s, πb(s)) ≥ Q̄(s, πrbc(s)) else 1

RUBICON offline ξ 1

Critic hidden dimension 256

Critic hidden layers 2

Critic activation function ReLU

Network architecture Actor hidden dimension 256

Actor hidden layers 2

Actor activation function ReLU

157

Table B.10: SAC/CQL hyperparameters

Hyperparameter Value

Optimizer Adam

Critic learning rate 1e−3

Actor learning rate 3e−4/1e−4

Mini-batch size 256

Discount factor 0.99

Target update rate 5e−3

Algorithm hyperparameters Policy noise 0.2

Policy noise clipping (-0.5, 0.5)

Policy update frequency 2

SAC entropy auto-tuning True

CQL α threshold 10

CQL conservative weight 5.0

CQL number of sampled actions 10

Critic hidden dimension 256

Critic hidden layers 3

Critic activation function ReLU

Network architecture Actor hidden dimension 256

Actor hidden layers 3

Actor activation function ReLU

158

Table B.11: DDPG hyperparameters

Hyperparameter Value

Optimizer Adam

Critic learning rate 1e−3

Actor learning rate 1e−4

Mini-batch size 64

Algorithm hyperparameters Discount factor 0.99

Target update rate 1e−3

Policy noise N (0, 0.1)

Policy noise clipping (-0.5, 0.5)

Policy update frequency 1

Critic hidden dimension 400/300

Critic hidden layers 2

Critic activation function ReLU

Network architecture Actor hidden dimension 400/300

Actor hidden layers 2

Actor activation function ReLU

159

Table B.12: BCQ/BC hyperparameters

Hyperparameter Value

Optimizer Adam

Critic learning rate 1e−3

Actor learning rate 1e−4

Mini-batch size 100

Algorithm hyperparameters Discount factor 0.99

Target update rate 5e−3

Minimum weighting 0.75

Max perturbation 0.05

Critic hidden dimension 400/300

Critic hidden layers 2

Critic activation function ReLU

Actor hidden dimension 400/300

Network architecture Actor hidden layers 2

Actor activation function ReLU

VAE hidden dimension 750

VAE latent vector clipping (-0.5, 0.5)

160

Appendix C

Adaptive Policy Regularization for

Offline-to-Online Reinforcement

Learning in HVAC Control

C.1 RL Setup of Data Center Environment

• State: Year, month, day, hour, site outdoor air drybulb temperature(Environment),

site outdoor air relative humidity(Environment), site wind speed(Environment), site

wind direction(Environment), site diffuse solar radiation rate per area(Environment),

site direct solar tadiation tate per area(Environment), zone thermostat heating set-

point temperature(West Zone), zone thermostat cooling setpoint temperature(West

Zone), zone air temperature(West Zone), zone thermal comfort mean radiant tem-

perature(West Zone PEOPLE), zone air relative humidity(West Zone), zone thermal

161

comfort clothing value(West Zone PEOPLE), zone thermal comfort Fanger model

PPD(West Zone PEOPLE), zone people occupant count(West Zone), people air tem-

perature(West Zone PEOPLE), zone thermostat heating setpoint temperature(East

Zone), zone thermostat cooling setpoint temperature(East Zone), zone air tem-

perature(East Zone), zone thermal comfort mean radiant temperature(East Zone

PEOPLE), zone air relative humidity(East Zone), zone thermal comfort clothing

value(East Zone PEOPLE), zone thermal comfort Fanger model PPD(East Zone

PEOPLE), zone people occupant count(East Zone), people air temperature(East

Zone PEOPLE), and facility total HVAC electricity demand rate(Whole Building)

• Action: Heating setpoint and cooling setpoint of West and East zones in continuous

settings for the interior zones.

• Reward: We follow the default linear reward setting, which considers the energy

consumption and the absolute difference to temperature comfort.

162

Bibliography

[1] Tameem Adel, Alexander Rosenberg, and Been Kim. Learning to explain: An
information-theoretic perspective on model interpretation. In Advances in Neural
Information Processing Systems (NeurIPS), pages 10027–10036, 2019.

[2] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and
Marc G Bellemare. Deep reinforcement learning at the edge of the statistical
precipice. arXiv preprint arXiv:2108.13264, 2021.

[3] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and
Marc Bellemare. Deep reinforcement learning at the edge of the statistical precipice.
Advances in neural information processing systems, 34:29304–29320, 2021.

[4] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[5] Anil Aswani, Neal Master, Jay Taneja, David Culler, and Claire Tomlin. Reduc-
ing transient and steady state electricity consumption in hvac using learning-based
model-predictive control. Proceedings of the IEEE, 100(1):240–253, 2011.

[6] Bharathan Balaji, Hidetoshi Teraoka, Rajesh Gupta, and Yuvraj Agarwal. Zonepac:
Zonal power estimation and control via hvac metering and occupant feedback. In
BuildSys, pages 1–8, 2013.

[7] Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online
reinforcement learning with offline data. arXiv preprint arXiv:2302.02948, 2023.

[8] Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online
reinforcement learning with offline data. arXiv preprint arXiv:2302.02948, 2023.

[9] Farinaz Behrooz, Norman Mariun, Mohammad Hamiruce Marhaban, Mohd Amran
Mohd Radzi, and Abdul Rahman Ramli. Review of control techniques for hvac sys-
tems—nonlinearity approaches based on fuzzy cognitive maps. Energies, 11(3):495,
2018.

163

[10] Alex Beltran and Alberto E Cerpa. Optimal hvac building control with occupancy
prediction. In BuildSys, pages 168–171, 2014.

[11] Hamid R Berenji. A reinforcement learning—based architecture for fuzzy logic con-
trol. International Journal of Approximate Reasoning, 6(2):267–292, 1992.

[12] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns
in time series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, USA:,
1994.

[13] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

[14] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

[15] Francesco Calvino, Maria La Gennusa, Gianfranco Rizzo, and Gianluca Scaccianoce.
The control of indoor thermal comfort conditions: introducing a fuzzy adaptive
controller. Energy and buildings, 36(2):97–102, 2004.

[16] CDC. Guidelines for environmental infection control in health-care facil-
ities. https://www.cdc.gov/infectioncontrol/guidelines/environmental/

background/air.html, 2003.

[17] Bingqing Chen, Zicheng Cai, and Mario Bergés. Gnu-rl: A precocial reinforcement
learning solution for building hvac control using a differentiable mpc policy. In
BuildSys, pages 316–325, 2019.

[18] Drury B Crawley, Linda K Lawrie, Frederick C Winkelmann, Walter F Buhl, Y Joe
Huang, Curtis O Pedersen, Richard K Strand, Richard J Liesen, Daniel E Fisher,
Michael J Witte, et al. Energyplus: creating a new-generation building energy
simulation program. Energy and buildings, 33(4):319–331, 2001.

[19] Hui Dai and Bin Zhao. Association of the infection probability of covid-19 with
ventilation rates in confined spaces. In Building simulation, volume 13, 2020.

[20] Megan Dawe, Paul Raftery, Jonathan Woolley, Stefano Schiavon, and Fred Bauman.
Comparison of mean radiant and air temperatures in mechanically-conditioned com-
mercial buildings from over 200,000 field and laboratory measurements. Energy and
Buildings, 206:109582, 2020.

[21] Richard J De Dear. A global database of thermal comfort field experiments.
ASHRAE transactions, 104:1141, 1998.

164

https://www.cdc.gov/infectioncontrol/guidelines/environmental/background/air.html
https://www.cdc.gov/infectioncontrol/guidelines/environmental/background/air.html

[22] Adithya M Devraj, Ana Bušić, and Sean Meyn. Zap q-learning-a user’s guide. In
2019 Fifth Indian Control Conference (ICC), pages 10–15. IEEE, 2019.

[23] Xianzhong Ding, Wan Du, and Alberto Cerpa. Octopus: Deep reinforcement learning
for holistic smart building control. In BuildSys, pages 326–335, 2019.

[24] Xianzhong Ding, Wan Du, and Alberto E Cerpa. Mb2c: Model-based deep rein-
forcement learning for multi-zone building control. In BuildSys, pages 50–59, 2020.

[25] Anastasios I Dounis, M Bruant, M Santamouris, G Guarracino, and P Michel. Com-
parison of conventional and fuzzy control of indoor air quality in buildings. Journal
of Intelligent & Fuzzy Systems, 4(2):131–140, 1996.

[26] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world
reinforcement learning. arXiv preprint arXiv:1904.12901, 2019.

[27] Povl O Fanger et al. Thermal comfort. analysis and applications in environmental
engineering. Thermal comfort. Analysis and applications in environmental engineer-
ing., 1970.

[28] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo
Larochelle, Mark Rowland, and Will Dabney. Revisiting fundamentals of experi-
ence replay. In International Conference on Machine Learning, pages 3061–3071.
PMLR, 2020.

[29] Arduin Findeis, Fiodar Kazhamiaka, Scott Jeen, and Srinivasan Keshav. Beobench:
a toolkit for unified access to building simulations for reinforcement learning. In Pro-
ceedings of the Thirteenth ACM International Conference on Future Energy Systems,
pages 374–382, 2022.

[30] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine.
D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219, 2020.

[31] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine.
D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219, 2020.

[32] Xiaohan Fu, Jason Koh, Francesco Fraternali, Dezhi Hong, and Rajesh Gupta. Zonal
air handling in commercial buildings. In BuildSys, pages 302–303, 2020.

[33] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforce-
ment learning. Advances in neural information processing systems, 34:20132–20145,
2021.

[34] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. In ICML, pages 1587–1596. PMLR, 2018.

165

[35] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. In International conference on machine learning, pages
1587–1596. PMLR, 2018.

[36] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement
learning without exploration. In ICML, pages 2052–2062. PMLR, 2019.

[37] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement
learning without exploration. In ICML, pages 2052–2062. PMLR, 2019.

[38] Guanyu Gao, Jie Li, and Yonggang Wen. Deepcomfort: Energy-efficient thermal
comfort control in buildings via reinforcement learning. IEEE Internet of Things
Journal, 7(9):8472–8484, 2020.

[39] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning, pages 1861–1870. PMLR, 2018.

[40] Mengjie Han, Ross May, Xingxing Zhang, Xinru Wang, Song Pan, Da Yan, Yuan
Jin, and Liguo Xu. A review of reinforcement learning methodologies for controlling
occupant comfort in buildings. Sustainable Cities and Society, 51:101748, 2019.

[41] Frederick Hayes-Roth. Rule-based systems. Communications of the ACM, 28(9):921–
932, 1985.

[42] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters. In AAAI, number 1, 2018.

[43] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

[44] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal
Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-
learning from demonstrations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[45] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff Braga. Cleanrl:
High-quality single-file implementations of deep reinforcement learning algorithms.
arXiv preprint arXiv:2111.08819, 2021.

[46] Lu Jiang, Tong Xiao, and Thomas Huang. Learning to explain: A framework for ma-
chine learning explanations. In Advances in Neural Information Processing Systems
(NeurIPS), pages 9810–9820, 2018.

166

[47] Javier Jiménez-Raboso, Alejandro Campoy-Nieves, Antonio Manjavacas-Lucas,
Juan Gómez-Romero, and Miguel Molina-Solana. Sinergym: a building simulation
and control framework for training reinforcement learning agents. In Proceedings of
the 8th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, pages 319–323, 2021.

[48] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree.
NIPS, 30:3146–3154, 2017.

[49] Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup. Learn-
ing from limited demonstrations. Advances in Neural Information Processing Sys-
tems, 26, 2013.

[50] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[51] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[52] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[53] SA Klein. University of wisconsin-madison solar energy laboratory. TRNSYS: A
transient simulation program. Eng. Experiment Station, 1976.

[54] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforce-
ment learning with fisher divergence critic regularization. In International Confer-
ence on Machine Learning, pages 5774–5783. PMLR, 2021.

[55] Andrew Krioukov, Gabe Fierro, Nikita Kitaev, and David Culler. Building applica-
tion stack (bas). In BuildSys, pages 72–79, 2012.

[56] Solomon Kullback and Richard A Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951.

[57] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Sta-
bilizing off-policy q-learning via bootstrapping error reduction. Advances in Neural
Information Processing Systems, 32, 2019.

[58] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. arXiv preprint arXiv:1906.00949, 2019.

[59] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-
learning for offline reinforcement learning. Advances in Neural Information Process-
ing Systems, 33:1179–1191, 2020.

167

[60] National Renewable Energy Laboratory. Tmy3 datasets. https://www.nrel.gov/

docs/fy08osti/43156.pdf, 2008.

[61] Daeil Lee, Awwal Mohammed Arigi, and Jonghyun Kim. Algorithm for autonomous
power-increase operation using deep reinforcement learning and a rule-based system.
IEEE Access, 8:196727–196746, 2020.

[62] Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-
to-online reinforcement learning via balanced replay and pessimistic q-ensemble. In
Conference on Robot Learning, pages 1702–1712. PMLR, 2022.

[63] Geoff J Levermore. Building energy management systems. 1992.

[64] Yuguo Li, Hua Qian, Jian Hang, Xuguang Chen, Ling Hong, Peng Liang, Jiansen Li,
Shenglan Xiao, Jianjian Wei, Li Liu, et al. Evidence for probable aerosol transmission
of sars-cov-2 in a poorly ventilated restaurant. MedRxiv, 2020.

[65] Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol, Marcello
Restelli, and Danilo Romano. Combining reinforcement learning with rule-based con-
trollers for transparent and general decision-making in autonomous driving. Robotics
and Autonomous Systems, 131:103568, 2020.

[66] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[67] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, plan-
ning and teaching. Machine learning, 8(3):293–321, 1992.

[68] Hsin-Yu Liu, Bharathan Balaji, Sicun Gao, Rajesh Gupta, and Dezhi Hong. Safe
hvac control via batch reinforcement learning. In 2022 ACM/IEEE 13th Interna-
tional Conference on Cyber-Physical Systems (ICCPS), pages 181–192. IEEE, 2022.

[69] Hsin-Yu Liu, Xiaohan Fu, Bharathan Balaji, Rajesh Gupta, and Dezhi Hong. B2rl:
an open-source dataset for building batch reinforcement learning. In Proceedings of
the 9th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, pages 462–465, 2022.

[70] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably
good batch reinforcement learning without great exploration. arXiv preprint
arXiv:2007.08202, 2020.

[71] Siliang Lu, Weilong Wang, Chaochao Lin, and Erica Cochran Hameen. Data-driven
simulation of a thermal comfort-based temperature set-point control with ashrae
rp884. Building and Environment, 156:137–146, 2019.

168

https://www.nrel.gov/docs/fy08osti/43156.pdf
https://www.nrel.gov/docs/fy08osti/43156.pdf

[72] Yicheng Luo, Jackie Kay, Edward Grefenstette, and Marc Peter Deisenroth. Finetun-
ing from offline reinforcement learning: Challenges, trade-offs and practical solutions.
arXiv preprint arXiv:2303.17396, 2023.

[73] Mehdi Maasoumy, Alessandro Pinto, and Alberto Sangiovanni-Vincentelli. Model-
based hierarchical optimal control design for hvac systems. In Dynamic Systems and
Control Conference, volume 54754, pages 271–278, 2011.

[74] Mehdi Maasoumy, M Razmara, M Shahbakhti, and A Sangiovanni Vincentelli. Han-
dling model uncertainty in model predictive control for energy efficient buildings.
Energy and Buildings, 77:377–392, 2014.

[75] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In ICML, pages 1928–1937. PMLR, 2016.

[76] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-
inforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[77] Srinarayana Nagarathinam, Vishnu Menon, Arunchandar Vasan, and Anand Siva-
subramaniam. Marco-multi-agent reinforcement learning based control of building
hvac systems. In e-Energy, pages 57–67, 2020.

[78] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Ac-
celerating online reinforcement learning with offline datasets. arXiv preprint
arXiv:2006.09359, 2020.

[79] Department of Energy. Prototype building models, 2023.

[80] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep ex-
ploration via bootstrapped dqn. Advances in neural information processing systems,
29, 2016.

[81] June Young Park and Zoltan Nagy. Hvaclearn: A reinforcement learning based
occupant-centric control for thermostat set-points. In e-Energy, pages 434–437, 2020.

[82] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
torch: An imperative style, high-performance deep learning library. Advances in
neural information processing systems, 32, 2019.

[83] Luis Perez-Lombard, Jose Ortiz, and Christine Pout. A review on buildings energy
consumption information. Energy and Buildings, 40(3):394–398, 2008.

169

[84] Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted bellman residual min-
imization handling expert demonstrations. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2014, Nancy, France,
September 15-19, 2014. Proceedings, Part II 14, pages 549–564. Springer, 2014.

[85] Samuel Pŕıvara, Zdeněk Váňa, Dimitrios Gyalistras, Jǐŕı Cigler, Carina Sagerschnig,
Manfred Morari, and Lukáš Ferkl. Modeling and identification of a large multi-zone
office building. In 2011 IEEE International Conference on Control Applications
(CCA), pages 55–60. IEEE, 2011.

[86] Majdi I Radaideh and Koroush Shirvan. Rule-based reinforcement learning method-
ology to inform evolutionary algorithms for constrained optimization of engineering
applications. Knowledge-Based Systems, 217:106836, 2021.

[87] Naren Srivaths Raman, Adithya M Devraj, Prabir Barooah, and Sean P Meyn.
Reinforcement learning for control of building hvac systems. In 2020 American
Control Conference (ACC), pages 2326–2332. IEEE, 2020.

[88] REHVA. Rehva covid19 guidance v4.1. https://www.rehva.eu/fileadmin/user_
upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf, 2021.

[89] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient
neural reinforcement learning method. In ECML, pages 317–328. Springer, 2005.

[90] Brian C Ross. Mutual information between discrete and continuous data sets. PloS
one, 9(2):e87357, 2014.

[91] Frederik Ruelens, Bert J Claessens, Stijn Vandael, Bart De Schutter, Robert
Babuška, and Ronnie Belmans. Residential demand response of thermostatically
controlled loads using batch reinforcement learning. IEEE Transactions on Smart
Grid, 8(5):2149–2159, 2016.

[92] Frederik Ruelens, Bert J Claessens, Stijn Vandael, Sandro Iacovella, Pieter Vinger-
hoets, and Ronnie Belmans. Demand response of a heterogeneous cluster of electric
water heaters using batch reinforcement learning. In 2014 Power Systems Compu-
tation Conference, pages 1–7. IEEE, 2014.

[93] Frederik Ruelens, Sandro Iacovella, Bert J Claessens, and Ronnie Belmans. Learn-
ing agent for a heat-pump thermostat with a set-back strategy using model-free
reinforcement learning. Energies, 8(8):8300–8318, 2015.

[94] Jyri Salpakari and Peter Lund. Optimal and rule-based control strategies for energy
flexibility in buildings with pv. Applied Energy, 161:425–436, 2016.

[95] Caude Sammut. Behavioral Cloning, pages 93–97. Springer US, 2010.

170

https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf
https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf

[96] Paul Scharnhorst, Baptiste Schubnel, Carlos Fernández Bandera, Jaume Salom,
Paolo Taddeo, Max Boegli, Tomasz Gorecki, Yves Stauffer, Antonis Peppas, and
Chrysa Politi. Energym: A building model library for controller benchmarking.
Applied Sciences, 11(8):3518, 2021.

[97] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. arXiv preprint arXiv:1511.05952, 2015.

[98] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. In International Conference on Learning Representations (ICLR), 2016.

[99] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[100] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[101] Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning
library. arXiv preprint arXiv:2111.03788, 2021.

[102] AB Shepherd and WJ Batty. Fuzzy control strategies to provide cost and energy
efficient high quality indoor environments in buildings with high occupant densities.
Building Services Engineering Research and Technology, 24(1), 2003.

[103] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you
need. arXiv preprint arXiv:2106.03253, 2021.

[104] David Silver. Lecture 3: Planning by dynamic programming. UCL Course on RL,
2015.

[105] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In International conference on
machine learning, pages 387–395. PMLR, 2014.

[106] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. nature, 550(7676):354–359,
2017.

[107] Przemys law Spurek, Damian Szymański, and Tomasz Tajmajer. Towards inter-
pretable reinforcement learning using attention augmented agents. In Proceedings
of the 2019 International Conference on Robotics and Automation (ICRA), pages
3239–3245. IEEE, 2019.

[108] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration
for optimization with gaussian processes. In International conference on machine
learning, pages 997–1005. PMLR, 2015.

171

[109] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[110] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[111] Muthusamy V Swami and Subrato Chandra. Procedures for calculating natural ven-
tilation airflow rates in buildings. ASHRAE final report FSEC-CR-163-86, ASHRAE
research project, page 130, 1987.

[112] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ international conference on intelligent robots and
systems, pages 5026–5033. IEEE, 2012.

[113] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5026–5033. IEEE, 2012.

[114] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration in finite
markov decision processes with gaussian processes. Advances in Neural Information
Processing Systems, 29, 2016.

[115] IEA UN. Global status report for buildings and construction (2019). Avail-able
at https://www. gbpn. org/china/newsroom/2019-global-status-report-buildings-and-
constr uction. Access date, 15, 2020.

[116] William Valladares, Marco Galindo, Jorge Gutiérrez, Wu-Chieh Wu, Kuo-Kai Liao,
Jen-Chung Liao, Kuang-Chin Lu, and Chi-Chuan Wang. Energy optimization asso-
ciated with thermal comfort and indoor air control via a deep reinforcement learning
algorithm. Building and Environment, 155:105–117, 2019.

[117] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a
structure for efficient numerical computation. Computing in science & engineering,
13(2):22–30, 2011.

[118] José Vázquez-Canteli, Jérôme Kämpf, and Zoltán Nagy. Balancing comfort and
energy consumption of a heat pump using batch reinforcement learning with fitted
q-iteration. Energy Procedia, 122:415–420, 2017.

[119] José Vázquez-Canteli, Stepan Ulyanin, Jérôme Kämpf, and Zoltán Nagy. Adaptive
multi-agent control of hvac systems for residential demand response using batch
reinforcement learning. 2018.

[120] José R Vázquez-Canteli, Sourav Dey, Gregor Henze, and Zoltán Nagy. Citylearn:
Standardizing research in multi-agent reinforcement learning for demand response
and urban energy management. arXiv preprint arXiv:2012.10504, 2020.

172

[121] Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and
Matthieu Geist. Leverage the average: an analysis of kl regularization in reinforce-
ment learning. In NeurIPS, 2020.

[122] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement
learning. arXiv preprint arXiv:2007.14430, 2020.

[123] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement
learning. Advances in Neural Information Processing Systems, 33:4235–4246, 2020.

[124] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement
learning. arXiv preprint arXiv:2007.14430, 2020.

[125] Junjie Wang, Qichao Zhang, Dongbin Zhao, and Yaran Chen. Lane change decision-
making through deep reinforcement learning with rule-based constraints. In 2019
International Joint Conference on Neural Networks (IJCNN), pages 1–6. IEEE, 2019.

[126] Zhe Wang and Tianzhen Hong. Reinforcement learning for building controls: The
opportunities and challenges. Applied Energy, 269:115036, 2020.

[127] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–
292, 1992.

[128] Tianshu Wei, Yanzhi Wang, and Qi Zhu. Deep reinforcement learning for building
hvac control. In Proceedings of the 54th annual design automation conference 2017,
pages 1–6, 2017.

[129] Tianshu Wei, Yanzhi Wang, and Qi Zhu. Deep reinforcement learning for building
hvac control. In Proceedings of the 54th annual design automation conference 2017,
pages 1–6, 2017.

[130] Thomas Weng, Anthony Nwokafor, and Yuvraj Agarwal. Buildingdepot 2.0: An
integrated management system for building analysis and control. In Proceedings of
the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, pages
1–8, 2013.

[131] Michael Wetter, Philip Haves, and Brian Coffey. Building controls virtual test bed.
Technical report, Lawrence Berkeley National Laboratory, 2008.

[132] Daniel A Winkler, Ashish Yadav, Claudia Chitu, and Alberto E Cerpa. Office:
Optimization framework for improved comfort & efficiency. In IPSN, pages 265–276.
IEEE, 2020.

[133] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforce-
ment learning. arXiv preprint arXiv:1911.11361, 2019.

173

[134] Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan
Salakhutdinov, and Hanlin Goh. Uncertainty weighted actor-critic for offline rein-
forcement learning. arXiv preprint arXiv:2105.08140, 2021.

[135] Lei Yang, Zoltan Nagy, Philippe Goffin, and Arno Schlueter. Reinforcement learning
for optimal control of low exergy buildings. Applied Energy, 156:577–586, 2015.

[136] Liang Yu, Shuqi Qin, Meng Zhang, Chao Shen, Tao Jiang, and Xiaohong Guan.
Deep reinforcement learning for smart building energy management: A survey. arXiv
preprint arXiv:2008.05074, 2020.

[137] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine,
and Chelsea Finn. Combo: Conservative offline model-based policy optimization.
Advances in neural information processing systems, 34:28954–28967, 2021.

[138] Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforce-
ment learning. In International Conference on Machine Learning, pages 40452–
40474. PMLR, 2023.

[139] Chi Zhang, Sanmukh R Kuppannagari, Rajgopal Kannan, and Viktor K Prasanna.
Building hvac scheduling using reinforcement learning via neural network based
model approximation. In BuildSys, pages 287–296, 2019.

[140] Chi Zhang, Sanmukh Rao Kuppannagari, and Viktor K Prasanna. Safe building
hvac control via batch reinforcement learning. IEEE Transactions on Sustainable
Computing, 2022.

[141] Chi Zhang, Sanmukh Rao Kuppannagari, and Viktor K Prasanna. Safe building
hvac control via batch reinforcement learning. IEEE Transactions on Sustainable
Computing, 7(4):923–934, 2022.

[142] Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-
online reinforcement learning. arXiv preprint arXiv:2302.00935, 2023.

[143] Shangtong Zhang and Richard S Sutton. A deeper look at experience replay. arXiv
preprint arXiv:1712.01275, 2017.

[144] Tianyu Zhang, Gaby Baasch, Omid Ardakanian, and Ralph Evins. On the joint
control of multiple building systems with reinforcement learning. 2021.

[145] Zhiang Zhang, Adrian Chong, Yuqi Pan, Chenlu Zhang, and Khee Poh Lam. Whole
building energy model for hvac optimal control: A practical framework based on
deep reinforcement learning. Energy and Buildings, 199:472–490, 2019.

[146] Zhiang Zhang and Khee Poh Lam. Practical implementation and evaluation of deep
reinforcement learning control for a radiant heating system. In BuildSys, 2018.

174

[147] Jie Zhao, Bertrand Lasternas, Khee Poh Lam, Ray Yun, and Vivian Loftness. Occu-
pant behavior and schedule modeling for building energy simulation through office
appliance power consumption data mining. Energy and Buildings, 121:234–243, 2016.

[148] Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, and Joni Pajarinen. Adaptive
behavior cloning regularization for stable offline-to-online reinforcement learning.
arXiv preprint arXiv:2210.13846, 2022.

[149] Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang.
Adaptive policy learning for offline-to-online reinforcement learning. arXiv preprint
arXiv:2303.07693, 2023.

[150] Yuanyang Zhu, Zhi Wang, Chunlin Chen, and Daoyi Dong. Rule-based reinforce-
ment learning for efficient robot navigation with space reduction. IEEE/ASME
Transactions on Mechatronics, 27(2):846–857, 2021.

175

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Reinforcement Learning
	Building Control
	Organization

	Safe HVAC Control via Batch Reinforcement Learning
	Introduction
	Background and related work
	Model Predictive Control
	Reinforcement Learning in Building Control

	Design of our framework
	BRL-based Control Framework Setup
	Thermal Comfort Prediction
	Batch Reinforcement Learning for Control

	Evaluation
	Data Collection and Pre-processing
	Thermal Comfort Prediction
	Importance of Airflow Control
	Preliminary Experiments
	Baseline Methods
	Results and Analysis
	Sensitivity Analysis
	Generalization Experiments

	Conclusion and Future Works

	Open-source Building HVAC Control Dataset for Batch Reinforcement Learning
	Introduction
	Related Work
	Building batch reinforcement learning
	Batch reinforcement learning datasets

	Approach and Results
	Real building buffers
	Simulated buffers

	Conclusion and Future Works

	Incorporating Existing Policies with Reinforcement Learning
	Introduction
	Related Work
	Terminologies and Problem Formulation
	Rule-based incorporated control regularization
	Experiments
	Offline approach
	Online approach

	Conclusion and Future Works

	Adaptive Policy Regularization for Offline-to-Online Reinforcement Learning in HVAC Control
	Introduction
	Related Work
	Building RL control
	Offline RL
	Offline-to-Online RL

	Problem Formulation
	Reinforcement Learning
	Offline RL training

	Methodology
	Offline-to-Online RL Training via Weighted Increased Simple Moving Average Q-value
	Adapting to Distribution Drift
	Bootsrapped Ensemble Learning

	Benchmark Experiments
	Experiment Setups
	Experiments
	Data Efficiency Experiment
	Ablation Experiment
	Sensitivity Experiments
	Adaptability Experiment

	Discussion and Conclusion

	Future Work and Conclusion
	Future Work
	Conclusion

	Safe HVAC Control via Batch Reinforcement Learning
	Munchausen Regularizaion
	Motivation
	Methodology
	Experimental Setup and Result
	Conclusion and Discussion
	Experiments Details
	Experiment with safe minimum airflow

	Incorporating existing policies with Reinforcement Learning
	Experiment details
	Environments, Learning curves, detailed scores, and additional experiments
	Model parameters

	Adaptive Policy Regularization for Offline-to-Online Reinforcement Learning in HVAC Control
	RL Setup of Data Center Environment

	Bibliography

