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Abstract

Bayesian Modeling and Inference for Quantile Mixture Regression

by

Yifei Yan

The focus of this work is to develop a Bayesian framework to combine information from

multiple parts of the response distribution characterized with different quantiles. The goal

is to obtain a synthesized estimate of the covariate effects on the response variable as

well as to identify the more influential predictors. This framework naturally relates to the

traditional quantile regression, which studies the relationship between the covariates and the

conditional quantile of the response variable and serves as an attractive alternative to the

more widely used mean regression methods. We achieve the objectives through constructing

a Bayesian mixture model using quantile regressions as the mixture components.

The first stage of the research involves the development of a parametric family of

distributions to provide the mixture kernel for the Bayesian quantile mixture regression.

We derive a new family of error distributions for model-based quantile regression called

generalized asymmetric Laplace distribution, which is constructed through a structured

mixture of normal distributions. The construction enables fixing specific percentiles of

the distribution while, at the same time, allowing for varying mode, skewness and tail

behavior. This family provides a practically important extension of the asymmetric Laplace

distribution, which is the standard error distribution for parametric quantile regression.

We develop a Bayesian formulation for the proposed quantile regression model, including

xi



conditional lasso regularized quantile regression based on a hierarchical Laplace prior for

the regression coefficients, and a Tobit quantile regression model.

Next, we develop the main framework to model the conditional distribution of the

response with a weighted mixture of quantile regression components. We specify a common

regression coefficient vector for all components to synthesize information from multiple parts

of the response distribution, each modeled with one quantile regression component. The

goal is to obtain a combined estimate of the predictive effect of each covariate. We consider

the following two choices of kernel densities for the mixture model. When the probability

of the quantile in each regression component is known, we model the components with the

generalized asymmetric Laplace distribution, as its shape parameter introduces flexibility

in shape and skewness to the kernel; else when the quantile probabilities are unknown, we

use the asymmetric Laplace distribution as kernel density and view its skewness parameter,

which is also the quantile probability of the component, as a random quantity and estimate

it from the data. Under each kernel density, we formulate the hierarchical structure of the

mixture weights and develop the approach to the posterior inference. We consider both

parametric and nonparametric priors for the framework, and explore inferences for the

number of components to be included. We demonstrate the performance of the method in

identification of influential variables with simulation examples and illustrate the posterior

predictive inferences in a realty price data from the Boston metropolitan area.

Finally, we extend the framework to apply the methods to specific problems in

survival analysis and epidemiology. Both applications involve analyses of two cohorts,

which oftentimes exhibit differing responses given the same predictor input. We adapt

xii



the proposed framework to model the survival data with right-censoring. For applications

in epidemiology, we study the ordering properties of the mixture kernels and incorporate

stochastic ordering in the two-cohort mixture framework through structured priors, which

conforms with the assumption in certain circumstances of receiver operating characteristic

curve estimation. With the adapted models, we carry out cohort-specific identification of

influential variables and gain insights into the contribution in estimation and prediction

from different parts of the response distribution, which are depicted by the corresponding

quantile regression components. We illustrate the applications with a time-to-event data

set on length of stay at nursing home and two disease diagnosis data sets, one on adolescent

depression and the other on cattle epidemics.
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Chapter 1

Introduction

1.1 Background on quantile regression

Quantile regression studies the relation between the quantiles of the response vari-

able and a given set of covariates. Unlike the usual mean regression that focuses on the

expectation of the response variable, quantile regression not only allows for analysis of the

center of the distribution through the median, but also applies to essentially any quantile

of the distribution, such as the quartiles and the 5th and the 95th percentile that lie in the

tails. Since the seminal work of Koenker & Bassett Jr (1978), quantile regression has seen

extensive applications in various fields, such as ecology, epidemiology, sociology, economics

and finance (Reich, 2012; Lee & Neocleous, 2010; Lum et al., 2012; Hu et al., 2013; Taddy &

Kottas, 2010). It is a useful regression tool especially for problems wherein no relationship

or only a weak relationship exists between the covariates and the conditional mean of the

response variable (Cade & Noon, 2003).

As a practical and important alternative to traditional mean regression, quantile

1



regression forms an area with a rapidly increasing literature. Parametric quantile regression

models are almost exclusively built from the asymmetric Laplace (AL) distribution, the

density of which is

fAL
p (y | µ, σ) =

p(1− p)
σ

exp

{
− 1

σ
ρp (y − µ)

}
, y ∈ R

where ρp(u) = u[p− I(u < 0)], with I(·) denoting the indicator function. Here, σ > 0 is a

scale parameter, µ ∈ R corresponds to the pth quantile, and p ∈ (0, 1) is the percentage,

or cumulatively probability at the quantile µ, such that
∫ µ
−∞ f

AL
p (y | µ, σ)dy = p. Hence, a

model for pth quantile regression can be developed by expressing µ as a function of available

covariates x, for instance, µ = xTβ yields a linear quantile regression structure.

An important reason for its popularity in quantile regression is that maximizing the

likelihood with respect to β under an AL response distribution corresponds to minimizing

for β the check loss function,
∑n

i=1 ρp(yi−xTi β), which is used for classical semi-parametric

quantile regression (Koenker, 2005). Bayesian inference for quantile regression under AL

errors is discussed in Yu & Moyeed (2001), Tsionas (2003) and Kozumi & Kobayashi (2011).

Examples of applications of AL-based Bayesian quantile regression include analysis of re-

peated measure clinical trial data (Geraci & Bottai, 2007) and risk factor assessment for

violent crime rate (Wang & Zhang, 2012).

However, if viewed as an error model for quantile regression, the AL distribution

has substantial limitations. Most striking is that the skewness of the error density is fully

determined when a specific percentile is chosen, that is, when p is fixed. In particular,

the error density is symmetric in the case of median regression, since for p = 0.5, the AL

reduces to the Laplace distribution. Moreover, the mode of the error distribution is at zero,

2



for any p, which results in rigid error density tails for extreme percentiles. Yu & Zhang

(2005) proposed a four-parameter variation of the AL distribution as a generalization, which

however does not overcome either of the above issues of rigidity.

Given the limitations of the AL distribution, Bayesian semi-parametric and non-

parametric approaches have been proposed for more flexible quantile regression in the past

few years. The literature includes Bayesian nonparametric models for the error distribu-

tion in the special case of median regression (Walker & Mallick, 1999; Kottas & Gelfand,

2001; Hjort & Petrone, 2007). As for general quantile regression, Hjort & Petrone (2007)

introduced a method based on the definition of Dirichlet process (DP) and Hjort & Walker

(2009) adopted the idea of Pólya tree to develop a quantile pyramid process that supports

piecewise linear quantile functions. Kottas & Krnjajić (2009) constructed a semi-parametric

framework through scale DP mixtures of uniform densities. The posterior error densities

have flexible skewness, yet are discontinuous at 0 resulting from fixing p. Reich et al. (2010)

constructed a DP mixture of specifically designed normal mixtures estimated with a series

of Metropolis-Hastings steps. Thompson et al. (2010) considered modeling quantiles of the

covariates with natural cubic splines and the posterior sampling also involves a specially

tuned Metropolis-Hastings algorithm.

There is limited work on parametric alternatives to AL quantile regression er-

rors and the existing models do not overcome the major limitations discussed above. For

instance, Wichitaksorn et al. (2014) studied a class of skew distributions for Bayesian quan-

tile regression, but similar to the AL distribution, both the skewness and the percentile are

controlled by the same parameter. Alternatively, Zhu & Zinde-Walsh (2009) and Zhu &
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Galbraith (2011) explored the family of asymmetric exponential power distributions. Al-

though it allows for different decay rates in the left and the right tails for fixed p, the mode

of the distribution is held fixed at the quantile µ by construction, which constrains the

behavior of the density around µ. Noufaily & Jones (2013) developed a parametric quantile

regression based on generalized Gamma distributions, which covers a good range of shapes

of distributions. However, since generalized gamma distributions are defined on R+, the

method only applies to positive response variables.

On the other hand, in addition to regression of a single quantile, different Bayesian

models were also developed for estimation of multiple quantiles with regression analysis,

known as simultaneous quantile regression. In this context, each quantile is estimated with

a different set of regression coefficients. Scaccia & Green (2003) modeled the conditional

distribution of the response given a single continuous covariate with a discrete normal mix-

ture with covariate-dependent weights. Further, Taddy & Kottas (2010) modeled the joint

distribution of the response and the covariates with a DP mixture and developed inference

for different quantile curves based on the induced conditional distribution of the response

given the covariates. Tokdar & Kadane (2011) developed a semi-parametric model for simul-

taneous regression of multiple quantiles that satisfies the monotonicity constraint through

an interpolation of two monotone curves. Reich & Smith (2013) proposed a Bayesian si-

multaneous quantile regression model for censored survival data with specifically designed

basis functions. Das & Ghosal (2017) also considered basis function and represented the

quantile function with a convex combination of two sets of B-spline basis expansions.
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1.2 Motivation and objectives

Standard quantile regression focuses on a particular quantile of interest or on

estimating a set of quantiles separately. We would like to go beyond the idea of individual

quantile analysis and develop a Bayesian quantile mixture regression (BQMR) framework

to combine information from multiple parts of the response distribution for the estimation

of the regression coefficients.

More specifically, we propose to model the response distribution with a weighted

mixture of K quantile regressions, each parameterized in terms of the pkth quantile, k =

1, . . . ,K, where the pk are ordered (for instance, {pk} can be equally spaced on the unit

interval). By employing a common vector of regression coefficients β in all components,

we obtain a combined estimate for the covariate effects. Such mixture framework has a

great potential in identifying influential predictors, because instead of focusing on the mean

or a single quantile of the response variable, it attends to multiple parts of the response

distribution. If a predictor has differential effects on the higher and the lower responses, its

regression coefficient will be attenuated when the mixture model synthesizes these effects

in the estimation. Combined with sparsity-inducing priors such as Bayesian lasso (Park

& Casella, 2008), the proposed framework will naturally select the predictors that have a

consistent effect across different parts of the response distribution.

Our proposed framework may remind readers of the composite quantile regression

(CQR) in the classical literature (Zou & Yuan, 2008), which is a composite analysis also

on multiple quantiles. Although the two approaches have similar objectives, there exists

a clear distinction. The CQR procedure focuses on the check loss of K equally weighted

5



quantile regressions with a common regression coefficient vector β̂
CQR

through minimizing

the total check loss summed up across all K quantiles. Zou & Yuan (2008) shows that CQR

is a powerful variable selection tool, as the estimator enjoys the oracle properties under

adaptive lasso penalty. However, devised to minimize the check loss, the CQR procedure

is purely optimization-oriented and does not involve probabilistic modeling. The Bayesian

framework we propose targets the response distribution directly through a mixture model

and the inference follows naturally from a modeling perspective.

We would like to also emphasize the differences between the proposed mixture

framework and simultaneous quantile regression (Taddy & Kottas, 2010; Tokdar & Kadane,

2011; Reich & Smith, 2013; Das & Ghosal, 2017), which models several quantiles jointly.

Unlike what we propose in this work, simultaneous quantile regression does not involve a

mixture modeling framework. Quite the contrary, it handles each individual quantile in

a separate regression: the pkth quantile has its own vector of regression coefficients βpk ,

which describes the covariate effect specific to the quantile. What we attempt to achieve in

the mixture model is to assess the comprehensive effect of the covariates on the response

distribution. This is realized through estimating a common regression coefficient β shared

by multiple quantile regression components.

To construct the proposed Bayesian mixture quantile regression model, the first

step is to develop a new parametric distribution that is more general than the AL distribu-

tion as the kernel of mixture components. Chapter 2 presents the development, implemen-

tation and applications of such distribution. Given the limitations of the AL distribution,

we believe that developing a more flexible parametric error distribution for quantile analysis
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is of independent interest. We derive the new distribution through constructively modifying

the mixture representation of the AL distribution. Through introducing a shape parameter,

we obtain a family of distributions that has more flexible skewness and tail behaviour than

the AL, while including it as a special case of the family. The resulting distribution has

flexible skewness and mode as well as a continuous density function. We develop a Bayesian

formulation for the proposed quantile regression model, including conditional lasso regular-

ized quantile regression based on a hierarchical Laplace prior for the regression coefficients

and a Tobit quantile regression model. The Markov chain Monte Carlo (MCMC) algorithm

under the new distribution sacrifices very little in terms of ease of implementation, since

save for one parameter, it is based on all Gibbs updates.

Next, we construct the Bayesian quantile mixture regression (BQMR) framework

and demonstrate its advantages in prediction and identification of influential variables, par-

ticularly in the cases where the errors follow a nonstandard distribution with heavy-skewness

or multi-modality in the density function. We develop two versions of the BQMR framework

under different specifications of kernel density for the mixture. Constructed with the pro-

posed new distribution, the first version of the framework is designed to study the important

predictors that affect specific areas of the response distribution. The second version of the

framework is based upon mixtures of AL distributions. To overcome the aforementioned

limitations of the AL distribution, we treat the probability parameter p as a random vari-

able and estimate it from the data. This framework is tailored to obtain inferences on the

percentage {pk} of the components and to explore the response distribution in an efficient

manner. Further, under both versions of BQMR, visualization of the posterior predictive
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inference of the mixture components offers insight to how different quantile components

contribute to the analysis. Illustrations of the models indicate that they offer interesting

insights to the conditional distribution of the response variable, in addition to identifying

influential variables via integrating information from multiple parts of the response distri-

bution. Construction, implementation and related extensions of the BQMR framework are

presented in Chapter 3.

Finally in the Chapter 4, we study the application of the BQMR framework in

survival analysis and estimation of receiver operating characteristic (ROC) curve, both of

which are important topics in biomedical research. The applications we consider involve

data from two cohorts in controlled studies. We explore extensions of the framework to

handle censored observations and develop predictive inference for the survival functions

and ROC curves while allowing for cohort-specific identification of influential variables. We

further derive theoretical results on stochastic ordering with the proposed BQMR. Based

on the findings, we develop a two-cohort BQMR framework. The framework models the

response from both cohorts at the same time and ensures stochastic ordering of the two

cohorts by construction, which is achieved through careful specification of the priors.
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Chapter 2

A new family of error distributions

for Bayesian quantile regression

The focus of this chapter is the development of a new family of error distributions

for Bayesian quantile regression. First, we construct the new distribution and discuss its

properties relative to the AL distribution in Section 2.1. We then formulate the Bayesian

quantile regression model in Section 2.2, including a prior specification for the regression

coefficients that encourages shrinkage resulting in regularized quantile regression, and a

Tobit quantile regression formulation. In Section 2.3, we present results from a simulation

study to compare the performance of the AL and the proposed distribution in regularized

quantile regression. The methodology is illustrated with three data examples in Section 2.4,

focusing again on comparison with the AL quantile regression model.
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2.1 Theory and properties of the new error distribution

In this section, we derive the distribution and explore some key properties of the

new family.

2.1.1 The generalized asymmetric Laplace distribution

The construction of the new distribution is motivated by the most commonly used

mixture representation of the AL density. In particular,

fAL
p (y | µ, σ) =

∫
R+

N(y | µ+ σA(p)z, σ2B(p)z) Exp(z | 1) dz (2.1)

where A(p) = (1−2p)/{p(1−p)} and B(p) = 2/{p(1−p)}. Moreover, N(m,W ) denotes the

normal distribution with mean m and variance W , and Exp(1) denotes the exponential dis-

tribution with mean 1. We use such notation throughout to indicate either the distribution

or its density, depending on the context.

The mixture formulation in (2.1) enables exploration of extensions to the AL

distribution. Extending the Exp(1) mixing distribution is not a fruitful direction in terms

of evaluation of the integral, and, more importantly, with respect to fixing percentiles of the

resulting distribution. However, both goals are accomplished by replacing the normal kernel

in (2.1) with a skew normal kernel (Azzalini, 1985). In its original parameterization, the

skew normal density is given by fSN(y | ξ, ω, λ) = 2ω−1 φ(ω−1(y−ξ)) Φ(λω−1(y−ξ)), where

φ(·) and Φ(·) denote the density and distribution function, respectively, of the standard

normal distribution. Here, ξ ∈ R is a location parameter, ω > 0 a scale parameter, and

λ ∈ R the skewness parameter. Key to our construction is the fact that the skew normal

density can be written as a location normal mixture with mixing distribution given by a
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standard normal truncated on R+ (Henze, 1986). We reparameterize (ξ, ω, λ) to (ξ, τ, ψ),

where τ > 0 and ψ ∈ R, such that λ = ψ/τ and ω = (τ2 + ψ2)1/2. Then the density can

be written as fSN(y | ξ, τ, ψ) =
∫
R+ N(y | ξ + ψs, τ2)N+(s | 0, 1) ds, where N+(0, 1) denotes

the standard normal distribution truncated over R+.

The proposed model, referred to as generalized asymmetric Laplace (GAL) dis-

tribution, is built by adding a shape parameter, α ∈ R, to the mean of the normal kernel

in (2.1) and mixing with respect to a N+(0, 1) variable. More specifically, the full mixture

representation for the density function, f(y | p, α, µ, σ), of the new distribution is as follows

∫∫
R+×R+

N(y | µ+ σαs+ σA(p)z, σ2B(p)z) Exp(z | 1) N+(s | 0, 1) dzds. (2.2)

Note that, integrating over s in (2.2), the GAL density can be expressed in the form of

(2.1) with the N(y | µ + σA(p)z, σ2B(p)z) kernel replaced with a skew normal kernel,

which, in its original parameterization, has location parameter µ+σA(p)z, scale parameter

σ{α2 + B(p)z}1/2, and skewness parameter α{B(p)z}−1/2. Evidently, when α = 0, f(y |

p, 0, µ, σ) reduces to the AL density.

To obtain the GAL density, we integrate out first z and then s in (2.2). The inte-

grand of
∫
R+ N(y | µ+σαs+σA(p)z, σ2B(p)z) Exp(z | 1) dz can be recognized as the kernel

of a generalized inverse-Gaussian density. Integrating out z, we obtain f(y | p, α, µ, σ) =∫
R+ p(1 − p)σ−1 exp

{
−σ−1

[
p− I(y < µ+ σαs)

]
[y − (µ+ σαs)]

}
N+(s | 0, 1) ds. This in-

tegral involves a normal density kernel, but care is needed with the limits of integration

which depend on the sign of y − µ and of α. Combining the resulting expressions from all

possible cases, we obtain that for α 6= 0, the GAL density f(y | p, α, µ, σ) is given by

2
p(1− p)

σ

[Φ

(
y∗

α
− pα−α

)
− Φ(−pα−α)

]
exp

{
−pα−y

∗ +
1

2
( pα−α)2

}
I

(
y∗

α
> 0

)
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+ Φ

[
pα+α−

y∗

α
I

(
y∗

α
> 0

)]
exp

{
−pα+y

∗ +
1

2
(pα+α)2

} (2.3)

where y∗ = (y−µ)/σ, pα+ = p−I(α > 0), pα− = p−I(α < 0), with p ∈ (0, 1). The relatively

complex form of the density in (2.3) is not an obstacle from a practical perspective, since its

hierarchical mixture representation facilitates study of model properties and Markov chain

Monte Carlo posterior simulation.

2.1.2 Link to the p0th quantile

There is a direct link between the GAL distribution and the p0th quantile for any

p0 ∈ (0, 1); note that parameter p no longer corresponds to the cumulative probability at

the quantile for α 6= 0. When α > 0, the distribution function of (2.3) at µ is given by∫ µ
−∞ f(y | p, α, µ, σ)dy = 2pΦ[(p−1)α] exp

{
(p− 1)2α2/2

}
. Hence, letting γ = (1−p)α, the

distribution function becomes,

∫ µ

−∞
f(y | p, γ, µ, σ) dy = p g(γ) with g(γ) = 2Φ(−|γ|) exp(γ2/2).

Because p ∈ (0, 1) by definition, the reparameterization of γ = (1− p)α implies that γ and

α have the same sign. We use |γ| above, since this is the general form of g(γ) that applies

also in the α < 0 case.

In the following, we show that g(γ) is monotonically increasing in R− and mono-

tonically decreasing in R+, an important property that enables fixing the percentile of the

distribution. For γ ∈ R−, dg(γ)/dγ = 2h(γ) exp(γ2/2), where h(γ) = φ(γ) + γΦ(γ). The

function h(γ) is monotonically increasing in R−, since dh(γ)/dγ = Φ(γ) > 0. Moreover,

h(0) = (2π)−1/2 > 0, and limγ→−∞ h(γ) = 0. Therefore, h(γ) > 0 for γ ∈ R−, and thus
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g(γ) is monotonically increasing in R−. Since g(γ) is an even function, it also obtains that

it is monotonically decreasing in R+.

Consider now setting
∫ µ
−∞ f(y | p, γ, µ, σ) dy = pg(γ) = p0. Recall that α and

γ have the same sign. Then for each γ > 0 in the domain that respects the condition of

p ∈ (0, 1), there is a unique solution of p that ensures
∫ µ
−∞ f(ε|·) = p0, and subsequently a

unique α based on γ = (1 − p)α. For α < 0, setting
∫∞
µ f(y | p, γ, µ, σ) dy = 1 − p0 and

letting γ = pα leads to the same argument.

The above connection between (p0, γ) and (p, α) suggests that by reparameteriza-

tion with desired p0 and γ = [I(α > 0)− p]|α|, we can derive a new family of distributions

with the percentile for fixed p0 given by µ, and with an additional shape parameter γ. For

γ 6= 0, the density, fp0(y | γ, µ, σ), of such quantile-fixed GAL distribution is

2
p(1− p)

σ


Φ

(
−
pγ+y

∗

|γ|
+
pγ−
pγ+
|γ|

)
− Φ

(
pγ−
pγ+
|γ|

) exp

−pγ−y∗ +
γ2

2

(
pγ−
pγ+

)2
 I

(
y∗

γ
> 0

)

+ Φ

[
−|γ|+

pγ+y
∗

|γ|
I

(
y∗

γ
> 0

)]
exp

{
−pγ+y∗ +

γ2

2

} (2.4)

where p ≡ p(γ, p0) = I(γ < 0) + {[p0 − I(γ < 0)]/g(γ)}, pγ+ = p − I(γ > 0), pγ− =

p− I(γ < 0), and y∗ = (y − µ)/σ. Parameter γ has bounded support over interval (L,U),

where L is the negative root of g(γ) = 1 − p0 and U is the positive root of g(γ) = p0. For

instance, γ takes values in (−0.07, 15.90), (−1.09, 1.09) and (−2.90, 0.39) when p0 = 0.05,

.5 and 0.75, respectively. When γ = 0, the density of GAL reduces to the AL density, which

is also a limiting case of (2.4). The density function is continuous for all possible γ values.

Additionally, the cumulative distribution function (CDF) F (y) of a quantile-fixed

GAL distribution for the p0th quantile can be obtained in closed form,
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i) For γ < 0,

F (y) =



2Φ
[
−p(y−µ)γσ

]
+ 2p

{
Φ
[
p(y−µ)
γσ − (p−1)γ

p

]
− Φ

[
− (p−1)γ

p

]}
· exp

{
− (p−1)(y−µ)

σ + (p−1)2γ2

2p2

}
− 2(1− p)Φ

[
γ − p(y−µ)

γσ

]
· exp

{
−p(y−µ)σ + γ2

2

}
, y ≤ µ

p0 + (1− p0)

[
1− exp

{
−p(y−µ)σ

}]
, y > µ

ii) For γ = 0 (AL distribution),

F (y) =


p0 exp

{
−(p0 − 1)y−µσ

}
, y ≤ µ

p0 + (1− p0)

[
1− exp

{
−p0(y−µ)σ

}]
, y > µ

iii) For γ > 0,

F (y) =



p0 exp
{
−(p− 1)y−µσ

}
, y ≤ µ

2Φ
[
(1−p)(y−µ)

γσ

]
− 1− 2(1− p)

{
Φ
[
(1−p)(y−µ)

γσ − pγ
1−p

]
− Φ

(
− pγ

1−p

)}
· exp

{
−p(y−µ)σ + p2γ2

2(1−p)2

}
+ 2pΦ

[
−γ − (1−p)(y−µ)

γσ

]
· exp

{
− (p−1)(y−µ)

σ + γ2

2

}
, y > µ

where p and g(γ) are defined as are in the density function.

2.1.3 Properties of the GAL distribution

The quantile-fixed GAL distribution has three parameters, µ, σ and γ. Note that

Y has density fp0(· | γ, µ, σ) if and only if (Y − µ)/σ has density fp0(· | γ, 0, 1). Hence,

similarly to the AL distribution, µ is a location parameter and σ is a scale parameter. The

new shape parameter γ enables the extension relative to the quantile-fixed AL distribution.

As demonstrated in Figure 2.1, γ controls skewness and tail behaviour, allowing for both
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Figure 2.1: Density function of quantile-fixed generalized asymmetric Laplace distribution
with µ = 0, σ = 1 and different values of γ, for p0 = 0.05, 0.5 and 0.75. In all cases, the
solid line corresponds to the asymmetric Laplace density (γ = 0).

left and right skewness when the median is fixed, as well as for both heavier and lighter

tails than the asymmetric Laplace, the difference being particularly emphatic for extreme

percentiles. Moreover, as γ varies, the mode is no longer held fixed at µ; it is less than µ

when γ < 0 and greater than µ when γ > 0. The above attributes render the proposed

distribution substantially more flexible than the AL distribution.

Moreover, we note that parameter γ satisfies likelihood identifiability. Consider

the location-scale standardized density, fp0(· | γ, 0, 1), which is effectively the model for the

errors in quantile regression. Then, assume fp0(y | γ1, 0, 1) = fp0(y | γ2, 0, 1), for all y ∈ R.

Given that parameter γ controls the mode of the density, this implies that γ1 and γ2 must

have the same sign. Working with either of the two cases (that is, γ1 > 0 and γ2 > 0 or

γ1 < 0 and γ2 < 0) in expression (2.4), we arrive at g(γ1) = g(γ2), which, based on the

monotonicity of function g(·), implies γ1 = γ2.

Finally, we derive the characteristic function of GALp0 using twice the double
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expectation theorem based on the hierarchical representation.

ϕY (t) = E(eitY ) = EZ [EY |Z(eitY )] = EZ [ES|Z [EY |S,Z(eitY )]]

Since S follows a truncated normal distribution on R+, also known as the half-normal

distribution, EY |Z(eitY ) can be obtained with the characteristic function of half-normal,

ES|Z [EY |S,Z(eitY )] = ES|Z

[
eit(µ+σC|γ|s+σAz)−

t2

2
σ2Bz

]
= eit(µ+σAz)−

t2

2
σ2BzϕS|Z(σC|γ|t)

= eit(µ+σAz)−
t2

2
σ2Bz · 2e−

t2

2
(σCγ)2 [1− Φ(−iσC|γ|t)]

Denote c = 2eitµ−
t2

2
(σCγ)2 [1− Φ(−iσC|γ|t)]. Then the characteristic function of GALp0 is,

ϕY (t) = EZ [ce(itσA−
t2

2
σ2B)z] =

2eitµ−
t2

2
(σCγ)2 [1− Φ(−iσC|γ|t)]

1− itσA+ t2

2 σ
2B

2.2 Bayesian inference for quantile regression under GALp0

The mixture representation of the proposed distribution allows for straightforward

implementation of Bayesian quantile regression under the GALp0 distribution. In this sec-

tion we develop inference for the regression model as well as for its extensions in regularized

regression and Tobit regression.

2.2.1 Regression model formulation

Consider continuous responses yi and the associated covariate vectors xi, for i =

1, . . . , n. The linear quantile regression model is set up as yi = xTi β + εi, where the εi

arise independently from a quantile-fixed GAL distribution with
∫ 0
−∞ fp0(ε | γ, 0, σ)dε = p0.
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Owing to the mixture representation of the new distribution, the model for the data can be

expressed hierarchically as follows

yi | β, γ, σ, zi, si
ind.∼ N(yi | xTi β + σC|γ|si + σAzi, σ

2Bzi), i = 1, ..., n

zi, si
ind.∼ Exp(zi | 1) N+(si | 0, 1), i = 1, ..., n (2.5)

where C = [I(γ > 0) − p]−1, and A and B are the functions of p given in (2.1). Since p is

a function of γ and p0, A, B and C are all functions of parameter γ. The Bayesian model

is completed with priors for β, σ and γ. Here, we assume a normal prior N(m0,Σ0) for β

and an inverse-gamma prior IG(aσ, bσ) for σ, with mean bσ/(aσ − 1) provided aσ > 1. For

any specified p0, γ is defined over an interval (L,U) with fixed finite endpoints, and thus a

natural prior for γ is given by a rescaled Beta distribution, with the uniform distribution

available as a default choice.

The augmented posterior distribution, which includes the zi and the si, can be

explored via a Markov chain Monte Carlo algorithm based on Gibbs sampling updates for

all parameters other than γ. As in Kozumi & Kobayashi (2011), we set vi = σzi, i = 1, . . . , n.

Then, the posterior simulation method is based on the following updates.

1. Sample β from N(m∗,Σ∗), with covariance matrix Σ∗ = [Σ−10 +
∑n

i=1 xix
T
i /(Bσvi)]

−1

and mean vector m∗ = Σ∗{Σ−10 m0 +
∑n

i=1 xi[yi − (σC|γ|si +Avi)]/(Bσvi)}.

2. For each i = 1, ..., n, sample vi from a generalized inverse-Gaussian distribution,

GIG(0.5, ai, bi), where ai = [yi − (xTi β + σC|γ|si)]2/(Bσ) and bi = 2/σ + A2/(Bσ),

with density given by GIG(x | ν, a, b) ∝ xν−1 exp{−0.5(a/x+ bx)}.

3. For each i = 1, ..., n, sample si from a normal N(µsi , σ
2
si) distribution truncated on
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R+, where σ2si = [(Cγ)2σ/(Bvi) + 1]−1 and µsi = σ2siC|γ|[yi − (xTi β +Avi)]/(Bvi).

4. Sample σ from a GIG(ν, c, d) distribution, where ν = −(aσ + 1.5n), c = 2bσ +

2
∑n

i=1 vi +
∑n

i=1[yi − (xTi β +Avi)]
2/(Bvi), and d =

∑n
i=1(Cγsi)

2/(Bvi).

5. Update γ with a Metropolis-Hastings step, using a normal proposal distribution on

the logit scale over (L,U).

Based on the hierarchical model structure, the posterior predictive error densi-

ty can be expressed as p(ε | data) =
∫

N(ε | σC|γ|s + σAz, σ2Bz) Exp(z | 1) N+(s |

0, 1)π(γ, σ |data) ds dz dγ dσ, and thus estimated through Monte Carlo integration, using

the posterior samples of (γ, σ).

2.2.2 Quantile regression with regularization

Since the GAL distribution is constructed through modifying the mixture repre-

sentation of the AL distribution, it retains some of the interesting properties of the AL

distribution. In particular, working with the hierarchical representation of the GAL dis-

tribution, we are able to retrieve an extended version of the check loss function which

corresponds to asymmetric Laplace errors.

Consider the collapsed posterior distribution, π(β, γ, σ, s1, ..., sn | data), that arises

from (2.5) by marginalizing over the zi. Then, the corresponding posterior full conditional

for β can be expressed as

π(β | γ, σ, s1, ..., sn,data) ∝ π(β) exp

− 1

σ

n∑
i=1

ρp(yi − xTi β − σH(γ)si)


where π(β) is the prior density for β, H(γ) = C|γ| = γg(γ)/{g(γ) − |p0 − I(γ < 0)|},

and p = I(γ < 0) + {[p0 − I(γ < 0)]/g(γ)}, with p0 the probability associated with the
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specified quantile modeled through xTi β. Hence, ignoring the prior contribution, finding

the mode of the posterior full conditional for β is equivalent to minimizing with respect to

β the adjusted loss function
∑n

i=1 ρp(yi − xTi β − σH(γ)si); note that in the special case

with asymmetric Laplace errors, that is, for γ = 0, this reduces to the check loss function

with p = p0.

Based on the above structure, the positive-valued latent variables si can be viewed

as response-specific weights that are adjusted by real-valued coefficient H(γ), which is fully

specified through the shape parameter γ. The result is the real-valued, response-specific

terms σH(γ)si, which reflect on the estimation of β the effect of outlying observations

relative to the AL distribution. A promising direction to further explore this structure is in

the context of variable selection guided by the shrinkage of covariate effects. For instance, Li

et al. (2010) study connections between different versions of regularized quantile regression

and different priors for β, working with asymmetric Laplace errors. The main example is

lasso regularized quantile regression, which can be connected to the Bayesian asymmetric

Laplace error model through a hierarchical Laplace prior for β. We consider this prior for

Bayesian quantile regression with the proposed GAL distribution. The perspective we offer

may be useful, since it can be used to explore regularization adjusting the loss function

through the response distribution, in addition to the penalty term through the prior for the

regression coefficients.

Here, we denote by β the d-dimensional vector of regression coefficients excluding

the intercept β0. Then, the Laplace conditional prior structure for β is given by

π(β | σ, λ) =

d∏
k=1

λ

2σ
exp

{
−λ
σ
|βk|

}
=

d∏
k=1

∫
R+

1√
2πωk

exp

{
− β2

k

2ωk

}
η2

2
exp

{
−η

2

2
ωk

}
dωk
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The expression following the second equals sign utilizes the normal scale mixture repre-

sentation for the Laplace distribution, which has been exploited for posterior simulation in

the context of lasso mean regression (Park & Casella, 2008). Moreover, to facilitate Markov

chain Monte Carlo sampling, we reparameterize in terms of η = λ/σ and place a gamma

prior on η2. The lasso regularized version of model (2.5) is completed with a normal prior

for β0, and with the priors for the other parameters as given in Section 2.2.1. The posterior

simulation algorithm is the same with the one described in Section 2.2.1 with the exception

of the updates for the βk, k = 1, ..., d, and for η2. Using the mixture representation of the

Laplace prior, each βk can be sampled from a normal distribution, whereas η2 has a gamma

posterior full conditional distribution (details provided in Appendix A.1).

2.2.3 Tobit quantile regression

Tobit regression offers a modeling strategy for problems involving range constraints

on the response variable (Amemiya, 1984). The standard Tobit regression model can be

viewed in the context of censored regression where the responses are left censored at a

threshold c; without loss of generality, we take c = 0. The responses can be written as yi =

max{0, y∗i }, where yi are the observed values and y∗i are latent if y∗i ≤ 0. In the context

of quantile regression, Yu & Stander (2007) and Kozumi & Kobayashi (2011) applied the

AL-based model to the latent responses y∗i . Here, we consider the Tobit quantile regression

setting with GAL errors.

Consider a data set of n + k observations on covariates and associated responses

y = (yo,0), where yo = (yo1, ..., y
o
n) consists of positive-valued observed responses with the

remaining k responses censored from below at 0. Assuming the GAL distribution for the
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latent responses, we can express the likelihood as
∏n
i=1 fp0(yoi | γ,xTi β, σ)

∏k
j=1

∫ 0
−∞ fp0(w |

γ,xTn+jβ, σ) dw. Using data augmentation (Chib, 1992), we let w = (w1, ..., wk) be the

unobserved (latent) responses corresponding to the k data points that are left-censored at

0. Then, under the hierarchical representation of the GAL distribution, the joint posterior

distribution that includes w can be expressed as

p(β, γ, σ, {si}, {vi},w | data) ∝ π(β, γ, σ)
∏n
i=1 N(yoi | xTi β + σC|γ|si +Avi, σBvi)∏k

j=1 N−(wj | xTn+jβ + σC|γ|sn+j +Avn+j , σBvn+j)
∏n+k
i=1 Exp(vi | σ−1) N+(si | 0, 1)

where π(β, γ, σ) denotes the prior for the model parameters, and vi = σzi. Here, N− denotes

a truncated normal on R−, and Exp(v |σ−1) an exponential distribution with mean σ.

Regarding posterior inference, the posterior full conditional for each auxiliary vari-

able wj is given by a truncated normal distribution. Given the augmented data (yo,w),

the model parameters and the latent variables {(vi, si) : i = 1, ..., n+ k} can be sampled as

in Section 2.2.1. We tested the posterior sampling algorithm on simulated data sets with

sample size n = 400, generated from a simple regression setting with GAL errors with a

censoring rate ranging from 20% to 40%. Under this scenario, the posterior distributions

successfully captured the true values of all parameters in their 95% credible intervals.

2.3 Simulation study for regularized regression

Here, we present results from a simulation study designed to compare the lasso

regularized quantile regression models with the AL and the GAL errors. We follow a s-

tandard simulation setting from the literature regarding the linear regression component

(Tibshirani, 1996; Zou & Yuan, 2008; Li et al., 2010), varying the extent of sparsity in
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the true β vector. For the underlying data-generating error distributions, we consider four

scenarios with different types of skewness and tail behavior. For model comparison, we

evaluate the accuracy in variable selection based on the posterior inference under Bayesian

Lasso shrinkage, the inference for the regression function, and the posterior predictive per-

formance, using relevant assessment criteria. Overall, the GAL-based quantile regression

model performs better in variable selection and prediction accuracy and it is more robust to

non-standard error distributions, particularly for extreme quantiles. The two models yield

comparable results in the case of median regression.

2.3.1 Simulation settings

We consider synthetic data generated from linear quantile regression settings, with

p0 = 0.05, 0.25 and 0.5 to study model performance for both extreme and more central per-

centiles. The rows of the design matrix were generated independently from an 8-dimensional

normal distribution with zero mean vector and covariance matrix with elements 0.5|i−j|, for

1 ≤ i, j ≤ 8. We present detailed results from a relatively sparse case for the vector of

regression coefficients, β = (3, 1.5, 0, 0, 2, 0, 0, 0). In Section 2.3.3, we briefly discuss results

form two other scenarios for β corresponding to a dense and a very sparse case.

Data were simulated under four different error distributions:

• N(µ, 9), with µ chosen such that the p0th quantile is 0.

• Laplace(µ, 3), with µ chosen such that the p0th quantile is 0.

• 0.1N(µ, 1) + 0.9N(µ+ 1, 5), with µ chosen such that the p0th quantile is 0.

• Log-transformed generalized Pareto(σ, ξ), with ξ = 3 and σ chosen such that the
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p0th quantile is 0. To generate the errors, we first sample from a generalized Pareto

distribution, then take the logarithm. Based on the parameterization in Embrechts

et al. (1997), the density function of the errors is given by f(ε |σ, ξ) = σ−1{1 +

ξσ−1 exp(ε)}−(1+ξ−1) exp(ε), for ε ∈ R.

The normal and Laplace error distributions are symmetric about zero under median re-

gression. The parameters of the two-component normal mixture are selected such that

the resulting error distribution is skewed. Finally, the log-transformed generalized Pareto

distribution is included to study model performance under an error density which is both

skewed and does not have exponential tails.

For each setting of the simulation study, we generated 100 data sets, each with

n = 100 observations for training the models and another N = 100 for testing predictions.

2.3.2 Criteria for comparison

We consider a number of criteria to assess different aspects of model performance.

Since Bayesian lasso regression only shrinks the covariate effects, we consider a threshold

on the effect size for the purpose of variable selection. Following Hoti & Sillanpää (2006),

we calculate the standardized effects as β∗j = (sxj/sy)βj , j = 1, . . . , d, where sxj is the

standard deviation of predictor xj and sy is the standard deviation of the response. For

each posterior sample, if the standardized effect is greater than 0.1 in absolute value, we

consider the predictor as included. We count the number of correct inclusion and exclusions

(CIE) in the posterior sample and divide it by d to normalize it to a number between 0 and

1. By averaging over all the posterior samples, we obtain the mean standardized CIE for
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each simulated data set.

To assess predictive performance for the regression function, we calculate the mean

absolute deviation on N = 100 test data points, defined as: MAD = 1
100

∑100
i=1 |(β∗0+xTi β

∗)−

xTi β|, where β∗0 and β∗ are the posterior mean estimate of the intercept and the regression

vector from the training data. The MAD measures the average L1 distance between the

predicted quantile and the true quantile for the test data, thus can be viewed as a numeric

evaluation of the posterior predictive inference under each model.

Finally to assess model fitting taking into account predictive uncertainty, we apply

the posterior predictive loss criterion from Gelfand & Ghosh (1998). This criterion favors the

modelM that minimizes Dm(M) = P (M)+{m/(m+1)}G(M), where G(M) =
∑n

i=1{yi−

EM(y∗i | data)}2 is a goodness-of-fit term, and P (M) =
∑n

i=1 varM(y∗i | data) is a penalty

term for model complexity. Here, m ≥ 0, and EM(y∗i | data) and varM(y∗i | data) are the

mean and variance under model M of the posterior predictive distribution for replicated

response y∗i with corresponding covariate xi. We also consider the generalized version of the

criterion based on the check loss function, under which D(M) =
∑n

i=1 EM(ρp0(yi − y∗i ) |

data). For this generalized criterion, the goodness-of-fit term can be defined by G(M) =∑n
i=1 ρp0(yi − EM(y∗i | data)) and the penalty term by P (M) = D(M)−G(M), since the

check loss function L(y, a) ≡ ρp0(y − a) = (y − a)p0 − (y − a)I(y < a) is convex in y, and

thus P (M) ≥ 0; see Gelfand & Ghosh (1998) for details on defining the model comparison

criterion under loss functions different from quadratic loss.
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2.3.3 Results

We use the same hierarchical Laplace prior for β under the AL and GAL models,

with a gamma prior for η2 with prior mean 1 and variance 10. Such prior specification is

relatively non-informative in the sense that it does not favor shrinkage for the regression

coefficients, resulting in marginal prior densities for each βk that place substantial probabil-

ity mass away from 0. The shape parameter γ of the GAL error distribution was assigned

a uniform prior. Results under both models and for each simulated data set are based on

5,000 posterior samples, obtained after discarding the first 50,000 iterations of the Markov

chain Monte Carlo sampler and then retaining one every 20 iterations.

Within each simulation scenario, we summarize results from the 100 data sets

using the median and standard deviation (SD) of the values for the performance assessment

criteria discussed in Section 2.3.2. Results are reported in Table 2.1 through Table 2.4,

where we use boldface to indicate the model supported by the particular criterion under

each setting.

Overall, the lasso regularized Bayesian quantile regression model performs better

under the GAL error distribution. The GAL-based model includes/excludes correct regres-

sion coefficient values more often than the AL model for almost all combinations of p0 and

error distributions (Table 2.1). It also results in a lower median mean absolute deviation for

the test data in most cases, demonstrating better performance in the prediction of the re-

gression function (Table 2.2). Note that, for both types of assessment in Tables 2.1 and 2.2,

the GAL-based model produces better results across all error distributions for p0 = 0.05,

and, with the exception of one case, when p0 = 0.25. Results are generally more balanced
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Error distribution
log-transformed

p0 Model Normal Laplace Normal mixture generalized Pareto

0.05 GAL 0.848 (0.063) 0.633 (0.083) 0.911 (0.042) 0.893 (0.052)
AL 0.746 (0.099) 0.534 (0.087) 0.817 (0.075) 0.840 (0.081)

0.25 GAL 0.851 (0.049) 0.728 (0.060) 0.918 (0.048) 0.896 (0.050)
AL 0.843 (0.069) 0.700 (0.068) 0.913 (0.060) 0.900 (0.051)

0.50 GAL 0.848 (0.052) 0.738 (0.065) 0.909 (0.049) 0.897 (0.055)
AL 0.850 (0.056) 0.737 (0.065) 0.905 (0.050) 0.870 (0.061)

Table 2.1: Simulation study. Standardized number of correctly included/excluded predic-
tors: median (SD).

Error distribution
Log-transformed

p0 Model Normal Laplace Normal mixture generalized Pareto

0.05 GAL 0.899 (0.281) 3.095 (0.831) 0.596 (0.198) 0.625 (0.173)
AL 1.130 (0.280) 3.826 (1.012) 0.847 (0.218) 0.855 (0.254)

0.25 GAL 0.705 (0.190) 1.517 (0.470) 0.503 (0.150) 0.568 (0.165)
AL 0.805 (0.191) 1.777 (0.506) 0.550 (0.159) 0.582 (0.172)

0.50 GAL 0.729 (0.185) 1.400 (0.415) 0.512 (0.141) 0.570 (0.155)
AL 0.710 (0.183) 1.391 (0.416) 0.520 (0.132) 0.649 (0.183)

Table 2.2: Simulation study. MAD of regression function based on the test data: median
(SD).

in the median regression setting, although the GAL model fares better in all cases for which

the underlying error distribution is skewed.

For each simulation setting, Table 2.3 includes the values for the posterior pre-

dictive loss criterion with quadratic loss (under m → ∞, such that D∞ = P + G), and

Table 2.4 shows the generalized criterion under check loss. Both versions of the posterior

predictive loss criterion support the GAL model when p0 = 0.05, with differences in values

between the two models that are substantially larger than for the other two values of p0.

This reinforces the earlier findings on the potential benefits of the GAL error distribution

for extreme percentiles. With the exception of one case under the check loss version of the
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Figure 2.2: Simulation example. Posterior predictive error density produced by fitting single
simulated data sets with quantile lasso regularized model under AL and GAL errors. The
data sets are simulated with different error distributions. From left to right the true error
distributions have its 50th, 25th and 5th quantile equal to zero.

criterion, the GAL-based model is also favored when p0 = 0.25, whereas results are more

mixed in the median regression case.

We plot the posterior predictive error density to illustrate a visual comparison of

the posterior inference under each model (Figure 2.2). Each panel shows the prediction from

fitting a single simulated data set with both the AL and the GAL regression model. The

data sets are generated under the Laplace distribution, mixture of normal distributions and

log-transformed generalized Pareto distribution, with the 50th, 25th and 5th quantile set at

zero, respectively. In all three examples, the model assuming GAL errors produces posterior

predictive error density that is closer to the true error density than its AL counterpart.

We also considered two more settings for β, a dense case with all 8 regression

coefficients equal to 0.85, and a very sparse case with β = (5, 0, 0, 0, 0, 0, 0, 0). The con-

clusions were overall similar, in particular, the GAL model outperformed the AL model

for essentially all combinations of underlying error distribution and value of p0 = 0.05 or
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Error distribution
log-transformed

p0 Model Score Normal Laplace Normal mixture generalized Pareto

0.05 GAL P 1231 (193) 9799 (2483) 653 (112) 1273 (270)
G 832 (126) 7046 (1546) 429 (71) 1053 (267)
D∞ 2092 (312) 16860 (3839) 1085 (181) 2319 (531)

AL P 3359 (799) 30308 (10763) 1839 (405) 2782 (664)
G 952 (165) 8659 (2304) 534 (93) 1168 (279)
D∞ 4357 (933) 38766 (12676) 2398 (487) 4020 (873)

0.25 GAL P 1085 (206) 6977 (1607) 608 (95) 1445 (273)
G 830 (146) 6897 (1606) 444 (66) 1105 (264)
D∞ 1882 (343) 13884 (3115) 1055 (154) 2552 (511)

AL P 1630 (303) 11503 (2727) 884 (148) 1516 (260)
G 865 (154) 7395 (1742) 464 (71) 1113 (263)
D∞ 2499 (448) 18916 (4349) 1352 (215) 2600 (487)

0.50 GAL P 1283 (205) 7600 (1676) 694 (97) 1189 (217)
G 813 (132) 6459 (1509) 424 (60) 1089 (245)
D∞ 2111 (328) 14076 (3101) 1121 (152) 2283 (415)

AL P 1177 (191) 7256 (1572) 634 (87) 1318 (247)
G 818 (134) 6431 (1509) 426 (60) 1107 (255)
D∞ 2008 (318) 13667 (3019) 1058 (143) 2415 (483)

Table 2.3: Simulation study. Penalty term (P ), goodness-of-fit term (G) and posterior
predictive loss criterion (D∞) under quadratic loss: median (SD).

p0 = 0.25. Again, in the median regression case, the distinction between the two models

was less clear for the normal, Laplace and normal mixture data-generating distributions,

although the GAL model performed better under all criteria for the setting corresponding

to the log-transformed generalized Pareto distribution.

2.4 Data examples

In this section, we consider three data examples to illustrate the Bayesian quantile

regression models developed in Sections 2.2.1, 2.2.2, and 2.2.3. The main emphasis is on the

comparison of inference results between models based on the GAL distribution and those
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Error distribution
log-transformed

p0 Model Normal Laplace Normal mixture generalized Pareto

0.05 GAL 174.2 (13.6) 507.0 (67.8) 122.8 (11.3) 178.5 (17.4)
AL 209.3 (21.7) 605.4 (70.8) 148.6 (17.3) 200.2 (20.5)

0.25 GAL 169.5 (15.9) 443.9 (47.1) 126.2 (9.5) 188.0 (17.5)
AL 178.0 (15.7) 451.4 (45.8) 129.0 (9.8) 185.5 (17.3)

0.50 GAL 175.7 (13.4) 444.7 (48.0) 127.4 (8.9) 178.6 (16.1)
AL 172.6 (13.4) 438.5 (47.5) 125.2 (8.7) 183.6 (18.1)

Table 2.4: Simulation study. Posterior predictive loss criterion under check loss: median
(SD).

assuming an AL distribution for the errors.

We have implemented both models with priors for their parameters that result

in essentially the same prior predictive error densities. The two models were applied with

the same prior distributions for β and σ. For the data sets of Sections 2.4.1 and 2.4.3, we

used a N(0, 100I) prior for the vector of regression coefficients, and an IG(2, 2) prior for the

scale parameter σ. For the data example of Section 2.4.2, we used a N(0, 100) prior for the

intercept, and the same conditional Laplace prior for the remaining regression coefficients

with the simulation study (see Section 2.3.3). Finally, a uniform prior was placed on the

shape parameter γ of the GAL error distribution. For all data examples, the posterior

densities for model parameters were fairly concentrated relative to the corresponding prior

densities.

2.4.1 Immunoglobulin-G data

We illustrate the proposed model, referred to as model M1, with a data set com-

monly used in additive quantile regression; see, for instance, Yu & Moyeed (2001). The

analysis focuses on comparison with the simpler model based on asymmetric Laplace er-
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Figure 2.3: Immunoglobulin-G data. Inference results for p0 = 0.25, 0.5 and 0.95. Top row:
posterior predictive error densities under the asymmetric Laplace model (dashed lines) and
the generalized asymmetric Laplace model (solid lines). Bottom row: posterior densities
for parameter γ, with the vertical lines corresponding to the endpoints of the 95% credible
interval.

rors, referred to as model M0. The data set contains the immunoglobulin-G concentration

in grams per litre for n = 298 children aged between 6 months and 6 years. As in earlier

applications of quantile regression for these data, we use a quadratic regression function

β0 +β1x+β2x
2 to model five quantiles, corresponding to p0 = 0.05, 0.25, 0.5, 0.75, 0.95, of

immunoglobulin-G concentration against covariate age (x).

The two models result in different posterior predictive error densities, especially

for extreme percentiles; see Figure 2.3. At p0 = 0.95, under the AL model, both the shape
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Figure 2.4: Immunoglobulin-G data. Posterior mean estimates and 95% credible bands for
the quantile regression function β0 + β1x + β2x

2 against age (x), for p0 = 0.05, 0.25, 0.50,
0.75 and 0.95. Left: AL model. Right: GAL model.

and the skewness of the error distribution are predetermined by p0 and the mode is forced

to be 0, resulting in a rigid heavy left tail. The effect of this overly dispersed tail can be

observed in the inference for the quantile regression function (Figure 2.4). The GAL model,

on the contrary, yields an error density that has a much thinner left tail, concentrating

more of its probability mass around the mode, which is not at 0. Figure 2.3 also shows the

posterior densities for shape parameter γ, under a uniform prior in all cases. For all three

quantile regressions, the 95% posterior credible interval for γ does not include the value

of 0, which corresponds to asymmetric Laplace errors. Median regression is the only case

where 0 is within the effective range of the posterior distribution for γ.

For formal model comparison, we compute the Bayesian information criterion

(BIC), the posterior predictive loss criterion with quadratic loss, and the generalized pos-

terior predictive loss criterion under the check loss. We further calculate the approximate
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Approximate Bayes Factor Bayesian information criterion
Quantile Model log-BF10 BF10 log-likelihood BIC

p0 = 0.05 M0 – – −666 1355
M1 60.9 2.9×1026 −615 1258

p0 = 0.25 M0 – – −632 1287
M1 11.7 1.2×105 −622 1273

p0 = 0.50 M0 – – −633 1289
M1 8.9 7.4×103 −623 1274

p0 = 0.75 M0 – – −654 1331
M1 37.8 2.6×1016 −620 1268

p0 = 0.95 M0 – – −761 1545
M1 127.4 2.2× 1055 −646 1320

Table 2.5: Immunoglobulin-G data. Approximate Bayes factor and Bayesian information
criterion under the asymmetric Laplace and generalized asymmetric Laplace models, de-
noted by M0 and M1, respectively.

Bayes factor of the model under the proposed distribution (M1) versus that under the

asymmetric Laplace distribution (M0) using Laplace approximation (Raftery, 1996), de-

noted as B10 = P (D | M1)/P (D | M0) with D as the data. Here, P (D | Mk) =
∫
P (D |

θk,Mk)P (θk |Mk) dθk, where θk is the parameter set of Mk. Under Laplace approximation,

P (D | Mk) ≈ (2π)dk/2|Ĥk|−1/2P (D | θ̂k,Mk)P (θ̂k | Mk), where dk and θ̂k are the dimen-

sion and the posterior mode of θk, Ĥk being the Hessian of log{P (D | θk,Mk)P (θk |Mk)}

evaluated at θ̂k (Raftery, 1996). We approach P (D |Mk) with approximations because both

integrals involve high dimensions and are challenging to compute directly. More specifically,

we calculate the denominator (M0) with Laplace approximation and obtain the numerator

(M1) with a Riemann sum of the Laplace approximation of the integral given γ over an

evenly-spaced grid of γ.

Both the BIC and the Bayes factor favor the new model at all five quantiles; see

Table 2.5. Under the posterior predictive loss criterion (Table 2.6), the two models are
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comparable in the case of median regression, with model M0 preferred. In all other cases,

model M1 is favored by both versions of the model comparison criterion. The improvement

in performance over the AL model is particularly conspicuous at the two extreme percentiles.

This is in agreement with the difference in the posterior predictive error densities for p0 =

0.95, reported in Figure 2.3.

Posterior predictive loss criterion
Quadratic loss Check loss

Quantile Model P G D∞ P G D

p0 = 0.05 M0 3511 1331 4841 179 180 359
M1 1298 1170 2467 230 102 331

p0 = 0.25 M0 1820 1180 3001 232 123 355
M1 1407 1144 2551 236 108 343

p0 = 0.50 M0 1465 1142 2607 229 108 338
M1 1626 1161 2788 232 114 346

p0 = 0.75 M0 2122 1227 3350 201 134 335
M1 1208 1140 2348 228 97 325

p0 = 0.95 M0 6522 1751 8273 137 259 395
M1 1525 1165 2690 208 118 327

Table 2.6: Immunoglobulin-G data. Posterior predictive loss criterion (based on quadratic
loss and check loss functions) under the asymmetric Laplace and generalized asymmetric
Laplace models, denoted by M0 and M1.

2.4.2 Boston housing data

We apply the lasso regularized quantile regression model to the realty price da-

ta from the Boston Standard Metropolitan Statistical Area (SMSA) in 1970 (Harrison &

Rubinfeld, 1978). The data set contains 506 observations. We take the log-transformed cor-

rected median value of owner-occupied housing in USD 1000 (LCMEDV) as the response,

and consider the following predictors: point longitudes in decimal degrees (LON), point

latitudes in decimal degrees (LAT), per capita crime (CRIM), proportions of residential
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Figure 2.5: Boston housing data. Posterior point and 95% interval estimates
for the regression coefficients of the 10th quantile lasso regularized model under
AL and GAL errors.

land zoned for lots over 25000 square feet per town (ZN), proportions of non-retail business

acres per town (INDUS), a factor indicating whether tract borders Charles River (CHAS),

nitric oxides concentration (parts per 10 million) per town (NOX), average numbers of

rooms per dwelling (RM), proportions of owner-occupied units built prior to 1940 (AGE),

weighted distances to five Boston employment centers (DIS), index of accessibility to radial

highways per town (RAD), full-value property-tax rate per USD 10,000 per town (TAX),

pupil-teacher ratios per town (PTRATIO), transformed African American population pro-

portion (B), and percentage values of lower status population (LSTAT).

We consider quantiles of 0.1 and 0.9 and compare the maximum a posteriori esti-

mates (MAP) of regression coefficients, along with 95% credible intervals, for standardized

covariates under the lasso regularized quantile regression models with AL and GAL errors

(Figure 2.5 and 2.6). For both quantiles, the widths of the 95% credible intervals for the

regression coefficients are overall comparable between the two models, but the posterior

point estimates can be quite different. For instance, under the 10th quantile regression, the
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GAL model shrinks the effects of per capita crime (CRIM) and property-tax rate (TAX)

to a greater extent compared to the AL model. Similar patterns can be observed for index

of accessibility to radial highways (RAD) for the 90th quantile. Moreover, the two models

reach different conclusions on the effect of latitude (LAT) for the 10th percentile. Although

the posterior point estimates suggest a higher housing price as latitude increases adjusting

for all other covariates, the 95% credible interval under the GAL model includes 0, whereas

the one under the AL model does not.

Focusing on inference under the GAL error distribution, we note that, although the

model selected some common variables for the two quantiles, there is also some discrepancy.

For instance, each of higher proportions of residential land zoned for lots over 25000 square

feet per town (ZN) and having tracts bordering Charles river (CHAS) increase the price at

the 90% percentile, while higher nitrogen oxide value (NOX) has a negative influence on

the 90% percentile price. However, none of these covariates have a significant effect on the

realty value at the 10% percentile.

Finally, we notice that for both the 10th and 90th quantile regression, 0 is far away

from the endpoints of the 95% credible interval for the GAL model shape parameter γ. This

suggests that asymmetric Laplace errors are not suitable for this particular application.

This is further supported by the results for the posterior predictive loss criterion reported

in Table 2.7.

2.4.3 Labor supply data

We illustrate the Tobit quantile regression model with the female labor supply

data from Mroz (1987), which was taken from the University of Michigan Panel Study of
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Figure 2.6: Boston housing data. Posterior point and 95% interval estimates
for the regression coefficients of the 90th quantile lasso regularized model under
AL and GAL errors.

Posterior predictive loss criterion
Quadratic loss Check loss

Quantile Model P G D∞ P G D

p0 = 0.10 M0 46.9 26.2 73.1 28.1 22.6 50.7
M1 22.8 20.1 42.9 30.4 18.5 48.9

p0 = 0.90 M0 74.8 28.8 103.6 24.1 31.5 55.7
M1 22.6 18.4 41.0 26.3 21.0 47.3

Table 2.7: Boston housing data. Posterior predictive loss criterion (based on quadratic loss
and check loss functions) under the AL (model M0) and GAL (model M1) error distribution.
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Income Dynamics for year 1975. The data set includes records on the work hours and other

relevant information of 753 married white women aged between 30 and 60 years old. Of the

753 women, 428 worked at some time during 1975, with the corresponding fully observed

responses given by the wife’s work hours (in 100 hours). For the remaining 325 women,

the observed zero work hours correspond to negative values for the latent “labor supply”

response. We use the quantile regression function considered in Kozumi & Kobayashi (2011),

where an AL-based Tobit quantile regression model was applied to the same data set. The

linear predictor includes an intercept, income which is not due to the wife (nwifeinc),

education of the wife in years (educ), actual labor market experience in years (exper) and

its quadratic term (expersq), age of the wife (age), number of children less than 6 years

old in household (kidslt6), and number of children between ages 6 and 18 in household

(kidsge6). We compare the results from the Bayesian Tobit quantile regression model

assuming AL errors (model M0) and GAL errors (model M1).

Table 2.8 summarizes the posterior distribution of γ under the GAL model, and

presents results from criterion-based comparison of the two models for p0 = 0.05, 0.50 and

0.95. Since there is censoring in the data, we use the revised BIC from Volinsky & Raftery

(2000). In all three cases, the 95% credible interval for γ excludes 0, and the GAL-based

model is associated with lower BIC values. The results support the GAL-based model more

emphatically for the extreme percentiles than for median regression.

Figure 2.7 shows the posterior distributions of labor supply quantiles corresponding

to p0 = 0.05, 0.50 and 0.95 for women with 0, 1, 2 and 3 children less than 6 years old. For

all other predictors, we use the median values from the data as input values to represent
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Quantile Model Mean (95% CrI) for γ likelihood BIC

p0 = 0.05 M0 −1975 4004
M1 5.22 (4.43, 6.24) −1874 3809

p0 = 0.50 M0 −1867 3789
M1 0.58 (0.39, 0.81) −1845 3750

p0 = 0.95 M0 −1967 3989
M1 −4.16 (−5.5, −3.06) −1854 3769

Table 2.8: Labor supply data. Posterior mean and 95% credible interval for the shape
parameter γ of the GAL error distribution, and BIC values under the AL and GAL models,
denoted by M0 and M1, respectively.
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Figure 2.7: Labor supply data. Posterior densities for the 5th (blue), 50th (orange) and
95th quantile (green) of labor supply (in 100 hours) for women with 0, 1, 2 or 3 children
less than 6 years old. The solid (dashed) lines correspond to the posterior densities under
the GAL (AL) model.
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an average wife. As the number of young children increases, the AL model estimates the

5th quantile and the median of labor supply of an average wife to be closer to each other.

Under the GAL model, the distance between the densities of the 5th quantile and median

labor supply also decreases with increasing number of young children, albeit at a lower rate.

When estimating the 95th quantile, the proposed model is more conservative than the AL

model about the labor contribution of an average wife with an increasing number of children

less than 6 years old. When there are 3 children less than 6 years old in the household,

the center of the posterior distribution for the 95th quantile is below zero under the GAL

model, meaning that even at the top 5th percentile of labor supply, an average wife may

still produce negative labor supply as she takes care of many young family members. More

specifically, the posterior probability of the 95th labor supply quantile being positive is 0.19

under the GAL model, as opposed to 0.97 under the AL model. These results demonstrate

that the choice of error distribution in quantile regression can have an effect on practically

important conclusions for a particular application.

2.5 Discussion

We have developed a Bayesian quantile regression framework with a new error

distribution that has flexible skewness, mode and tail behavior. The proposed model has

better performance compared with the commonly used asymmetric Laplace distribution,

particularly for modeling extreme quantiles. Owing to the hierarchical structure of the new

distribution, posterior inference and prediction can be readily implemented via Markov

chain Monte Carlo methods.
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The main motivation for the work in this chapter was to develop a sufficiently

flexible parametric distribution that can be used as a building block for different types of

quantile regression models. The extension to quantile regression with ordinal responses is

a possible direction. Expanding the model to a spatial quantile regression process, along

the lines of Lum et al. (2012), is another direction. More importantly for our objectives,

this work lays the foundation for developing a Bayesian framework for mixtures of quantile

regression components, which is the topic of next chapter.
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Chapter 3

Bayesian quantile mixture

regression

In this chapter, we propose a new regression procedure named Bayesian quantile

mixture regression (BQMR) constructed with a weighted mixture of K regression compo-

nents. By construction, each component is a pkth quantile regression, with k = 1, . . . ,K

and 0 < p1 < . . . < pK < 1; and all components share a common regression coefficient

vector β. We present the idea of BQMR in Section 3.1 and discuss the objectives of two

versions of the framework. The first version consists of mixtures of GALpk distributions

with known pk, while the second is a mixture of ALpk components of which the percentage

pk are treated as random parameters.

The rest of this chapter is organized as follows. In Section 3.2, we formulate

BQMR with mixtures of weighted GAL components for fixed {pk}. The methodology covers

the parametric framework and posterior inferences, as well as a semi-parametric extension
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with Dirichlet process prior on the weights. Results from simulation studies are presented

in Section 3.3 to illustrate the performance of the models. In Section 3.4, we introduce

the BQMR model with a mixture of AL distributions where pk are random quantities.

We further explore the scenario where the total number of components K is random and

develop posterior inferences on K. A simulation study is conducted under this version of

the framework in Section 3.5. Finally, we illustrate the proposed models using the Boston

housing data example in Section 3.6 and conclude with a discussion in Section 3.7.

3.1 Idea and objectives

The idea of BQMR framework is to model the response variable with a finite

weighted mixture of quantile regressions. Conceptually, the model can be expressed as

yi | xi,β,θ1, . . . ,θK ∼
K∑
k=1

ωkQpk(yi | xiβ,θk)

where ωk are weights of each regression component and Qpk is some density function such

that the pkth percentile of yi is equal to the regression function xiβ, with θk denoting all the

remaining parameters of Qpk . We specify a common regression coefficient vector β for all K

regressions to estimate the covariate effect synthesized from different quantile components.

Through placing a sparsity-inducing prior on β, we hope to achieve efficient shrinkage of

the predictor effect by combining information from multiple quantile components, each

depicting a different part of the response distribution.

A characterizing feature of this mixture framework is its kernel density Q. Given

that the mixture model consists of quantile regression components, we need flexible kernel

densities that are parameterized in terms of percentiles. One could potentially construct

42



the mixture with AL kernel densities. However, this turns out to be a suboptimal choice

if we want to fix {pk}. Since the skewness of the AL distribution is fully determined by

the percentage pk of the quantile, the mixture model formed by AL distributions has very

limited flexility under fixed {pk}. Empirical demonstrations of this limitation of the AL

kernel will be presented in the following sections.

We propose two approaches that overcome this issue. Firstly, with fixed {pk},

we use the generalized asymmetric Laplace (GAL) distribution as the kernel density. As

a generalization of the AL distribution, the GAL distribution has an extra parameter that

allows for varying skewness and shape under given pk. Alternatively, we formulate the

mixture components with AL densities, but in this case we treat the percentage pk of

each quantile as random quantities. In other words, we only specify the total number

of components K, but allow the values of pk to be estimated from the data. By doing

so, we relax the constraints on the skewness and shape of the AL components and attain

improved flexibility of the mixture model. Under the AL framework, we will also consider

the extension with random K and discuss posterior inference in this scenario.

The two models have different objectives. In the situation where we know which

{pk} we are interested in, we can apply the GAL framework that allows us to fix the

percentages at the desired values. In the absence of such information, the GAL framework

under equally-spaced {pk} will give us an approximation of the response distribution given

the covariates. The random-pk AL framework applies to scenarios where we have minimal

prior knowledge of which parts of the distribution may be more important for the prediction,

but would like to obtain inferences on the {pk} of the components and to explore the response
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distribution in an efficient manner. In the simulation examples of this chapter, we will show

that the two mixture models substantially outperform the simpler model configured with

AL kernel densities and fixed pk. A version of this model was considered in Huang & Chen

(2015).

3.2 Bayesian quantile mixture regression with fixed pk

In this section, we present the BQMR framework as a mixture of K weighted GAL

distributions, each parameterized in terms of the pkth quantile, where K ≥ 2 is known and

the percentages {pk} are specified and ordered, such that 0 < p1 < . . . < pK < 1. Details

on the formulation and the mixture representation of the GAL distribution for the pkth

quantile can be found in Section 2.1 and Section 2.2. We elaborate on the choices of priors

for the parameters, which includes a semi-parametric extension of the model with a Dirichlet

process prior for the weights. Simulation examples are provided to facilitate the explanation

of the construction and the inference under the framework.

3.2.1 Model formulation

We propose the BQMR with fixed pk as a mixture of GALpk distributions, where

{pk} satisfy 0 < p1 < p2 < . . . < pK < 1, to model the conditional distribution of response

y. In a regression setting, the kth component is given by a pkth-quantile GAL distribution

with shape parameter γpk , location µpk + xTβ and scale parameter σ. By construction, all

K components share the common regression coefficient β and scale σ. Denoting w1, . . .,
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wK as weights, we can write the model as

f(y | β, σ, {ωk}, {γpk}, {µpk}) =
K∑
k=1

ωkf
GAL
pk

(y | γpk , µpk + xTβ, σ) (3.1)

where
∑K

k=1 ωk = 1 with 0 < ωk < 1, k = 1, . . . ,K and fGALpk
represents the density of the

GALpk distribution.

As the intercept in quantile regression, µpk corresponds to the pkth quantile of

the kth component when all covariates are set to zero. To ensure ordering of the mixture

components, we place a monotonicity constraint on {µpk} by enforcing µp1 < . . . < µpk <

. . . < µpK , so that the pkth quantile of the kth component is bounded from below by the

pk−1th quantile of the (k − 1)th component and from above by the pk+1th quantile of the

(k + 1)th component.

The motivation and the aim of this weighted mixture model contribute to the

construction as well as the interpretation of the framework. In the case where we know

a priori that particular parts of the response distribution, such as the center or the upper

tail, provide the most information, we can select the corresponding quantile components

for the mixture model. Then (3.1) can be viewed as a mixture model that captures the

heterogeneity in the generation of the data. On the other hand, if we are lacking such prior

information, we can construct the model with a good number of equally spaced pk as an

approximation of the true density. Moreover, by adopting the GALpk distribution instead

of the ALpk as kernel density, we improve the flexibility of the model under fixed pk and

enhance the robustness of the framework.

Owing to the mixture representation of the GAL distribution in (2.2), we can write

the model in a hierarchical way by augmenting the parameter space with latent variables
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zi and si. For convenience of sampling, we set vi = σzi for i = 1, . . . , n as in Kozumi &

Kobayashi (2011) and introduce binary indicator variables ξik, i = 1, . . . , n, k = 1, . . . ,K to

break the additive mixture into products, where ξik = 1 if the ith observation is allocated

to the kth component and zero otherwise. Then the model can be expressed as:

yi | β,µ,γ, σ, vi, si, ξi ∼
K∏
i=1

[
N(yi | µpk + xTi β + σCpk |γpk |si +Apkvi, σBpkvi)

]ξik
ξi | ω1, . . . ωk ∼ Multinomial(ξi | ω1, . . . ωk)

vi, si | σ
i.i.d∼ Exp(vi | 1/σ)N+(si | 0, 1)

where Apk , Bpk and Cpk are functions of shape γpk and percentage pk as are defined for (2.2)

and γpk takes value over (Lk, Uk), with g(Lk) = 1− p0, Lk < 0 and g(Uk) = p0, Uk > 0.

3.2.2 Priors and posterior inference

The intercept µpk and the shape parameter γpk require component-specific priors.

To respect the monotonicity constraint on the {µpk}, we construct the priors in a Markovian

fashion, beginning with a N(0, σ2µ) prior for µp1 with some known σ2µ. Given µp1 , we sample

µp2 |µp1 from N(0, σ2µ)1{µp2 > µp1}, which is a truncated normal distribution over (µp1 ,∞).

The construction continues in this fashion for 2 ≤ k ≤ K, so that given the previous

intercept, µpk follows N(0, σ2µ)1{µpk > µpk−1
}. The ordering in µpk is automatically satisfied

through this sequential construction. We apply independent rescaled-Beta(αγ , βγ , Lk, Uk)

prior for the shape parameters γpk such that log(
γpk−Lk

Uk−Lk
) follows a Beta(αγ , βγ) distribution.

When αγ = βγ = 1, the prior is uniform over (Lk, Uk). On the other hand, if αγ , βγ > 1,

then the prior favors values that are not too close to either endpoints of the interval.

A natural prior for the common regression coefficients βββ is a Gaussian distribution.

46



Note that if instead we use a Laplace prior, the framework transforms into a tool for

variable selection guided by the posterior intervals of covariate effects under shrinkage. In

Section 2.2.2, we have shown that it is easy to achieve conditional Bayesian lasso under the

GAL distribution by placing a Laplace prior with tuning parameter λ on the d-dimensional

regression coefficient β,

π(β | σ, λ) =

d∏
j=1

λ

2σ
exp

{
−λ
σ
|βj |
}

=

d∏
j=1

∫
R+

1√
2πτj

exp

{
−
β2j
2τj

}
η2

2
exp

{
−η

2

2
τj

}
dτj

The posterior sampling is based on the mixture representation of Laplace distribution by

introducing the latent parameters τj and hyperparameter η2. The latter can be learned

from the data if complemented with a hyperprior.

Conjugate priors can be applied for the remaining parameters. The scale parameter

σ receives an inverse-gamma prior, IG(aσ, bσ), with mean bσ/(aσ − 1) provided aσ > 1. We

use a Dirichlet(a1, . . . , aK) prior for the weights (ω1, . . . , ωK), where equal ak values imply

equal weights on average a priori.

It is possible to make the model more flexible by placing a non-parametric prior

on {ωk}. Motivated by the weight construction in the Bernstein prior (Petrone, 1999), we

define ωk = G(pk)−G(pk−1) for k = 2, . . . ,K and ω1 = G(p1), where G follows a Dirichlet

process (DP) with concentration parameter α0 and baseline distribution G0 supported over

[0, pK ]. Following the definition of Dirichlet process in Ferguson (1973), the prior of {ωk}

can be written as,

ω1, ω2, . . . , ωK | α0, G0 ∼ Dir
(
α0G0(p1) , α0[G0(pk)−G0(pk−1)], . . . , α0[1−G0(pK−1)]

)
Since the baseline distribution is defined over [0, pK ], we consider a rescaled-

Beta(αG, βG, 0, pK) as G0, such that x/pK follows a Beta(αG, βG). We parameterize the
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Beta distribution under its mean µG ∈ (0, 1) and the scale τG > 0, so that αG = τGµG and

βG = τG(1 − µG). The scale parameter τG is fixed to some known constant, the choice of

which conveys the prior knowledge of the spread of the baseline distribution. The larger τG

is, the more concentrated G0 will be in the case of µG = 0.5. The mean parameter µG is

random and will inform the center of the realizations of DP. We estimate µG by applying a

Beta(αµ, βµ) prior with known αµ and βµ.

We implement MCMC sampling to fit the model and explore the posterior dis-

tribution. Under the parametric Dirichlet distribution prior for the weights, the MCMC

algorithm consists of an adaptive Metropolis-Hastings step for γpk and Gibbs steps for all

the other parameters (details provided in Appendix A.2). Compared with the parametric

BQMR, the posterior samples in the nonparametric extension can be obtained in a similar

fashion except for a slightly different Gibbs update for {wk}, plus an additional Metropolis-

Hastings step to sample the mean parameter µG of the baseline distribution G0 (details

provided in Appendix A.3).

3.3 Simulation study for fixed-pk BQMR

We illustrate the model performance with simulations and consider the same setup

as in the simulation study in Section 2.3. Following the standard setting in the literature

of linear regression (Tibshirani, 1996; Zou & Yuan, 2008; Li et al., 2010), we simulate data

from yi = xTi β + εi, where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T . The covariates of each observation

are generated independently from a N8(0,Σ), of which the (i, j)th element is 0.5|i−j|, for

1 ≤ i, j ≤ 8. To establish a benchmark for comparison, we define a fixed-pk AL mixture by
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formulating the BQMR model with ALpk components under given {pk}. We present results

from posterior inference on the predictive error distribution, variable selection and weights,

comparing the proposed models with the simpler fixed-pk AL mixture approach.

In all examples, we estimate the regression vector β with a Laplace prior with

a Gamma(0.1,0.1) hyperprior for η2. Independent rescaled-Beta priors are applied for γpk

with shape parameters αγ = βγ = 3 and we adopt an inverse-Gamma(2,2) prior for σ. We

set σ2µ = 10 in the structured priors of {µpk}. A Dirichlet(1, . . . , 1) prior is used for {ωk} in

Section 3.3.1 and 3.3.2, while the nonparametric prior is used in Section 3.3.3.

3.3.1 Error density under parametric BQMR

In this section, we demonstrate the advantages of using GAL distributions as the

kernel densities with two simulation examples. In the first example, we simulate n = 600

observations from the regression setting, where the error εi follows a weighted mixture of

three AL components with {pk} = {0.2, 0.5, 0.9}, {wk} = {0.3, 0.3, 0.4}, {µpk} = {−5, 0, 5}

and σ = 0.5. In the second example, we simulate n = 100 data points with a bimodal

error distribution, εi ∼ 0.5N(−2, 1)+0.5N(2, 1). We fit the data with the proposed BQMR

model with pk = k/10 for k = 1, 2, . . . , 9 and the fixed-pk AL mixture with the same pk.

Figure 3.1 visualizes the posterior samples of error densities in the first simulation

scenario. The posterior mean is marked with the blue line, encompassed by the 95% credible

interval (CrI) shaded in gray. The generating density is plotted with a blacked dashed

line, while the red line represents the empirical error density in the data. We see that

the proposed BQMR model (M1) captures the truth quite well, while the fixed-pk AL

mixture (M2) completely misses the true density and produces very jagged predictions.
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(a) M1: Fixed-pk BQMR (GAL kernel)
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(b) M2: Fixed-pk AL mixture

Figure 3.1: Simulation study comparing fixed-pk BQMR (GAL kernel) with the fixed-pk
AL mixture: posterior mean and 95% pointwise interval of predictive error density; data
generated from mixtures of AL densities

In this example, although the data is generated from a mixture of AL distributions, the

BQMR model with GAL components generates predictive error densities that are much

closer to the truth than those by the simpler approach with AL components. Instead of

identifying the three components that truly participated in the data generation, the fixed-pk

AL approach with K = 9 components tries to fit the data with substantial contribution

from all components, which is likely the major reason behind its ragged predictive density

and poor performance.

Figures 3.2 and 3.3 summarize the results for the second simulation scenario, where

the errors arise from two equally weighted normal distributions. Each figure includes the

visualization of predictive error density as well as the by-component plot where the posterior

mean and 95% CrI bands are visualized for each weighted component. In this simulation

setting, the components in the error distribution are Gaussian and do not belong to the
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(a) Predictive error density
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(b) Contribution from weighted components

Figure 3.2: Simulation study of fixed-pk BQMR with GAL kernel (M1): posterior mean
and 95% pointwise interval of predictive error density (left) and the individual contribution
from each weighted component (right); data generated from mixtures of two normals

family of the GAL (or AL) distributions. However, constructed with the flexible GAL

components, the BQMR framework (M1) still fit the data quite well and the predictive

error distribution highly resembles the true underlying mixture of normals. The fixed-

pk AL mixture (M2), on the other hand, struggles in this scenario and produces spiky

posterior predictions for the error density, owing to the fact that the AL distributions can

only behave in a very restricted way when {pk} are fixed. This simulation study again

reflects the importance of kernel density in the BQMR structure.

3.3.2 Identification of influential predictors

One of the major applications of the BQMR framework is in identifying influen-

tial predictors, because the procedure summarizes information from multiple parts of the
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(b) Contribution from weighted components

Figure 3.3: Simulation study of fixed-pk AL mixture (M2): posterior mean and 95% point-
wise interval of predictive error density (left) and the individual contribution from each
weighted component (right); data generated from mixtures of two normals

response distribution and assesses the predictive effect of the covariates in a comprehensive

way. We design a simulation study to illustrate the performance of the proposed BQMR

framework in this aspect. The following error distributions are considered:

• εi follows a Student-t distribution with 1 degree of freedom

• εi follows a Student-t distribution with 3 degrees of freedom

• εi ∼ 0.5N(−2, 1) + 0.5N(2, 1)

The first error density is chosen to test the model performance when the true distribution

has undefined variance. The second illustrates a fat-tailed density, while the last represents

a bimodal case. Under each error distribution, we generate N = 100 data sets with n = 100

observations and fit the following models on each data set:

52



Error distribution
Student t with df 1 Student t with df 3 Mixture of normals

Model TP FP TP FP TP FP

BQMR with GALpk
M1: K = 9 3.00 (0.00) 0.07 (0.26) 3.00 (0.00) 0.24 (0.51) 3.00 (0.00) 0.10 (0.30)
M2: K = 3 3.00 (0.00) 0.09 (0.29) 3.00 (0.00) 0.28 (0.55) 3.00 (0.00) 0.13 (0.34)

Fixed-pk AL mixture
M3: K = 9 2.50 (0.96) 0.12 (0.52) 3.00 (0.00) 0.65 (0.93) 3.00 (0.00) 0.61 (0.93)
M4: K = 3 2.53 (1.00) 0.05 (0.22) 3.00 (0.00) 0.97 (1.21) 2.98 (0.14) 2.09 (1.26)

Table 3.1: Mean (standard deviation) of true positives (TP) and false positives (FP)

• M1: BQMR with K = 9, pk = k/10 for k = 1, 2, . . . , 9

• M2: BQMR with K = 3, pk = k/10 for k = 1, 5, 9

• M3: Fixed-pk AL mixture with K = 9, pk = k/10 for k = 1, 2, . . . , 9

• M4: Fixed-pk AL mixture with K = 3, pk = k/10 for k = 1, 5, 9

For each data set, if the 95% highest posterior density interval of βj does not

include zero, then we consider xj as selected by the model. Based on this criterion, we

summarize the number of correctly included predictors (True Positive, abbr. TP) and the

number of incorrectly included predictors (False Positive, abbr. NP) across all 100 data

sets for each simulation scenario. With the true β being (3, 1.5, 0, 0, 2, 0, 0, 0), the optimal

values for TP and FP are 3 and 0, respectively.

Table 3.1 summarizes the mean and standard deviation of TP and FP under each

error distribution. Compared with the fixed-pk AL mixture, the proposed BQMR framework

has a better (scenario 1 and 3) or equivalent (scenario 2) performance in selecting the truly

active predictors. Overall, the number of incorrect inclusions is also lower under the BQMR

framework. The first scenario of Student-t1 errors is the most challenging in that the error
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distribution does not have a finite variance. In this case, the proposed BQMR models

(M1 and M2) select the active xj correctly in all 100 data sets (TP with mean 3 and

standard deviation 0), while fixed-pk AL mixture had quite some difficulty identifying the

true contributing predictors with an average of 2.5 true positives. The average false positives

over all data sets are comparable across models in this case.

In scenario 2 where the errors follow a Student-t3 distribution, all the models

correctly pick up all three active predictors in all data sets, but the proposed framework (M1

and M2) produce much lower false positives compared with the simpler approach with AL

components (M3 and M4). When the error distribution is bimodal in scenario 3, the BQMR

framework, again, shows much better accuracy in FP than the AL mixture, in addition to a

perfect inclusion outcome indicated by TP with mean 3. Moreover, the standard deviation

of TP and FP are a lot lower under the proposed framework in almost all cases, implying

lower uncertainty than the simpler fixed-pk AL mixture.

To summarize, the simulation study shows that the proposed BQMR framework

with fixed pk has very high accuracy in terms of identifying both the active predictors and

the inactive ones in the linear regression setting. We notice that M1 and M2 have quite

similar results in all three scenarios, while the only difference between the two models lies in

the number of components K. This suggests that in this simulation setting, as few as three

GAL components under the proposed framework are adequate for capturing the underlying

predictor configuration with a reasonable accuracy.
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3.3.3 Extension with nonparametric prior

In this section we simulate data from a skewed error distribution to illustrate

the inference of the fixed-pk BQMR framework with nonparametric prior on weights. We

simulate n = 500 data points from the regression setting under two scenarios. In the first

scenario, we consider a symmetric distribution for the errors and generate εi independently

from a standard normal distribution. The second scenario represents a skewed case in

which εi follows a skew-normal distribution (Fernández & Steel, 1998), where f(ε) = 2/(γ+

1/γ)[N(ε/γ | 0, 1)1{ε ≥ 0} + N(γε | 0, 1)1{ε < 0}], with γ = 2. The resulting density has

mode at 0 with a concentrated left tail and a fat right tail.

In both cases, we fit the data with the semi-parametric BQMR model with pk =

k/10, k = 1, . . . , 9. As in Section 3.2.2, a rescaled-Beta(µGτG, µG(1 − τG), 0, pK) applies

as the baseline distribution G0 in the DP prior. The hyperparameters and hyperpriors are

chosen to produce a decent amount of variability in the prior of G. A Beta(12, 12) prior

is placed on µG, so that π(µG) is centered at 0.5 with a standard deviation of 0.1. We set

the scale τG = 3 to favor a unimodal baseline distribution, which corresponds to a G0 of

Beta(x/pK | 1.5, 1.5) when µG = 0.5, with most of the probability mass between 0.2 and

0.8. The concentration parameter α0 determines to what extent the realization from the

DP resembles the baseline distribution. We use α0 = 10 so that the marginal prior mean

and prior variance of wk are comparable with those under a Dirichlet(1, . . . , 1) prior.

Figure 3.4 presents the predictive error density under each error distribution based

on a single simulated data set. In the left panel, fig. 3.4a shows the mean and 95% CrI

band for scenario 1 where the errors follow a standard normal distribution. There is a high
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(a) Scenario 1: Normal errors
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(b) Scenario 2: Skew-normal errors

Figure 3.4: Simulation study of fixed-pk BQMR with nonparametric prior on the weights:
posterior mean and 95% pointwise interval of predictive error density for data sets generated
with two different error distributions

resemblance between the model prediction and the generating density of εi, which suggests

a good fit of the framework on the data. We observe similar patterns in the results for

scenario 2 (fig. 3.4b). Although in this setting the errors follow a skew normal distribution,

the model produces a decent fit and learns the true error density quite well.

Figures 3.5 and 3.6 provide visualizations for the posterior mean (blue line) and

95% interval (light blue bands) of weights wk = G(pk) − G(pk−1), accompanied by the

weighted contribution to the posterior predictive error density from each component. Since

the mixture model includes K = 9 components, we observe nine steps in the plot of {wk},

where the height of the steps from left to right each corresponds to the posterior mean of

w1 to wK . We overlay the plots with the mean (red line) and 95% intervals (pink band) of

wk generated from the DP prior for comparison.

While the prior mean of the weights are similar across components in both fig. 3.5a
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and fig. 3.6a, the posterior distribution of wk varies for the two scenarios. In scenario 1

where the error distribution is symmetric, the posterior weights are quite balanced across

components, with the lower and upper quantile components weighted slightly less compared

with those in the center (Figure 3.5). The fact that the prior and the posterior almost

overlap in fig. 3.5a suggests that the model does not learn much in this setting. However, in

the second scenario of skewed errors, the model assigns much larger weights in the posterior

to the leftmost components (Figure 3.6). This is consistent with the pattern in the true

error density that the left tail is more concentrated than the right. Overall, the results

suggest that the semi-parametric BQMR framework offers useful posterior inference on the

component weights under relaxed assumptions on the prior distribution, particularly when

the conditional response distribution is skewed.
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(b) Predictive error density by weighted component

Figure 3.5: Simulation study for nonparametric prior on weights: posterior inference (mean
and 95% pointwise interval) on component weights (left) and on the individual contribution
to predictive error density from each weighted component (right) under scenario 1; data
generated with normal errors
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(b) Predictive error density by weighted component

Figure 3.6: Simulation study for nonparametric prior on weights: Posterior inference (mean
and 95% pointwise interval) on component weights (left) and on the individual contribution
to predictive error density from each weighted component (right) under scenario 2 ; data
generated with skew-normal errors

3.4 Bayesian quantile mixture regression with random pk

In Section 3.2, we devise the BQMR framework based on the GAL distribution

with fixed percentage pk. Owing to the shape parameter γ in the GAL distribution, all

quantile components have varying skewness and shape, which substantially increases the

flexibility of the model. Another way of constructing a flexible BQMR is to take the AL

densities as mixture kernel, but set the percentage pk to be random. By allowing pk to

vary, we shift the focus from specifying specific quantiles to estimating the predictive effects

given a fixed total number of random components as well as to learning the configuration

of the quantile components.
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3.4.1 Model formulation and inference

The random probabilities {pk} can be described with a homogeneous Poisson pro-

cess (HPP). Denote K ≥ 2 as the number of mixture components. If we consider ordered

probabilities p1, . . . , pK as arrival times in the time interval of (0, 1], we can model {pk} using

an HPP on the unit interval. By definition, conditional on K, the arrival times p1, . . . , pK

follow a uniform distribution with p1, . . . , pK ∝ 1{0 < p1 < . . . < pk < . . . < pK < 1}.

The above specification provides a natural prior for {pk} treated as the skewness

parameter of the AL components and completes the BQMR framework with random pk.

Given that the AL distribution is a special case of the GAL distribution with shape param-

eter γ = 0, we can express the random-pk BQMR model in the following hierarchical form

and place an HPP prior on the probabilities,

yi | β, {pk}, {µpk}, σ, vi, ξi ∼
K∏
k=1

[
N(yi | µpk + xTi β +Apkvi, σBpkvi)

]ξik
ξi | ω1, . . . , ωk ∼ Multinomial(ξi | ω1, . . . ωk)

vi | σ
i.i.d∼ Exp(vi|1/σ)

π(p1, . . . , pK) ∝ 1{0 < p1 < . . . < pk < . . . < pK < 1}

The posterior sampling scheme of this BQMR model is very similar to that under the

parametric BQMR with fixed pk in Section 3.2. If we define p0 = 0 and pK+1 = 1, we can

write the full posterior of pk given all other parameters as,

p(pk | . . .) ∝
n∏
i=1

[
N(yi | µpk + xTi β +Apkvi, σBpkvi)

]ξik
1{pk−1 < pk < pk+1}

Note that here Apk and Bpk are both nonlinear functions of pk, thus a series of Metropolis-

Hastings steps are needed. At iteration m, by applying a truncated normal distribution over
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(
p
(m)
k−1, p

(m−1)
k+1

)
as the proposal distribution, we can sample pk for 1 ≤ k ≤ K sequentially

with independent adaptive Metropolis-Hastings steps (details provided in Appendix A.4).

3.4.2 Extension to random K

For the more general version of the model, we make the total number of components

K also a random variable to incorporate uncertainty in K. Considering that it is not

practical to implement a BQMR model with an infinite number of components, we cap K

from above with a reasonable upper bound Kmax. Also, given the model structure and

objectives, it makes sense to think of a Kmax even for problems where one knows very little

about the distribution.

One way of selecting K is to we can put a prior on {K : K ≤ Kmax,K ∈ N} and

fit a BQMR model for each K. Trans-dimensional MCMC algorithms, such as reversible

jump MCMC by Green (1995), can potentially be used to evaluate the posterior distribution

of K. However, practically it would be difficult to implement the method with satisfying

acceptance rate of the Metropolis-Hastings steps, given the fact that the model already

involves a series of Metropolis-Hastings steps for sampling {pk}. Therefore, we consider

approximating the posterior model probability following the method in Scott (2002).

Moreover, we believe that a reasonable finite upper bound for K is desirable in this

setting, because in BQMR framework, each component has a specific meaning associated

with the corresponding pk. Realistically, we would not expect K to be very large in most

cases. Given the objectives and the concept of the framework, posterior model probability

on a constrained parameter space of K can provide useful information for inferences on the

number of components.
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Consider φK = (β, p1:K , µp1:K , σ) and φ = {φ1, . . . ,φKmax
}, the full parameter

vector for a particular K. As in Scott (2002), we calculate the approximate posterior model

probability with M posterior samples drawn with separate MCMC algorithms given K:

p(K | y,x) =

∫
p(K | y,x,φ)p(φ | y,x)dφ

≈ 1

M

M∑
j=1

p(K | y,x,φ(j))

p(K | y,x,φ(j)) ∝ p(y | K,x,φ(j)
K )p(K)

∝


n∏
i=1

 K∑
k=1

w
(j)
k AL

p
(j)
k

(
yi

∣∣∣∣µ(j)pk + xTi β
(j), σ(j)

)
 p(K)

With little prior knowledge about K, we complete the framework with a flat prior on the

number of components, such that p(K) ∝ 1{k ≤ Kmax}, K ∈ N.

For large data sets, the posterior model probability may favor models with a

large number of mixture components (large K), not only because the data carry enough

information to support the estimation of a good number of components, but also because

models with larger K tend to produce a better fit to the local behavior of the response

distribution. In this circumstance, we may prefer priors that penalize very large K to reach

a balance between parsimonious structure and goodness-of-fit.

3.5 Simulation study for random-pk BQMR

In this simulation study, we shift the focus from identification of influential predic-

tors to the estimation of {pk}. We consider the linear regression setting y = xTβ + ε with

two predictors x1, x2 ∼i.i.d. N(0, 1), with β = (4,−3)T and the error distribution specified

later in this section. Since β is not sparse, the posterior inference for the regression coeffi-
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cients will be similar between a Gaussian prior and a Laplace prior on β. In all cases, we fit

a K-component random-pk BQMR model with known K and use the same priors as in Sec-

tion 3.3 whenever applicable. For the weight parameters {ωk}, we use a Dirichlet(1,. . . ,1)

prior.

To assess the performance of the random-pk framework, we first simulate the data

from a weighted mixture of two AL distributions with known parameter values. The data set

can be viewed as a realization from the random-pk framework with point mass probability on

percentage pk of each component. For each data set, we generate n = 200 observations and

fit the data with the random-pk BQMR discussed in 3.4.1 (results not shown). When the

components are reasonably far apart, the proposed model can identify the components and

estimate the accompanying pk quite well if the total number of components K is correctly

specified. When the data is fitted with more mixture components than there actually is, in

addition to the truly active components, the model may pick up a few extra components.

Nevertheless, all components combined produces a posterior predictive error density that

highly resembles the underlying true error density, which is captured in the 95% credible

band of posterior samples.

We consider again the skew-normal distribution (Fernández & Steel, 1998) for εi,

as in Section 3.3.3, to illustrate the scenario where the errors do not arise from a mixture

distribution. With γ = 1.5 and σ = 1, the generating distribution of εi is right-skewed with

mode at 0. We simulate n = 200 observations and fit the data with the following models

for comparison: a fixed-pk AL mixture with {pk} = {0.10, 0.25, 0.50, 0.75, 0.90} (M1), a

five-component BQMR model with random pk (M2), followed by a fixed-pk BQMR model
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(a) M1: AL, fixed pk
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(b) M2: AL, random-pk (K = 5)
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(c) M3: GAL, fixed-pk

Figure 3.7: Simulation study comparing fixed-pk BQMR with different kernel specification
and random-pk BQMR: posterior mean and 95% pointwise interval of error density; data
generated with skew-normal errors

with GAL kernels and same {pk} as in the fixed-pk AL approach (M3).

Comparing the results from fig. 3.7a (M1) and fig. 3.7b (M2) , we see that the

random-pk framework fits the data much better and produces a smoother posterior predic-

tive error density than the fixed-pk AL mixture. The 95% CrI of M2 captures most of the

behavior of εi, while M1, the simpler approach, restricted by the unadjustable skewness of

AL kernels under fixed pk, struggles to emulate the underlying true error density. Results

from fig. 3.7b (M2) and fig. 3.7c (M3) are similar, with M3 providing an even smoother

fit and narrower posterior intervals for the density estimate. This suggests that for this

data set, with GAL kernels the fixed-pk BQMR framework exhibits more flexibility than

the random-pk model with AL components and shows the best fitting among all three can-

didate models. Figure 3.8 presents the by-component posterior inference of M2 and shows

the posterior mean of pk and wk of each component. The first three components all have

pk < 0.5 and they receive much heavier weights than the two components in the right tail,

which indicates that the left-to-center of the distribution plays a more important role in the

regression analysis.
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Figure 3.8: Simulated skewed-normal data fitted with random-pk BQMR (M2): Posterior
mean and 95% pointwise interval of predictive error density (top left) and of weighted
contributions from component k labeled with posterior mean of pk and wk

Finally, we fit the BQMR framework on the same n = 200 observations with skew-

normal errors to illustrate the posterior inference for random number of mixture components

K in Section 3.4.2. Given that the sample size is 200, we consider Kmax = 19 mixture

components as the upper bound and put a uniform prior on K, such that π(K) ∝ 1 for

K ∈ {2, 3, . . . , 19}. In total, we fit eighteen random-pk BQMR models and calculate the

approximate posterior model probability following the method in Section 3.4.2. As the

number of the components K increases, the posterior model probability keeps increasing

and culminates at K = 10. Afterwards, the probability slowly drops for all K greater than

ten (capped at nineteen, Figure 3.9). The inference on the approximate posterior model
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probability suggests that under the BQMR model with AL kernel and random pk, a total

number of components K = 10 is preferred for modeling this data set. However, some

among these ten components can be potentially lumped together based on the proximity of

the posterior estimates of the percentiles pk to achieve a more parsimonious model.
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Figure 3.9: Simulated skewed-normal data fitted with random-pk BQMR with Kmax = 19:
Approximate posterior model probability by K

3.6 Data example: Boston housing data

We illustrate and compare the proposed framework with again the realty price

data from the Boston Standard Metropolitan Statistical Area (SMSA) in 1970 (Harrison &

Rubinfeld, 1978), which contains n = 506 observations. The response variable is the log-

transformed corrected median value of owner-occupied housing in USD 1000 (LCMEDV),

and we include the same fifteen predictors as in the analysis in Section 2.4.2.

Using the proposed BQMR framework, we approach the identification of important

variables through modeling the conditional response distribution. We consider the following

BQMR models for comparison: random pk with AL kernels (M1); and fixed pk with GAL

components (M2). We use the same priors for all parameters common to both models,
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including a Laplace prior for β with Gamma(0.1,0.1) as the hyperprior for η2, an inverse-

Gamma(2,2) prior for σ, truncated normal priors with σ2µ = 10 for intercepts µpk and a

Dirichlet(1,. . . ,1) for the weights {ωk}. As introduced in Section 3.4.1, for the random-

pk approach, we assume that {pk} follows a homogeneous Poisson process a priori. As

for the fixed-pk model, we apply independent rescaled-Beta priors with shape parameters

αγ = βγ = 3 for γk to indicate a slight preference for values that are not too close to the

boundaries Lk or Uk.

We begin the analysis by considering K = 9 components for both models. In the

fixed-pk approach, we set pk = k/10 for k = 1, . . . , 9. The posterior inference for predictive

error density and the by-component contribution under each model are presented in Figures

3.10 and 3.11. Both models predict a slightly right-skewed error density with heavy tails and

most of the probability mass between -0.5 and 0.5. The posterior predictive error densities

produced by the two models turn out to be very similar. There is also a lot of resemblance

between the by-component plots of the two models (Figure 3.11). In both analyses, the

third, fourth and the fifth component contribute the most to the predictive error density,

with the posterior mean of the corresponding pk being 0.31, 0.39 and 0.46 under M1 and

the fixed pk equal to 0.3, 0.4 and 0.5 under M2. This suggests that the left-to-center of

the conditional response distribution plays a more important role and is likely to be more

sensitive to changes in the predictors.

In the by-component analysis in Figure 3.11, the first and the last component

receive very low weights in both models, which implies that a more parsimonious model

with fewer than nine components can be fitted for this data. We carry out the posterior
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(b) M2: fixed pk, GAL

Figure 3.10: Boston housing data: Comparison of random-pk BQMR with fixed-pk BQMR:
Posterior mean and 95% pointwise interval of predictive error density
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(a) M1: random pk, AL (label: posterior mean pk)
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Figure 3.11: Boston housing data: Comparison of random-pk BQMR with fixed-pk BQMR:
Posterior mean and 95% pointwise interval of individual contributions to the error density
by weighted components
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model probability inference with respect to the space of K capped at Kmax = 9. Under a

uniform prior, K = 7 is associated with a higher posterior probability than the other values.
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Figure 3.12: Boston housing data: Comparison of random-pk BQMR with fixed-pk BQMR:
Posterior mean and 95% HPD interval of βj , j = 1, . . . , 16 under M1 (random-pk, AL
kernel) and M2 (fixed-pk, GAL kernel)

Figure 3.12 shows that interestingly, the two models produce very similar posterior

inference on the regression coefficients. The posterior mean and 95% highest posterior

density (HPD) interval of all variables are almost the same for the two approaches. Since

the early-on inference on the number of components to be included suggests that K = 7

is adequate for a decent fit on the data, we revise both models to include only seven

components and specify pk = (k + 1)/10, k = 1, . . . , 7 for the fixed-pk approach. The

68



results are very similar to those of models with K = 9 (Figure 3.12). Except LAT, ZN,

INDUS, CHAS and NOX, the 95% HPD intervals of the effects of all remaining predictors

do not include zero under either M1 or M2. Per capita crime (CRIM) has the largest

negative impact on the realty price, while average number of rooms per dwelling (RM)

boosts up the property value the most. The original purpose of this data set was to analyze

whether the housing price was associated with the air quality evaluated with the nitric

oxides concentration (parts per 10 million) per town (NOX) (Harrison & Rubinfeld, 1978).

Although NOX has a negative effect on the response, the 95% posterior interval of its

regression coefficient includes zero, indicating that the realty prices are overall insensitive

to the air quality.

To assess the model performance, we calculate the log-pseudo-marginal-likelihood

(LPML) (Geisser & Eddy, 1979; Gelfand et al., 1992; Gelfand & Dey, 1994). Geared

to prediction, LPML is a leave-one-out (n-fold) cross-validation measure with log like-

lihood as the criterion, LPML =
∑n

i=1 log(CPOi), where CPOi = f(yi | y−i) is the

conditional predictive ordinate and y−i is the response vector without yi. Using the

M posterior samples from the Markov chain, an estimate of CPO can be obtained with

ĈPOi =

{
1
M

∑M
m=1

[
f(yi | ψ(s))

]−1}−1
, where ψ(m) stands for the mth posterior sample

of all model parameters. Larger LPML values represent better model-fitting from a pre-

dictive standpoint. For comparison, in addition to BQMR, we fit five Bayesian quantile

regression (BQR) models with comparable lasso prior on the regression coefficients for the

10th, 30th, 50th, 70th and 90th quantile under both the AL and the GAL distribution.

Table 3.2 summarizes the LPML by different models. With K = 7 components,
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the fixed-pk BQMR with GAL kernel and the random-pk BQMR with AL kernel achieve

the highest LPML values among all models considered, with the latter being slightly higher.

This result indicates a better fit for the Boston housing data with the BQMR framework

than with BQR. Among the single quantile regressions, the 30th and the 50th percentile

models have higher LPML than those for the other quantiles. This coincides with our finding

from the BQMR analysis that the left-to-center of the conditional response distribution

appears to play a more important role in regression and prediction.

Kernel/error BQR
specification BQMR, K = 7 p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

GAL 193.8 163.6 179.3 178.3 166.9 117.4
AL 195.1 99.9 182.4 175.5 117.4 -37.1

Table 3.2: Boston housing data: Log-pseudo-marginal-likelihood of fixed-pk and random-pk
BQMR with seven components and BQR with GAL and AL errors for the 10th, 30th, 50th,
70th and 90th quantile

The proposed BQMR framework offers a practical way to analyze data sets where

the conditional distribution of the responses is non-normal. In the example of Boston hous-

ing data, both the random-pk BQMR method and the fixed-pk approach produce a posterior

predictive error density that is slightly skewed to the right, with both tails heavier than

those of a Gaussian distribution. Analyzing such data set with some standard regression

procedures may lead to inadequate fitting and unsatisfactory estimation for the predictor

effects. The mixture framework we propose provides a flexible alternative to capture the

non-normal pattern in the errors. Further, since the BQMR model consists of components

parameterized by quantiles, it presents intuitive results on which parts of the conditional

response distribution contribute more to the formulation of the response. In the Boston
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housing example, more contributions are observed for the mixture components of between

the 20th and 70th percentile in the BQMR analysis. This type of findings can easily be

obtained in the proposed quantile mixture regression framework.

3.7 Discussion

We have developed a Bayesian mixture quantile regression framework to integrate

information from multiple parts of the response distribution to inform the estimation of the

regression coefficient. The mixture components are parameterized in terms of quantiles and

all components share the same regression coefficient vector. We devise the framework under

two choices of kernel densities: the GAL distribution and the AL distribution. The former

applies to the scenario when we have a list of percentiles we are interested in, while the later

can be used to estimate the percentiles that play a more important role in the regression.

The two versions of the framework tend to produce similar inference on the regression coef-

ficients, with the fixed-percentile model showing slightly lower predictive uncertainty owing

to the smoothness and the flexibility of the GAL densities. Compared with single quantile

regressions, the BQMR models show better model-fitting from a predictive perspective in

the Boston housing data example. The hierarchical structure of the kernel densities makes

it straightforward to implement the model and draw posterior inference with Markov chain

Monte Carlo methods.

The main motivation for this work as well as our main contribution is to develop

a regression procedure that considers comprehensively the effect of predictors on different

parts of the response distribution. The idea resonates with the key purpose of the classical
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composite quantile regression. Instead of focusing on a summary statistic of the response

distribution, such as expectation in mean regression and a certain quantile in simple quantile

regression, the proposed mixture framework forms posterior inferences based on the big

picture of the conditional response distribution. Simulation studies show that the model

has good performance and great potential in both identification of influential variables and

prediction, especially when the errors follow a multi-modal or heavy-tailed distribution. The

mixture model provides a convenient tool to analyze observations arising from a complicated

data generating mechanism as well as to answer study questions involving several regions

of the response distribution.
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Chapter 4

Modeling and inference for survival

analysis and ROC curve estimation

In this chapter, we explore applications of BQMR to two popular and important

research topics in biomedical sciences and epidemiology: survival analysis and estimation

of receiver operating characteristics (ROC) curve. In the setting of a controlled study, both

survival analysis and ROC curve estimation involve the following two arms: the controlled

group and the actively-treated group (or diseased group in ROC estimation). The challenge

lies in the fact that the response distribution of the two cohorts can vary quite a lot from

each other. In this case, using a common error distribution for both cohorts is restrictive.

Our contribution is established on fitting the two cohorts with flexible BQMR

that allows for each cohort to have its own response distribution; yet carefully constructed

so that the modeling framework conforms with the underlying assumption and generating

mechanism of the data, for instance, right-censoring in survival data sets. Fitting the two
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arms with separate BQMR framework offers insights on the relative importance of different

sections in the distribution of the response variable of each arm, that is, survival time and

test score for disease diagnosis, as well as on the cohort-specific identification of important

variables. For ROC estimation without predictors, we further develop a two-cohort BQMR

framework to model both arms simultaneously. The framework is designed with care to

allow information sharing across the two arms and to ensure stochastic ordering in the

response distribution, a biologically plausible assumption in certain applications.

4.1 Quantile mixture regression for survival analysis prob-

lems

4.1.1 Background

Survival analysis is concerned with inference and prediction for time-to-event data,

a.k.a. survival time data, with the event commonly defined as death of patient or failure

of disease management. Oftentimes patients are randomized into two cohorts to receive

different treatments. Survival time is recorded for each patient and used to compare the

effectiveness of the treatments under appropriate model.

Right-censoring commonly exists in survival data, where the censored observations

pose technical challenges to estimating the effect of covariates on the likelihood of survival.

Consider n survival time and censoring indicator pairs (ti, δi) with associated covariates xi,

where δi = 1 indicates right-censoring and zero otherwise, then we observe ti = min(t∗i , ci)

and δi = 1{t∗i > ci}, where t∗i is the latent failure time and ci is the censoring time.

A popular parametric regression model for survival analysis is the accelerated
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failure-time (AFT) model. It assumes that a covariate accelerates or decelerates the time

to failure by a constant (effect size) (Prentice et al., 1978). Under the AFT model, the

hazard function λ(t | x) can be modeled with,

λ(t | x) = λ0(t exp{−xTβ}) exp{−xTβ}

where x is the time-independent covariate vector, β is the vector of regression coefficients

and λ0(·) > 0 is the baseline hazard. Then the following holds for the survival function:

S(t | x) = S0(t exp{−xTβ}), with S0(·) being the baseline survival when all covariates

are zero. This equation indicates that the moderated survival time t given covariates x

follows the same distribution as the baseline survival of t exp{−xTβ}. Consequently, the

log-survival time can be expressed as

log(t) = xTβ + ε

where εi is distributed as the baseline log-survival time and can be modeled with some

distribution, common choices of which are log-normal and log-logistic. We model the log-

arithmic failure time on the augmented data space with yi = log(t∗i ), where yi = log(ti) if

δi = 0 (fully-observed) and yi ≥ log(ti) = log(ci) if δi = 1 (censored).

4.1.2 Model formulation and implementation

We modify the BQMR framework to fit the AFT models on the augmented data

space. Denote y = (yo,yc), where yo = (log t1, . . . , log tn−m) are the log survival times

for n − m uncensored data points and yc = (log tn−m+1, . . . , log tn) are the log time-at-

censoring for m censored observations. For ease of notation, let θ = (ω,µ,γ, σ). Under a
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K-component fixed-pk BQMR framework, the likelihood given y can be written as,

L(β,θ | yo,yc) =
n−m∏
i=1

 K∑
k=1

wkGALpk(yoi | µpk + xTi β, γpk , σ)


n∏

j=n−m+1

∫ +∞

ycj

K∑
k=1

wkGALpk(y∗j | µpk + xTj β, γpk , σ)dy∗j


By exchanging the integral and the summation, we can express the likelihood given yc as,

L(β,θ | yc) =

n∏
j=n−m+1

K∑
k=1

∫ +∞

ycj

wkGALpk(y∗j | µpk + xTj β, γpk , σ)dy∗j


Then the augmented likelihood given y takes the following form,

L(β,θ | y,y∗, ξ) =
n−m∏
i=1

K∏
k=1

[
wkGALpk(yoi | µpk + xTi β, γpk , σ)

]ξik
n∏

j=n−m+1

K∏
k=1

[
wkGALpk(y∗j | µpk + xTj β, γpk , σ)1{y∗j ≥ ycj}

]ξjk
where 1{·} is the binary indicator function, ξik and ξjk are the auxiliary indicators for the

fully observed responses and the censored observations, respectively, which together make

up ξ, an n-by-k allocation matrix. Finally, by resorting to the hierarchical representation

of the GAL kernels, we can express the full posterior in a tractable form,

β,θ | y,y∗, ξ,v, s ∝
n−m∏
i=1

K∏
k=1

[
wkN(yoi | µpk + xTi β + σCpk |γpk |si +Apkvi, σBpkvi)

]ξik
n∏

j=n−m+1

K∏
k=1

[
wkN(y∗j | µpk + xTj β + σCpk |γpk |sj +Apkvj , σBpkvj)

1{y∗j ≥ ycj}
]ξjk n∏

i=1

Exp(vi | σ−1)N+(si | 0, 1)π(θ)

where Apk , Bpk and Cpk are the corresponding A, B, C functions of the k-th component

and π(θ) is the prior of the parameters.

The benefit of constructing the model over the augmented data space is most

evident in the convenience of posterior sampling. In fact, the sampling algorithm of the
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above framework highly resembles that of a standard BQMR, except for an extra update of

y∗i from a truncated normal distribution over [yci ,+∞) centered at µpk +xTj β+σCpk |γpk |sj+

Apkvj with scale σBpkvj .

Inferences for the survival function can be obtained easily based on the posterior

samples of parameters. Given θ, the survival function is defined as,

S(y | x,θ) = 1−
∫ y

−∞

 K∑
k=1

wkGALpk(t | µpk + xTβ, γpk , σ)

dt

= 1−
K∑
k=1

wkF
GALpk (y | µpk + xTβ, γpk , σ) (4.1)

where FGALpk (y | µ, γ, σ) stands for the cumulative distribution function of a GALpk dis-

tribution at y with location µ, shape γ and scale σ, which is in closed form (Section 2.1.2).

Therefore, we can obtain posterior samples of the survival function by plugging in the pos-

terior samples of θ in (4.1). Evaluation of the posterior expectation of S(y | x) is also

straightforward through approximation with Monte Carlo integral.

Finally, the inference and implementation for the random-pk BQMR approach can

be readily derived from all above simply by specifying γk = 0 for all k. The same priors for

the random-pk BQMR model for completely observed data apply here. For details, please

refer to Section 3.4.1.

4.1.3 Data example: Length of stay at nursing home

We apply the modified BQMR framework for censored data to the nursing home

data set analyzed by Morris et al. (1994). Collected from an experiment sponsored by the

National Center for Health Services Research in 1980-82, the data set consists of n = 1601

observations on the duration of stay (days) of senior patients aged 65 or above at 36 for-
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profit nursing homes in San Diego, California. Half of those nursing homes were randomized

to receive financial incentives for accepting more disabled Medicaid patients as well as for

improving a patient’s health status and discharging within 90 days, which we consider as

“treatment” in this case; while the other half served as the control arm. The data set

contains 322 censored observations, which includes 117 on the treatment arm (n1 = 712,

censoring rate 16.4%) and 205 on the control arm (n0 = 889, censoring rate 23.1%). We

perform an arm-specific identification of influential covariates under the framework and

include the following variables as potential predictors for the duration of stay: age, gender,

marital status, health condition at admission (binary variable with 1 indicating worse health

defined by at least 5 dependencies in activities of daily living) and additional care (required

for patients with complications). All covariates are standardized for fair comparison. Since

ten subjects in the original data set were admitted and discharged on the same day and

therefore had zero length of stay (LOS), to ensure validity of the AFT model, we follow

Morris et al. (1994) to add a small constant to LOS and model y = log(LOS + 2).

We fit each arm with a five-component BQMR framework and consider both the

fixed-pk and random-pk approach. In terms of prior specification, we use a Laplace prior for

β with Gamma(0.1,0.1) as hyperprior for η2, an inverse-Gamma(2,2) prior for σ, truncated

normal priors with σ2µ = 10 for intercepts µpk and a Dirichlet(1,. . . ,1) for the weights {ωk}.

For the random-pk approach, we assume that {pk} follows a homogeneous Poison process

a priori. As for the fixed-pk model, we set {pk} = {0.10, 0.25, 0.50, 0.75, 0.90} and apply

independent rescaled-Beta priors with shape parameters αγ = βγ = 3 for γk to indicate a

slight preference for values that are not too close to the boundaries Lk or Uk.
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The posterior inferences are summarized for an “average” patient, defined as hav-

ing median values for all covariates, which corresponds to an 83-year old female patient,

single or widowed, with relatively better health status at admission (less than five depen-

dencies in activity of daily living and not requiring additional care ).
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Figure 4.1: Nursing home data: Posterior predictive density for length of stay for an average
patient under random-pk BQMR and fixed-pk BQMR analysis

We plot the posterior predictive density of LOS for such patient under both models

in Figure 4.1. There are clearly two modes in the survival time on treatment arm in the

random-pk model. The posterior mean pk of the last component is 0.51 and 0.54 for the

treatment and the control respectively (Figure 4.2). This suggests that the left-to-center

of the density function weighs in more in the analysis. Although smoother, the posterior

predictive density under the fixed-pk model delivers a similar message.

The bi-modality in the density function of the treatment cohort gives rise to the

intersection of the arm-specific posterior mean survival function and a change of sign in the

difference of mean survival function of the two cohorts, as is shown in Figure 4.3 (results
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Figure 4.2: Nursing home data: Random-pk BQMR analysis for control group. Contribution
to the density of duration of stay by weighted components (from top left to bottom right:
component 1 through 5), mean and 95% CrI. Legend: posterior mean of pk.

from fixed-pk is very similar thus omitted). The result suggests that compared with the

control, the treatment (financial incentives) did not achieve a substantial improvement of

patient health (indicated by reduced LOS). The analysis by Morris et al. (1994) also reached

the same conclusion.

Posterior distributions of the median, 75th and 85th percentiles of the length of

stay distribution under the two groups support the conclusion that no substantial distinction

exists between the treatment and the control (Figure 4.4). The random-pk and fixed-pk

framework produce quite consistent predictions for the two lower quantiles. For the 85th

percentile, the random-pk model produces a fatter right tail for the control arm (the arm

with a higher censoring rate at 23.1%) than the fixed-pk approach. This suggests that the

inference for very high quantiles of the survival distribution may be more volatile if the
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Figure 4.3: Nursing home data: Posterior inference for an average patient, mean and 95%
CrI under the random-pk model

censoring rate is high.

Finally we compare the predictor identification results from each arm. The posteri-

or summary statistics of the regression coefficients under the fixed-pk approach is presented

in Table 4.1. For this analysis, we consider the predictor as selected by the model if its 95%

credible interval does not include zero. Therefore, gender and health condition at admission

are selected for both the control and the treatment group. Adjusting for all other covariates,

being male and having a poorer health at admission tend to shorten the duration of stay

on both arms. For both variables, the effect size is larger in the control group. In addition

to gender and initial health status, the model also selected age for the controls and marital

status for the treatment group. Among the control cohort, older patients tend to have a

substantially longer stay than the younger; while for the treatment group, being married is

associated with a shorter LOS. Inference for βββ from the random-pk model highly resembles
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Figure 4.4: Nursing home data: Posterior density of the median, 75th and 85th percentiles
of the length of stay distribution for an average patient. Top panel: random-pk BQMR;
bottom panel: fixed-pk BQMR.

that of its fixed-pk counterpart.

Variable Control Treatment

Age 0.133 (0.006, 0.264) 0.035 (-0.101, 0.173)
Male -0.238 (-0.374, -0.104) -0.185 (-0.325, -0.046)
Married -0.006 (-0.137, 0.124) -0.143 (-0.285, -0.004)
Poorer health -0.290 (-0.431, -0.147) -0.188 (-0.338, -0.038)
Additional care -0.080 (-0.209, 0.049) -0.122 (-0.266, 0.018)

Table 4.1: Nursing home data: Posterior mean and 95% CrI of regression coefficients under
fixed-pk BQMR

Lastly, since the subjects participate in the study at different nursing homes and

the randomization is implemented by institution, we recognize a natural hierarchy in the

data collection scheme. It would be interesting to include a random effect in the regression

82



analysis to account for the heterogeneity by site. Unfortunately since the data set of this

example does not contain the site information, we are unable to carry out the random-effect

regression. Nevertheless, the implementation of such model would be quite simple if the site

identifiers are available, owing to the fact that both the GAL and the AL kernels are normal

mixtures. For sites i = 1, . . . , I, the random effects bi ∼ N(bi | 0, σ2b ) can be estimated with

an inverse-gamma prior on σ2b and the posterior full conditional simply follows a Gaussian

distribution.

4.2 Modeling disease testing and estimating ROC curve for

diagnostic tools

4.2.1 Background

The ROC curve is a graphical plot that measures the diagnostic ability of binary

classification system based on a continuous test. It is produced by plotting the true positive

rate against the false positive rate at various threshold points for the continuous test result.

Consider evaluating a diagnostic tool for a certain disease among the healthy population

and the disease population, where F0(x) denotes the distribution function for the former and

F1(x) represents that of the latter, x being the test score. Let S0 = 1−F0 and S1 = 1−F1.

Then for u ∈ [0, 1], the ROC curve is defined as,

ROC(u) = S1{S−10 (u)} = 1− F1{F−10 (1− u)}

Further, the area under the curve (AUC) represents the probability that the classifier will

generate a higher score to a randomly selected positive (diseased) instance higher than to a
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randomly chosen negative one (healthy). Defined as the area under the ROC curve, AUC

can be calculated as,

AUC =

∫ 1

0
ROC(u)du

In practice, the distributions for the healthy and the diseased cohort are often

quite different. One major reason is that the natural course of many diseases often involves

multiple stages and the continuous measure for disease detection (e.g. concentration of

antibody) may resemble a step function across stages. Consequently, the test score of the

diseased cohort oftentimes has a multi-modal density function. In such case, it is more

appropriate to assume two different response distributions for the healthy cohort and the

diseased cohort. A flexible modeling scheme then plays an important role in the estimation

of ROC curve. Further, in many diseases, the diseased subjects tend to produce higher scores

in the diagnostic test than the healthy ones. Thus stochastic ordering may be assumed for

the test score distributions of the diseased and the healthy cohorts.

In this section we introduce the application of BQMR for ROC estimation and

propose a two-cohort BQMR framework that allows the two cohorts to have different re-

sponse distribution and its own structure for identifying influential predictors. Additionally,

we show that with some careful construction of the model and appropriate specification of

the priors, we are able to achieve stochastic ordering in the two-cohort BQMR framework

when the data set involves only the test scores and no covariates. For this work, we consider

only the gold-standard setting where the disease status is assumed known for all subjects.
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4.2.2 Inference for ROC estimation with covariates

When the data set involves predictors, we consider modeling the two cohorts with

separate BQMR models, under which both the inference and estimation are then straight-

forward. Consider n0 test scores y0 = (y01, . . . , y0n0) in the healthy cohort, each associated

with a vector of covariates xT0i; and similarly (y1i,x
T
1i) for i = 1, . . . , n1 as the response

and predictors of the diseased cohort. It is reasonable to assume two different vectors of

regression coefficients, β0 and β1 for the two cohorts. Denote θ0 and θ1 as all the parameter

of the BQMR framework of the healthy and the diseased cohort, then the model can be

represented as follows,

y0i | β0,θ0 ∼ BQMR(y0i | xT0iβ0,θ0) i = 1, . . . , n0

y1i | β1,θ1 ∼ BQMR(y1i | xT1iβ1,θ1) i = 1, . . . , n1

where BQMR(η,θ) represents either a fixed-pk or a random-pk BQMR framework with

regression function η and parameters θ.

Each cohort can be fitted separately with MCMC algorithms. Using M posterior

samples of θ0 and θ1, we can easily obtain M samples of survival functions S0 and S1 (see

equation (4.1)) and numerically evaluate S−10 . Consider ul=i,...,L as n threshold points over

the unit interval. The mth posterior samples of the ROC curve is simply

ROC(m)(ul) = S
(m)
1 {S−10

(m)
(ul)}, l = 1, . . . , L

Then the area under the curve can be approximated with a Riemann sum,

AUC(m) =

L−1∑
l=0

ROC(m)(ul)(ul+1 − ul)

where u0 = 0.
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4.2.3 Inference for ROC estimation without covariates

The purpose of this section is to build a BQMR framework with stochastic ordering

for the ROC application. We focus on the scenario where the data involve only the response

variable and no covariates as a simpler application to develop the method.

When the data set consists of solely the test scores, it is possible to construct a two-

cohort BQMR model satisfying the assumption of stochastic ordering. We start by deriving

some theoretical results firstly on the stochastic ordering of GAL distributions, then on that

of BQMR framework. The definition of stochastic ordering is the following: Let X and Y

be two random variables with distributions on the real line. If P (X > x) ≤ P (Y > x) for

all x ∈ R, then X is said to be smaller than Y in the usual stochastic order (denoted by

X ≤st Y ) (Shaked & Shanthikumar, 2007).

Theoretical results on stochastic ordering for BQMR

The following lemmas provide theoretical results on the stochastic ordering of GAL

distribution, AL distribution and the mixture distributions and serve as the foundation of

the two-cohort BQMR model to be proposed.

Lemma 1. Stochastic ordering of GALp0 distributions by location µ. Let Y1 follow

a GALp0(µ1, γ, σ) distribution and Y2 follow a GALp0(µ2, γ, σ) distribution for any fixed

p0, 0 < p0 < 1. If µ1 ≤ µ2, then Y1 ≤st Y2.

Proof. Denote F1 and F2 as the distribution function for Y1 and Y2, respectively. Under
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the hierarchical representation of GAL distributions, we can write

F1(y) =

∫ y

−∞

∫
R+

∫
R+

N(t | µ1 + σC|γ|s+ σAz, σ2Bz)Exp(z|1)N+(s|0, 1)dz dsdt

=

∫
R+

∫
R+

∫ y

−∞
N(t | µ1 + σC|γ|s+ σAz, σ2Bz)dt Exp(z|1)dz N+(s|0, 1)ds

=

∫
R+

∫
R+

Φ(y | µ1 + σC|γ|s+ σAz, σ2Bz)Exp(z|1)dz N+(s|0, 1)ds

F2(y) =

∫
R+

∫
R+

Φ(y | µ2 + σC|γ|s+ σAz, σ2Bz)Exp(z|1)dz N+(s|0, 1)ds

Denote Φk(y | z, s) = Φ(y | µk + σC|γ|s + σAz, σ2Bz) for k = 1 and 2. ∀z > 0, s > 0, if

µ1 ≤ µ2, then Φ1(y | z, s) ≥ Φ2(y | z, s) by the stochastic ordering of normal distributions

by location. Then the following holds for marginalizing z,

G1(y | s) =

∫
R+

Φ1(y | z, s)Exp(z | 1)dz

=

∫
R+

Φ2(y | z, s)Exp(z | 1)dz +

∫
R+

[Φ1(y | z, s)− Φ2(y | z, s)]Exp(z | 1)dz

≥
∫
R+

Φ2(y | z, s)Exp(z | 1)dz = G2(y | s)

Finally by integrating out s, we get

F1(y) =

∫
R+

G1(y | s)N+(s|0, 1)ds

=

∫
R+

G2(y | s)N+(s|0, 1)ds+

∫
R+

[G1(y | s)−G2(y | s)]N+(s|0, 1)ds

≥
∫
R+

G2(y | s)N+(s|0, 1)ds = F2(y)

By definition of stochastic ordering, Y1 ≤st Y2.

Lemma 2. Stochastic ordering of ALp distributions by skewness p. Let Y1 follow

an ALp1(µ, σ) distribution and Y2 follow a ALp2(µ, σ) distribution. If 0 < p2 ≤ p1 < 1,

then Y1 ≤st Y2.
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Proof. The distribution function of AL distribution is given by,

F (y) =


p exp

{
1− p
σ

(y − µ)

}
, y − µ ≤ 0

1− (1− p) exp

{
− p
σ

(y − µ)

}
, y − µ > 0

Denote F1 and F2 as the distribution function for Y1 and Y2, respectively. Let S1 and S2

be the survival function of Y1 and Y2. Given that 0 < p2 ≤ p1 < 1, depending on the sign

of y − µ, there are the following two cases:

i) If y − µ ≤ 0, then

F2(y)

F1(y)
=

p2 exp
{

1−p2
σ (y − µ)

}
p1 exp

{
1−p1
σ (y − µ)

} =
p2
p1

exp

{
p1 − p2
σ

(y − µ)

}
≤ p2

p1
≤ 1

ii) If y − µ > 0, then

S2(y)

S1(y)
=

(1− p2) exp
{
−p2σ (y − µ)

}
(1− p1) exp

{
−p1σ (y − µ)

} =
1− p2
1− p1

exp

{
−p2 − p1

σ
(y − µ)

}
≥ 1− p2

1− p1
≥ 1

⇒ F2(y)

F1(y)
=

1− S2(y)

1− S1(y)
≤ 1

Thus we have shown that F1(y) ≥ F2(y). By definition of stochastic ordering, Y1 ≤st Y2.

Remark. Lemma 1 extends the analogous result for the Gaussian distribution to the GAL

family, the former being the most common example of a parametric family stochastically

ordered by its location. Focusing on two AL distributions with the same location parame-

ter, Lemma 2 is not of practical significance to our modeling. However, we report it as an

independent result which we use to prove the next lemma.
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Lemma 3. Stochastic ordering of ALp distributions by skewness p and location

µ. Let Y1 follow an ALp1(µ1, σ) distribution and Y2 follow a ALp2(µ2, σ) distribution. If

0 < p2 ≤ p1 < 1 and µ1 ≤ µ2, then Y1 ≤st Y2.

Proof. Since AL distribution belongs to the GAL family, lemma 1 on the stochastic

ordering of GALp0 by location µ also applies to the AL distributions. Denote F1 and F2 as

the distribution function for Y1 and Y2 and let FAL represent the distribution function of

an AL random variable. Given that µ1 ≤ µ2 and 0 < p2 ≤ p1 < 1, we can show that

F1(y) = FAL(y | p1, µ1, σ) ≥ FAL(y | p1, µ2, σ) (lemma 1 : stochastic ordering by location)

≥ FAL(y | p2, µ2, σ) (lemma 2 : stochastic ordering by skewness)

= F2(y)

By definition, Y1 ≤st Y2. Therefore, we have established the stochastic ordering of AL

distributions if the location and scale are ordered in opposite directions.

Lemma 4. Stochastic ordering of mixture distributions. Consider two sets of

real-valued random variables {Y11, Y12, . . . , Y1K} with density functions {f11, f12, . . . , f1K}

and {Y21, Y22, . . . , Y2K} with density functions {f21, f22, . . . , f2K}, K ∈ N. Let Y1 follow a

mixture distribution of the form
∑K

k=1 ωkf1k(y1) and Y2 follow a mixture distribution of the

form
∑K

k=1 ωkf2k(y2), where weights
∑K

k=1 ωk = 1. If for k = 1, . . . ,K there is Y1k ≤st Y2k,

namely if there exists pairwise stochastic ordering between {Y1k} and {Y2k}, then Y1 ≤st Y2.

Proof. Denote {F11, F12, . . . , F1K} as the distribution functions of {Y11, Y12, . . . , Y1K} and

denote {F21, F22, . . . , F2K} for those of {Y21, Y22, . . . , Y2K}. Since Y1k ≤st Y2k for k =

1, . . . ,K, by definition of stochastic ordering, ∀y ∈ R there is

F1(y) = ω1F11(y) + ω2F12(y) + . . .+ ωKF1K(y)
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≥ ω1F21(y) + ω2F22(y) + . . .+ ωKF2K(y) (F1k(y) ≥ F2k(y) for k = 1, . . . ,K)

= F2(y)

By definition of stochastic ordering, Y1 ≤st Y2.

We apply the above results to the fixed-pk and random-pk BQMR framework

and deduce the following lemma, which is the last lemma in this section and also the key

theoretical result on stochastic ordering for BQMR models.

Lemma 5. Stochastic ordering of mixture of GAL and AL distributions. Consider

random variables Y1 and Y2 from two K-component mixture distributions, K ∈ N.

i. GAL kernel. Define Y1 and Y2 as mixtures of GAL distributions, such that f(y1) =∑K
k=1 ωkf

GAL
p0 (y1 | µ1, σ) and f(y2) =

∑K
k=1 ωkf

GAL
p0 (y2 | µ2, σ). If µ1k ≤ µ2k for

k = 1, . . . ,K, then Y1 ≤st Y2.

ii. AL kernel. Define Y1 and Y2 as mixtures of AL distributions, such that f(y1) =∑K
k=1 ωkf

AL
p1 (y1 | µ1, σ) and f(y2) =

∑K
k=1 ωkf

AL
p2 (y2 | µ2, σ). If p2k ≤ p1k and

µ1k ≤ µ2k for k = 1, . . . ,K, then Y1 ≤st Y2.

Proof. Result i follows by applying Lemma 1 and Lemma 4. Result ii follows by applying

Lemma 3 and Lemma 4.

Lemma 5 shows that we can achieve stochastic ordering on random variables fol-

lowing mixture of GAL or AL distributions if we carefully construct the mixture and impose

order constraints on the location (and the skewness) of the components. The result on the

AL distribution is more flexible than that of the GAL, allowing both µk and pk to vary
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between the cohorts for given k. Therefore, we propose a two-cohort framework with s-

tochastic ordering based on the random-pk BQMR in the next section.

The stochastic ordering results of the BQMR framework we obtain is based upon

the pairwise ordering of the quantile components. An alternative common approach to

achieve stochastic ordering of mixture distributions is to construct two stochastically ordered

weight vectors (see Theorem 1.A.6 in Shaked & Shanthikumar (2007)). We did not follow

that path in this work, because the AL and the GAL distributions, as kernel distribution,

do not satisfy the monotonicity prerequisite of the theorem on the joint parameter space

of percentage p0 and location µ. Instead of constructing structured weights, we apply the

same weight configuration to both cohorts and explore the stochastic ordering property of

the kernels. We will show in Section 4.2.5 with a real data example that when the two

cohorts have dramatically different response distributions, the proposed framework with a

common weight vector for both cohorts can still achieve satisfactory goodness-of-fit, which

in a way demonstrates the flexibility of the model.

BQMR model with random-pk and stochastic ordering

When the diagnostic test data does not involve any predictors, we propose to

approach the estimation of ROC by modeling the test score distribution of the healthy and

the diseased cohorts in a joint framework. Consider n0 observations, (y0i, . . . , y0n0), in the

healthy cohort; and n1 observations, (y0i, . . . , y0n1), in the diseased cohort. We fit the data

from each cohort with a K-component random-pk BQMR model and construct priors that

depend on each other, assuming common weight allocation {wk} and scale σ, but different

{pk} and {µpk}. We impose order constraints µp0k ≤ µp1k and p0k ≥ p1k, k = 1, . . . ,K. It
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follows from Lemma 5 that under such framework, the test scores of the healthy cohort is

smaller than that of the diseased in the usual stochastic order.

We introduce latent indicator variables ξ0ik, i = 1, . . . , n0, k = 1, . . . ,K and

ξ1ik, i = 1, . . . , n1, k = 1, . . . ,K for each cohort. For ease of notation, we denote θ0 =

({p0k}, {µp0k}) and θ1 = ({p1k}, {µp1k}) and set µp00 = µp10 = −∞ and µp0(K+1)
=

µp1(K+1)
=∞. The model in its mixture representation can be expressed as,

y0i | θ0, σ, v0i, ξξξ0i ∼
K∏
k=1

[
N(y0i | µp0k +Ap0kvi, σBp0kvi)

]ξ0ik i = 1, . . . , n0

y1i | θ1, σ, v1i, ξξξ1i ∼
K∏
k=1

[
N(y1i | µp1k +Ap1kvi, σBp1kvi)

]ξ1ik i = 1, . . . , n1

ξ0i | ω1, . . . , ωk ∼ Multinomial(ξ0i | ω1, . . . ωk) i = 1, . . . , n0

ξ1i | ω1, . . . , ωk ∼ Multinomial(ξ1i | ω1, . . . ωk) i = 1, . . . , n1

v0,v1 | σ ∼
n0∏
i=1

Exp(v0i | 1/σ)

n1∏
i=1

Exp(v1i | 1/σ)

For the intercepts and the percentages of each cohort, we take the priors in Chapter 3, then

add the restrictions involving the corresponding component in the other cohort. The priors

for the joint framework are as follows,

π({µp0k}, {µp1k}) ∝
K∏
k=1

N(µp0k | µ0k, σ
2
µ)1{µp0(k−1)

< µp0k < µp0(k+1)
}

K∏
k=1

N(µp1k | µ1k, σ
2
µ)1{µp1(k−1)

< µp1k < µp1(k+1)
}

K∏
k=1

1{µp0k ≤ µp1k}

π({p0k}, {p1k}) ∝ 1{0 < p01 < . . . < p0k < . . . < p0K < 1}

1{0 < p11 < . . . < p1k < . . . < p1K < 1}
K∏
k=1

1{p0k ≥ p1k}

π(ω1, . . . , ωK) ∝ Dir(a1, . . . , aK)

The posterior samples can be obtained via MCMC sampling. The sampling algo-
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rithm for most parameters is essentially the same for the one cohort model, except for the

location and the skewness parameters, which can be sampled with the following steps,

1. Sample µp0k from N(µ∗p0k , (σ
∗
p0k

)2)1{µp0(k−1)
< µp0k < min{µp0(k+1)

, µp1k}}, for k =

1, . . . ,K; then sequentially sample µp1k from N(µ∗p1k , (σ
∗
p1k

)2)1{max{µp1(k−1)
, µp0k} <

µp1k < µp1(k+1)
}, where for d = 0 and d = 1 there is

(σ∗pdk)2 =

 1

σ2µ
+
∑
ξdik=1

1

Bdiσvdi

−1 , µ∗pdk = (σ∗pdk)2
∑
ξdik=1

ydi −Adivdi
Bdiσvdi

2. Sample p0k and p1k with Metropolis-Hastings steps. Denote p0 = 0 and pK+1 = 1,

then the posterior full conditional of p0k is proportional to

nd∏
i=1

[
N(y0i | µp0k +Ap0kv0i, σBp0kv0i)

]ξ0ik 1{max{p0(k−1), p1k} < p0k < p0(k+1)}

and that of p1k is proportional to

n1∏
i=1

[
N(y1i | µp1k +Ap1kv1i, σBp1kv1i)

]ξ1ik 1{p1(k−1) < p1k < min{p1(k+1), p0k}}

4.2.4 Data example: Adolescent depression (with covariates)

We illustrate the method with a data set from a depression study in 1986 (Addy

et al., 1994) conducted to evaluate the diagnosis of adolescent depression with the Center

for Epidemiologic Studies Depression Scale (CES-D), which is a 20-item self-report rating

scale widely used to measure depression symptomatology in the adult population. The data

set contains information from n = 458 seventh and eighth graders, including depression di-

agnosis (gold standard), CES-D score (ranges between 0 and 60), cohesion score (a measure

of emotional bonding to the family ranging from 16 to 80) and demographic information.
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The diseased cohort consists of n1 = 72 youths and the remaining n0 = 386 depression-free

subjects constitute the healthy cohort.

We include gender (female/male), race (white/black) and cohesion score (stan-

dardized with mean within the cohort and a common scale of 10 points for ease of inter-

pretation) as predictors and model the CES-D score on the logit-scale as response by each

cohort. With interests in both tails and the center of the response, we fit each cohort with a

five-component fixed-pk BQMR framework, with {pk} = {0.1, 0.25, 0.5, 0.75, 0.9}. We used

the same priors as in the survival example in Section 4.1.3 for both cohorts.

We summarize the posterior inferences in Figure 4.5 and 4.6 for an “average”

patient with median covariate value for all covariates, which translates to a white female

with a cohesion score of 51. The obvious difference in the posterior predictive densities

for the healthy and the diseased demonstrates the need to fit the two cohorts separately:

the predictive conditional distribution of the CES-D score is much flatter in the healthy

cohort, while the diseased has a more concentrated predictive distribution with substantial

left-skewness. The by-component contribution confirms that the tails and the center are

almost equally important for the healthy cohort. For the diseased, the center of the response

distribution receives much heavier weight than the tails.

The cumulative distribution function by cohort and the ROC curve are shown in

Figure 4.7. The CES-D separates the two distributions quite well over most of its range,

implying promising diagnostic application of the instrument among adolescent depression

patients. This is confirmed by a mean AUC estimate of 0.753 with 95% credible interval

(0.676, 0.819).
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(b) Contribution by weighted components

Figure 4.5: Depression data: Fixed-pk BQMR analysis. Posterior inference on the CES-D
score of an average patient without depression, mean and 95% CrI.
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(b) Contribution by weighted components

Figure 4.6: Depression data: Fixed-pk BQMR analysis. Posterior inference on the CES-D
score of an average patient with depression, mean and 95% CrI.

A summary of the posterior inference for regression coefficients of each cohort is

presented in Table 4.2. In both cohorts, gender exhibits a substantial effect on predicting

the CES-D score with the 95% CrI clearly away from zero, while race does not seem to be

affecting the response much. In the healthy cohort, increasing cohesion score is associated

with lower CES-D score. However, there is insufficient evidence to support the same rela-

tionship for the depression subjects. The result suggests a differential effect of the cohesion
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Figure 4.7: Depression data: Fixed-pk BQMR analysis. Posterior inference for the CDF of
CES-D score by cohort (left) and the ROC and AUC (right) of an average patient, mean
and 95% CrI

score by cohort on the prediction of CES-D.

Variable Healthy Diseased

Male -0.318 (-0.500, -0.128) -0.790 (-1.178, -0.315)
Race (black) -0.047 (-0.261, 0.171) 0.220 (-0.147, 0.647)
Cohesion (unit: 10 pts) -0.444 (-0.552, -0.335) -0.044 (-0.233, 0.146)

Table 4.2: Depression data: Posterior mean and 95% CrI of regression coefficients under
fixed-pk BQMR

Finally, we compare the covariate-adjusted ROC estimates by gender and by co-

hesion score in Figure 4.8. For an average patient (white with cohesion score of 51), the

CES-D measure appears to be a quite good diagnostic tool for adolescent depression re-

gardless of gender, with a higher AUC when applied among young men. It preserves a

very good accuracy when the average subject (white female) has a high cohesion score, or

a strong emotional bonding with her family. However, when the cohesion score is low, the
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Figure 4.8: Depression data: Posterior inference for ROC and AUC with different inputs in
gender (left) and in cohesion (right) for an average patient under fixed-pk BQMR.

diagnostic capability of CES-D weakens.

4.2.5 Data example: Johnes disease (without covariates)

Johnes disease (Mycobacterium avium paratuberculosis (MAP)) is a contagious

fatal disease that mainly affects the small intestines of ruminants. Accurate diagnosis of

the disease plays an important role in the successful surveillance and effective control of

the symptoms and the spread of the epidemic. In particular, evaluation of antibody in the

blood sample with ELISA kits is one of the most popular detection technologies of MAP.

We analyze a serologic data set from n0 = 345 disease-free cattle (labeled as

“healthy”) and n1 = 258 diseased cattle studied in Hanson et al. (2008) to model the

distribution of antibody by disease status and estimate the ROC curve. We begin with

fitting each cohort with a separate BQMR framework, assuming independence between the

two. Then we fit all observations together with the two-cohort BQMR model proposed in
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the previous section and impose stochastic ordering on the serologic score.

Method 1: Independent BQMR models for each cohort

Both the random-pk framework and the fixed-pk approach are applied in this anal-

ysis. In both cases, we consider K = 9 components, with pk = k/10, k = 1, . . . , 9 for the

fixed-pk BQMR. Common priors are used for both cohorts, including an inverse-gamma(2,2)

for scale σ, a Dirichlet(1, . . . , 1) prior for the weights and truncated normal priors with mean

0 and σ2µ = 10 for intercepts µk. For the fixed-pk model, independent Beta(3,3) priors are

applied for γk on the logit scale.
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Figure 4.9: MAP data: Random-pk BQMR analysis for the healthy cohort. Posterior
density of ELISA reading overlayed with histogram of the data (left) and the contribution
from each weighted component (right), mean and pointwise 95% interval

Figure 4.9 and 4.10 present the predictive densities of the serologic score for each

cohort from the random-pk framework, as well as the contribution from each weighted

components. The model captures the behavior in the data quite well for both cohorts and

98



there is a clear difference in the posterior predictive density between the healthy and the

diseased cattle. The predictive scores are unimodal for the healthy cohort. While for the

cattle with MAP, we observe two modes in the serologic reading, which is likely caused by

the difference in antibody level associated with different stages of the disease.
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(b) Contribution from weighted components

Figure 4.10: MAP data: Random-pk BQMR analysis for the diseased cohort. Posterior
density of ELISA reading overlayed with histogram of the data (left) and the contribution
from each weighted component (right), mean and pointwise 95% interval

Figure 4.11 shows the posterior inference of {wk} overlayed with the prior under

the random-pk BQMR. The solid blue line plots the posterior mean of wk by component k

associated with the 95% interval marked with the light blue bands. With a heavy weight

in the 9th component, the model shows more emphasis on the right tail of the serological

score for the diseased cohort, which contrasts the model for the disease-free cattle with more

weight on the center of the response distribution. Results from the fixed-pk approach are

show in Figure 4.12 and 4.13 and are in general consistent with the random-pk model.
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Figure 4.11: MAP data: Prior and posterior mean and 95% CrI of wk by component of the
health cohort (left) and the diseased cohort (right) under random-pk BQMR.
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Figure 4.12: MAP data: Posterior mean and pointwise 95% interval of posterior densities
of ELISA reading overlayed with histogram of the data by cohort under fixed-pk BQMR.

We estimate the ROC curve and the cumulative distribution function (CDF) of

the serologic ELISA test using the posterior samples from each model (Figure 4.14 and

4.15). The posterior mean and 95% credible interval of the area under the curve (AUC) are
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Figure 4.13: MAP data: Prior and posterior mean and 95% CrI of wk by component of the
health cohort (left) and the diseased cohort (right) under fixed-pk BQMR.

also presented with the ROC plots. The random-pk model and the fixed-pk approach agree

quite well on the estimation of AUC, with the posterior mean being roughly 0.72 under

both models.

We compute the log-pseudo-marginal-likelihood (LPML) (Geisser & Eddy, 1979;

Gelfand et al., 1992; Gelfand & Dey, 1994) to assess the model fitting (Table 4.3). Larg-

er LPML values represent better model-fitting from a predictive standpoint. Overall the

goodness-of-fit is comparable between the two methods, with the fixed-pk approach attain-

ing a slightly higher LPML for the diseased cohort and the combined measure than the

random-pk model.
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Figure 4.14: MAP data: Posterior mean and 95% CrI of ROC and AUC by model. No
assumptions on stochastic ordering.
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Figure 4.15: MAP data: Posterior mean and 95% CrI of CDF of ELISA reading of each
cohort by model. No assumptions on stochastic ordering.

Model LPML0 LPML1
∑

LPML AUC

Random-pk BQMR, K = 9 -272.0 -391.6 -663.6 0.722 (0.679,0.764)
Fixed-pk BQMR, pk = k/10, k = 1, . . . , 9 -272.4 -388.9 -661.3 0.723 (0.682,0.764)

Table 4.3: MAP data: Log-pseudo-marginal-likelihood for the health cohort (LPML0), the
diseased cohort (LPML1 and combined (

∑
LPML) and mean AUC with 95% CrI by model.

No assumptions on stochastic ordering.
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Method 2: Two-cohort BQMR models with stochastic ordering

Now we apply the two-cohort random-pk model and impose the ordering in dis-

tribution, such that the response (serologic reading) of the healthy cohort is stochastically

smaller than that of the diseased. Wherever applicable, same priors are used as in the

previous analysis of independent fitting.

The posterior predictive density of the serologic score shows a decent fit from the

two-cohort approach (Figure 4.16 and 4.17). Since now the two cohorts share the same

weights, the posterior mean of wk is substantially higher in both the center and the right

tail than in the other areas (Figure 4.18), which is likely a consequence of applying common

weights to accommodate the behavior of the response in both cohorts.
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(b) Contribution from weighted components

Figure 4.16: MAP data: Two-cohort BQMR analysis for the healthy cohort. Posterior
density of ELISA reading overlayed with histogram of the data (left) and the contribution
from each weighted component (right), mean and pointwise 95% interval.

From both the ROC curve and CDF of the two cohorts in Figure 4.19, we see that
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Figure 4.17: MAP data: Two-cohort BQMR analysis for the diseased cohort. Posterior
density of ELISA reading overlayed with histogram of the data (left) and the contribution
from each weighted component (right), mean and pointwise 95% interval.
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Figure 4.18: MAP data: Prior and posterior mean and 95% CrI of wk by component under
two-cohort BQMR.
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the serologic score for the healthy cattle is stochastically smaller than that of the diseased.

The posterior mean of AUC is 0.741, which is higher than the result in the previous analysis.

We also notice that the point-wise 95% interval for the ROC curve is slightly narrower than

in the earlier result where the cohorts are fitted separately. The same applies to the 95%

interval of the AUC.
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Figure 4.19: MAP data: Two-cohort BQMR analysis with stochastic ordering assumption.
Posterior mean and 95% CrI of ROC and AUC (left) and CDF of ELISA reading of each
cohort (right).

Finally, the LPML of the two-cohort approach indicates a decent fit on the data

(Table 4.4). If we compare it with the previous results, we can see that the LPML values are

actually very close to what we get by fitting the cohorts separately. This suggests that the

proposed two-cohort BQMR framework achieves stochastic ordering in the response variable

with minimal compromise in the goodness-of-fit of this data. In other word, stochastic

ordering of the diseased test score larger than that of the healthy cattle appears to be a

reasonable assumption for the analysis of the MAP data.
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Model LPML0 LPML1
∑

LPML AUC

Two-cohort random-pk BQMR, K = 9 -272.1 -390.6 -662.7 0.741 (0.703,0.776)

Table 4.4: MAP data: Two-cohort BQMR analysis with stochastic ordering assumption.
Log-pseudo-marginal-likelihood for the health cohort (LPML0), the diseased cohort (LPML1

and combined (
∑

LPML) and mean AUC with 95% CrI.

4.3 Discussion

In this chapter we explored extensions of the BQMR framework with application-

s in survival analysis and ROC curve estimation. Through fitting the two cohorts with

separate BQMR models, we achieve arm-specific identification of important variables tak-

ing into account the influence of covariates on multiple parts of the response distribution.

Moreover, we derive theoretical results on stochastic ordering for the BQMR models. In

a no-covariate scenario, enlightened by the theoretical findings, we construct the stochas-

tically ordered two-cohort BQMR framework to model the test score of both the diseased

and the disease-free cohort in a coherent manner. Evaluation of the posterior predictive

performance of approaches with and without assumptions on stochastic ordering offers a

way to check the assumptions we make for the two cohorts.

When modeling the survival responses, we augment the data set with latent ob-

servations and carry out inferences on the augmented parameter space. Another possible

approach is to work with the survival functions directly. However, posterior sampling under

this method requires implementations of Metropolis-Hastings steps for almost all parameter-

s, which will cause very poor mixing of the Markov chain. Although the data augmentation

approach we take involves posterior sampling of a good number of latent variables, we
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benefit from the nice convergence property of Gibbs sampling. With a decent number of

observations and a reasonable censoring proportion, we observe quick convergence of the

MCMC and efficient estimation of the parameters, as is shown in the nursing data example.

We developed the two-cohort BQMR model with stochastic ordering assumption

for data sets without covariates as a direct application of Lemma 5. However, the theoretical

results are actually not restricted to the no-covariate scenario. When the two cohorts share

exactly the same set of covariates, Lemma 5 will still apply if we can enforce some constraints

on the regression coefficients, such that the linear predictors of the two cohorts are ordered

given the same covariate values. For instance, if there is only one covariate x and x is

bounded from below, we can offset all xi by a constant to make them non-negative. By

restricting the regression coefficients of the two cohorts to be both positive and ordered,

we can easily apply Lemma 5 and ensure stochastic ordering between the cohorts. More

complicated constraints are needed as the number of covariates increases.
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Chapter 5

Conclusions

In this dissertation, we develop a new Bayesian regression framework based on

a structured mixture of quantile regressions. Using both simulation study and real data

examples, we demonstrate its performance in identifying influential predictors and illustrate

its application in approximating the underlying true conditional response distribution. The

main contribution and also the highlights of this work is that we approach the identification

of important covariates in a Bayesian paradigm through modeling the response distribution

with a collection of quantile regressions, from which we synthesize the inferences and obtain a

combined estimation of the covariate effects taking into account how the predictors influence

multiple parts of the response distribution. The construction of the framework with its focus

on quantile regression imparts nice interpretations to the model. Further, the visualization

of the contribution to the posterior predictive error density from each quantile regression

component offers a graphical way to acquire a better understanding of how different parts

of the response distribution comes into play both in the regression analysis and in the
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predictive inference.

Our work begins with the development of a flexible kernel density for the BQMR

framework, which is parameterized in terms of the quantile and is more flexible than the

commonly used AL distribution. If viewed from a modeling perspective, it is obvious that as

an error distribution, the AL distribution imposes very strong assumptions on the behavior

of the density function, due to the fact that it is a single parameter distribution of which

the skewness is fully tied to the quantile. Therefore under the assumption of AL errors, it

is challenging to obtain reasonable posterior predictive inference regarding the conditional

response distribution. The work in Chapter 2 is intended for addressing this problem. We

introduce a shape parameter through modifying the hierarchical representation of the AL

distribution and manage to link the location of the distribution to the quantile of interest.

Owing to the extra parameter, for any given probability p, the resulting GAL distribution

can have varying skewness, mode and tail behavior as the shape parameter γ changes,

making it more flexible than the AL counterpart. The latter turns out to be a special case

of the GAL family. We offer the GAL distribution as an alternative to the AL distribution

for Bayesian quantile regression, focusing on quantile estimation and predictive inference for

the response distribution at the same time, which we demonstrate through both simulation

studies and real data examples.

We would like to also emphasize some key features that distinguishes the GAL dis-

tribution from other potentially more flexible approaches, such as Bayesian nonparametric

methods. As a parametric distribution developed from a normal mixture, the GAL distri-

bution has a very straightforward MCMC sampling scheme. It can be easily adapted for
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modeling various types of responses, such as censored data in the Tobit quantile regression

extension we present in Section 2.2.3. Moreover, compared with the Bayesian nonparamet-

ric methods, the relatively simple parametric structure of the GAL distribution makes it

a decent candidate for the building block of some more complicated modeling framework.

In fact, the development of BQMR in the Chapter 3 and its extensions and applications in

Chapter 4 are good examples along the line.

The idea of BQMR was originally motivated by the composite quantile regression

in the classical literature (Zou & Yuan, 2008), although eventually the BQMR framework

is developed in a similar spirit but constructed with a very different formulation. In Zou &

Yuan (2008), the CQR estimator under adaptive lasso penalty is shown to be oracular and

exhibits good performance in variable selection, but as a pure optimization procedure it is

difficult to transplant the composite regression to a modeling framework. Zhao et al. (2016)

attempted to translate the CQR estimation directly into a Bayesian paradigm, the result

being that the method they develop uses the data multiple times and therefore not a valid

probabilistic model. Retaining the idea of a common set of regression coefficients shared

between different quantile regressions, we navigate slightly away from matching the loss

function of CQR and instead resort to an additive mixture of multiple quantile regression

components with structured priors. The advantage of taking this path is that with a valid

and highly flexible conditional distribution for the response variable, the framework ensures

that the estimation and inference are all conducted under a well-defined probabilistic setting.

We have developed two versions of BQMR, one with the GAL kernels and the other with

AL components. The GAL framework is intended for combined estimation of covariates
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when a given set of {pk} is of interest, and the AL model applies to the complementary

situation. With the {pk} varying, the latter also explores the response distribution in a

more efficient manner.

To make the BQMR framework more flexible, we allow the weights {wk} to vary

and further generalize the fixed-pk GAL model to take a nonparametric prior for the weights.

In real life applications, it can be quite the opposite that the researcher may be interested

in a set of {pk} with certain weight configuration. Informative priors can be applied to the

weight vector under these circumstances. In the AL version of the model, we also place a

non-informative HPP prior on {pk} for flexibility consideration. A potential drawback of

this prior is that the first and last percentage in {pk} can get arbitrarily close to the two

end points, 0 and 1, with nonzero probability a priori, which may inflate the variability the

posterior inference. A more informative prior, such as a non-homogeneous Poisson process,

will be a better choice in the case where certain {pk} are favored a priori.

In Chapter 4 we explore applications of the proposed BQMR model in survival

analysis and evaluation of a binary classifier/diagnostic tool in biomedical sciences. The data

examples of both applications show that a good number of posterior inferences can be drawn

under the proposed BQMR model, such as for the survival function at different quantiles and

for covariate-dependent ROC estimation. Moreover, we are able to incorporate stochastic

ordering in a two-cohort BQMR model for ROC estimation without covariates. It offers a

way to evaluate the stochastic ordering assumption between two cohorts in covariate-free

ROC studies. For instance, the leave-one-out goodness-of-fit metric LPML confirms good

model fitting of the approach in the data example in section 4.2.5.
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The fact that both the GAL and AL distributions are normal mixtures makes

the BQMR framework highly amenable, thanks to the nice properties of the Gaussian

distribution. In this dissertation, we focus on modeling the integrated covariate effects with

linear regression. In fact, in a scenario where the predictor effect is highly nonlinear, it is

possible to associate the BQMR framework with the idea of a Gaussian process. The two

could connect nicely under the unravelled the hierarchical representation of the quantile

regression kernels. Future work can be directed to the exploration of such generalization.
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Appendix A

MCMC Algorithms

A.1 Regularized BQR with lasso under GAL distribution

We apply a Ga(aη2 , bη2) prior for η2. Then the algorithm is very similar to the penalty-free

version provided in Section 2.2.1, except for β, which will be sampled from a N(β∗, Σ∗), with

Σ∗ =

 n∑
i=1

xixi
T

Bσvi
+ Ω

−1 , β∗ = Σ∗


n∑
i=1

xi[yi − (β0 + σC|γ| si +Avi)]

Bσvi


where Ω = diag(ω−11 , . . . , ω−1d ). Additionally, in the each iteration, the following extra steps are

needed for ωk and η:

1. Sample ωk from a GIG(1/2, β2
k, η

2).

2. Sample η2 from a Ga(aη2 + d, bη2 + 0.5
∑d
k=1 ωk).

A.2 BQMR with fixed pk

For simplicity of notation, denote ui =
∑K
k=1 kξik and let Ai = Apui

, Bi = Bpui
, Ci =

Cpui
, µi = µpui

, γi = γpui
. Then under a N(β0, Σ0) prior for β, the posterior sampling algorithm

consists of the following steps.
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1. Sample β from N(β∗,Σ∗), where

Σ∗ =

 n∑
i=1

xix
T
i

Biσvi
+ Σ−10

−1 , β∗ = Σ∗


n∑
i=1

xi[yi − (µi + σCi|γi|si +Aivi)]

Biσvi
+ Σ−10 β0


2. Sample vi from a generalized inverse-Gaussian distribution, GIG(1/2, ai, bi), where ai =

[yi − (µi + xTi β + σCi|γi|si)]2/(Biσ) and bi = 2/σ + A2
i /(Biσ), with GIG(x | ν, a, b) ∝

xν−1 exp{−0.5(a/x+ bx)}, a > 0, b > 0.

3. Sample si from N+(µsi , σ
2
si), where σ2

si = 1/[(Ciγi)
2σ/(Bivi) + 1] and µsi = σ2

siCi|γi|[yi −

(µi + xTi β +Aivi)]/(Bivi).

4. Sample σ from GIG(aσ + 1.5n, c, d), where c = 2bσ + 2
∑n
i=1 vi +

∑n
i=1[yi − (µi + xTi β +

Aivi)]
2/(Bivi) and d =

∑n
i=1(Ciγisi)

2/(Bivi).

5. Sample µpk sequentially from N(µ∗pk , (σ
∗
pk

)2)1{µpk−1
< µpk < µpk+1

} for k = 1, . . . ,K, where

µp0 = −∞, µpK+1
= +∞ and

(σ∗pk)2 =

 1

σ2
µ

+
∑
ξik=1

1

Biσvi

−1 , µ∗pk = (σ∗pk)2
∑
ξik=1

yi − (xiβ + σCi|γi|si +Aivi)

Biσvi

6. Sample ω1, . . . , ωK from a Dir(a∗1, . . . , a
∗
K), where a∗k = ak +

∑n
i=1 1{ξik = 1}.

7. Sample ξi1, . . . , ξiK from a Multinomial distribution, where p(ξik = 1|y, . . .) ∝ ωkN(yi |

µpk + xTi β + σCpk |γpk |si +Apkvi, σBpkvi).

8. Sample γpk with a Metropolis-Hastings step. The full conditional of γpk is,

pγpk (γpk | y, . . .) ∝ B
−nk

2
pk exp

− ∑
ξik=1

[yi − (µpk + xTi β + σCpk |γpk |si +Apkvi)]
2

2Bpkσvi


where nk =

∑n
i=1 1{ξik = 1}. We apply a logit transformation on γpk to such that θpk =

log[(γpk − Lpk)/(Upk − γpk)]. Then conditioning on all other parameters, there is,

pθpk (θpk | y, . . .) ∝ pγpk

(
γpk =

Upke
θpk + Lpk

1 + eθpk
| y, . . .

)
·

(Upk − Lpk)eθpk
(1 + eθpk)2

We accept θ∗pk with probability min{rpk , 1}, rpk = pθpk (θ∗pk | y, . . .)/pθpk (θ
(m−1)
pk | y, . . .).
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If instead a Laplace prior is applied for β accompanied by a Ga(aη2 , bη2) prior for η2, then

we replace the first step in the above algorithm by the following:

1. Sample β from N(β∗,Σ∗), where

Σ∗ =

 n∑
i=1

xixi
T

Biσvi
+ Ω

−1 , β∗ = Σ∗


n∑
i=1

xi[yi − (µi + σCi|γ| si +Aivi)]

Biσvi


where Ω = diag(τ−11 , . . . , τ−1d ).

Additionally, in the each iteration, the following extra steps are needed for τj and η:

9. Sample τj from a GIG(1/2, β2
j , η

2).

10. Sample η2 from a Ga(aη2 + d, bη2 + 0.5
∑d
j=1 τj).

Adaptive Metropolis-Hastings

When we fit BQMR models with many quantile components, we apply the adaptive ran-

dom walk Metropolis-within-Gibbs algorithm in Sherlock et al. (2010) to improve the efficiency of

the Metropolis-Hastings steps for the shape parameters γpk .

Following Sherlock et al. (2010), at the n-th iteration, we propose θpk (γpk after logit

transformation) from the following jumping distribution,

θpk ∼


N(0,m2

nσ̃
2
n) with probability 1− δ

N(0, σ2
0) with probability δ

where δ is some small positive constant, e.g., 0.1, σ̃2
n is the variance of θpk samples to date, and σ2

0 is

some fixed variance, which can be obtained from a single run of a non-adaptive Metropolis-Hastings.

The scaling factor mn is initialized to m0 = 2.38, and the adaptation quantity is ∆ = m0/100.

If iteration n comes from the nonadaptive part of the proposal distribution, then mn+1 = mn;

otherwise:

• If the proposal was rejected, then mn+1 = mn −∆/
√
n

124



• If the proposal was rejected, then mn+1 = mn + 2.3∆/
√
n

This leads to an equilibrium acceptance rate of 1/(1 + 2.3) = 30%.

A.3 Semi-parametric BQMR with fixed pk

The sampling scheme for the weights and µG is as follows:

1. Sample ω1, . . . , ωK from Dir(a∗1, . . . , a
∗
K), where a∗k = ak +

∑n
i=1 1{ξik = 1} and

ak =



α0Be(
pk
pK
| µG, τG) , k = 1

α0[Be( pkpK | µG, τG)−Be(pk−1

pK
| µG, τG)] , k = 2, . . . ,K − 1

α0[1−Be(pk−1

pK
| µG, τG)] , k = K

2. Sample µG with a Metropolis-Hastings step. In the full conditional posterior,

p(µG | y, . . .) ∝ Dir(ω1, . . . , ωK | a1, . . . , aK) · 1
{
µG ∈ (0, 1)

}
where ak takes the same form as in the previous step. We use a truncated normal distribution

over (0, 1) as the jumping distribution with variance σ2
MH , the tuning parameter. We accept

the proposed sample µG
∗ with probability min{r, 1}, where

r =
p(µG

∗ | y, . . .)
p(µG | y, . . .)

· TN(µG | µG∗, σ2
MH , 0, 1)

TN(µG∗ | µG, σ2
MH , 0, 1)

with TN(·) standards for the density of a truncated normal

A.4 BQMR with random pk

For simplicity of notation, denote ui =
∑K
k=1 kξik and let Ai = Apui

, Bi = Bpui
, Ci =

Cpui
, µi = µpui

, γi = γpui
. Then under a Laplace prior for β accompanied by a Ga(aη2 , bη2) prior

for η2, the posterior sampling algorithm consists of the following steps.
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1. Sample β from N(β∗,Σ∗), where

Σ∗ =

 n∑
i=1

xixi
T

Biσvi
+ Ω

−1 , β∗ = Σ∗


n∑
i=1

xi[yi − (µi +Aivi)]

Biσvi


where Ω = diag(τ−11 , . . . , τ−1d ).

2. Sample vi from a generalized inverse-Gaussian distribution, GIG(1/2, ai, bi), where ai = [yi−

(µi + xTi β)]2/(Biσ) and bi = 2/σ + A2
i /(Biσ), with GIG(x | ν, a, b) ∝ xν−1 exp{−0.5(a/x +

bx)}, a > 0, b > 0.

3. Sample σ from IG(aσ + 1.5n, c), where c = bσ +
∑n
i=1 vi + 0.5

∑n
i=1[yi − (µi + xTi β +

Aivi)]
2/(Bivi).

5. Sample µpk sequentially from N(µ∗pk , (σ
∗
pk

)2)1{µpk−1
< µpk < µpk+1

} for k = 1, . . . ,K, where

µp0 = −∞, µpK+1
= +∞ and

(σ∗pk)2 =

 1

σ2
µ

+
∑
ξik=1

1

Biσvi

−1 , µ∗pk = (σ∗pk)2
∑
ξik=1

yi − (xiβ +Aivi)

Biσvi

6. Sample ω1, . . . , ωK from a Dir(a∗1, . . . , a
∗
K), where a∗k = ak +

∑n
i=1 1{ξik = 1}.

7. Sample ξi1, . . . , ξiK from a Multinomial distribution, where p(ξik = 1|y, . . .) ∝ ωkN(yi |

µpk + xTi β +Apkvi, σBpkvi).

8. Sample pk with a Metropolis-Hastings step. The full conditional of pk is,

p(pk | y, . . .) ∝
n∏
i=1

[
N(yi | µpk + xTi β +Apkvi, σBpkvi)

]ξik
1{pk−1 < pk < pk+1}

We adopt a truncated normal distribution over
(
p
(m)
k−1, p

(m−1)
k+1

)
with scale parameter σ0 as the

jumping distribution and accept the proposed p∗k with probability min{rpk , 1}, where

rpk =
p(p∗k | y, . . .)

p(p
(m−1)
k | y, . . .)

·
TN(p

(m−1)
k | p∗k, σ2

0 , p
(m)
k−1, p

(m−1)
k+1 )

TN(p∗k | p
(m−1)
k , σ2

0 , p
(m)
k−1, p

(m−1)
k+1 )

where TN(·) standards for the density of a truncated normal, p0 ≡ 0 and pK+1 ≡ 1.

9. Sample τj from a GIG(1/2, β2
j , η

2).
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10. Sample η2 from a Ga(aη2 + d, bη2 + 0.5
∑d
j=1 τj).

When we fit BQMR models with many quantile components, we apply the adaptive ran-

dom walk Metropolis-within-Gibbs algorithm in Sherlock et al. (2010) the same way for the fixed-pk

algorithm in Appendix A.2.
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