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Department of Chemical Engineering
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ABSTRACT

The problem pf simultaneous heat and mass transfer in free convection
from a vertical, flat plate is investigated theoretically. An integral method
is used to solve the resulting differential equations. Solutions are obtained
for zero wall velocity and for a mass-transfer velocity at the wall, with the
wall either insulated .or held at a constant temperature. The zero-wall-velocity
sblupion is compared with existing solutions and data for simultaneous heat and

mass transfer, heat transfer alone, and mass transfer alone,
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SIMULTANEQUS HEAT AND MASS TRANSFER
IN FREE CONVECTION '
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University of California
Lawrence Radiation Laboratory
and
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August 1959

INTRODUCTION

In many processes mass transfer and heat transfer occur simultaneously.

In free convection these may either hinder or aid one another, For example,

mass-transfer rates that are 100% greater than those predicted by considering
only the effects of mass transfer were obtained by Mathers,aMadden, and Piret
for sublimation of spheres with simultaneous heat transfer;2

Two theoretical solutions have been carried out for this situation,.
Somers used an integral method for the problem of evaporation and condensation,
taking into account the nonzero wall veloclty arising from the mass transfer.7
His solution, although perflectly correct, is complex and difficult to apply to
specific problems, Mathers, Madded, and Piret used an analog computer to solve
the problem for zero wgll velocity,2 However, in the process, they dropped the
inertia terms in the momentum equation. Thus their solution strictly holds
only for high Prandtl and Schmidt numbers, They also obtained data which shows
that the general form of the solution is good for constant Prandtl and Schmidt
numbers, | , : ‘

It is the purpose of this paper to derive simple results which will be
expected to apply for all Prandtl and Schmidt numbers and for varlous situations.
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DERIVATION: OF EASIC EQUATIONS

The following assumptibns are made in this derivation:
(a) The fluid has constant properties, except for a slight varia-
tion in density with temperature and composition,
(b) The heat generated by dissipation is negligible, \

(c) .The usugl laminsr boundary-layer assumptions are valid,

With these assumptions the boundary-layer equations for laminar free

convection on a vertical flat plate are:2’5’9 '
Continuity: 5_u. + §l = 0 (1)
ox oy
» | 2 P - P
Momentum: ug—l’: +Vg—;="’-a—lzl-+g_( 5 ) (2)
oy
2 2
Energy: uaT +v.a—T=_£_§__T_=a§_LI‘_ (3)
ROSTEYS ox oy cpp ayz : ayz
2
Mass: W +.vg—§=9§_g ()
oy

Bounda.gy conditions:

T

s C=C

at y =0 T

T, C

=]

i
Q
-
e
]
o

at y = T

Here the parsmetérs are defined Dby:

“x = distance along the plate from the bottom edge up for flow up,
‘,and from the top edge down for flow down, A

y = distance out from the wall, .

u = velocity parallel to the blat-é in a positive b4 &irection,

v = velocity out from the wfall. v

v = kinematic -%ri-scositvy.

g = ‘accsleration due to gravity . - (taken ds positivé for flow up

the plate and negative for flow down).
P,p, = density of the fluid at é;'poirﬂ:pa.nd in“the bulk fluid, respectively,
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k = thermal conductivity of the fluid.
cp = heat capacity of the fluid,

T = temperature,

a = thermal diffusivity,

C = concentration of concerned component in fluid,
D = diffusivity of concerned component.

To solve this system, we must, in some way, relate the density term

in . Eq, (2) to the concentration and temperature, Therefore, let:

(p,-p)/p = a (C-C) +p (T-T ) . (6)

The validity of this substitution will be examined in detail later, Also, let:
T-T Cc-C
¢= bod \I;: bad
T.-T 2 c.-C

With these substitutions Egs, (2) - (5) become:

, .
Momentum: u %% + v %% = v 2;% + g (CO-CM) v o+ B g (Ty-T,) ¢ (7)
2
Energy: u'%g + v §Q = 8 Q;Q (8)
X oy ayz
- 2
. oy N _ 5o
Mass: usy otV 5% = D g;% (?)

Boundary Conditions:

at y=0: $g=v=1, u=0, v=yv

Il

(10)

et y=w: f=y=u=0,

These are the basic differential equations and boundary conditions governing

the process. To solve them, we use the usual integral method in which the

7,9

equations are satisfied only on the average and not at every point,
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- INTEGRAL EQUATIONS

Assume that u, @, ¥ are effectively zero at short distances from the
plate, &, ®', 8", respectively, -Equations (7), (8), and (9) are now integrated
with respect to y from O to 8, d', 8", This integration will be shown in detail
only for Eq. (9), ' |

Let 8" be the diffusion boundary-layer thickness. Then the integral of

Eq. (9) is

g 8"_ 2 Lt
'fo(u%E +,v§§)dy=fn(§;—g)dy=p(§—‘y‘ﬁ) o (11)

70

As a condition of smoothness at the cuter edge of the boundary layer, let

(gﬁyﬁ)a" = 0,

|

This will be assured by the choice of the concentration profile later, Also .
néte that from Eq. (1), we have '

ny -
v = v, - f (-g%) ay. (12)
Oi

Thus, Eq., (11) becomes

6" ' ] i _‘_.y .

d oy oy [ odu - ! :
g -2/ oo 2@ . o
Jq | . .

- . Integrating by parts, however,

8" : y . 6"
f % f g—:{i dy = = [ ¥ (%) dy , (14)
0 0 "0 :
and noting that
B .‘ .‘;6" : .
f 'VO %;l,{ dy = = VO i (15)

e
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we obtain, finally:

8"
. a d \
vess: & fo wyay = vg - D (H, (16)

and in a like manner:

B!
.Energy: 5% k/1 u ¢ dy =V, - & (%%) s : (17)
0 \
d P d '
Momentums: = /ﬁ uw dy = - v (E%)O + B g (TO-T@) \jﬁ @ ay
\_O
) 8"
+a g (Cy-C,) J[ v ody . (17)

Note that in the momentum equation the limits of the last two integrals
are ' and ®", not ®. This is done because the concentration and temperature
profiles are the driving force for the velocity change. Thus we héve 5>28d',

5 >0%", Since ¢§ =0 for y >8', and ¥ = O for y > d", the limits on the>integrals
are correct as shown, The only way this would not be true is if either « or B
were zero, If this were true, however, the integral concerned would drop out of
the momentum equation, and so the limit is not important.

So that these equations may be solved, it is necessary to assume a form
for the velocity, concentration, and temperature profiles, It is tacitly assumed
that the shape of the velocity profile 1s independent of the ratio of the mass
and heat transfer, while actually, of course, it is not. However, if the Schmidt
and Prandtl numbers are not too different the result should be quite good anyway,

because the equations will still be satisfied on the average.
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SOLUTION FOR ZERO VELOCITY AT THE WALL

Strictly speaking, the condition of zero wall velocity is true only
for equal-molal counterdiffusion. However, for low rates of mass transfer,
-the"wall_yélqpity is small enough to be safely neglected,

| Assume that the velocity, coQgentration, and temperature profiles have

the following forms:

2
RGO (L’
(L 3 2_2 :v LS
¢ = l-a'(-&,") - b (éf) - ¢ (:51) s (19)
, | 2 -3
vo=1-e" (G - o) - e (&)

where b, ¢, a', b', c*, a", b", ¢" are constants to be determined, and ux'is
an arbitrary reference velocity which is a function of x. The constants are

determined from the following conditions:

Veloclty: at y =0, u=20 v
ou
sty=% u=0 (G} =0°

=0

' _ (9%
o', 4= (5
o, (4

)
3y? °

Temperature: at y )8'

y

at y = 0,

(This last condition follows from Eq, (8), since u=v =0

at y = 0,)

Concentration: Entirely analogous to temperature,

These conditions yield the following profiles:

Lo -2 D3

X

¢ =1-2 & + 3 P > (20)
b= 123 @ os 2@ /\
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e

If these profiles are substituted into Eqs. (16), (17), and (18), the following

equations result:

———— - e e

1 4 2 Wy vy 3 s 3
° _A.._. . = - —_— ..T 81 - = " Ad
Momentum; . 55 ax (5ux ) s t+tBag (TO T ) g o +ag (CO Cy) 5% (21)
Energy: —%‘L I;' 2t | 109 k' + 63_ K 2 Q__ (u d") = SL (22)
~HeTEy: 105 8 " 18 112 & x I |
—_— ™
Y .21 105 .., 63 .2| 4. wy _ 3D_
Mass: 105 K 5 '- 8 K + 112 K ax (ux5 ) = ot ) (23)
—
.
where k' = g— s
"o _6_".
K B

To solve these e(iuations, we must assume a relationship between &, 37,
and 8", For $c > Pr the temperature profile must extend farther into the fluid
then the concentration profile, i.e,, &' 38", Furthermore, the velocity must
extend out to the end of the temperature profile, i.e., d =98', This situation

is here called "heat-transfer controlling,”

and is now solved in detail,

If u , 8, and ®" are each assumed to be proportional to various powers
of x, and it is further required that the terms in'x drop. out whén these are
substituted into Egs. (21), (22), and (23), theh we have

1/2 1)k 1/

—_ — | S— Z "o
u, = QX , 9 =20 =Q, X ,6-063)(_, ’

3 are constants to be determined by substitutiqn’.] into Eqs, (21),
(22), and (23), This substitution yields: '

where al’ ocz, o

Momentum: 2 a2a =-=voi-|'-f3 (T.-T ) 3 +a g (C.-C )ioz (24)
e 120 Y1 %2 a, g\’ 8% 0w’ 8%3 7
Energy: 3 _3a_ . T
105 “1% %, 7 4 (25)
Mass: 3 21105 63 2 | _ 3D |
105 %% T {:8 TR Tt 11z T j} " (26)
vhere r = 053/a2 = 8"/ot,
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From Egs. (25) and (26), we obtain
(D) P_r) 3 21 105 63 2
a Sc
which defines r vs Pr/Sc, This relationship will be calculated in detail
later, , |

From Eqs. (24) and (25) end the Aefinition of r, the value of Q, is
obtained, wae_ve"r, what is usually desired is the Nusselt numbers, hxx/k
and Kxx/D. It can be shown that these definitions yield:7

Nux = =3 (%3)0

| (28)
)
*¥ Nu', =-x (‘gg)o
From the assuméd velocity profiié'é and the form assumed for 3' and 3", we
obtain .
. 3 3/t
Ny, = <
* 2 , o
'/h (29)
' 3
’ 1 - i X = }A ]
Ty =2 & T or Nu:“r
. 3
Thus, for heat-transfer controlling, we have
) 0.435 (pr )l/lL [Gr + T Gr‘ ]l/u

( 62§

where
Gr = local Grashof number for heat transfer [ g %3 B ( o-T )/v

Gx”X = local Grashof number for mass transfer [: g _-x3 o (Co-Cm)/v 1

* : _ . o
Primed dimensionless parameters are for mass transfer, unprimed for heat

transfer.

= I B 18 I‘+i'i§r ) ' (27)

‘l



&

=11~ : UCRL-§807

Somers7 and Mathers et gi,z have found that r a 4/ Pr/Sc, which will also be
demonstrated later, With this fact there results:
l/)-l- /: [ l/)'l'
0,435 (Pr) [ or, + JPrfsc  orl' ]
0.625 . L/ '
( Pr + l?

Nu =
X

Mu' = W Se/Pr  Nu

By summation over the height of the plate, we obtain the over-all Nusselt
numbers, hL/k end KL/D, for heat-transfer controlling:

(Pr)l/l"E ar +~ Pr/Sc c;r':[l/4

|
i

Nu = 0,58
(00625 + l)l/}-‘.
Pr .
’ (32)
Nu' = & sc¢/Pr Nu
where '
Gr = over-all Grashof number for heat transfer [:= g L3'B (Todﬁn)/vg],
Gr' = over-all Grashof number for mass transfer [j= g,L3'a (Co-Cm)/vé}y

In a like manner, for mass-transfer controlling (Pr > Sc), we get -

Nu = PI‘/SC Nu! .
se)* [err + 5o ae 17 . (33)

1/h
025 )Y

Nu' = 0,58

These results can also be obtained from Somers'! solution by making the

8

same simplifying‘assumptions and the same definitions as made here,
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A, Parabolic Temperature and Concentration Profiles

The constants in the'equati6ﬁs justﬁobtained are slightly different'

than those ususlly obtained by the integral method.9 Thus, a solution will

now be obtained'usinglthe usual parasbolic temperature and concentration

ﬁrofiles;-i.e,, let:
g = (L-ypn), ve=(L-ypME.
Proceeding as before, we obtain a new defining equation for r:
(ggf)=r3[ %-2r+ P ]
Likewlse, there is obtainéd for heat—trﬁnsfer controlliﬁg:

1/k
YO.677 (Pr)l/u[:_Gr + N Pr/Sc Gr”i] /

@z "

Nu! = « Sc7Pr' Nu

o

Nu ' =

H

and for mess-transfer controlling:

Nu = .Pr/8e Nu' ‘
anl T [
0,677 (sc)l/l"[_er" + Sc/Pr Gr]
Nut = e e et -
= : - 7%
. : 0.952.
( Pr + 1)

B, Comparison of Results

(34)

In form, these results approach those of Mathers et g;a,z as the Schmidt

and Prandtl numbers grow large and as they approach one another in value,

these conditions, Eqs, (36) and (37) reduce to:

For
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| | 1/h
Nu 0.677 (Pr)l/h [,Gr + ~ Pr/sc Gr':j /

]

. (38)

Nu'!

1/4
0.677 (Sc)l/h [,Gr' +~ Se¢/Pr Gr :J /

At this point it is interesting to compare these various results, reduced to

the case of heat transfer alone (Gr' = 0), with Ostrach's exact numerical

3

solution for heat transfer.” This is done in Table I.

Table I

Comparison of theoretical results for heat,ﬁransfer by free convection

/

Calculated values of Nu/Gr/"*

Prandtl Ostrach> Eq. (32) Ed. (36) Eq. (38)
number (numerical) (Gr® = 0) (Gr' = 0) (Gr' = 0)
0.01 0,0766 0,0650 0,0648 | 0.212
0.733 0.479 0.460 0.509 0.627
1 | 0.535 | 0.514 0.573 ' 0.677
2 0.676 © 0.,6L4k4 0.730 0.806
10 +1.103 1.016 1.177 '1.204
100 2,07 1.83 2,09 2.1k
1000 3.74 3.26 3.81 3,81

Inspection of Table I shows that Eq, (32) is best for low Prandtl num-
bers, while Eq, (36) is best for high Prandtl numbers. Equation (38), and
therefore Mather's analog solution, is suitable only for relatively high Prandtl
numbers, It 1s expected that the same statements will hold true for simultaneous
heat and mass transfer, with "Prandtl numbers" replaced in the foregoing by

"Prandtl and Schmidt numbers,"



1l UCRL=-8807

C. Demonstration of Assumed Relation for r vs, Pr/Sc

Previously it was stated that r % N Pr/Sc° Table II shows the exact
relation between r and Pr/Sc as given by Egs. (27) and (35).

Table II

Relation between r and Pr/Sc as given by Egs. (27) and (35)

(Pr/Sc) N Pr/Sc

x Ea. (27) Eq. (35) Ea. (27)  Ea. (35)
1.0 1.0 1.0 | 1.0 1.0

0.8 0.623  0.632 0.790  0.795
0.6 0.320 0.327 - 0,566 0.572
0.4 0,114  0.118 0,337 0.343
0.2 0,0170 0.019 0.130 0,140
0.0 0.0 0.0 :;f | 0.0 0.0

This table shows that . r =« Pr/Sc is a reasonable approximation to the re-~
lation between 1 and Pr/Sc as given by the integral method, This approxi-

metion improves astr/Sc‘approaches 1,

D, Expansion Coefficients for an Ideal Gas

To solve the basic differential equations (1) to (5), we fount it
necessary to assume s relation between temperature, concentration, and density.

The validity of this relation, Eq. (6), for an ideal gas will now be examined

in detail.
Tet 'C’Ml = concentration and molecular weight of the concerned
component,
CZ’MZ = 'concentration and average molecular weight of the rest

of the mixture,
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CT = tétal molar concentration, C + CZ'
" Then we have

po= My o+ CMys (39)
but ’ '

C+C, = C, = n/V = PRT, , (40)
where

n = number of moles

V = volume

P = total pressure

R = ideal gas constant

T = absolute temperature,

Therefore, we have

o (Ml

p - M;) + PM,/RT, (k1)

and so

- C,=C) (M, - ( M,
PO:) P) i (Co-C) (M -M,) + R—rlr ) 0 (42)
C (Ml-Mz + (P/RT) M2 :

To get this into the same form as Eq. (6), we must assume that the density
varies only slightly, so that in the denominator an average temperature T
and an average concentration C can be used to the first approximation, With

this assumption, we obtain

(qnap) (c -c) (T -1 ) (13)
2y - : ‘ + . (13
P - p M CTR
C —_— (= -1 T 1+ —— - l
Gy |2+ LR <é :I

Thus, by comparison with Eq. (6), we find

Q= - 1 (4h)

T4 = (=2 - 1)
RT 2

Elgg
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and

B = (45)

HI -
IH

T [1+E M 1)]

In generai, therefore, for gases or liquids, & must be evaluated at constant
_temperature, and B at constant concentration, Both must be the value at some

average value of both concentration and temperature,
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FINITE WALL-VELOCITY SOLUTION

In many practical cases there is a bulk flow of materisl to or from
the interface, This flow is caused by such p;ocesses as crystallization,
dissolution, evaporation, and condensation. If only the component of interest
partakes in these processes, i.e,, it is dissolved in an inert solvent, the

bulk flow is caused by diffusion, A material balance at .the wall yields:7

' D dc
v = e &, (46)
¢ CT CO Byo
where CT = total molar concentration at the wall, In such processes the wall
can elther be held at some constant temperature or it can be insulated.
A, Specified Wall Témperature
This 1s the same problem as previously solved, except that v, in Egs,

. 0
(16) and (17) is given by Eq, (46), and is not zero. Assuming the parabolic

profile, Eq. (3&), and proceeding as before, we obtain, for heat-transfer

contrblling;
c.=C : c_ =C
a . o T 0
O e — , (47)
T 0 rz 5 2 p 1 .2 '
2 t3 .
§ 1/h.
0.508 (pr)t/? {.er +rGr ! i] | .
Nu, = — ' 2 | v /7
c. -C 2 C., -¢€
Pr 0 ) Pr 0 oo
0.952 1+ (==—=) + Pr + = ( )
80 r Sc Cp - S 80ir Sc ‘Cop - Eb
1 . ‘ . ‘ .
t — = .
and Nux =z Nu.x (WS)

where Nu_, Nu ' are defined by Eq. (28).
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Actually, the parabolic profile is not entirely satisfactory in this
case, because the profiles are not corrected for the effect of blowing at the
wall, This effect could be quite_large.' It would be better to use a fourth-
order polynomial for the velocity profile and third-order polyncmials for
concentration and temperature. -Equations (7), (8), (9), (46) applied at the
wall yield the extra conditions needed to specify these polynomials,

¢

B, Adiabatic Wall

Occasionally convectlve mass~-transfer processes may teke place at an
"~ insulated wall.6 In these cases-thé heat necessary for the phase transition
is supplied or removed by the bulk fluid., A heat balance at the wall, ex-
pressing the fact .that the heat .conducted tobthe wall 1s used up as latent heat,

is given by:
where A 1s the latent heat (teken as positive for melting, evaporation, ete.),

Substituting for Vo

the parsbolic coneentration and tempersture profiles, we obtain

from Eq, (46), defining ¢ and y as before, and assuming

C,-C '
0 o0
r = (a) (CT - CO) Cp (: - TO) @ v (50)

1o

This, together with Eqs. (47) and (48) and the equilibrium relation between

CO and To,,is the solution to the adiabetic wall problem,

C. Example Calculation

The following example caleculation illustrates the adiabétic wall
solution, '
Assume: water evaporating
no water vapor in bulk fluid
bulk temperature of 120°F

one atmosphere pressure
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Problems What is the wall temperature?

Solutions Note that we have:

C. -
(=) o (e
0 Ps
(51)
GBI (=)
T 0 s
where p, = Vapor pressure of water at To. When the following physical
properties are used:
c, = 0.25 Btu/1b °F (Perry“),
A = 1060 Btu/lb (Keenan and Keyesl),
a/D = 0,81 (Sherwood and Pigford6),
Egs, (47) and (50) become:
P
S 1
r = 5220 ( ) = (52)
P - Py T -To
P
b 8 =50
0 = (5—:_5‘) + 0,6l r - Al T35 = f (53)
s T 5" 21T + > T

The method of solution is by trial and error, The temperature To is
assumed, and P is obtained from reference 1, With these values, r is calcu-
lated from Eq, (52), The correct result.is recognized when f, as defined by
Eq., (53), is zero, Table II1 summarizes the calculations for this problem,
The result is that the calculated wall temperature is about EhOF, which 1s

about 10°F lower than the temperature of adiabatic saturation given by Perry.
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VyVy = Velocity out from the wall, at‘a point and at the wall, respectively,

X = Distance along the plate, from the bottom edge up for flow up, and from

the top edge down for flow down,

y = Distance from the plate,
0 = Concentration densification coefficient,
al’az’a3 = Undetermined paresmeters used in expressing variation in Uy s 5, &f,

and 8", with x.

B = Temperature dénsificationvcoefficient.

5,8',8" = Veloeity, temperature, and concentration boundary-layer thickness,
respectively, V
K',k" = Ratios of thermal and of concentration boundary-layer thickness to the
velocity boundary-layer thickness, respectively.
A = Latent heat (taken as positive for melting, evaporation, ete, ).

v = Kinematic viscosity.
g,gm =-Density of the fluid at a point and in the bulk fluld, respectively,
T =T :
g = (=) -
TO=Q”.
c-C
¥ = (=) .
CO C

GrX,Gr = Local and over=-all Grashof numbers for heat transfer, respectively,

Respectively defined by g x> B (TO -T) g 13 B (TO - Tw)
’ 2 — 2 .
v v
Gr;,Gr“ = Local and over-all Grashof numbers for mass transfer, respectively,
Respectively defined by g 2 o (Co ~-Cm) : g,L3 o (Co - Cw)
2 5 2
v v

NuX,Nu = Local and over-all Nusselt numbers for heat transfer, respectively.

Respectively defined by - X (%—Q) H EEE .
Y70

s
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Nu}“{,Nu“ = Local and overfall Nusselt numbers fqr mass -transfer, respectivel-y.
,Respectively»defined by =X (%—%)o 5 555 . -

Pr = Prandtl number (v/a),

Sc = Schmidt number (v/D).
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