
UC Irvine
ICS Technical Reports

Title
Chippe : a system for constraint driven behavioral synthesis

Permalink
https://escholarship.org/uc/item/0b35v21g

Authors
Brewer, Forrest
Gajski, Daniel

Publication Date
1988-04-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0b35v21g
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
/ir

/

may be protected {(1

by Copyright Law
(Title 17 U.S.C.)

Abstract:

Chippe: A System for Constraint Driven
.-- - Behavioral Synthesis

by

Forrest Brewer
Daniel Gajsk{-

Information and Computer Science Department
University of California, Irvine

Irvine, CA 92717

TR No. 88-09 April 2, 1988

This report describes the Chippe system, gives some background previous
work and describes several sample design runs of the system. Also presented
are the sources of the design tradeoffs used by Chippe, an overview of the
internal design model, and experiences using the system.

c -

I 'Ii I

/'

TABLE OF CONTENTS

CHAPTER

1. Introduction ... 1

2. Previous Work 2

2.1. Algorithms to Silicon Project .. 3

2.2. ADAM .. 4

2.3. Cathedral .. 5

2.4. HAL .. 6

2.5. Flamel ... 7

2.6. Limitations 8

3. Chippe Design Model 10

3.1. Requirements for Micro-Architecture Design .. 10

3.2. Refinement Tasks ... 11

3.3. Module, Timing, and Control Models ... 13

3.4. Design Tradeoffs ... 19

4. System Overview 22

5. Experimental Results 28

5.1. Sample Design Walk-Through... 28

5.2. Digital Elliptic Filter Example .. 34

5.3. TMS320 Example ... 38

5.4. System Limitations and Future Research ... 42

6. Conclusions 45

7. References 46

April 2, 1988 Page ii

1. Introduction

Several design systems have appeared which act as design aids to an engineer. In

these systems the basic tasks of refining the design are done semi-automatically, with the

engineer performing supervisory monitoring. When constraints are not met or one of the

design tasks fails to complete, the engineer is required to manually modify the design to

help fit the desired goals. The design aids enable the engineer to perform the design task

more rapidly than before, but there is no automated method for closing the design loop.

To build a closed loop design system there has to be a method of comparing the

results of designs with the desired behavior and constraints. A simple method is to build

evaluators that, given the desired function and the design, measure the performance in

terms of the higher-level functional description. This allows simple and direct interpreta

tion of the design results vs. the goals. A hierarchical design system would then have

evaluators which determine the quality of the design on a given level and abstract this

information to allow interpretation at the higher level.

These evaluations must then be compared with the high-level design goals and

appropriate action taken. There are several possibilities for the "appropriate action" in a

closed loop design. The design goals can be changed (reallocation of resources), the design

itself can be modified (optimization), or the constraints to the design refinment tools can be

changed. Modification of the goals opens the possibility that the present level design will

April 2, 1988 Page 1

not meet the constraints of the higher level design or of the system as a whole. Direct

modification of the design requires a great deal of knowledge about the various available

options and how each is implemented. This approach results in either extremely complex

algorithms or in simplified design models. The third possibility requires the design of spe

cialized design tools capable of design within a wide variety of constraints. Such tools can

allow a much broader scope of designs by performing constrained refinement of the designs

rather than direct design optimization. [Pangss] In this scheme, the designs are optimized by

changing the constraints of the refinement tools in response to evaluations of the design.

[BrGaSG] [GaBrs7] This approach has the advantage that the redesign is handled by the refiner

itself so that the knowledge about design required to correctly refine the design is separated

from the design knowledge of how to adjust the design to meet constraints.

In this paper we will first outline some previous work in this field and the relative

aci.vantages and problems encountered. Then the Chippe design models and sources for its

directed tradeoffs are discussed. An overview of the implementation of the Chippe system

is presented next followed by an operational description of the system, some experimental

results and finally experiences with this system.

2. Previous Work

There are several other micro-architecture design systems; of these only a few attempt

to design within preset constraints. In this chapter we present a short exposition on the

design methodologies of each.

April 2, 1988 Page 2

2.1. Algorithrr.B to Silicon Project

The Algorithms to Silicon project is primarily a collation of three separate projects

BUD [McFaB6] FRED [Wolf86] d DAA [KowaB4J BUD . t th t £ 1 b 1 , , an . is a sys em a per orm.s go a

analysis of the behavioral requirements for a design from the ISPS [BarbBl] behavioral

description. It is used with FRED to augment the design capabilities of the DAA system.

BUD provides the design system's resource allocation and scheduling facilities, and the abil-

ity to design within constraints. BUD's inputs consist of the Value-Trace [SnowiB] a

behavioral representation, a list of branching probabilities from which operation probabili-

ties can be generated, and a cost function to be minimized. The intent is to place the

design constraints in the cost function and then use the probabilities and the operation

requirements to search for an allocation and schedule which minimize this cost.

BUD uses a heuristic solution to this problem. First it builds a cluster tree of function

units. The clustering metric is based on the cost of merging operations, the number of com-

mon data-flow sources and whether the operations can be p'erformed in parallel. Then the

tree is cut at various distances from the root and each cut provides a new hardware alloca-

tion. Each prototype allocation is analyzed and compared· to the requirements. This is

continued exhaustively for each possible cut of the partition tree. The allocation which

best matches the constraints is then passed to DAA for completion. This has the effect of

searching a much larger space of possible allocations since the clustering tree admits only

those partitions favored by the clustering metric.

FRED supports BUD by providing an object oriented data-base of design components.

The components are described not only by attributes but by procedural methods which

allow calculation of component parameters from various partial descriptions.

April 2, 1988 Page 3

DAA is an expert system which takes the hardware allocation and schedule and

creates the interconnect for the design. Prior to the advent of BUD, DAA worked directly

from the VT description. The difficulty in creating designs meeting specific constraints led

to the incorporation of BUD 's global analysis to aid the design process.

2.2. ADAM

ADAM [KnapS5] [KnapSi] is a high level planning system designed to control several syn

thesis tools. Its input is a set of constraints and a Flow-Graph1 representation of the

design. It uses these along with rules about the tools to complete a design plan of opera

tions of the tools and settings of parameters which will complete the design. The planning

phase is carried out in an abstract design space using estimators to evaluate the design as

each of the (abstract) tools in the plan is applied. The constraints used in ADAM differ

significantly from those of the other systems considered. In ADAM, high level decisions

about the design such as pipelining, the system clock, and design technology are entered as

design constraints. ADAM then tries to create a design plan consisting of arguments to the

design tools and an ordered sequence of tools to run. The plan is constructed using a

knowledge base of properties based on constraint implications, and abstract estimator

models for the various tools. To facilitate the planning process, the estimators are all inten

tionally monotone which increases the planning efficiency. Once completed, the plan could

then be executed by running the tools on the input data-fl.ow graph and supplying the the

tools the arguments set by the planner.

1 A behavior representation similar to an ASM chart or VT body.

April 2, 1988 Page4

Because of the use of monotone estimators in the planning process, the actual design

produced may not match the constraints of the original design. In particular, the design

estimates cannot take into account the constraints of the real design space since these con-

strain ts are not known during the planning phase. It was proposed that once a design had

been completed, the design could be evaluated and these results fed back to the planner to

annotate the estimates used in the planning stage.

2.3. Cathedral

C h d 1 [DeRS86] [Raba87] [Catt87] · t · Ii d fi d · · d' · al ' l at e ra is a sys em spec1a ze or es1gnmg ig1t s1gna pro-

cessing chips. Specifically, Cathedral-II is designed to implement multi-processor chips with

a regular interconnect and synchronous data-passing protocol. This top level constraint

forces certain design decisions in the lower level scheduling and chip design. Among these

is the design of modules which all execute in a given fixed clock cycle. These modules are

mapped to the input data-flow graph by an expert system trying to meet cycle require-

ments. Since the clock is fixed, and the operator class is small, a large amount of time can

be well spent in the scheduler phase to perform the design in the smallest amount of time

on the mapped hardware. If the design passes the cycle count limit, then final symbolic

microcode and control units are designed. In the case of failure, a user is given the present

state of the design and is allowed to make "pragmas" or assertions to the expert mapper.

These assertions allow the user to steer the system toward desired architectural goals that

the user thinks will improve the performance.

Cathedral has several levels of optimization which are all aimed at reducing the final

cycle count or equivalently, maximizing the performance. Since the design space is limited

April 2, 1988 Page 5

to digital signal processors, these optimizations are not difficult to make. That is, the pro-

perties of the controller, the execution modules and the input schedule are all known in

advance of the design process. This allows a great deal of fine tuning for the particular

problems to be designed. At present such systems (those taking a small segment of the

design space) are the most successful in performing high level synthesis. It is hoped that

the basic idea of design styles can allow similar fine tuned strategies in more general prob-

lems. Even in this system, however, there is not direct evaluation of the design or method

which can make use of the earlier design efforts other than manually.

2.4. HAL

HAL [PaKG86] [Paul87] · t' t · d • h't t d · I · IS a Ime-cons rame nucro-arc I ec ure esign system. t IS com-

posed of three procedural phases and a data-base. The system input is a Flow-Graph of

the behavior and a constraint on how long the graph execution should take. In the first

phase the graph is scheduled into the time constraint (if possible) and the operations are

scheduled by use of a force-directed heuristic. In this scheduler, the mobility of operations

off the critical path is modeled by a probability for the operation to be scheduled in a par-

ticular cycle. Then when the graph is scheduled, the sums of the probabilities acted as

"forces" which are balanced to determine the clock-cycle in which the operation is actually

scheduled.

In the second phase, the scheduled graph is allocated physical hardware using an

expert system. The allocation is to minimize the interconnection and mux costs while using

as little hardware as possible. The allocation is done sequentially, each invocation allocat-

ing a new hardware device to the design.

April 2, 1988 Page 6

Finally, the interconnect for the design and the final binding of operation to unit is

done. The operations are assigned to units to reduce interconnect using the information in

the DFG. Then storage operations are added to the graph as needed by the schedule.

Clique partitioning is used to cluster the storage operations and function units into clusters

which are then allocated to the design. Thus, in the HAL system the driving force is the

number of clock cycles allowed in the execution of the given design.

2 .5 •. FJaJIEl

Flamel [TricSi] is a design system which specializes in the modification of the control

structure of the behavioral description. Flamel's input is Pascal (with fewer operators).

Flamel then builds a structure of control operators and blocks of straight line code. This

structure is modified by control-flow operations to increase the parallelism available for the

design. In Flamel only one transformation is applicable to the control-flow graph at a time.

This is a consequence of the original Pascal structured input, and heuristic rules. The

object is to reduce an interior sub-graph of the control-fl.ow to a single block increasing the

available parallelism to the scheduler. This is always possible if the control structures are

limited to 'if' constructs and constant iteration loops. These modifications result in a

sequence of equivalent flow-graphs, each with fewer control blocks. Internally, each data

fl.ow graph is flattened to extract the maximal parallelism available.

Each graph generated in this way corresponds to a potential design which can be

evaluated for area and performance. This is done by allocating hardware to each operation

in the graph, and then merging the hardware until the area constraint is reached. First,

April 2, 1988 Page 7

exclusive 2 units are merged and then other compatible units are merged while adding more

states to the schedule of operations. The data-path is then designed in a bit-slice style.

The placement of the bit-slice elements is made using a Kernighan and Lin style clustering

algorithm. From this layout area and time estimates can be directly estimated.

The blocks of the original control graph form the leaves of a clustering tree. As the

transformations are applied, the new blocks formed are placed into the tree as the parents

of the blocks that formed them. This process is continued until no further transformations

can be applied. Each node is then evaluated by the method above. Finally, given the

desired constraints, Flamel assigns resource constraints and starting with the top of the tree

recursively searches till the fastest implementation within the resources is found. This pro

cedure finds the best global design of those designs within the tree.

2.6. Linitations

Several of the difficulties encountered in these systems are common to all. Here we

summarize those problems which are addressed by the design process model.

a) Several of the above systems (most notably Flamel) make use of limited design models

to simplify the algorithms and allow a simple strategy for coercing the design closer to

the tradeoffs. In Flame! the operations are limited to allow simple code re-structuring,

the control structures are limited to constant iteration loops etc. This has the effect of

simplifying the design tradeoffs to the point where simple heuristic ordering of

modifications can build all of the potential designs. Another common assumption is

the use of unit time scheduling. Unit time scheduling would allocate the same time for

2Units whose operations are scheduled in different clocks.

April 2, 1988 Page 8

a bit-wise AND operation as for a parallel multiply.

b) Other limitations on the design models are common, for example, restricted control

unit design. These limitations correspond to choosing a single design "tyle to imple

ment the control design. The advantages of designing within a limited model are

speed and simplicity of the design algorithm. Several systems are designed for special

applications by enforcing a single style of implementation of the final design. The

Cathedral system is specialized for signal processing while SYCO [JVJCS6] and the origi

nal DAA system are tuned for microprocessor design. These system level design limi

tations result in simplification of the design strategy since the direction of many design

tradeoffs is predefined by the imposed design style.

c) Nearly all of the above systems run in an open loop manner. After the selected design

is complete none of the systems evaluate the design to see if it actually met the con

straints. More importantly, if it did fail, none of the systems has a method for fixing

the final design. In BUD, ADAM the global analysis is done before the design is

implemented using estimations of the component and interconnect constraints. Thus

the prototype designs are selected on the basis of estimated values and then imple

mented. For such a scheme to work either the estimations must be very good or the

design model must not allow small changes to cause large performance differences. In

most of the systems all hardware resources are set prior to the scheduling or intercon

nection phases and cannot be changed. Thus most of the possible design tradeoffs are

made very early in the process, when there is little data available to make such deci

sions. In effect, this places the entire success or failure of the design on the ability of

the allocation algorithm to correctly determine the hardware needed before the design

April 2, 1988 Page 9

is built.

d) The reason that these systems choose not to use iterative design is the large amount of

design time spent completing a design. The design tools have been carefully crafted to

make the most of their input and exhaustively search for the best solutions. This is

especially true of the ADAM tools: Sehwa, MAHA. [Pa.Pas6
J [PaPMs6] However, the

design estimations on which the time allocations to these tools are based may not be

accurate enough to ensure that this time is being spent on the appropriate design.

Especially when using feedback to correct the designs, a method for obtaining "cheap

and dirty" designs is necessary. If these designs are produced quickly then they can be

evaluated directly, obviating the need for better estimation. After the design goals are

approximated, the design can be optimized to a better degree by judicious optimiza-

tions.

3. Chippe Design l\1odel

3.1. Requiretn!nts for Mero-Architecture Design

The Micro-architecture design problem starts with a behavior level description of a

machine and produces a register transfer level design with modules, control units, and

appropriate interconnection between the modules. This design problem contains many

tradeoffs and design decisions such as: number and type of functional modules, control unit

type, clock frequency, interconnection style, and register allocations. Each function

described in the behavioral specification must be represented in the modules, but the

number of modules and the achieved degret of parallelism is determined by tradeoffs. The

basic tasks in this design process are: creation of a schedule of operations, allocation of the

April 2, 1988 Page 10

modules, registers, and busses, binding of operation to unit, allocation of connections

between the modules, and creation of the control unit or units. All of these tasks are inter

dependent and for this reason micro-architecture makes a good test bed for the new design

model.

3.2. Refinement Tasks

The total micro-architecture design process can be subdivided into four weakly cou

pled tasks. These are: allocation of the control unit and the data-path, scheduling the

operations, building the interconnect, and performing first-cut layout. The 'weak' coupling

of these tasks merely means that by carefully constraining each task based on the results of

others, reasonable results can be achieved. In general, better results can be had by merging

several of these processes and performing them simultaneously. However, the complexity of

the resulting tasks may make unfortunate design time vs. design quality tradeoffs.

Allocation refers to the task of selecting the hardware resources (i.e. function units)

that perform the functional operations. In addition the allocation task must select an

appropriate control unit for the design. These selections comprise a large part of the design

systems total tradeoff potential for area vs. time. Most other hardware compilers [DeRSS
6

]

[PaKGs6] [PaPa86] actually bind the operations to the units in this task. This simplifies the

scheduling and interconnect tasks at the cost of poorer design quality. More importantly,

these systems bind hardware to match a pre-defined schedule of operations, severly limiting

the opportunity for directed resource tradeoffs.

Scheduling takes the operations in the CDFG and determines the time slot for each.

It must necessarily take care of all dependencies, the operation time of each unit, and the

April 2, 1988 Page 11

clock cycle time while trying to minimize the total time used to realize the desired behavior.

Since the schedule is resource based, the best schedule is the one which minimizes the

number of operation cycles.

Interconnection seeks the minimal cost interconnect for each of the units and the

registers under the constraint of matching the schedule. Several schemes have been

d 'b d r h' k [TsSi84] [PaKG86] [Kowa84] b d d'.a' l f . escn e to periorm t 1s tas ase on 1uerent sty es o mtercon-

nect. In contrast to these systems the interconnection task here also performs the unit to

operation binding. This is consistent with the resource based approach and allows for

better results.

The Layout task refers to the first cut floor planning task used to refine the values of

the area usage of busses and function units. At present the units have area and time

bounds which are simply added, but for real chips with two dimensional constraints, a

better model is needed.

To design within the constraints determined by the design process model, the

refinment and optimization tools must meet strong requirements. Specifically, they must

allow constraints of resources and global parameters which control the design, and they

must allow completion of partial designs. For example, the scheduler must allow changes in

the design and number of components that it can use, or constraints on the clock cycle time

for the design. This has the effect of allowing simple constraint decisions to force the design

into different design tradeoff regimes. The requirement of ability to deal with partial solu-

tions stems from the iterative nature of the design. While it is possible the simply rebuild

the entire design from scratch after a modification this is inefficient since often much of the

design is not effected by such a change.

April 2, 1988 Page 12

3.3. l\.1odule, Tining, and Omtrol lVJodels

The scope of this system is the design of modules with defined external communication

protocols. These modules can be represented as finite state machines with the proviso that

the state space may be very large. Our model presented here is restricted to the design of

single modules within the constraints of communication and the system imposed physical

constraints. The communication at the module level is assumed to be part of the behavior

of the module, that is, the communication protocol is described directly in the behavioral

language.

The modules themselves are split internally into control and data-path sections. Gen

erally, the control section is concerned with the sequencing of operations over time, while

the data path provides the necessary hardware to implement the functions. This partition

ing need not be enforced, however, as several key tradeoffs arise from the selective transfer

of suitable operations between these sections. Figure 1 shows the dependence of the two

sections in the model. The control is assumed to transform its input variables, the state,

input signals, and condition signals into a new state and· control outputs for the data-path.

The data path similarly transforms its own data and control signals to new data and condi

tion codes lur the controller. The registers in the state and data loops are necessary to the

model to prevent races in operations. The other registers are added only if appropriate for

the style of design. This model does not define the time (or number of states) required to

complete a cycle, just that the data is stored appropriately on clock transitions. The only

requirements are that the control output a valid control signal to the data-path on each

cycle, and that the internal storage of thesP. sections (pipelines etc.) be scheduled accord

ingly. To assure that the time dependence of the control is mapped into the schedule,

April 2, 1988 Page 13

Control

Control Unit

r -,
1 Reg 1
L .J

Status

Abstract Module

wput
.Ports

Data-Path

r- -,
1 Reg 1
L_

O_utput
Ports

Figure 1. Abstract Module Model

either the scheduler must directly include the control constraints or they must be inserted

into the compiled behavior. To see how this is done it is first necessary to discuss the

abstract behavioral model.

The behavior specified in the input must be put in a form suited to .the design prob-

lem. Commonly, this information is represented as a control-data flow graph (CDFG).

This corresponds to the Value Trace of the CMU efforts [McFaB
6
] [Snow

7
B] and closely to the

CFG used by Trickey. [TricBi] The structure of the CDFG comes from the structured pro-

grarnming paradigm. The behavior is organized into blocks corresponding to conditional

control state transitions. These blocks are interconnected by directed arcs representing

April 2, 1988 Page 14

possible successor blocks. There is no limit to the number of possible successor arcs 3 , or

where those arcs may tenninate. Loops are represented by cycles in the control ft.ow. In

this way loops are unwound and conditional execution of future blocks is explicitly noted.

Thus, the entire behavior is represented as straight line (sequential) sections which are con-

nected to the possible successor blocks by allowed control transition.s. To insure correct

dependence handling there are two requirements. First, the block transitions must occur on

a state timing transition. Second, all of the values communicated to other blocks must be

stored into an ordered set of registers at the end of each block. This allows looping of a

block onto itself, the values are assumed to be in the appropriate registers. These require-

ments allow the separate scheduling of each block in the graph as long as the global value

storage requirements have been met.

Figure 2 shows the interaction of control and state timing in the model. Because of

the need to support several control styles, the model needs several methods for constraining

the schedule. After each state transition the control may have a delay before the signals

are valid. This is modeled as adding time to start of the cycle before any operations can

fire. This time is denoted the control setup time. In addition the control may require addi-

tional delays or (in the case of pipelined control) state transitions to calculate the successor

block in a conditional control transfer: In this case the constraints are modeled as delay

operations4 which are scheduled into the graph. This has the effect of pushing the opera-

tion producing the condition higher in the data ft.ow graph, hopefully allowing earlier exe-

cution. If the condition producing operation is on the critical path then the scheduler will

3 Actually, a particular control unit style may require a limit to the number of arcs since it may be impossible
for the unit to generate an arbitrary number of possible 'next state' addresses.
4A delay operation is a method of forcing the scheduler to wait a predetermined time before scheduling the suc
cessor operations.

April 2, 1988 Page 15

____________ S_t§.te_ Tr_ari~iiiQIJ ____ _

Data-Path
Operations

Figure 2. Control Timing

add states (possible no-ops) to satisfy the timing constraints.

Figure 3 shows the operation schedule timing. Each operation in the behavior is

bound to a function unit which physically performs the operations. This binding deter-

mines the time required for execution of the operation. The scheduler uses this information

and the dependencies to select which operations fire in which particular state. The timing

model allows for operations which extend beyond a single clock cycle, and for pipelined

operations. In addition, if there is sufficient time in a cycle, the model provides for direct

execution of a unit on the completion of another. This is referred to as "Operation Chain-

ing". [PaGas
6
] To make correct schedules, the units which are scheduled across state transi-

tions (multi-clock operations) must have either internal storage, or an input latch to hold

the data constant for the extended period. Failing either of these, the scheduler must write

April 2, 1988 Page 16

State Transition

Control Setup Delay
................... ·~··

Dead-Time
Dead-Time

Chained Normal Multi-Clock Pipelined

Figure 3. Operation Timing

the inputs of the operation for consecutive cycles until the operation is completed. (The

scheduler will do this but it usually requires more interconnect and is incompatible with

certain control and data-path styles).

All of the functions of the module are performed on function units and registers. A

function unit is an implementation model of a digital circuit which performs operations that

map to those required by operations in the behavior. A function unit can perform more

than one operation and can have multiple inputs and outputs. Typical function units are,

adders, AL Us, multiply, barrel shift, select (multiplexors), decoders, memory units etc. The

functions performed are selected by the control inputs and (sometimes) by the previous

state. Function units provide the ability to bind realizable physical unit models into the

micro-architecture. Each operation performed on a unit can have its own execution time,

April 2, 1988 Page 17

both clock transitions, and absolute delays. This allows the representation of reconfigurable

pipeline units. Finally, function units are modeled with arbitrary internal storage to allow

pipelining and memory operations. This storage is separate from the registers introduced to

store variables across state transitions, but must be similarly modeled in the scheduler.

A microarchitecture consists of a set of function units, registers, and interconnect.

The model for interconnect allows both multiplexor and bus based connection. This is

accomplished by using a parameterized two-level interconnect scheme. The outputs of the

devices are connected to a connection matrix which further connects to the busses. The

busses in tum connect to another matrix which connects to the inputs of the devices. The

matrix connections are realized as simple representations of multiplexors, by counting the

number of inputs on each bus. This scheme admits several cost functions based on bus

number, input mux number, output mux number, total number of connections or combina

tions of the above. Using this model it is a simple matter to define a cost function which

follows the schedule and minimizes the desired quantity. [Pangs
7
]

In previous register-transfer level synthesis tasks very little attention was placed on the

importance of layout and geometric considerations on the design. An exception to this is

made by the BUD system which does have a notion of placement via physical allocation of

·clusters. Without some model for interconnect costs and geometric constraints, a design

system will consistently underestimate design costs. An example of this problem is the

merging of two similar exclusive functions in a design. Without layout cost estimation, the

added cost of the interconnect bussing to move the operands to the new unit cannot be

estimated. This cost may be larger than the area gain from the merge. In Chippe the

interconnect delay is obtained from knowledge of the bus loading and a worst case estimate

April 2, 1988 Page 18

of the bus length. This estimate is obtained by assuming a water-filling placement for the

function units.

3.4. Design Tr~deoffs

There are several sources of design tradeoffs in computer architecture synthesis, some

are related to the instantiation of the operations, the remainder come from re-interpretation

of the behavior. Operator instantiation includes resource allocation, setting of global

parameters, and control style selection. By interpretation of behavior, we admit tradeoffs

which depend on changes of the representation of the operands or on the interpretation of

the control or data operations. Such tradeoffs include modifications of the control structure

of the graph (re-interpreting the sequential behavior), algebraic manipulations of the opera

tions to allow fewer operations or to increase the available parallelism, and direct changes

in the representations of operand used to emulate the desired behavior.

Resource allocation includes the selection of the number and type of the units which

do the operations, number and type and style of busses for the interconnect, and style

desired for the control unit. Since we advocate resource based control of the design, chang

ing the number of a certain operator may change the parallelism of the data-fl.ow graph and

hence the performance of the architecture. Changing the type of operator includes

modifications of the timing by adding latches to simplify the communication, pipelining the

unit to increase the parallel throughput, or selecting different implementations of the units

to change the combinatorial delay. For example, a 32-bit ALU used in an address calcula

tion can be implemented as one of several carry-lookahead or precharged options. Often, if

the address calculation is not on the critical path, area can be saved by using a slower

April 2, 1988 Page 19

adder with smaller area. This improves the area usage with no penality in performance. As

an aside, it is easy to see how such a modification is done in the iterative design paradigm

since the design itself is available. However, it is extremely difficult to add this kind of

optimization to non-iterative design methods. Initial global analysis might point out the

need for two adders, but unless the scheduling is redone after the change it is likely that

both adders will appear on the critical path.

Other less direct resource constraints include limiting the number of busses. The bus

limits described earlier allow a much greater span of design styles by enforcing bus limits at

the scheduling level. If this is not done, then the minimal number of busses is determined

by the number of simultaneous arcs crossing the state transitions in the schedule. Since it

is otherwise to aim of the scheduler to parallelize the operations as much as possible,

designs without bus constraints will all be 'connection heavy'. It is difficult to evaluate the

importance of bus constraints without performing a floorplan to at least determine the bus

lengths. Once this is done, constraints can be fed back into the scheduler and interconnect

tools to better accommodate the _design goals. It would be still better to perform intercon

nect and layout simultaneously. This would allow direct application of the constraints, but

this task would also require simultaneous modifications to the schedule and so would be

exceedingly complex. It is hoped_ that by style based control of the design processes, rela

tively good designs can be created which maximize the options of the later tools, so that

comparable refinement can be made iteratively.

Control Style selections are resource selections of a simpler type. Instead of manipu

lating the resources available for the control unit design, we simply select a particular style

of control based on the constraints. Then the constraints for this style of control are com-

April 2, 1988 Page 20

municated to the scheduler and the control unit is implemented directly. This restriction

on the types of control unit sterns from fairly incomplete design knowledge about control in

general. Ideally, the control and data-path could be designed together from the desired

behavior, but this would require a general model of control behavior and algorithms to par

tition the behavior and data path operations. A simpler model is to determine tradeoff

regimes for several control styles. Then a parameterized model for control interaction with

the data-path can be defined and used in the data-path design, allowing tradeoffs of each

of the styles. These tradeoffs include ROM based or PLA based control, pipelined control

with automatic no-op re-scheduling, Moore or Mealy machine control, and random logic

control for smaller machines.

There are several parameters global to the design styles available in this model. Prob

ably the most important is the system clock time. Other parameters include testability

merit figures, and global style selections such as technology. Tradeoffs of the system clock

are based on the timing model of the scheduler. Since the scheduler allows chaining of the

operations on the critical path, long clock times are not necessarily bad. The effect of a fas

ter clock is to reduce the granularity of the control operations. Thus faster clocks can sup

port better timing of the operations. Those operations longer than the clock are simply

allowed to extend into subsequent cycles, the inpu~s are either held or latched as required.

This is at the cost of much greater power consumption, especially for CMOS technologies.

Another problem is that for certain control styles, the control lines are not active for a

significant period after the state transition. This further reduces the time available for

operations to take place, and lowers the efficiency. Longer clocks can sometimes allow

chaining of important operations, thus the performance loss may not be bad for larger,

more parallel systems.

April 2, 1988 Page 21

These design tradeoffs arise mainly from modifications of the CDFG of the design,

several of the tradeoffs are standard compiler optimizations of the operations. [KKPLst] In

the case of directed design, many of these modifications become tradeoffs instead of optimi

zations. For example, algebraic manipulation of the data-flow graph to minimize the tree

height can now include addition of more parallel operations. This allows faster operation of

the design at the cost of greater area and power consumption. Chief among these tradeoffs

is the decision of whether a control transition should be handled sequentially in the control

unit or in parallel on the data-path. Control block merging can greatly increase the paral

lelism available to the design, at the cost of greater numbers of operations. [TricSi] [Duttss]

[BrGaSi] Given a particular control style, there is a family of design tradeoffs based on direct

manipulation of control block partitions. Examples are block merging, formation of multi

way branch constructs, loop unwinding and folding. Finally, there are tradeoffs which

move operations in control expressions directly into the control. For example, a few status

lines may be compared with a constant to determine future control, these status lines could

be moved directly into the control using a latch. This trades the decoder area in the data

path and associated busses with the extra are required by the control. For small fast

machines with random logic controllers, these tradeoffs are especially valuable.

4. System Overview

A profotype system to perform micro-architecture design has been implemented to

study the issues mentioned above. This system (Chippe) implements the design model and

several of the design tradeoff strategies discussed above. Figure 4 depicts the general struc

ture of the Chippe system. Input comes from the Hardware Description Language, which in

the present version of Chippe is similar to Pascal and ISPS. The language has a few

April 2, 1988 Page 22

Function
Data-Base

Control
Generation

I

I
I

I
I

I

I
I

I

I
I

I
I

I
I

I

Compiler

Strategy
Rule-Base

Evaluator

Output
Generation

' ' ' ' ' \
' ' \

\
\

' ' ' ' '

Slicer

Splicer

----Data

- - - - - -Control

Figure 4. Chippe System Structure

extensions to allow description of I/ 0 protocols and timing constraints, and many opera-

tors. The language is compiled into an internal control-data flow graph (CDFG) represen-

tation in two passes. The first pass builds a set of operators for the language and creates

nodes for the local sections of straight line code. The second pass of the compiler creates

the CDFG itself and adds the necessary dependency arcs. The second pass also adds regis-

ters for control block transitions and modifies the CDFG to accommodate the particular

April 2, 1988 Page 23

selected control style. At this point in the design the effect of control styles is to produce

delay nodes between the condition codes generated in the data path and subsequent state

block transitions. Modification of the control fl.ow at this point (before the schedule)

simplifies the correct design of the schedule by adding only the constraints produced by the

control model. At this point the original CDFG is saved on a stack of potential designs.

This allows backtracking earlier failed design tradeoffs.

Chippe represents the present state of design as both a CDFG and a "partial design"

structure which keeps the parameters, function units, interconnect and registers. Design

tradeoffs in Chippe result in modifications to these design structures. However, it is

inefficient to completely redesign the entire structure after each change, so the design

refinement is done in stages. After each stage the partial design is annotated with the

results of the refinement. Then when a design tradeoff modification is desired, only those

stages which need to be redone are performed. Evaluated partial designs are stacked to

allow backtracking at certain decision points. However, the present general strategy favors

greedy tradeoffs to save both space and design time. To simplify the above figure, the

CDFG, state graph and partial design are drawn separately, however, t.hey are all part of

the design data structure stored for each stack element.

Slicer and Splicer (PaGase] perform state scheduling and interconnection respectively for

Chippe. Both of these processes are controlled by the expert via parameters in their activa

tion. Their results are recorded in the partial design. These tasks allow design tradeoffs in

the scheduling and interconnect for the designs. Scheduling tradeoffs are made by

modifications of the resources available to the design and settings of the global parameters.

In addition the scheduler must take into account the constraints from the particular control

April 2, 1988 Page 24

style selected. The interconnect tradeoffs include various interconnect cost functions and

heuristic search orderings allowing a few distinct styles and ability to trade design quality

vs. design time.

Control Unit generation and modifications to the state graph are performed by the

control unit generation task. [Dutts
6

] This task is driven by the expert to selectively modify

the control structure of the graph and the global control unit selection. The selected con

trol unit style is accessed from the data base and all necessary constraints are added to the

graph. The iterative design process allows the scheduler to use timings derived from the

control model and the actual schedule of the data-path operations. This allows a more

efficient schedule than that derived from a worst case analysis.

All of Chippe is controlled by the expert rule-base which determines the strategies and

resource allocations for each of the other tasks. Its view of the design is based on direct

examination of the CDFG and on execution of evaluation functions. The expert's design

strategy follows from a controlled iterative approach. [BrGas6] In this approach all of the

actual designing is performed by controlled algorithmic tools. These tools maintain correct

ness of the design and ensure that the behavior is preserved. Design tradeoffs are made by

adjusting the controls to these tools. For example, the module resources available can be

set and thus modify the action of the scheduler. This frees the task controlling the tools

from need to understand how to make correct changes to the design. Similarly, by separat

ing out all of the technology dependent design data into a separate data-base, the system

can be made relatively technology independent. Thus, all the expert need to concern itself

with is the analysis and evaluation of the design and determining a proper course for future

modifications.

April 2, 1988 Page 25

In Chippe, the expert first determines where the present design iteration is in terms of

the constraints. The present constraints are area, time, and power. When one or more of

these values is violated, a set of rules designed to correct the situation is searched for an

appropriate change or set of changes to the next iteration. In this way the iterative design

provides for opportunistic modification of the design structure, based on timely evaluations

of their suitability. Figure 5 contains a table of the tradeoffs supported by the present

Tradeoff Su_R_Rorted How Effect

Number of Units yes Alloc. Rules, More Units => more
Scheduler area_!_ more _Qerf.

Type of Units yes Alloc. Rules, Data- Local Area/Time of Unit
base

Pipeline Units yes Alloc. Rules, Data- Pipeline increases opera-
base tor _Q_arallelism

Merged Units yes Alloc. Rules,· Data- Trade Perf. for Area
base

Latched Units yes Interconnect Rules Trade Unit area for In-
terconnect

Com_Q_iler O_Q_tims. no Need New Tool O_p_timization Task

O_Qerator Modification some Si:>_ecial Rules O_Qtimization Task

Macro Expansion no Need New Tool Allow sharing of func-
tions of operator

Flow Merging yes Transfuse Increase graph parallel-
ism and stora_g_e

Line Merge yes Transfuse Increase graph parallel-
ism

Loop Unwind no Need New Tool Increase parallelism, gen-
erally com_Qlex

La_yout Strle no Need La_yout Tool St_yle to minimize area

Control Style yes Co_g_ent St_yle to fit Desig_n Rqts.

Interconnect Style _yes S_Q_licer cost functions Bus vs. Mux Tradeoff

Cycle Time yes Cycle Time Rules Granularity vs. Power
ide_Q. on ControO_

Search Limits yes Splicer, Layout Design Time Optimiza-
ti on

Figure 5. Design Tradeoffs ?resently Supported in Chippe

April 2, 1988 Page 26

-

implementation of Chippe.

The Evaluator is a set of routines which are interactively called by the expert to deter

mine the ,::;tate of the design and to focus attention on possible future design modifications.

They analyze the partial design and return numeric quality measures. In a sense these

functions provide the means for rational decisions in the expert system by performing global

analysis on the present design. It is not sufficient to know that there is a problem in failing

to satisfy a constraint, in addition, information about what is at fault and how to make

appropriate changes is necessary. This information is provided by the specialized functions

in the evaluator. [Brewss] Examples of representative functions are usage statistics for func

tions units, execution overlap measurements of units, clock dead time, and relative meas

ures of resource usage by function units, multiplexors, busses, and the control unit. These

measures are activated dynamically by the expert system as it searches for appropriate rules

to apply.

The Function Unit database is a collection of units and operator bindings for the

design. During physical resource allocation, the data base is queried about possible units to

perform operations or groups of operations subject to certain parameters. For example, an

adder for 13-bit operands will produce a list including both ripple, and carry lookahead

adders, adder and complement units, and full AL U's. If the request was for an adder and

logical op combination, only AL U's would satisfy the request. The database is parameter

ized for input latching, pipelining, bitwidth, speed etc. Finally, the database stores models

of the components to allow evaluation of the design. At present the timing and state

behavior, geometric and gate usage, and power dissipation are modeled.

April 2, 1988 Page 27

Finally, the output generation and user interface routines allow interactive sessions

with the system, and final output design production.

5. ExperinEntal Results

To allow somewhat realistic evaluations of the designs produced by Chippe and also to

allow reasonable design tradeoffs, the component data-base must contain models which

mimic reality. It was thought that since the layout section of Chippe was the most rudi

mentary, structures built in gate-arrays would be most suitable for the designs. Without

proper layouts, the bus loading and interconnection costs are difficult to estimate. To help

this problem gate array cells are designed to have sufficient drive to run fairly long lines,

while trading off the speed possible for very small loadings. Also, in gate array designs, the

natural unit of space is a "gate" which simplifies the estimation problems for the data-base.

This decision admittedly removes the potential for layout based evaluation and tradeoffs in

the design, but was made to reduce the size, complexity, and turnaround time for the

implementation.

5.1. Salll>le Design Walle-Through

To illustrate the operation of Chippe, the following simple design is presented and

annotated at the key decision points in the design. Figure 6 shows the hardware descrip

tion for a small fixed-point calculation loop. This particular test case is from Girczyk,

Knight, and Paulin [PaKG86].

Figure 7 traces the evolution of the small design test case. The goals for the system

were area< 3000 gates and delay< 1.0 uSec. These constraints are shown as the vertical

April 2, 1988 Page 28

program diffeq(input,output);
type integer= {0 .. 11};
reg three : integer;

five : integer;
var a, dx, x, u, y, yl, ul, u2, u3, u4, u5, u6 : integer;
begin

if (x < a) then

end.

repeat
ul := u * dx;
u2 := five * x;
u3 := three * y;
yl := u * dx;
x := x + dx;
u4 := ul * u2;
u5 := dx * u3;
y :=y+yl;
u6 := u - u4;
u := u6 - u5;

when x < a

Figure 6. Hard ware Desc. Language for Hal example

dashed box on the left side of the figure. The figure shows the general fl.ow of the design,

from larger to smaller designs. This is an artifact of the initialization rules which produce

sufficient units to execute all of the operations in a block of the graph simultaneously. This

is done to get an idea of the relative strengths of the area and time requirements. It also

allows a quick view into the internal constraints produced by data dependencies and timing

constraints. In the initial runs of a design, Chippe picks a system clock equal to the longest

combinatorial delay plus the control and bus latency predicted for the initial control style.

As can be seen from the figure, the performance of the circuit did not change under the

first few modifications. This is due to the scheduler making use of the mobilities of the

function units's executions to re-schedule the operations into smaller numbers of units

without lengthening the critical path. The goals for this design are very restrictive on the

number of gates allowed for implementation and the present unit allocation is much too

April 2, 1988 Page 29

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

I
' I ' I ' ' I ' I ' I ' ' I ' _Qe..!.a.l _ I ' ' ...,

' Constraint I ' ' I ' I } Area Constraints
I Satisfied I

Loop I
I

Delay I

uSec
I
I Area.
IC .
1 onstramt

Des. 3:

I
I
I
I

- - - - - - .L - - _ .P!s.:..1. - - - - ,
I I
I

Des. 1

2000 3000 4000 5000 6000 7000 8000 9000
Gates

Figure 7. Design Evolution

large, so the strategy selected is to reduce the area until the area goal is met. This pro-

cedure resulted in the sequence of designs with performances decreasing as the area is

reduced.

After the area goal was satisfied (or if this goal had failed) the strategy changed to

trying to increase performance without much area increase. This was accomplished by

pipelining the multiplier unit and adjusting the system clock to take advantage of this

change. After this modification, the area could be reduced still further by eliminating a

unit made exclusive by the change in the schedule. Figure 8 shows the final design

achieved by Chippe for this example. After the area, time (and power) were satisfied for

this design, the interconnect task was automatically set to greater look-ahead and iteration

limits to enhance the quality of the final design. The actual time for this design is about 12

April 2, 1988 Page 30

PLA

I ...---....._.....,
I
I'"--.....----'
I
I
I
I
I
I
I

Ctl
->

L--------- -----~

BOl

MI# ACTIONS

1 a FUOl(< :r002,b01;r003,b02)

2 a FU02_(* :r004.1.b01j_r005J.b02l

3 a rOOl,BOl = FU02(*:)
FU02(*:r002.1.b01_ir001.1.b02l

4a rOOO,BOl = FU02(*:)
FU02{ *:r000_,b01;r006.1.b02l

5 a rOOO,BOl = FU02(*:)
FU02(*:rOOO,bOl;r001,b02)
r002J.B02 = FU03{ +:r002.1.b03_i_r005.1.b04l

6 a rOOl,BOl = FU02(*:)
FU02(* :r004,b03;r005 ,b04)
FUOli < :r002_tb0l_i_r003ib02l

7 a rOOO,BOl = FU02(*:)
FU02(*:rOOO,bOl;r005,b04)
r004_1_B02 = FU03_(-:r004.1.b03j_r001.1.b02l

8 a rOOl,BOl = FU02(*:)
r006J.B02 = FU03{ +:r000.1.b03j_r006J.b02l

9 a r004,B02 = FU03(-:r004,b03;r001,b02)

Nxt

2
1

3

4

5

6

7

8

9

2
1

Figure 8. Final design for Hal Example

Conditions

x <a :TRUE
x<a : FALSE

x<a :TRUE
x<a : FALSE

CPU seconds on a SUN 3/140. The first 7 designs were complete in about 5 seconds, about

April 2, 1988 Page 31

7 seconds were spent optimizing the final interconnect.

The table that appears under the figure is the output symbolic microcode for this

design. The symbolic microcode and the micro-architecture contain sufficient data to build

the control unit. Estimates of the control unit size based on the control-unit style and the

micro-code are thus reasonably accurate. Each numbered block corresponds to a state of

the machine while the lines describe which units are accessed and where the results are

placed. The dashed divisions represent chaining partitions of single states, this mechanism

allows the direct chaining of function units if there is sufficient time left in the cycle. The

FU.xx, rxxx, bxx, and Bxx are function units, registers, input and output busses respec

tively. Operands are supplied to the function-units on the indicated busses. In this exam

ple (to conform to the original Hal paper) the initial values for the registers are assumed to

be stored at the start of the code fragment. In a more realistic case these values could be

loaded from a constant ROM or from external ports in the environment. Also, in this

design the loop nature of the code fragment is explicitly used to assign registers used to

store the values between cycles of the loop so that the values appear in those registers each

cycle as needed.

The Final design shown in Figure 8 shows the design after the inclusion of a 2-stage

piped multiply unit. This design modification occurred because the number of sequential

multiplies became large enough for a pipe to be efficient. The design parameters for this

design are 3000 gates and 636 nS loop performance, well within the desired goals. Notice

that the two-level muxing structure has resulted in a design with four input busses and two

output busses. The optimization of this dPsign clearly splits the registers into two struc

tural units, RO, R2, R4, and Rl, R3, R5, R6. Additional rules could create register arrays

April 2, 1988 Page 32

for these partitions.

Changing the design goals to time < .4 uSec and area < 6000 gates resulted in design

4 in the figure. The evolution to t.vis design started out the same as in the previous one

but deviates as soon as the area goal is satisfied. Several attempts to achieve the required

time were made, including pipelining the (two) multipliers and changing the clock. These

changes are depicted in the design evolution chart as the line moving toward design 4. In

program ellip(input,output);
/*Written from Benchmarks for Highlevel Synthesis Workshop * /

type integer = {0 .. 15};
reg t2, t13, t18, t33, t39, t26, t38,

m21, rn24, m9, m30, m40, m36, m16, m6 : integer;
port In, Out : integer;
var a, b, c, d, e, f, g, h, i, j, k, o : integer;
begin /* Block automatically solves loop boundaries * /

i := In; /* port read * /
a := i + t2;
b :=a+ t13;
g := t33 + t39;
e := g + t26 + b;
d := (m21 *e) + b;
f := (rn24*e) + g;
t26 := f + d + e;
c : = m9 * (b + d) + a;
h := m30*(f + g) + t39;
j := t18 + c + d;
k := t38 + f + h;
o := m40*(h + t39);
t39 := 0 + h;
t38 := t38 + (m36*k);
t33 := t38 + k;
t18 := t18 + (m16*j);
t13 := t18 + j;
t 2 : = c + i + m6 * (a + c);
Out := o; /* Port write * /

end.

Figure 9. Source for Elliptic Filter

April 2, 1988 Page 33

this case the design attempt failed to meet the goals and then returned the best design

found.

5.2. Digital Elliptic Filter Exarr.ple

The second example was chosen from the recent literature high level synthesis bench

marks. [BorrBB] The application is a 5th order elliptic digital filter. Figure 9 shows the

Chippe source code for this filter. Note that it is composed entirely of adders and multi

pliers, and there is no overt control. This design was studied to see the effects of very high

levels of pipelining on the performance, area usage, and power consumption.

The assumption for Chippe in its early stages was that area could be traded for time in

a design. The generality of the design model for Chippe allowed modification of the system

clock as well as the allocation of units. When pipelining is introduced in a suitable design,

area is traded for increased power consumption as operations are done in shorter clock

periods. In fact, another tradeoff appears to be power vs. performance since the increase of

operator parallelism (area) also increases power. To test this, several designs of the elliptic

filter were run and the results plotted in Figure 10. In this figure, the boxes represent

designs in the minimal area class (about lOk gates) with variations needed to the control

units for the changing clock times. The circles represent designs with a multiplier and 2 or

more adders (about 1 lk gates), while the triangles represent designs with 2 parallel multi

pliers and any number of adders (about 17k gates). Note that in terms of power-delay

product, the best designs are in the intermediate area category. That is the designs fare

less well when either too small or too large an implementation is attempted. To see how

well this works when area optimization is applied, the above designs were re-plotted, this

April 2, 1988 Page 34

6000

5000

4000

Power (mW)
3000

2000

1000

I
I

I I I I I
- - - - - + - - - - -l - - - - - -1- - - - - - I- - - - - - + - - - - - -l - - - - - -1- - -

I I I I I I
I I I

I
I
I

I I I I I I I
_____ J. _____ ..J ______ J ______ L _____ J. _____ ..J ______ I __ _

I I I I I I
I I I I
I I I
I I
I I
I I I

_____ l___ I I _____ l_____ I I - - - - - -1- - - - - - - - - - - -1- - -

I

I I I I
- - - - - T - - - - - - -1- - - - - - r - - - - - T - - - - - I - - - - - -1- - -

I I I
I I I

I I
I
I

I I I I I
- - - - - 1" - - - - - - - -1- - - - - - J- - - - - - "t - - - - - -; - - - - - -1- - -

I I I I I
I I I I
I I I I
I I I I
I I I

I I I I I

-----+------l------ ----1------+------l--
I I I
I I I

I I
I I
I I
I I

0 --'---'-...l.--'-&......l.-'---'-..J.--'-&......l.-'-~..J.--'-.i.......L--'---'-..J.--'-.l.-l-'---'-..J.--'-.i.......L-'---'-...l.--'-&......l.-1
0 500 1000 1500 2000 2500 3000 3500

Loop Delay (nS)

Figure 10. Power vs. Performance Tradeoff

time using total area vs. power times loop delay. Figure 11 depicts the result. The graph

generally indicates that the largest designs aren't too good -- but also indicates that some of

the smallest are really quite excellent. Sadly, the 'curve' also shows that simple 2-d

tradeoffs on the designs may behave quite randomly. This is not as big of a problem

(unless global optimization it needed) as it appears. The points in Figure 11 and in Figure

10 represent the same designs. The reason for the large changes in power delay product for

April 2, 1988 Page 35

Power
Delay
Product
(uJ)

5.0

4.5

4.0

3.5

3.0

I I I I I
_ 1 _________ L ________ L _______ - l - _______ J. __ - - - -

I I I I I
I I I I
I I I

I
I I I I I

_L ________ L ________ L ________ i--------~-----
1 I I I I

I

-L--------L--------L--------~--------~----

-1- - - - - - - - -
I

I
I
I _,_ - - - - - - -

1 I I I
I I
I I
I I
I I

- -----L---- -
I
I
I
I
I

----1----
I
I
I
I

2. 5 -1- - - - - - - - - - - - - - + - - - - - - - - - - -
I
I
I
I

I I
2. 0 -1- - - - - - - - - - t- - - - - - - - - + - - - - - - - - - - - - - -

I I I
I I
I I

I
I I I I

1.5 -1- - - - - - - - - r- - - - - - - - - t- - - - - - - - - 1" - - - - - - - - -t - - - - - - - -
I I I I I

8000 10000 12000 14000 16000 18000

Area (Gates)

Figure 11. Power Delay Product vs. Implementation Area

small changes in area are that the designs represent different architectures satisfying similar

global constraints. For example, the two lowest points on the right hand side represent

designs where the larger controller and high speed clock were replaced by an extra adder.

This allowed very efficient schedules for the designs although the actual performance

suffered. The design at 11600 gates is actually a very good design in several senses, it is

high performance at relatively low power and reasonable area. From Chippe 's point of view

April 2, 1988 Page 36

these designs are actually fairly widely separated as performance can be used to

differentiate the close points.

One last experiment W:-\S run on the Elliptic filter example, this time forcing the system

clock to a preset value and letting Chippe supply sufficient (non-pipelined) units to

schedule the graph as quickly as possible. This was done to evaluate all of the possible

1200

1100

1000

Execution
Time (nS) 900

800

700

600

0

I I I
- - - - - - + - - - - - - -t - - - - - - -l - - - - - - -1- - - - - - - I- - - - - - -

I I I I I
I I

I

- - - - - -t - - - - - - -t - - - - - - .., - - - - - - -1- - - - - - - i- - -
I I I I I

I I I I
I I I I
I I I I I

I I I I
I I I I

-------j-------~------ ------r- -
I I I I
I I I I
I I I I
I I I I
I I I I

I
I
I
I
I
I

- -"1--
1
I
I
I

I I I
- - - -1- - - - - - i- - - - - - - r - -

I I I
I I I
I I I
I I I
I I I
I I I
------i-------r- -

I I
I I
I I
I I
I

I I I
- - -1- - - - - - - ,... - - - - - - r - -

I I I
I I I
I I I
I I I
I I I

I I I I I I
- - - - - - "t - - - - - - ""t - - - - - - "1 - - - - - - -1- - - - - - - r - - - - - - t" - - -

100 200 300 400 500 600

System Clock Period (nS)

Figure 12. Elliptic Filter Clock Rate vs. Performance

April 2, 1988 Page 37

non-standard clock cycles to see if particularly interesting ones other than those found by

Chippe existed. Figure 12 shows the results of these designs. In the figure, the designs

with very long clock cycles correspond to sufficient hard ware to chain the entire design,

resulting in the fastest possible design for the filter (at least for this scheduler). This design

used over 52000 gates but dissipated only 0.975W. Other interesting designs occurred at

340nS (1/2 630 when latency added) and 240nS (1/3 ..) and 120nS. The designs at faster

clocks were left in for completeness but mainly dissipated far too much power. The design

at 120nS was found by Chippe for goals of 25000 gates and l .OuS cycle. Each of these per

formance maxima correspond to minima in the dead-time function used by Chippe to set

the system cycle time_. This is not surprising since the dead-time is a direct measure of the

time wasted at the end of each cycle. It is naturally minimized by cycle lengths for which

good schedules exist.

5.3. Tl\1S320 Exarrple

The TMS 320 is a commercial digital signal processing chip designed to run at least 5

MIPS on 32-bit data. It contains a 16x16 multiplier and a 32-bit ALU and is designed to

execute most instructions in 1 200nS clock. This is achieved by the used of a Harvard

architecture for the computer which allows simultaneous access to instructions and data in

to separate memory storage areas. To make use of this ability, the TMS320 is internally

pipelined so that as many as 3 instructions can be read, executing, and pending at one

time. This design was chosen for automatic implementation by Chippe to explore the issues

of large scale microprocessor design.

April 2, 1988 Page 38

The Chippe source code for the TMS320 [BrewBS] is an imperfect representation of the

chip functionality. Although all of the instructions were implemented, several 'features'

were not. These include the accumulator 'saturation' where at behest of a bit, all positive

overflows result in an output of the maximum positive 32-bit number, and a similar case for

negative overflows. Also, in storing the auto incremented and decremented values of the

data address pointers into the data itself, the 320 uses counters which are clocked in mid

instruction and are difficult to emulate. The Chippe code assumed that all auto-increment

and decrement activity takes place in the fetch cycle of the machine, not the execute/write

cycle.

The TMS320 design was run with several area, time, and power constraints and the

results shown in Surprisingly, the available area/time unit tradeoffs did not affect the

schedule at all. This is due to two causes in the design. The first is that although the

TMS320 is itself highly pipelined operationally, there is little parallelism in the operations

preformed on its internal data-path. Specifically, the specified instructions often allow

chains of several internal function units but offer no other possibility for parallel operations.

This is not surprising since to allow parallel execution of different functions, the instruction

set would somehow need to specify the sources and destinations (or equivalent) for all

parallel operations. This would be quite cumbersome for complex inst.ructions and only a

small number of parallel function units. (For simple instructions this implies that the

"opcode" is actually providmg a condensed version of the micro-code; this is exploited in

VLIW architectures.) [ElliBS] The second cause f~r lack of unit tradeoffs is that the parallel

operation of the address generation for instructions and data and the execution of the

data-path all made use of operators of dissimilar bit-widths. Thus Chlppe cannot tell that

these units could be combined. What Chippe did instead was to insert slower units in the

April 2, 1988 Page 39

areas of the design where speed was not an issue.

Interestingly, although pipelining is usually a good idea-- there is no point in pipelin-

ing the multiply of a TMS320. The reason for this is the nature of the present design

representation. In this implementation, at least 6 cycles separate successive multiplies in

the worst case. This allows more than enough time for completion of a multi clock multiply

cycle. An unusual feature of the design is that the arithmetic and logic units were designed

as separate instantiations. The reason for this is an artifact of the TMS320 design. In this

machine the logic operations extend for only 16 of the 32 bits in the accumulator. Thus, in

Chippe 's implementation, these are left as separate units. The total design just described

ran in about 2 min of time on a SUN3/140 workstation. The final design parameters are

shown in Figure 13.

Design 1: Clk 52nS
Ctl: Piped_Mealy, 58 Ctl_lines, 297 States, Area 34. 7k, Pwr 31lm W
Conn: Style-2, 15/27 Bus Conn, 42 Muxes, 124 Muxinputs, Area 21.lk, Pwr l.07W
Data-Path: Area 46052, Pwr 1. 78W
Totals: Area 101942, Power 3.167W, Avg. Cycle 389.2nS

Design 2: Clk 62.4nS
Ctl: Piped_Moore, 49 CtLlines, 138 States, Area 13.6k, Pwr 222m W
Conn: Style_4, 25/35 Bus Conn, 32 Muxes, 126 MuJcinputs, Area 28.8k, Pwr 836mW
Data-Path: Area 46212, Pwr l.49W
Totals: Area 88623, Power 2.55W, Avg. Cycle 681.5nS

Design 3: Clk 47.lnS
Ctl: Piped_Moore, 48 Ctl_lines, 139 States, Area 13.6k, Pwr 298mW
Conn: Style_4, 24/35 Bus Conn, 31 Muxes, 123 Muxinputs, Area 28.3k, Pwr l.14W
Data-Path: Area 46372, Pwr 2.09W
Totals: Area 88397, Power 3.527W, Avg. Cycle 500.lnS

Figure 13. Final TMS 320 Design Results

April 2, 1988 Page 40

Three designs are presented in the results, the differences between the designs mainly

resulting from differing control unit and interconnection styles. Design 1 has the fastest

average cycle found for designs using less than 4 W (chosen to reflect package limits). The

time constraint forced a tradeoff of area in the controller to a Mealy machine with a pipe

line register to the data-path. The large number of states is a result of encoding the condi

tional returns into the state number. The connection style "Style-2" selects an option to

minimize busses first and the the number of muxes in the connection heuristic. (The other

designs used Style_4 which strictly minimizes the muxes). This selection increases the con

troller area but reduces the total area in interconnect. The Bus Conn parameter measures

the number of point to point busses used in the design. The large numbers result from

using bus wiring even for single bit signals. Area is in terms of equivalent gates in each

category as the system data-base style is gate array. Since all of the functions had to

implemented in a gate-array, certain structures (such as the PLA control) were inefficient.

This is especially true for the internal memory which shows up as function unit usage. The

TMS320 has 1536*16-bit ROM and 144*16-bit RAM on board. These require about 30000

equivalent gates and dominate the function units.

The other two designs show that even with essentially the same data-path, there are

interconnect control-unit and system clock tradeoffs. These designs resulted from an easing

of the time constraint and tightening of the area limits. Design 2 was limited to 3W of

power while Design 3 was allowed 4W. This clearly shows the ability to trade power for

speed while using essentially the same areas for two designs.

April 2, 1988 Page 41

5.4. System Limitations and Future Research

There are several limitations in the implementation of Chippe. Some stem from

micro-architecture design model oversights while others were caused by incomplete or lim

ited tool and expert implementations.

1) The first problem encountered with the TMS320 design was the common usage of bit

fields of arbitrary size as the need arose. In Chippe these bus select and concatenate

.operators are modeled as function units to preserve bus bit width integrity and to have

a means for keeping which bits are being selected. (Chippe is very careful to ensure

that bit-widths of busses and units match. When bit selection is required Chippe

requires a special unit to map the connections.) Unfortunately, it is very difficult to

determine a priori where such units should be introduced into the interconnect. To

solve this problem, these units would have to become part of the interconnection

refinement along with an approach for combining busses of different widths. The

result of these two effects in the present version made the problem much larger than it

would seem. Instead of 10-20 different function units the design had to deal with

about 100 and the interconnect required a minimum of 20-30 input and output point

to-point bussing connections.

2) A second problem, more basic to the Chippe design representation model was noticed.

In Chippe, there is presently no way to allow the operation of a function unit to cross

a block control transition5 . Specifically, all multi-clock operations must be complete

before the block is considered :finished and execution of the next block can start. For

example, a multiclock operation started in a short block must finish and write it's

5i.e. a branch transition of the control graph, not a state transition which is expressly allowed.

April 2, 1988 Page 42

outpu.t before the block can end. The scheduler will add states as necessary to ensure

that all operands are latched before a control transition. This is not strictly necessary

as an operation could be started in a block and finished in a successor block. The

problem stems from the present scheduler in Chippe which schedules only linear

blocks. In an unconstrained physical implementation, the pending operations could be

executed in parallel to the operation of the system controller even during a branch-- a

design model oversight in Chippe. For Chippe's design model to allow this, there

would have to be a mechanism to force timing constraints across control branch transi

tions. A better method would be to simply include the entire graph (including loops)

as a possible input and redesign the scheduler.

3) The greatest limitations (from the tradeoff ability of Chippe) come from the lack of

.bus and interconnection modeling in the resource driven scheduler. Specifically, the

system has no way of constraining the number and type of busses used in a design.

The number of busses is determined by the number of data-path arcs which are used

in the most parallel instruction scheduled. Since the scheduler is resource based, a

possible resource addition would be bus limitations. At present the scheduler will

maximally parallelize the data path to get the fastest schedule possible on the given

number of function units. Since busses with many connections can use large amounts

of area, a constraint reducing the number of allowed busses (and possibly reducing the

performance) would enhance Chippe greatly.

4) The number of possible interconnect styles is more limited than it should be, primarily

because of the schedule problems above but also because of the strict bit-width match

ing criteria. Operands of many sizes should be allowed to be passed on a bus,

April 2, 1988 Page 43

although this greatly increases the design search space. Furthermore, busses should be

allowed to go between any sources and destinations and need true bi-directional con

trol. This problem is extremely difficult as the number of possible combinations of

directions and data packings into such busses grows extremely rapidly with problem

size.

5) The distinction between registers and functions units and interconnection units should

be dropped. Since function units can contain state and pipeline registers, there is no

need to have separate "registers". This change would enable Chippe to use shift regis

ters, counters, and other "registers" with functions. At present, registers are the repo

sitory of state during all state transitions and so are handled specially by the scheduler

and interconnect tasks. Function units can contain pending operations but "latching"

is not considered an operation. Furthermore, registers can be simultaneously read and

written to with differing operands. This can already occur for pipelined units so a sim

ple extension of the function units would allow their use as registers.

6) Future research is needed to perform directed graph tradeoffs and optimizations, both

of the restructuring type and in· terms of operator mapping. The generality of the

function unit model allows for complex units including small FSM's. Once suitable

graph partitions are found, tools could be built to custom create local components for

those partitions. For example, a "il' statement could be implemented in the data path

by a suitable combination of logic gates and a mux-- all of which could be chained

into a single cycle. Once built, these units could become part of the high level design

in the same mapping context as prese.nt data-base units are allocated. This would

allow the tradeoff of custom component design vs. implementation in the data-base

April 2, 1988 Page 44

set.

7) The large size and domination of the controllers in the highly parallel designs showed

the desperate need for other control strategies. While the PLA works fine for central

state control, it is clear that size reductions can be made. by introducing nano-coding

and local distributed control into the designs. This would require that the distinction

between data-path function and control function be dropped and both parts would

need to be simultaneously scheduled. Then fast pipelined units could have their own

mini-controller running at a different clock from that of the main controller.

6. Gmclusions

This paper described a system implementing a simple mechanism for performing closed

loop design based on a knobs and gauges approach to feedback. The intent is to allow

opportunistic optimization and design refinement in a design environment which not only

has tools for modifying the potential design, but also has evaluators and means of making

new design decisions. This approach is inherently iterative as the modifications to the

potential designs cause changes which can propagate throughout the design. To avoid this

problem, fast refinement and design decision tools were implemented to allow redesign with

the new constraints.

The implementation of Chippe made use of another key idea: separation of design

implementation knowledge from design analysis knowledge. In Chippe, the implementation

knowledge resides in the algorithmic tools thus freeing the expert system to analyse and

correct constraint violations without having to know how to make the changes directly.

This is a result of the expert controlling "knobs" of the refinement tools. The idea is to put

April 2, 1988 Page 45

the easily organized implementation knowledge into algorithmic tools and put the tradeoff

knowledge which is less well organized into the expert. Making the entire program algo-

rithmic or rule-based would have increased the complexity and developement time.

Although the present implementation of Chippe has many deficiencies, the implemen-

tation has shown that closed loop designs can be generated completely automatically, from

settings of global goals. These designs are comparable if not superior to the best of the

present day synthesis systems, when such comparisons can be made. Unfortunately, many

of the designs produced use pipelined components and/ or pipelined controllers and are

difficult to compare with published examples, as most other systems cannot make use of

these ·components. Since Chippe uses units with operation times which can vary over 2

orders of magnitude comparing schedules is also difficult. Most comparable systems assume

all operations are of a unit time. Lastly, Chippe is fast-- the longest iterative sequences

(The TMS320) took about 5 min. on a SUN3/140. In these sequences, the design tradeoffs

were done in the first minute, all the rest of the remaining time was spent optimizing the

interconnect.

7. References

Barb81
M. Barbacci, "Instruction Set Processor Specifications (ISPS): The Notation· and its
Applications" IEEE Transactions on Computers 30(1)(Jan, 1981).

Borr88
G. Borrello et al, "Private Communication: High Level Synthesis Workshop" 25th
IEEE Design Automation Conference (To be held June, 1988).

BrGa86
F. D. Brewer, D. D. Gajski, "An Expert System Paradigm for Design" 23rd IEEE
Design Automation Conference pp. 62-68, Las Vegas, NV (July, 1986).

GaBr87
D. D. Gajski, F. D. Brewer "Towards Intelligent Silicon Compilation" Design Systems
for VLSI Circuits ed. G. de Micheli, A. Sangivanni-Vincentelli, P. Antognetti,

April 2, 1988 Page 46

Martinus Nijhoff Pub. (1987).

BrGa87
F. D. Brewer, D. D. Gajski, "Knowledge Based Control in Micro-Architecture Design"
24th IEEE Design Automation Conference Miami, Fl (July, 1987).

Brew88
F. D. Brewer "Constraint Driven Behavioral Synthesis" PhD. Thesis, University of
Illinois, Urbana-Champaign, Dept. of Computer Science. (May, 1988).

Catt87
F. Catthoor, "Architectural Design Strategies for Complex DSP Systems m an
Automated Synthesis Environment" Phd Thesis, Katholieke Universiteit Leuven:
Dept. of Electrical Engineering. (IMEC), (May, 1987).

DeRS86
H. DeMan, J. Rabaey, P. Six, "CATHEDRAL II: A Synthesis and Module Generation
System for Multiprocessor Systems on a Chip" NATO Study Institute on Logic Syn
thesis and Silicon Compilation for VLSI design, L 'Aqulia, Italy (July, 1986).

Dutt86
N. Dutt, "COGENT: A Parametrizable Control Generator fo Constraint Driven
Microarchitecture Synthesis" PhD Qual. Exam, University of Illinois Urbana
Champaign (Nov, 1986).

Elli85
J. R. Ellis, "Bulldog: A Compiler for VLIW Architectures," Ph.D. dissertation. Yale
University, (Feb, 1985).

GrKP85
J. Granacki, D. Knapp, A. Parker, "The ADAM Advanced Design Automation Sys
tem: Overview, Planner and Natural Language Interface," 22nd Design Automation
Conference (June~ 1985).

JVJC86
A. A. Jerraya, P. Varniot, R. Jamier, B. Curtios, "Principles of the SYCO Compiler"
23rd Design Automation Conference IEEE ACM, Las Vegas, NV, (July, 1986).

KnPa86
D. W. Knapp, A. G. Parker, "A Design Utility Manager: The ADAM Planning
Engine" 23rd Design Automation Conference IEEE, Las Vegas, NV, pp. 48-54, (July,
1986).

Knap86
"D. W. Knapp" "A Planning Model of the Design Process" PhD. Dissertation,
University of Southern California (Dec., 1986).

Kowa84
T. J. Kowalski, "The VLSI Design Automation Assistant: A Knowledge-Based Expert
System" PhD. Dissertation, Carnegie-Mellon University (April, 1984).

McFa86
M. J. McFarland, "Using Bottom-Up Design Techniques in the Synthesis of Digital

April 2, 1988 Page 47

Hardware from Abstract Behavioral Descriptions" 23rd Design Automation Confer
ence pp. 474-480, (July, 1986).

Pang87
B. Pangrle, "A Behavioral Compiler for Intelligent Silicon Compilation" PhD Disser
tation, University of Illinois, Urbana-Champaign (June, 1987).

PaGa86
B. Pangrle, D. Gajski, "Slicer: A State Synthesizer for Intelligent Silicon Compilation"
Proceedings ICCAD86 Santa Clara, CA, (Oct, 1986).

Pang88
B. Pangrle, "A Heuristic Approach to Connectivity Binding" Proceedings DAC88
Anaheim, CA, (July, 1988).

PaPa86
· N. Park, A. C. Parker, "SEHWA: A Program for Synthesis of Pipelines" 23rd Design

Automation Conference IEEE, Las Vegas, NV, (July, 1986).

PaPM86
A. C. Parker, J. Pizarro, M. Milnar, "MAHA: A Program for Datapath Synthesis"
23rd Design Automqtion Conference IEEE, Las Vegas, NV (July, 1986).

PaKG86
P. G. Paulin, J. P. Knight, E. F. Girczyc, "HAL: A Multi-Paradigm Approach to
Automatic Data Path Synthesis" 23rd Design Automation Conference IEEE, Las
Vegas, NV, pp. 263-270, (July, 1986).

PaKn87
P. G. Paulin, J. P. Knight, "Force-Directed Scheduling in Autonmated Data Path
Synthesis" 24th Design Automation Conference IEEE, Miami, FL, pp. 195-202, (July,
1987).

Raba87
J. Rabaey, "CATHEDRAL-II: Computer Aided Synthesis of Digital Processing Sys
tems" IEEE Custom Integrated Circuits Conference Portland, OR, (May, 1987).

Snow78
E. A. Snow, "Automation of Module Set Independent Register-Transfer Level Design"
PhD Dissertation, Carnegie-Mellon University (April, 1978).

Tric87
H. Trickey, "A High-Level Hardware Compiler" IEEE TRAN. on Computer Aided
Design CAD-6(2), (March, 1987).

Wolf86
W. Wolf, "An Object Oriented, Procedural Database for VLSI Chip Planning" 23rd
Design Automation Conference IEEE, pp. 744-751, Las Vegas, NV, (July, 1986).

April 2, 1988 Page 48

