
UC San Diego
UC San Diego Previously Published Works

Title
Feature Monitored Shape Unifying for Lossy SPM-JBIG2

Permalink
https://escholarship.org/uc/item/0b37g11h

Journal
Signal Processing and its Applications, Sixth International, Symposium on. 2001, 2

Authors
Ye, Y
Cosman, P

Publication Date
2001

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0b37g11h
https://escholarship.org
http://www.cdlib.org/

International Symposium on Signal Processing and its Applications (ISSPA), Kuola Lumpur, Malaysia, 13 - 16 August, 2001. Organized by
the Dept. of Microelectronics and Computer Engineering, UTM, Malaysia and Signal Processing Research Centre. QUT, Australia

FEATURE-MONITORED SHAPE UNIFYING FOR LOSSY SPM-JBIG2

Yan Ye and Pamela Cosman

University of California at San Diego
Electrical and Computer Engineering Department

9500 Gilman Drive, La Jolla, CA 92093-0407
E-mail: {yye, pcosman}@ucsd.edu

ABSTRACT

Shape unifying is a very efficient preprocessing tech-
nique used in lossy SPM-JBIG2 systems. It permits isolated
errors between the current bitmap and its reference to im-
prove refinement coding efficiency. Compared to lossless
coding, it can improve compression by about 32% while
causing very little visual information loss. When bigger er-
ror clusters are permitted in shape unifying, hrther com-
pression gain can be achieved but at the price of more no-
ticeable visual information loss and even character substi-
tution errors. In this paper we propose a feature monitored
shape unifying procedure that can significantly lower the
risk of substitution errors when permitting bigger errors.
Experiments show that, compared to the unmonitored shape
unifying, the feature monitored version can suppress more
than 213 of all substitution errors while achieving additional
compression improvements of 30-40%.

1. INTRODUCTION

The JBIG2 standard [l, 21 is the new international stan-
dard for lossless and lossy coding of bi-level images. It is
meant for both text and halftone data. We only consider
text images. In JBIG2, coding of text is based on either of
two modes: pattern matching and substitution (PM&S) [3]
or soft pattern matching (SPM) [4, 51. We concentrate on
SPM.

A typical page of text contains many repeated charac-
ters. We call the bitmap of a text character instance a “sym-
bol.” To code all the symbols in the image, we first select
a group of representatives and put them into the dictionary.
In lossless SPM, a symbol is coded by giving its position on
the page, the index of the best matching symbol in the dic-
tionary, and finally a lossless coding of the current symbol’s
actual bitmap based on that of its best match. This loss-
less coding, called refinement coding, is done by context-
based arithmetic coding using a context drawn from both

This research was supported by NSF grant MIP-9624729 (CAREER),
and by the Center for Wireless Communications at UCSD.

the best match bitmap, and the already coded part of the
actual current bitmap. In our work we use the Hamming
distance based matching criterion.

It is a difficult task to evaluate image quality for lossy
compression of binary text images. Differences between
the bitmaps of the original and compressed symbol can be
categorized as isolated differences, clustered differences, or
substitution errors. Isolated differences are tiny (1x1, 1x2,
2x1) groups of pixels which are usually not noticeable visu-
ally. Clustered differences are larger groups of pixels. Sub-
stitution errors occur when one text character (say, a letter
“c”) in the original image gets reconstructed as a different
one (say, a letter “0”) in the compressed image. In t,his pa-
per, we are concerned with compression algorithms that in-
crease the compression ratio while limiting the number of
substitution errors, and also allowing strict control on the
size of visible clustered errors.

In lossy coding, SPM preprocesses the original image
to introduce information loss. We introduce a feature moni-
tored shape unifying procedure that can effectively suppress
the occurrences of character substitutions in lossy SPM. Al-
though the visual appearance of decoded images degrades
when bigger error clusters are permitted, character substitu-
tions are kept low by ensuring certain features do not change
with shape unifying.

This paper is arranged as follows. In Section 2, we first
briefly review the three preprocessing techniques used in
lossy SPM. Then we explain the idea of using geometri-
cal features of binary patterns to monitor shape unifying so
as to lower the risk of substitution errors. In Section 3, we
present our experimental results. We conclude in Section 4.

2. FEATURE MONITORED SHAPE UNIFYING

2.1. Preprocessing techniques in lossy SPM

To achieve lossy compression with SPM, [4] proposed sev-
eral preprocessing techniques to introduce information loss
in a restricted manner. These techniques are speck elimina-
tion, edge smoothing and shape unifling. Speck elimina-

0~7803-6703-0/01/$10.0082001 IEEE 426

mailto:pcosman}@ucsd.edu

International Symposium on Signal Processing and its Applications (ISSPA), Kuala Lumpur, Malaysia, 13 - 16 August. 2001. Organized by
the Dept. of Microelectronics and Computer Engineering, UTM, Malaysia and Signal Processing Research Centre, QUT Australia

tion wipes out very tiny symbols or flying specks (symbols
no bigger than 2x2). Edge smoothing fixes jagged edges
by flipping protruding single black pixels or indented single
white pixels along text edges. Shape unifying (see Figure 1)
tries to make the current symbol bitmap as similar as pos-
sible to its reference bitmap, without introducing “visible”
changes. This is achieved by flipping pixels in the current
bitmap if they are isolated areas of difference with the ref-
erence bitmap. We use the term “isolated” to mean a 1 x 1,
1 x2, or 2 x 1 block of pixels. The modified bitmap is then
losslessly coded with refinement coding.

(a) reference (b) new symbol

(c) initial difference map (d) difference map (e) modified new symbol
between reference after isolated errors
and new symbol are removed

Figure 1: An example of shape unifying.

Among the three techniques, shape uni&ing gives the
biggest compression improvement. Our experiments show
that, compared to strictly lossless coding, using speck elim-
ination and edge smoothing together can improve compres-
sion by around 8%, while adding shape unifying provides
approximately 40% improvement. Shape unifying is so ef-
ficient because in refinement coding, the arithmetic coder
predicts the current bitmap using information from its ref-
erence. Differences between these two bitmaps reduce the
prediction accuracy and consequently refinement coding ef-
ficiency. Shape unifying reduces the number of different
pixels between the two bitmaps. After shape unifying, the
modified symbol (Fig. 1 (e)) is more similar to its reference
(Fig. 1 (a)). Furthermore, due to the “isolated” restriction,
the decoded image will contain only isolated errors com-
pared to the original image. Therefore, substitution errors
are very unlikely to occur except for very tiny symbols. The
loss of visual information is almost imperceptible.

Speck elimination and edge smoothing are truly prepro-
cessing techniques. Shape unifying is not strictly a prepro-
cessing procedure since it is not done until after symbols
find their references in the dictionary, which, using the more
efficient dictionary design techniques we have previously

proposed [5 , 61, will not happen until the entire dictionary
itself is decided. Once the entire symbol set is altered with
these three approaches, the page is compressed losslessly;
no further loss will be introduced.

2.2. Feature monitored shape unifying

The advantage of permitting only isolated errors in shape
unifying is that visual information loss at the receiver’s end
is almost imperceptible. However, such a restriction also
puts a limit on the lossy coding efficiency. To improve the
coding efficiency, shape unifying should allow not just iso-
lated errors, but some clustered ones as well, as long as the
risk of character substitutions is kept low. To limit the risk
of substitutions, we introduce the idea of monitoring the
shape unifying procedure with features.

We can compute geometrical features (e.g., centroid,
number of holes, number of connected components) for bi-
nary patterns [7,8]. If two bitmaps represent the same char-
acter, then their features will have the same or very simi-
lar values; otherwise, their features are likely to be differ-
ent even though they may look somewhat similar. In Fig. 2
we show two pairs of similar characters with different fea-
tures and the difference maps between them. In our experi-
ments, these character pairs will very likely find each other
as the reference symbol because their Hamming distances
are rather small. Note that the character “b” has one in-
ternal hole while the character “h” has none; “?’ has two
connected components (the dot and the stem) while “1” has
only one. Such features are essential for a human being to
distinguish between “b” and “h” or “i” and “1.” Thus, we
can use the number of holes and the number of connected
components to monitor the shape unifying procedure. That
is, for each cluster of differences between the current bitmap
and its reference, regardless of whether it is small or not, if
eliminating it will not cause the features to change abruptly,
we go on with shape unifying and eliminate this difference
cluster; otherwise, we preserve it because a substitution er-
ror will likely occur. For example, in Fig. 2 (a), we can
change the “b” bitmap not only at the isolated single-pixel
location, but at all the gray pixel locations, as they will not
cause the one internal hole in “b” to disappear. But, the 10-
pixel cluster of differences down at the bottom (painted in
black) must be preserved. Otherwise a human being will
perceive an “h” instead of a “b”. Similarly, in Fig. 2 (b), we
can change the “i” bitmap at all the gray locations but not
at the black ones as changing the black locations will cause
the “i” bitmap to be connected into one whole piece, result-
ing in a substitution error. Modifying the current symbols at
more locations makes symbols more similar to their refer-
ences. Consequently, the refinement coding efficiency can
be improved. At the same time, ensuring certain features
do not change abruptly allows us to prevent many cases of
character substitutions.

427

International Symposium on Signal Processing and its Applications (ISSPA)). Kuala Lumpur. Malaysia, 13 - 16 August, 2001. Oganized by
the Dept. of Microelectronics and Computer Engineering, UTM, Malaysia and Signal Processing Research Centre, QW, Australia

(a) characters “b” and “h” and the differences between them

(b) characters “i” and “1” and the differences between them

Figure 2: Examples of similar symbols with different fea-
tures. The rightmost figures show the difference bitmaps.
Black error clusters cannot be ignored because otherwise
the features will change. Gray error clusters can be ignored.

3. EXPERIMENTAL RESULTS

In this section we show how the feature monitored shape
unifying can improve the coding efficiency of lossy SPM
systems while effectively suppressing substitution errors.
Our test set contains six images from two sources: two 200-
dpi CCITT standard images (f01 and m4); and four 300-dpi
images (IGOH, 5000, N03F, N03H) from the University of
Washington Document Image Database I [9].

In our experiments, we use two features, number of holes
and number of connected components, to monitor the shape
unifying procedure. According to our experiments, in En-
glish and other Latin-based languages (image fO4 contains
French text), characters that are most easily confused un-
der the Hamming distance based matching criterion are “b”

and “n”, “c” and “0” and “e”,
etc.. Clearly, the feature number of holes can distinguish be-
tween ‘%” and “h”, “c” and “o”, and “c” and “e”; the feature
number of connected components can distinguish between
“i” and “1”. It is less obvious but true that these two fea-
tures can also help prevent confusion between “U” and “n”
and “e” and “0”. Take “U” and “I$’ for example. In com-
paring the bitmaps of “n” and “u”, there are basically two
areas where a substantial number of clustered pixels differ:
the center top and the center bottom. Modifying the upper
cluster of pixels in the “n” bitmap to match the “u” bitmap
will cause the “n” to split into two separate connected com-
ponents. Monitoring based on number of connected compo-
nents will prevent this. Likewise, modifying the lower clus-
ter of pixels in the “n” bitmap to match the “U” will cause
the lower opening in the “n” to close and will generate one
intemal hole. Monitoring based on the number of holes will

and “h”, and WlYY, LL 99 U

prevent this. This way a substitution error is prevented. Fur-
thermore, experiments show that an error cluster that is too
big should not be permitted even if it would not change the
binary bitmap’s features. Otherwise, visual information loss
caused by shape unifying will be too significant and the re-
constructed image quality will become objectionable; it will
contain a large number of distorted text characters in addi-
tion to substitution errors. Conceptually, a bigger symbol
can tolerate a bigger error cluster. Therefore, we set the er-
ror size threshold to be proportional to the symbol size, i.e.,
error clusters smaller than a certain percentage of the sym-
bol size are deemed ignorable. These smaller error clus-
ters are put through the feature monitoring process to test if
modifying the current bitmap at those locations will change
the features.

In Table 1 we show results for three error size thresh-
olds, 2%, 4% and 6% of the symbol size, We compare the
coded file sizes and percentages of substitution errors for
shape unifying with and without feature monitoring. At a
low error threshold of 2%, the monitored version of shape
unifying is not very different from the mon i to red version.
Using the more restricted shape unifying described in Sec-
tion 2.1, the average compressed file size for the test set is
17,030 bytes. The monitored and mon i to red versions at
a threshold of 2% both achieve an additional coding gain of
about 32%. At this threshold, the monitored and m o n i -
tored versions also both suffer very rare substitution errors;
the highest number of character substitutions observed is 3
for image fO4, which is a dense text image with over 4,000
characters. As the error threshold goes up, the feature mon-
itored version begins to show a clear advantage over the
unmonitored version. For error thresholds of 4% and 6%,
feature monitoring can successfully restrict the occurrences
of substitutions to less than 1/3 of that of the unmonitored
version. We note that besides character substitutions (e.g., a
“b” tumed into an “h”), shape unifying sometimes also gen-
erates “garbage” symbols which are not meaningful char-
acters. These “garbage” symbols are also counted as sub-
stitutions and included in the numbers shown in Table 1.
Interestingly, at an error threshold of 6%, the compressed
file size of the monitored version seems to have already hit
a bottom. This does not hold true for the mon i to red ver-
sion; its compression improvement slows down but does not
stop. The feature monitored version will refrain from mak-
ing many bigger errors since they will most likely change
the features, while the mon i to red version does not have
this constraint and hence will go on with shape unifying,
resulting in higher coding efficiency but also more substi-
tution errors. Fig. 3 compares the monitored and -on-
itored versions at different error thresholds by showing a
portion of the original and the reconstructed images (from
image N03H). Ignoring only isolated errors (Fig. 3 (b)) as
described in Section 2.1 causes very little visual informa-

428

International symposium on Signal Processing and its Applications (ISSPA), Kuala Lumpur. Malaysia, I3 - I 6 August, 200I. Organized by
the Dept. of Microelectronics and Computer Engineering, UTM, Malaysia and Signal Processing Research Centre, QW, Australia

flip. thres.
w/ feature
w / o feature

tion loss. In fact, the text appears to be even smoother
due to edge smoothing. In Fig. 3 (c)-(h), we compare the
monitored and unmonitored shape unifying under different
ignorable error thresholds. Clearly, the monitored version
prevents the “U” from turning into an “n” at all thresholds.

2% 4% 6%
141.3 137.8 137.3
103.0 98.7 97.7

f l i p . w/ feature w/o feature I thres. 11 s i z e I subst. size I subst. I
12% 11 11.665 I 0.04 111,452 I 0.05 I
1 4 % 10.073 I 0.42 I 9.666 I 1.34 1
16% 1) 9,757 I 1.12 I 9,075 1 3.51 1
Table 1: Applying shape unifying with and without feature
monitoring to a lossy SPM system. Compressed file sizes
(in bytes) and percentages of substitution errors are shown.
Results are averaged over six test images.

crust crust
(a) original (b) ignoring only isolated errors

cnist crust
(c) threshold 2%, unmonitored (d) threshold 2%, monitored

cmst crust
(e) threshold 4%, unmonitored (0 threshold 4%, monitored

cmst crust
(g) threshold 6%, unmonitored (h) threshold 6%, monitored

Figure 3: A portion of the original image N03H and the
reconstructed images under different error thresholds.

Although feature monitored shape unifying can effec-
tively lower the risk of substitution errors, it is more com-
putationally demanding because every cluster of differences
with size below the threshold has to be checked to see if this
will result in different features. In Table 2 we list the aver-
age running times for lossy SPM with and without feature
monitoring. We use the Unix command “time” to record the
total execution time. The computer system used is a Pen-
tium Pro 200MHz, running Red Hat Linux 6.0, with 64MB
memory. Such a system is far from state-of-the-art, how-
ever, we can still obtain a valid comparison. Our code was
not optimized for speed. On average the feature monitored
shape unifying takes 40% more time to encode than its un-
monitored counterpart.

Table 2: Average running time (in seconds) for lossy SPM
with and without feature monitoring.

4. CONCLUSION

In this paper we proposed a feature monitored shape unify-
ing procedure for lossy SPM systems. For bigger areas of
differences between the current bitmap and its reference, the
monitored shape unifying examines whether ignoring such
differences will cause the features of the original bitmap to
change. If not, these differences are ignored by modify-
ing the current bitmap at corresponding-locations. Other-
wise, they are preserved. Experiments/show that compared
to the unmonitored shape unifying, the monitored version
can effectively suppress 213 of all substitution errors. Fur-
thermore, it improves the coding efficiency of lossy SPM by
30-40% compared to ignoring only isolated errors.

5. REFERENCES

ISOlIEC JTC 1/SC29/WG 1 N 1545. JBIGZ Final Draji Inter-
national Standard, Dec. 1999.

P. Howard, E Kossentini, B. Martins, S. Forchhammer,
W. Rucklidge, F. Ono. The Emerging JBIG2 Standard. IEEE
Trans. on Circuits and Systems for video Technologv, pages
838-848, Vol. 8, No. 5, September 1998.

R.N. Ascher and G. Nagy. Means for Achieving a High De-
gree of Compaction on Scan-digitized Printed Text. IEEE
Trans. on Computers, Vol. 23, pages 1174-1 179, Nov. 1974.

P. Howard. Lossless and Lossy Compression of Text Images
by Soft Pattern Matching. Proc. 1996 IEEE Data Compres-
sion Conf: (DCC), pages 210-219, Snowbird, Utah, March
1996.

Y. Ye and P. Cosman. Dictionary design for text image com-
pression with JBIG2. To appear in IEEE Trans. on Image
Processing, June, 2001.

Y. Ye and P. Cosman. Fast and memory efficient JBIG2 en-
coder. To appear in Proc. 2001 IEEE Intl. ConJ on Acoustics,
Sound, and Signal Processing (ICASSP), Salt Lake City, Utah,
May 200 1.

B. Horn. Robot Vision, Chapter 3. MIT Press. 1986.

A. Jain. Fundamentals of Digital Image Processing, Chapter
9. Prentice Hall. 1989.

E. S. Askilsrud, R. M. Haralick and I. T. Phillips. A quick
guide to UW English Document Image Database I, version
1 .O. CD-ROM. Intelligent Systems Lab, Univ. of Washington.
August 1993.

429

