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PET Parametric Imaging: Past, Present, and Future

Guobao Wang,
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Arman Rahmim,
University of British Columbia, Vancouver, BC, Canada

Roger N. Gunn
Imperial College London and Invicro LLC

Abstract

Positron emission tomography (PET) is actively used in a diverse range of applications in 

oncology, cardiology, and neurology. The use of PET in the clinical setting focuses on static 

(single time frame) imaging at a specific time-point post radiotracer injection and is typically 

considered as semi-quantitative; e.g. standardized uptake value (SUV) measures. In contrast, 

dynamic PET imaging requires increased acquisition times but has the advantage that it measures 

the full spatiotemporal distribution of a radiotracer and, in combination with tracer kinetic 

modeling, enables the generation of multiparametric images that more directly quantify underlying 

biological parameters of interest, such as blood flow, glucose metabolism, and receptor binding. 

Parametric images have the potential for improved detection and for more accurate and earlier 

therapeutic response assessment. Parametric imaging with dynamic PET has witnessed extensive 

research in the past four decades. In this paper, we provide an overview of past and present 

activities and discuss emerging opportunities in the field of parametric imaging for the future.
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I. Introduction

POSITRON emission tomography (PET) is a molecular imaging modality that enables 

visualization and measurement of a diverse range of biological processes [1]. A library of 

existing radiotracers enables quantitative imaging of physiological, biochemical and 

pharmacological targets and processes including blood flow, metabolism, receptors, 

transporters, enzymes and labeled drugs themselves. Consequently, PET has wide range of 

clinical and research applications in oncology [2], cardiology [3] and neurology [4], with 

glucose metabolic imaging in oncology using 18F-fluorodeoxyglucose (FDG) being the most 

widespread [5].
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Standard application of PET in the clinic yields a three-dimensional (3D) scan that captures 

the spatial distribution of the radiotracer using static (single-frame) scanning around a 

certain late time point post-injection [6]. These images are typically quantified using the 

standardized uptake value (SUV) [7] which normalizes for the injected dose and patient 

mass or body surface area, and technically can be thought of as parametric imaging with 

each voxel providing a read-out of the SUV. Static imaging is also prevalent in the realm of 

clinical trials in neurodegenerative disease with tracers for amyloid and tau being used as 

entry criteria and pharmacodynamic markers of Phase 2 & 3 trials of novel therapies. Here, 

SUV data are typically normalized to a reference region devoid of the target protein to 

generate an SUV ratio (SUVR) image that can also be considered as a parametric image. 

SUV and SUVR approaches are usually considered as semiquantitative measures as they can 

be influenced by contaminating factors including patient habitus, scan time, blood flow, etc. 

and require careful validation before routine deployment [8]. Whilst parametric images such 

as these are routinely and simply generated from static scans, they are not the focus of this 

article which concentrates on the generation of parametric images from kinetic analysis of 

dynamic data.

Dynamic PET imaging measures the four-dimensional (4D: 3D in space and 1D in time) 

spatiotemporal distribution of a radiotracer in the living body. Parametric imaging from 4D 

dynamic PET data involves moving beyond SUV images. It can provide a more complete set 

of biological parameters from the radiotracer using voxel-wise tracer kinetic modeling to 

accurately quantify the different components of the tracer’s passage within the body, e.g. 

delivery of the tracer into tissue and interaction with protein targets. This process enables 

generation of multiparametric images that have more direct specificity to the underlying 

biological parameter of interest than is available from SUV/SUVR composite images.

Parametric imaging has witnessed extensive research in past decades [9]. Despite its great 

potential, clinical applications of parametric imaging have been hampered due to several 

limitations [10], such as (1) high noise of dynamic data, (2) need for long acquisitions times, 

(3) lack of whole-body implementations, and/or (4) limited demonstration of clinical 

significance beyond SUV.

In recent years, several important technical advances have been made in both algorithms and 

instrumentation [1]. Examples include advanced dynamic image reconstruction algorithms 

[9, 11], time-of-flight PET data acquisition [12–14], implementation of whole-body 

parametric imaging on commercial PET scanners [15], and the recent advent of long axial 

field-of-view PET scanners (e.g., EXPLORER [16–18], PennPET Explorer [19]) enabling 

unprecedented sensitivity and simultaneous dynamic imaging of multiple organs [20, 21]. 

Other kinds of parametric imaging are also possible, such as voxel-wise statistical maps 

assessing radiotracer uptake (using non-kinetic modeling methods), or voxel-wise images of 

texture/radiomic features. To date, the field of radiomics [22, 23] has primarily focused on 

region-of-interest analyses, and voxel-based applications have been less common. We also 

note that a number of methods and approaches discussed in this review are directly 

applicable to SPECT imaging, particularly for high-sensitivity dedicated cameras that can 

collect sufficient projection data in significantly shorter times [24].
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Given these advances and the current opportunities, it is appropriate and timely to review 

past work and promote broader scientific research and clinical applications with parametric 

imaging. In this article, we provide a brief historic overview of parametric imaging research 

and discuss emerging research opportunities. The paper is organized as follows. Section II 

summarizes past and ongoing research activity in the field of PET parametric imaging, 

including a number of related review articles for various areas of activity as well as available 

commercial and free software. In Section III, we discuss current challenges and emerging 

opportunities with new-generation PET scanners. Concluding statements are provided in 

Section IV.

II. OVERVIEW OF PAST AND ONGOING EFFORTS

A. Overall Research Activity in the Field.

Research on PET parametric imaging started in the 1980’s, while kinetic modeling has a 

longer history. Figure 1(a) depicts a plot of the yearly number of publications relevant to 

PET parametric imaging from 1980 to 2019. The curves were obtained by using the search 

terms [(PET) AND (parametric imaging)] in the PubMed database. In addition to original 

research articles, conference proceeding papers, review papers and book chapters in the 

database were also included. The activity has increased during this period, following an 

approximately linear relationship since 1990’s.

Figure 1(b) further shows the trends for PET kinetic modeling and parametric imaging as 

compared to the topic of PET image reconstruction, another critical component of PET 

imaging. The number of papers on kinetic modeling is generally much higher than that of 

parametric imaging, which is consistent with the fact that kinetic modeling may be more 

easily implemented for region of interest analysis while voxel-wise implementation has been 

more challenging and/or problematic. The ratio of papers between PET image reconstruction 

and kinetic modeling (and/or parametric imaging) was approximately 1:1 prior to 2005. 

While work in the area of kinetic modeling has been steadily increasing, image 

reconstruction has attracted more interests in the past 15 years.

B. Overview of Different Areas of Activity.

We do not intend to provide a comprehensive review of the field of PET parametric imaging 

in the past 40 years. Rather, we provide brief overviews, in connection with existing review 

articles, to direct interested readers to more focused topical reviews.

Fig. 2 illustrates the process of parametric imaging which typically consists of raw data 

acquisition from a scanner, dynamic image reconstruction from projection data, and tracer 

kinetic modeling. Parametric imaging can be generally classified into two types of methods: 

indirect and direct. Indirect methods first reconstruct dynamic PET images from the 

sinogram or list-mode projection data and then perform tracer kinetic modeling pixel by 

pixel to obtain parametric images. In comparison, direct methods incorporate the kinetic 

model into the reconstruction formula and estimate parametric images directly from raw 

projection data.
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Parametric imaging methods need to carefully consider (1) selection of appropriate kinetic 

models, (2) high noise associated with voxel-wise analysis of dynamic imaging data, (3) 

need for blood input function estimation, (4) lack of whole-body implementation, and (5) 

increased challenges with patient comfort and motion, due to longer scan times, for 

parametric imaging. The degree of these challenges varies by application area, e.g. 

estimation of non-invasive input functions is more straightforward in cardiac applications 

where large chambers of blood are present in the field of view. Below we discuss a number 

of trends and approaches related to these challenges.

(1) Kinetic Modeling Approaches—The underlying principles of tracer kinetic 

analysis are described in a number of books [25–28] and review articles [10, 29–31].

Compartmental analysis forms the basis for tracer kinetic analysis of PET data and 

consequently for parametric imaging. Well-established compartmental models in PET 

include those developed for the quantification of blood flow [32], metabolic rate for glucose 

[33, 34] and for receptor-ligand binding [35]. These particular models require an arterial 

blood or plasma input function, with the number of tissue compartments dictated by the 

physiological, biochemical and physiological properties of the system under study. Other 

‘reference tissue models’ have been developed, particularly for the study of neuroreceptor 

ligands, with a view to avoiding blood sampling by using a region devoid of target as an 

alternative input function [36–39]. Both plasma input and reference tissue input models 

include variants that characterise both reversible and irreversible (i.e. containing a trap that 

prevents the tracer from being eliminated through the blood) systems. All of these models 

are described by a system of linear differential equations and lead to solutions that are 

characterised by the convolution of the input function with a sum of exponentials. These 

models can be applied to determine parametric images using non-linear optimisers to obtain 

weighted least squares solutions. However, when it comes to the increased noise present 

from voxel time activity, more complex models can lead to problems with numerical 

identifiability and susceptibility to local minima. For this reason, a range of different 

approaches have been developed that are derived from the same differential equations 

including graphical methods and basis function methods. Graphical methods, such as Patlak 

[40, 41], Logan [42], MRTM [43] and MA1 [44] use integral transformations to yield 

equations whereby the parameter of interest can be derived from a linear regression of an 

appropriate portion of the dynamic data. Basis function approaches have been applied more 

generally in the form of spectral analysis [45] and DEPICT [46] along with direct 

implementation of particular compartmental models such as the 1-tissue compartment and 

simplified reference tissue model (SRTM) models [38, 39]. The graphical and basis function 

methods tend to provide improved estimators, but their bias and variance must also be 

assessed in the presence of noise.

Table I shows a selection of relevant review articles related to PET kinetic modeling and the 

derivation of a blood input function.

(2) Noninvasive Estimation of Blood Input Functions—A critical component for 

kinetic modeling and parametric imaging is the input function. While a blood input function 

can be obtained with invasive arterial blood sampling (the aim is to avoid this if possible), 
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research has demonstrated it can be feasible to derive a blood input function from dynamic 

images without the need of blood sampling or just with one or two blood samples or using 

population-based input function for certain applications. Zanotti-Fregonara et al. [47] 

specifically summarized the related progress for dynamic brain PET imaging and discussed 

the remaining challenges. Very recently, Feng et al. [48] have summarized the research on 

using simultaneous optimization strategies for noninvasive estimation of blood input 

function from dynamic PET image data.

(3) Improved Image Reconstruction Methods—As compared to a static scan (order 

of minutes), dynamic PET imaging can successfully employ short scan time frames (e.g., 

10–40 seconds per frame) to achieve relatively high temporal resolution for the early phase 

of a dynamic scan. These short frames are associated with high noise due to limited counting 

statistics of PET. While the standard reconstruction algorithm for clinical PET scanners is 

the ordered subset expectation maximization (OSEM) algorithm [49], a wide range of 

research (Table II) has been devoted to develop more advanced image reconstruction 

strategies and algorithms in order to suppress noise for parametric imaging. Progresses 

before 2014 were reviewed in the papers from Tsoumpas et al [50], Rahmim et al. [51], 

Wang and Qi [52], and Reader and Verhaeghe [11]. A more recent review on the same topic 

is provided by Gallezot et al. [9].

Similar to other dynamic imaging such as dynamic contrast-enhanced MRI, frame-based 

dynamic image reconstruction and post-reconstruction denoising methods are widely 

researched for dynamic PET [9, 51]. One unique effort specifically in PET is the 

development of direct parametric image reconstruction algorithms for both linear kinec 

models (e.g., Patlak plot) and nonlinear kinetic models (e.g., two-tissue compartmental 

model) [9, 11, 50–52]. Specifically, a nested expectation maximization (Nested EM) [53] 

algorithm has been adopted for linear parametric image reconstruction on commercial 

scanners [54].

(4) Whole-body Dynamic PET—Standard clinical PET scanners commonly have a 

scanner length of 15–30 cm. Traditionally, whole-body vs. dynamic PET imaging have been 

thought of as mutually exclusive, with whole-body imaging equating to a static-scan. As a 

result, while there have been significant efforts in single-bed dynamic PET imaging, the 

popularity and value of whole-body PET imaging to assess disease distributed throughout 

the body has implied single-frame (static) imaging. Nonetheless, it is very feasible to 

perform multi-bed and multi-pass imaging with existing PET scanners [55], resulting in the 

area of dynamic whole-body PET imaging [15]. Rahmim et al. recently provided an 

overview of efforts in this area [15]. Commercial adoption of whole-body Patlak parametric 

imaging has been implemented on Siemens scanners [54]. This overall approach to imaging 

is further elaborated in Sec. III.B.

(5) Motion Correction.—Dynamic PET imaging requires a significantly longer scan 

time as compared to static imaging. Patient movement, respiratory motion, and cardiac 

motion may unavoidably exist in dynamic PET imaging and affect the quantitative accuracy 

of kinetic modeling and parametric imaging. A brief overview of the relevant research on 
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motion correction for parametric imaging is provided in the review article of Gallezot et al. 
[9].

(6) Clinical Translation—Many clinical studies have been conducted to investigate 

potential applications of kinetic modeling and parametric imaging in clinical practice. In 

particular, dynamic PET with tracer kinetic modeling has been routinely applied in clinical 

cardiology for assessing myocardial blood flow and myocardial flow reserve [56, 57]. A 

number of review articles elaborate on the technical perspectives and clinical applications of 

dynamic cardiac PET [56–60]. A very recent position paper is provided by Murthy et al. on 

clinical quantification of myocardial blood flow using PET [3]. The potential of kinetic 

quantification in clinical oncology and neurology imaging have also been widely 

investigated, though not routinely applied in clinical practice yet. The readers are referred to 

the specific review articles [4, 61]. Section III discusses some relevant emerging 

opportunities.

C. Commercial and Open-Source Software

Given significant continued efforts with dynamic imaging, particularly in PET, there exist 

many software packages that aim to perform kinetic modeling and estimate parameters of 

interest. The majority of kinetic modeling efforts have been historically in brain and cardiac 

applications. Nonetheless, applications have been pursued in other single-bed or multi-bed 

dynamic studies (e.g. see Section III). Table III lists a number of software packages used for 

a variety of applications and many include the capability for parametric imaging.

We note that in quantitative cardiac imaging (software listed at the bottom of Table III), 

when performing kinetic modeling of flow quantification, the term ‘parametric imaging’ is 

not in common usage. These software provide segmental polar maps, but also commonly 

depict polar maps at finer scales; this is rarely done per pixel and is averaged over multiple 

pixels. Therefore, such polar maps are often somewhere between voxelized parametric 

imaging and segmental flow quantification. Polar maps as such (beyond the usage of mere 

segmental polar maps) may be useful to see patterns; e.g. sometimes myocardial perfusion 

defect boundaries may be between segments or territories, and as such, it is useful visually, 

and physicians may sometimes use it to redefine the vessel boundaries and then obtain 

averaged regional values over customized regions in the polar map.

D. New-Generation PET Scanners

In recent years, PET scanner hardware from major vendors has experienced dramatic 

improvements in effective scanner sensitivity [62–66]. The increase in scanner sensitivity 

can result in improved image quality for parametric images derived from kinetic modeling. 

In addition, the axial field of view (AFOV) of PET scanners has increased from a typical 15 

cm to 25–30 cm. Table IV lists new commercial scanners from GE [65], Siemens [64], and 

Canon [66] that have a much longer AFOV than typical prior-generation scanner such as the 

GE Discovery 690 [67]. These new scanners also have better time-of-flight resolution and 

can achieve 4–6 times gain in effective sensitivity as compared to a GE 690.
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Furthermore, the EXPLORER total-body scanner [17, 18] has a nearly 2-m long AFOV, 

allowing simultaneous dynamic imaging of the entire body and the PennPET Explorer has 

an AFOV of 64 cm [19]. These state-of-the-art scanners with improved sensitivity and 

extended AFOV are providing numerous new opportunities for parametric imaging.

III. EMERGING OPPORTUNITIES

A. Organ-specific Parametric Imaging

Dynamic PET and parametric imaging can be well suited to study single organs. Compared 

to cancer, organ-specific diseases such as Alzheimer’s disease and coronary heart disease 

also affect millions of people worldwide. The brain and heart have a moderate length and 

can be covered entirely by the AFOV of conventional PET scanners for dynamic imaging. 

While performance of parametric imaging has been limited by noise, the increased 

sensitivity of newer scanners, in combination with advanced image reconstruction 

algorithms, can further improve the data quality of dynamic PET for parametric imaging. In 

addition, the increased AFOV of new scanners may also improve the extraction of an image-

derived input function because larger arteries are included in the AFOV [68].

Other than brain and heart, several other organs are also of tremendous clinical significance 

for parametric imaging. One such organ is the lung for which the potential of PET kinetic 

quantification has been investigated (e.g., [69–72]). Respiratory diseases affect a very large 

population and have a wide spectrum, including chronic obstructive pulmonary disease, 

acute respiratory distress syndrome, idiopathic pulmonary fibrosis. Ki derived by dynamic 

FDG-PET kinetic modeling was found to be correlated with pulmonary function and disease 

severity [72]. Furthermore, accurate correction of lung data for the contribution of blood 

(~15% of the signal) is critical for quantitative analysis of lung tissue, and kinetic analysis 

makes this feasible. Another technical aspect of quantitative lung analysis is that the lung 

commonly has a high fraction of air volume (~70%) and correction for tissue air fraction in 

addition to blood volume fraction is required. Examples of this can be seen in the work by 

Coello et al. [73] and Holman et al. [74]. While conventional PET scanners have a limited 

scanner length and can only cover a part of the lungs for dynamic imaging, the increased 

AFOV of new clinical scanners (25–194 cm) makes it now more feasible to perform total-

lung dynamic imaging.

Another example of organ-specific parametric imaging is for the liver [75]. Nonalcoholic 

fatty liver disease (NAFLD) is the most common type of chronic liver disease, affecting an 

estimated 30% of adults worldwide [76, 77]. 5–10% of patients with NAFLD develop 

nonalcoholic steatohepatitis (NASH) - a more aggressive form of NAFLD that is associated 

with an increased risk of end-stage disease (liver failure and liver cancer) and higher liver-

related mortality [78, 79]. The hallmark of NASH is liver inflammation (lobular 

inflammation plus ballooning degeneration) in the setting of hepatic steatosis. Recent studies 

have demonstrated the potential of using the widely accessible radiotracer 18F-FDG via 

dynamic PET imaging coupled with tracer kinetic modeling [80, 81]. While SUV or Ki of 
18F-FDG did not show promise, the blood-to-tissue transport rate FDG K1 of the liver 

demonstrated a strong correlation with histopathological liver inflammation grades [81]. In 

combination with the ability of CT for evaluating hepatic steatosis, a liver parametric 
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PET/CT method may have the potential to provide a valuable clinical imaging tool for 

differentiating NASH from simple fatty liver. One interesting technical aspect of PET liver 

parametric imaging is that the liver receives dual blood supplies from the hepatic artery and 

the portal vein [75], which should be taken into account in tracer kinetic modeling [75, 80].

B. Whole-Body and Total-Body Parametric Imaging

Dynamic whole-body (DWB) PET imaging, involving multi-bed multi-pass imaging, 

enables whole-body parametric imaging using existing scanners (Sec. II.B.4). The scan can 

begin at or after radiotracer injection. When beginning at injection, one can typically first 

perform single-bed dynamic PET imaging over the heart (e.g. for ~5 minutes) followed by 

multiple rapid whole-body PET passes. This enables use of the heart’s blood pool (left 

ventricle or atrium) to non-invasively quantify the blood input function (BIF) at early times, 

with DWB PET naturally imaging the heart at later times to capture the tail of the curve as 

well. Alternatively, other blood pools can be considered; e.g. carotid arteries, ascending 

aorta, thoracic (descending) aorta, or abdominal aorta as blood pools [82, 83]. This enables 

placement of initial single-bed scanning over the pathology of interest for more elaborate 

assessment (beyond Patlak models) [84].

On the other hand, one may perform DWB PET scan using delayed imaging (i.e. not starting 

at injection) and utilize population-based BIFs for early times. It is worth noting that: (i) 

population-based BIFs can be personalized in DWB PET, as they can be scaled based on the 

later multi-time-point scans over the heart (or other blood pools) in each individual subject; 

(ii) in Patlak (as well as generalized Patlak [85]) parametric imaging, only the area-under the 

BIF at early times post-injection needs to be estimated (not accurate individual BIF values at 

early times), and error propagation has been shown to be limited [86]. Overall, DWB PET 

parametric imaging is applicable to both PET/CT and PET/MRI, in both step-and-shoot and 

continuous-bed-motion PET scanning modes (e.g. see Table I in [15]), and can be used to 

generate conventional SUV images simultaneously by summation of the dynamic frames 

[87].

An interesting new frontier, with significant excitement, is total-body PET imaging [17, 18]. 

A PET scanner with a very large AFOV enables significantly enhanced sensitivity (e.g. by 

up to a factor of ~40 for 2-meters AFOV), opening up new possibilities to reduce 

administered doses, shorten scan times and/or enhance image quality [20, 88, 89]. Another 

implication is that single-bed dynamic PET scanning of the entire body becomes possible 

[21]. The significantly improved sensitivity, in turn, enables generation of higher-quality 

parametric images. Furthermore, models beyond Patlak analysis can be used, to estimate 

different microparameters [90]. Figure 3 shows an example of parametric imaging of both 

macro kinetic parameter Ki (FDG net influx rate) and micro kinetic parameters K1 (blood-

to-tissue transport rate) and Vb (fractional blood volume) from a dynamic 18F-FDG dynamic 

PET scan on the EXPLORER scanner [90].

There is an interesting potential opportunity with total-body dynamic imaging to address the 

challenge of estimating a true parent plasma input function for radiotracers with metabolites. 

To explain the challenge, we note that it is relatively straightforward to assay whole blood 

activity from vascular regions for tracers such as 18F-FDG where the plasma and whole 
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blood are in equilibrium and no blood-based metabolites exist. However, for other 

radiotracers this is more complicated. In particular when metabolism of the radiotracer leads 

to the presence of radiolabeled metabolites in the blood, then corrections are necessary so 

that a plasma parent input function can be derived for kinetic modeling. To date, this has 

been performed by separate high-performance liquid chromatography (HPLC) analyses of 

discrete blood samples, but this defeats the purpose of enabling truly non-invasive 

quantification. We note that with fully whole-body dynamic imaging systems such as the 

EXPLORER, there is a potential opportunity to develop whole-body multi-organ kinetic 

models that are able to accurately model the metabolism of the radiotracer in the periphery 

enabling accurate estimation of the required parent plasma input function.

Overall, it remains to be seen whether whole/total-body parametric PET imaging will be 

deployed routinely in the clinic. This is because as newer generation PET scanners enable 

ever-higher-quality parametric PET images, they continue at the same time to push down the 

time needed for standard SUV PET imaging. It has thus been argued that applications need 

to demonstrate significantly increased value for more widespread usage of parametric PET 

imaging (see point-counterpoint discussion [91]). Whole/total-body parametric PET imaging 

certainly has significant potential and may also enable discoveries and insights into systemic 

disease as well systemic interactions and responses; e.g. gut-brain [92] or heart-brain [93] 

axes.

C. Multi-tracer Parametric Imaging

While the majority of PET studies use a single radiotracer, PET imaging with two (or more) 

different radiotracers have also found interesting and useful applications in the clinic (e.g., 

[94, 95]). Different tracers may complement each other to provide a more comprehensive 

characterization of a disease. For example, myocardial viability assessment requires a 

perfusion-specific radiotracer (e.g., 82Rb-chloride) scan and a metabolic scan with 18F-FDG 

to evaluate perfusion-metabolism mismatch for determining myocardial hibernation in the 

clinic [96].

The typical way of doing a dual-tracer (or multi-tracer) study is to acquire the scans for each 

tracer in separate imaging sessions or even on separate days (e.g., [97, 98]). This is because 

the residual activity of the first tracer remains for the subsequent tracer scans if the 

separation time between two scans is not long enough. This method, however, is resource 

intensive and burdensome for the patient.

Single-scan dual-tracer (and multi-tracer) methods with staggered injection have attracted 

interests in the last two decades [95, 99, 100]. Instead of being totally separated, the 

injection of two tracers are offset with a much-shortened separation time (e.g., several 

minutes to 30 minutes) so that a single scanning session becomes feasible. In order to 

recover separate images of each tracer from the same scan, dynamic imaging and kinetic 

modeling can be used to identify and separate the two tracer signals from each other [100–

109]. Such a methodology has been applied to dual-tracer or multi-tracer brain imaging 

[100, 101, 110–112] and tumor imaging [99, 113–116]. A similar method has also been 

explored for multiple injections of a flow tracer, e.g., for rest-stress myocardial perfusion 

imaging [117, 118]. It is also possible to utilize such parametric imaging, merely as an 
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intermediate step, to generate two standard relative-perfusion rest and stress images from a 

single PET scan (e.g., by commercial clinical software mfiVerse™).

While the robustness of dual-tracer methods has been limited by data noise, the dramatically 

increased sensitivity of new PET scanners is offering new opportunities to make this 

framework more robust and feasible for clinical use.

D. Single-tracer Multiparametric Imaging

Conventionally parametric imaging of tracer kinetics has mainly focused on equilibrium 

parameters, e.g. the net irreversible uptake rate constant, Ki, for 18F-FDG to quantify 

glucose metabolism. The Ki is frequently estimated from the Patlak graphical plot, which 

also allows for the estimation of an intercept value that is complicated by the fact that it is 

actually a mix of blood volume and the steady state distribution volume. The potential of 

parametric imaging for multiparametric characterization can be further explored through the 

deployment of full compartmental modeling in which microparameters are also estimated. 

These models are more accurately able to directly estimate the underlying biological 

processes such as the delivery K1, which denotes the rate of radiotracer transport from 

plasma to tissue, and the steady state distribution volume, VSS, which may increase the 

information available for different applications.

Early studies have demonstrated that K1 could approximate blood flow in tumors for 18F-

FDG [119–123]. Correlation of FDG K1 with blood flow was also reported in the brain 

[124] and liver [125]. A recent study also attempted to develop cardiac FDG K1 as a 

surrogate of myocardial blood flow, and combine it with glucose metabolic imaging, to 

enable simultaneous imaging of myocardial perfusion-metabolism using only 18F-FDG 

[126]. Such a single-tracer multiparametric imaging method has the potential to reduce 

imaging time, cost and radiation exposure as compared to a two-tracer protocol [96] or dual 

modalities [127].

Parametric imaging of K1 or relative delivery rate R1 of beta amyloid tracers (e.g., 18F-

florbetapir [128–130], 11C-PiB [131–133], 18F-florbetpen [134]) or tau tracers (e.g., 18F-

flortaucipir [135], 18F-PI-2620 [136]) is also being studied as a surrogate of cerebral blood 

flow to provide a single-tracer dual-phase imaging methodology in brain imaging of 

neurodegenerative diseases. This holds the promise of providing complementary information 

on both blood flow and misfolded protein changes in neurodegenerative disease using a 

single tracer that has only been achieved previously through the application of multiple 

tracers [130, 137, 138]. The same single-tracer multiparametric imaging principle is also 

applicable to many other radiotracers not mentioned above, such as 18F-MISO [139].

E. High-Temporal Resolution Kinetic Modeling and Parametric Imaging

Standard dynamic PET imaging often uses a moderate temporal resolution of 10–40 seconds 

(or poorer) per time frame (see [123, 140] for example). This is aimed at reaching a balance 

between image noise and the necessary temporal resolution for kinetic modeling. High-

temporal resolution (HTR; 1–2 seconds/frame or better) dynamic imaging has rarely been 

explored in clinical dynamic PET studies because of the concern over low signal-to-noise 

ratio and lack of clinical applications.
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Renewed interests are growing in the PET field to develop HTR dynamic imaging by using 

improved dynamic image reconstruction algorithms [141], overlapping temporal framing 

strategies [142, 143] or the boosted sensitivity from new PET scanners [18]. Example 

dynamic images extracted from an HTR dynamic FDG-PET scan on the EXPLORER 

scanner can be found in [18] and [21]. Figure 4 shows an example of HTR time activity 

curves of different organs from an EXPLORER total-body dynamic scan. Combining the 

ultra-high sensitivity of the EXPLORER [17, 18] with the kernel method for dynamic image 

reconstruction [144], recent work by Zhang et al. [145] has even demonstrated the feasibility 

of total-body sub-second (0.1s per frame) dynamic PET imaging.

With HTR dynamic imaging, more physiological processes may be captured, hence 

requiring potentially new kinetic modeling [146–148]. HTR imaging combined with kinetic 

modeling will potentially further enable quantification of tissue delivery processes and more 

accurately estimate and correct for blood-based signals. Recent studies [146, 147] have 

demonstrated that HTR dynamic imaging could enable the application of time-varying 

kinetic models to analyze early-dynamic FDG-PET data for the derivation of information on 

both blood flow and the glucose transport rate. Thus, it may become possible to derive three 

different physiological parameters from a dynamic 18F-FDG scan – blood flow, glucose 

transport, and glucose metabolism – using HTR dynamic PET imaging. Whilst these new 

opportunities have been discussed in the context of 18F-FDG, they will provide similar 

opportunities for a wide range of radiotracers.

Note that with increased temporal resolution, pixel-level noise in the spatial domain may 

become higher. Thus, it is necessary to continue to develop new dynamic image 

reconstruction algorithms. Among various directions, deep learning-based methods have 

been embraced and received enthusiasms in the field. Interested readers are referred to two 

recent review articles [149, 150] for details.

IV. CONCLUSION

PET parametric imaging, in its ~40-year history, has witnessed substantial progress with 

noise suppression, whole-body implementation, noninvasive derivation of input functions, 

and reconstruction-based methods, including implementations on vendor scanners. With 

recent advances in high-sensitivity scanners and extended axial field of view, including the 

advent of total-body PET, many exciting opportunities are emerging for the application of 

parametric imaging in research and clinical arenas.
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Fig. 1. 
Historic trends of productivity as recorded in PubMed for the period from 1980–2019. 

Shown are yearly number of publications on (a) ‘PET parametric imaging’, and (b) [‘PET 

Kinetic’ OR ‘PET Parametric Imaging’] (orange) and ‘PET image reconstruction’ (gray).

Wang et al. Page 21

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Graphical illustration of parametric imaging of tracer kinetics. The indirect method consists 

of dynamic image reconstruction followed by tracer kinetic modeling. The direct method 

estimates the parametric images directly from the raw projection data.
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Fig. 3. 
Total-body PET multi-parametric images of FDG metabolism (net influx rate Ki) and FDG 

perfusion/transport parameters (blood-to-tissue transport rate K1 and fractional blood 

volume vb).
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Fig. 4: 
Comparison of high-temporal resolution (2s/frame) and standard temporal resolution (10s/

frame) for regional time activity curves (TACs) in different regions of interest (ROIs): left 

ventricle (LV), myocardium, kidney (renal cortex) and lung. Shown are the first one-minute 

data extracted from a dynamic 18F-FDG PET scan performed on the EXPLORER scanner.
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