
Lawrence Berkeley National Laboratory
Recent Work

Title
THE KRAMERS-KRONIG RELATIONS AND EVALUATION OF IMPEDANCE FOR A DISK 
ELECTRODE

Permalink
https://escholarship.org/uc/item/0b42w562

Authors
Jaksic, M.M.
Newman, J.

Publication Date
1985-04-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0b42w562
https://escholarship.org
http://www.cdlib.org/


LBL-1920l C-d--
Preprint 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Materials & Molecular 
Research Division 

Submitted to the Journal of the 
Electrochemical Society 

LiB~i\[·~Y Ai\iD 
DOCUMENTS SECTION 

THE KRAMERS-KRONIG RELATIONS AND EVALUATION OF 
IMPEDANCE FOR A DISK ELECTRODE 

M. M. Jaksic and J. Newman 

April 1985 

TWO-WEEK LOAN COpy 

, This is a Library Circulating Copy 

...... -------~ ··which"may' be borrowed fortwoocweeks-;.: - ........ 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 

r
(JJ 
r 
\ 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



,Ii' 
The Kramers-Kronig Relations 
and Evaluation of Impedance 

for a Disk Electrode 

Milan M. Jaksic· 1 and John Newman· 

Materials and Molecular Research Division, 
Lawrence Berkeley Laboratory, and 

Department of Chemical Engineering, 
University of California, Berkeley 

April. 1985 

Abstract 

LBL-19201 

It is shown that the Kramers-Kronig (K-K) relations for frequency dispersion 

(or variation with frequency) describe the impedance properties of a disk elec

trode. The accuracy and interpretation of impedance by the K-K relations 

depend on the accuracy with which one fits the functions for the capacity and 

effective resistance. It is also shown how to use the K-K relations to calculate the 

capacity from the effective resistance. and vice versa. The previously published 

theory of impedance at a disk electrode is thereby shown to be consistent with 

the. Kramers-Kronig relations. The method of evaluation of the resistance and 

reactance for the disk electrode from the Kramers-Kronig relations is given and 

discussed. 

·Electrochemical Society active member. 

Ipresentaddress: Institute of Food Technology and Biochemistry. Faculty of 

Agriculture, University of Belgrade. P. O. Box 127, 11081 B_elgrade. Yugoslavia. 
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Introduction 

Since the geometry of an electrode system affects the frequency dispersion 

of impedance when the primary current distribution on the electrode is nonuni

form, Newman(l) has solved the problem of the alternating-current impedance 

for a disk electrode embedded in an infinite, insulating plane, with the coun-

terelectrode at infinity. To isolate the effects of nonuniform potential distribu

tion on the effective resistance (Rep') and double-layer capacity (Ceff ), the elec

trode surface is taken to be smooth, and the true double-layer capacity (per unit 

area) C is assumed to be independent of frequency. In other words, all other con

tributions to the frequency dispersion (the roughness factor for different acces-

sibility of peaks and valleys, the kinetic adsorption effect in the double layer. and 

the Warburg impedance(2-4) due to concentration changes near the electrode) 

have been eliminated, while the possibility of faradaic reactions has been 

included. 

The impeq.ance Z of a system is a complex function of the frequency ii..l: 

[1] 
where Zr and Zi represent the real and imaginary parts of impedance, respec

tively. From this impedance we can define an auxiliary function z (ii..l): 

[2] 

where Zoe and (j are real constants, independent of frequency. In this way z (ii..l) 
.-

can be endowed with the properties that z (ii..l) .. 0 as ii..l ... co and z (ii..l) is well 

behaved near ii..l = O. For an electrode where faradaic reactions can occur, (j == O. 

For an ideally polarizable electrode where faradaic reactions cannot occur, 

(j = _1/ 1TTo2C . [3] 

At high values of the frequency, Zr(ii..l)'" Z", where(G) 

Z", = 1/4tcro . [4] 

The causality principle in physics leads to the result that the impedance of 

an electrode is analytic in the lower half of the frequency plane. Consequently, if 

.. , 
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the simple pole point CJo =CJ is excluded from the region of integration (Figure la), 

the function (Z(CJo) - Z",)/(CJo - CJ) is analytic everywhere within the closed con

tour C, and the contour integral along C is thereby zero. The integral along the 

semicircle at infinity is also zero. These basic features are the main prerequisite 

for application of the Kramers-Kronig relations(6-S). 

The objectives of the present. paper are to show the applicability of the 

Kramers-Kronig relations for describing the behavior of impedance, to use them 

for calculating both the effective resistance (RaJ!) and the effective double-layer 

capaci ty (CaJ!) as functions of frequ ency, and finally, to show the consistency of 

the earlier theory(l) and results with the K-K relations. More specifically, the 

aim of the present paper is to detail the method for evaluating the effective 

double-layer capacity (CaJ!) from the effective resistance (RaJ!)' and vice versa, 

by means of the K-K relations. 

Impedances and the Kramers-Kronig Relations 

Integration around the entire contour C (Figure la) leads to (with CJ and CJo 

interchanged)(S) 

[5] 

where f denotes the Cauchy principal value of the integra1. The second term 

results from the Cauchy integral formula for CJ=CJo • Equation 5 splits into two 

Kramers-Kronig relations(6,7) for the electrode impedance 

a 
'" Z,(CJ ) - -1 \ 0 CJo 

Z (CJ) - Z", = - - f d CJ 
r rr -a: CJo - CJ 0 

[6] 

and 

[7] 

Since Zr(CJ) is even in CJ and Z, (CJ) is odd in CJ, the K-K relations reduce to 
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Figure tao Complex impedance diagram with the real and imaginary com

ponenl-.s and simple poles. 
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[8] 

and 

[9] 

Notice that 

f
cc d G.)o 

--=-~= 0 o G.); - G.)2 . 
[10] 

This last relation permits the singularities at G.)o = G.) to be avoided. This will be 

done in equations 14 and 15. Equation 10 also shows that no term in a needs to be 

included in the integrand in equation 8. Finally. equation 10 shows that. with the 

Kramers-Kronig relations. a constant resistance creates no reactance through 

equation 9. and a constant capacitance creates no resistance through equation 8. 

Thus we should put the emphasis on variations in the resistance and capaci-

tance. 

According to the equivalent circuit in figure lb. real and imaginary parts of 

the impedance can be related to the effective resistance and capacitance accord-

ing to 

[11] 
and 

[12] 

Two dimensionless quantities have been introduced before{1.9} and are con-

venient in the present paper: 

[13] 

where n can be regarded as a dimensionless frequency and J as a dimensionless 

exchange current density. By making use of these equatiuns [10 through 13]. the 

K-K reiations take on a more suitable form for the impedance at a disk electrode: 
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Figure lb. Defining equivalent circuit of the disk system. where Cel! and 

Ral! can be regarded as the effective double-layer capacity and the effective 

resistance of the electrolytic solution. respectively. if faradaic reactions are of 

negligible importance. More generally. Ral! and Cal! are merely alternative ways 

of referring to the real and imaginary parts of the impedance. 

\' 
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[14] 

and 

[15] 

These allow the calculation of the effective resistance from the effective double-

layer capacity. and vice versa. and any singularity at 0 0 = 0 is effectively 

avoided. Hence there is no longer a need to refer to the Cauchy principal value. 

Figure 2 shows some of the impedance functions calculated in reference 1. 

specifically those for J = 0 and J = 1. CICgg increases without limit as 0- 00 • and 

one might well ask how this behavior could be consistent. in view of the K-K rela-

tions. with the resistance function. which is nearly constant in this region. In the 

following. we shall place emphasis on the functions for the ideally polarizable 

electrode (J = 0); the curves for J = 1 illustrate how the behavior is markedly 

different at low frequencies. However. the high-frequency behavior becomes 

independent of J because the faradaic reaction is effectively shorted out by the 

double-layer capacity. 

Evaluation of the Effective Resistance 

from the Capacitance 

According to the previous paper(l). the high-frequency behavior of the 

effective capacitance can be expressed (for all values of J) as 

C 1 
Cgg(O) - 0.563 + '4 In 0 as 0- o. [16] 

A relation which approximates the values of capacitance over the entire fre-

quency range. for J = O. is 

C _ 1 ( a n2) 
Cgg(O) - 1 + sln 1 + 0.646 u . [17] 

The comparison with the theoretical values is shown in figure 3a. Substitution 

into the K-K relation [equation 14] gives 
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!t'igure 2. Dimensionless resistance and reactallce for the disk-electrode 

system for two values of the dimensionless exchange current density (J), from 

reference 1. 
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Figure 3a. Frequency dependence of the effective capacity on a smooth disk 

in the absence of faradaic reactions (J = 0): 

• - values from reference 1. 

v -values calculated from equation [17]. 

__ - high-frequency asymptote. 
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1 + 0.6468 0; 
In 

1 ex: 1 + 0.6468 02 
4JGT 0 Raff (0) - 1 = 11"2 ~ 0; _ 0 2 d 0 0 • 

[18] 

The values calculated from this approximation to the capacitance can be com-

pared with the theoretical resistance values in figure 3b. 

Suppose that 0 takes large values. so that the principal contribution comes 

when 0 0 is large compared to 1; then 

[1~] 

Not only does Zr(O) - Zex:. when 0 _00. but also the asymptotic behavior in equa-

tion 19 is found in the results given for the effective resistance in reference 1 for 

all values of J. 

On the other hand. for another limiting condition. 0 - O. equation 18 takes 

on the simpler form 

[20] 

for which numerical evaluation gives 

[21] 
as the first approximation to the value 0.08076 calculated in reference 1 (see also 

reference 10). Remember that we should put the emphasis on 4JGTo Reff (0) - 1 

because it is variations in the resistance and capacitance that are important in 

the Kramers-Kronig relations. For J = O. the resistance itself varies by only 8 

percent over the whole frequency range. while the effective capacitance varies 

greatly. 

The difference between equation 17 and the capacitance values calculated in 

reference 1 is displayed in figure 4. Let us now define the residual function for 

[22] 

Next we use the function (derived from the asymptotic behavior shown in figure 

4) 

.J 
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Figure 3b. Frequency dependence of the effective resistance for J = 0: 

• - values from reference 1. 

/). - first approximation from the K-K relation (equation [18] ). 

0- values calculaled from the K-K relation including the residual function 

integration. 
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Figure 4. Frequency dependence of the residual function in the capaci

tance. This is used for refinement of the evaluation of the effective resistance by 

the K-K relation. 
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Ll(O) = ___ 1 __ _._-

1 Yo ----:-+ --
0.0062102 0.18 

[23] 

Now, at zero frequency, the effective resistance includes an additional contribu-

tion: 

1 IX: In(l + 0.6468 0;) 
4IC7'a Re./T(O) - 1 = "2'f 0 2 dOa 

rr 0 a 

8 IX: Ll(Oa) 
+ rr2{ 0; dOa , 

[24] 

so that two numerical values (0.0561 + 0.0256 = 0.0817) now approach more 

closely (within 1.2%) the exactly calculated value (0.08076). 

For the next approximation, let us fit the residual function by a straight line 

over the intervals between points on figure 4, that is 

Ll(O) = B OE, [25] 

where the Band E parameters were fitted for every interval. Now recalculation 

from equation 24 for the zero-frequency resistance gives 41C7'a Re./T (0) - 1 = 0.0561 

+ 0.0244 = 0.0805, which differs from the theoretical value by about 0.3%. 

The values of the effective resistance calculated from the K-K relations are 

compared with the theoretical values in figure 3b. This testifies to the harmony 

of the theory of impedance at the disk electrode and the Kramers-Kronig rela-

tions. 

Evaluation of the Capacitance 

from the Etlective Resistance 

The first approximation we use for the resistance function (for J = 0) is 

41C7' a Re./T (0) - 1 = --1--:;..1 --= f (rl) . 

0.08076 + 20 
[26] 

This expression has the correct limiting behavior at high frequencies (see equa-

tion 19) and at low frequencies, and the fit to the theoretical values is illustrated 

in figure 5a. When introduced into the K-K relation for the capacitance [equation 

15], this form leads to an analytic approximation 
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Figure 5a. Frequency dependence of the effective resistance for J = 0: 

• - values from reference 1. 

6. - values calculated for the first approximation (equation [26]). 
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[27] 

where A/2 = 0.08076. This expression roughly approximates the theoretical 

values in figure 5b. 

Closer approach to the theoretical values has been obtained by the addition 

of a residual function for the resistance: 

F(O) = 4lCTo RgJ! (0) - 1 - f (0) . 

This residual function has been fitted over each interval between theoretical 

points, similar to the way that equation 25 was used for the capacitance .. The 

resulting fit was integrated according to the Kramers-Kronig relation, with the 

result shown in figure 5b. Apparently, every further residual correction in the 

K-K relations brings the numerical values closer to the theoretical capacities 

from reference 1 and confirms that the Kramers-Kronig relations correctly 

describe the impedance behavior as a function of frequency. This verification is 

for J = 0; it can be assumed that the impedance results in reference 1 for other 

values of J also satisfy the K-K relations. 

Concluding Remarks 

Landau and Lifshitz(8) write that the K-K relations are of great importance 

in physics for evaluation of frequency dispersion because they allow one to calcu

late either of two corresponding functions even when the other is known only 

approximately or empirically. They are also useful to test the consistency of 

data. 

The present study shows that the impedance values from the disk electrode 

perfectly obey the K-K relations. An important benefit of the Kramers-Kronig 

relations is the ability to calculate the values of the effective resistance from the 

capacitance, and vice versa. The interpretation of impedance by the K-K rela-

tions depends on the functions used for the effective capacitance and resistance: 

the higher the accuracy, the better the agreement. However, to calculate any 

individual value either of the capacity, or the effective resistance, from the K-K 
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Figure 5b. Frequency dependence of the effective capacity for J = 0: 

• - values from reference 1. 

6. - first approximation from equation [27]. 

0- values calculated from the K-K relation (equation [15]) including the 

residual function contribution. 
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relations, one must to calculate the integrals [equations 14 and 15] for the entire 

range of frequency from zero to infinity. Normally, the calculations, as in the 

present paper, have to proceed through the approximate relations, including the 

residual function integrals. One needs an accurate fit in the known range of fre

quencies and an extrapolation in frequency ranges where data are absent. 

Both the real and the imaginary parts of the impedance at a given frequency 

can best be obtained by direct calculation(l), and not through the Kramers

Kronig relations. The same is probably true in experimental measurements. A 

procedure designed to measure one part of the impedance is likely to produce an 

accurate value for the other as well. 
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Nomenclature 

C double-layer capacity (F /cm2) 

Cef! apparent double-layer capacity in the equivalent circuit 

io exchange current density (A/cm2) 

J dimensionless exchange current density 

To radius of disk electrode (cm) 

Ref! apparent (effective) resistance in the equivalent circuit CO) 

z (c.» well behaved part of impedance function (0) 

Z(c.» impedance of system CO) 

Zi{c.» imaginary part of impedance (0) 

Zr(c.» real part of impedance (0) 

Z~ impedance at infinity frequency CO) 
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(Xa + (Xc transfer coefficients in electrode kinetics 

.6(0) departure function for reactance 

" conductivity of the solution (0-1 cm -1) 

a strength of pole in impedance at zero frequency 

CJ frequency of applied signal (radian/s) 

CJo integration variable of frequency (radian/s) 

o dimensionless frequency 

Appendix 

It is perhaps worthwhile to demonstrate that z should be analytic in the 

lower half-plane of figure la, since a change of sign would result in equation 5, 

and hence in equations 6 through 9, if we assumed that z should be analytic in 

the upper half-plane. Let us consider Laplace transforms of current and poten-

tial, for example, 

ac 

V(s) =L{V(t)} =f e-stV(t)dt. 
o 

From Ohm's law, the transfer function Z(s) can be defined, 

yes) =7{s)·Z(s). 

F'or the special case where the current is a constant, 

A 
7{s) = -, 

s 

[AI] 

[A2) 

[A3] 

where A is the value of the constant current. It thus follows that z (s) can be 

regarded as the Laplace transform of the derivative of the potential V: 

[A4] 

where V(O); A can be identified with Zoe and where z (s) vanishes as s -+ 00, as any 

Laplace transform must. In other words, the impedance can be considered as 

the Laplace transform of some function of t: 

ac 

z(s) = Z(s) -Zac =f e-stf(t)dt, [A5] 
o 

where 

;: 
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[A6] 
The causality principle requires t to be positive in these expressions for Laplace 

transforms. Furthermore, there are no poles in the right half-plane for passive 

systems. There could be a simple pole at s = 0, but it can be substracted out as 

was done in the body of the text. One can also note that zr is even in c.>: 

zr(ic.» = zr(-ic.» = f cos(c.>t)f(t)e-B"'dt , [A7] 
o 

while zi is odd in c.>: 

[A8] 
o 

Sin,ce z(s) is analytic in the right half-plane, the integral of z(s)/(s -ic.>o) 

around any closed contour in the right half-plane will be zero. If the contour is 

expanded to include the entire right half-plane, the semicircle at infinity is 

found to contribute nothing, and there remains the integral along the imaginary 

axis from c.> = ~ to co, with integration around the pole at s = ic.>o. 

If we transform from the variable s to the variable W = -is (so that 

Wr = -i2c.> = c.> and ~ = -sr), we conclude that Z is analytic in the lower half 

plane (see figure 1a). 
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